
Biologically-Based Functional Mechanisms of  Coarticulation
Ashvin Shah1, Andrew G. Barto1,2, and Andrew H. Fagg3

1Neuroscience and Behavior Program and 2Department of  Computer Science, University of  Massachusetts Amherst, 3School of  Computer Science, University of  Oklahoma

http://www-all.cs.umass.edu

Exploit excess DOFs to best solve multiple subtasks in sequence or concurrently

For a given subtask, the         																              
coarticulated strategy may 

q

q

Coarticulation

Often, a complex motor task can be decomposed into a set sequence of subtasks. When there 
is redundancy in how each subtask is performed, we choose a way that tends to be best for the 
overall task. This behavior, termed coarticulation, is characteristic of a learned motor skill. 
Previous theories of motor control suggest that coarticulation may be elicited by explicitly 
combining motor commands of contiguous movements17,18 or by introducing tertiary objec-
tives, such as smoothness14, in solving a task. While these theories provide valuable clues as 
to what strategies are useful in learning a task, they were not based on biologically-plausible 
mechanisms. In this poster, we present a model in which functional mechanisms attributable to 
brain areas control a redundant system in order to solve a set sequence of subtasks. Resulting 
behavior displays characteristics of coarticulation. 

Introduction

Mechanisms Attributable to Brain Areas

Different functions cooperate to solve taskq

Hypotheses

evaluating movements based on overall task, not subtask, performance
exploring over several levels simultaneously 

1.
2.

Model Description
System: 10 DOF planar kinematic “robot14”

Task: hit a set sequence of extrinsic targets 
(x

i
targ)  with its “hands” in minimum time

Must specify a q
i
 to hit x

i
targ

Movement: constant velocity from q to q
i

q

q

q

q

Termination of movement depends on sensory modality (s.m.): 						     q

General Control Scheme

After entire task is completed, for each selected action, if total reward > current 
best reward, replace stored q

i
 with q

i
* and update current best reward

q

Learning

Task 1: Fine Action Exploration
Inspired by behavioral3 and 
theoretical14 studies

Task: hit three targets   
with right arm

q

q
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Task 2: Coarse and Fine Action Exploration
Inspired by behavioral studies2

Task: Hit sequence of four targets with either arm

q

q

Task 3: Action and Sensory Exploration

select an action based on reward information 				  
(e-greedy, coarse action & sensory exploration)
add noise, N(0,s), to selected q

i
	(fine action exploration)

move towards noisy target configuration until termination
if necessary, use G to make a corrective movement
record reward and new configuration as q

i
* 

transition to next state

1.

2.
3.
4.
5.
6.

For each state, make a movement:q

Task: use either arm to hit sequence of three targets 
(primary task) and a secondary target at any time

q

differ depending on overall task	
be suboptimal in isolation
ü
ü

cortical areas: represent task6,19, devise reasonable solu-
tions6, working memory8

cerebellum: error correction15

basal ganglia: exploration10 and reward-mediated learn-
ing4,21, critical for coarticulation20

ü

ü
ü

coarse action (e.g., which arm or finger to use)	 	 	
- possibly due to coarse segregation of pathways1,16

fine action (e.g., how to use an arm or hand)				  
- possibly due to fine integration of pathways9

sensory5,7,9 (e.g., which sensory modality to use)

ü

ü

ü

Different areas perform different functionsq

Exploration occurs on several levelsq

Generic controller, Gq
can find a reasonable q

i
 (most direct 

solution) to hit any target
provides initial solutions and corrections
uses Jacobian matrix
requires s.m. A

ü

ü
ü
ü

Specific controller, Sq
uses exploration and reward information 
to find better solutions
ü

Neural Representation

q
i
 stored in action and can be modified 

(fine action exploration)

Reward information (e.g., DA) modu-
lates weights of corticostriatal mapping

q

q

Neural representation of control scheme, illustrated 
for a task consisting of four targets and a system which 
represents the current target with no history and has 
four Actions (LA, LB, RA, RB). The Planning area 
and Cerebellum provide the functions of the generic 
controller, while the BG provide the functions of the 
specific controller. The thin arrows from State 1 to Ac-
tions LA, RA, and RB indicate that the associated re-
wards are less than the current best choice, LB.

- based on extrinsic information
- terminates movement when hand hits target or expected end-point
- only directed towards one hand at a time 

- based on intrinsic information
- terminates movement when q = q

i
 for chosen arm and base

- includes a penalty of 10 time steps

s.m. A, analogous to visionü

s.m. B, analogous to proprioceptiveü

States: current target
Actions: RA
ü
ü

arm configuration for 		 	 	 	
1st target depends on context
solution suboptimal for 				  
1st target in isolation

ü

ü

Train on two sets of targs.: 
ascending and descending 
(first targ. same for both)

Hypothesis #1 supported 

q

q

States: current target + previous action
Actions: LA, RA
ü
ü

initial solution uses right arm for all 4 targets
after actions modified, best solution uses left arm 
for 2nd target (not found in every run)

ü
ü

Hypotheses #1 and #2 supportedq

fine action exploration: search in continuous space 	
coarse action exploration: allows for discrete learning 
mechanisms and more effective search
for additional leverage of excess DOFs, can allow other 
arm to move while one arm moves towards target

ü

ü

States: current primary target
Actions (for primary targets): LA, LB, RA, RB
restricted to always use G for secondary target 
initial solution restricted to use only s.m. A

ü
ü
ü
ü
Hypotheses #1 and #2 supported:q

initial solution uses RA for each of the three primary targets 
and then LA for the secondary target.
learned solution uses RB for some primary targets, allowing 
LA to move left arm to secondary target concurrently

ü

ü

Noteq

Conclusion and Remarks
Coarticulation is a measurable behavioral characteristic of a learned motor skill. We used a 
learning scheme, based on functional mechanisms attributable to brain areas, to show that 
a search in the null space of subtasks and an evaluation based on the overall task produces 
improved movements and coarticulated behavior in a redundant system.  We also showed that 
a multi-level search strategy, including sensory exploration, produces improved movements 
and coarticulated behavior. Finally, the strategies used do not rely on any assumptions as to 
what constitutes better movements; they rely on a reward signal as defined by the task. Such a 
strategy allows for flexibility in what objectives are optimized. For example, when signing two 
letters that are easily distinguishable, sign language users may choose configurations that are 
as similar as possible to expedite transition13. When signing two letters that look similar, sign-
ers may choose configurations that are as distinct as possible to expedite discrimination13. The 
learning process presented in this poster can be used for both objectives. 
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The following figures illustrate the kinematic robot’s behavior for several tasks. Shown are the ro-
bot’s configurations when it hits the targets. On the top of each graph are the rewards received for 
each movement, including a corrective movement if necessary, and the total reward. For each figure, 
the top graph shows the robot’s configurations before learning (using just the generic controller to 
find configurations), and the bottom graph shows the robot’s configurations after learning for about 
15,000 trials. For clarity, the left arm is plotted in red and the right arm is plotted in blue. In addi-
tion, the configuration of the robot is plotted with an alternating pattern of thick and thin lines. 

BG explores and uses rewards to find better solutions
cortex and cerebellum restrict exploration to the null space of the subtask
ü
ü

State: current target + limited history (none or previous action)q
Action: choose arm (e.g., L or R) and sensory modality (e.g., A or B)
		      (coarse action and sensory exploration)

LA LB RA RB
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Control flow diagram. S suggests a control 
signal, such as a candidate configuration. Af-
ter the system moves, if the target isn’t hit, G 
calculates a configuration from the current 
one that does hit the target. S uses reward in-
formation to update its solutions. 

Environment

Movement Control
(Thalamus, Brain Stem,

Spinal Cord)

Basal Ganglia Cerebellum

Cortex

Seen at many levels:q
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how a chosen arm3 or hand13 is used
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Schematic illustrating coarticulation effects. The task is to 
move from the top region to region 1, and then to either re-
gion 2a or 2b, with the shortest possible path. Redundancy 
in the target regions allow for coarticulation. 

The three basic pathways through which 
voluntary movement is controlled.

In a redundant system, coarticulation and, hence, better movement, is elicited byq

Notesq

if one arm uses s.m. B, the other can move with s.m. A concurrentlyü

without secondary target, best to 			 
use RA for all primary targets
ü
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represented in model as best reward received 
for taking that action in that state
ü

analogous to modifying weights of corticostriatal mappingü

- space of action and sensory choices such that the subtask is always solved


