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Abstract

We present a new method for automatically creating usefapteally-

extended actions in reinforcement learning. Our methodtifies states
that lie between two densely-connected regions of the sgdee and
generates temporally-extended actions that take the affasiently to

these states. We search for these states using a grapliopantjtal-

gorithm on local estimates of the transition graph—thos¢ dha con-
structed using only the most recent experiences of the agéi local

perspective is a key property of our algorithm and one tHétrdintiates
it from most of the earlier work in this area.

1 Introduction

Reinforcement learning (RL) researchers have recentlgldped several formalisms that
address planning, acting, and learning with temporallg®sed actions. These include
Hierarchies of Abstract Machines [1, 2], MAXQ value funetidecomposition [3], and the
options framework [4, 5]. These formalisms pave the way tdwhiamatically improved
capabilities of autonomous agents, but to fully realizartbenefits, an agent needs to
be able to create useful temporally-extended actions attoafly instead of relying on a
system designer to provide them.

A number of methods have been suggested to address this@ee@pproach is to search
for commonly occurring subpolicies in solutions to a setaskis and to define temporally-
extended actions with corresponding policies [6, 7]. A secapproach is to identify
subgoals—states that are useful to reach—and generate tdiptended actions that
take the agent efficiently to these subgoals. Subgoals peapn the literature include
states that are visited frequently or that have a high regeadient [8], states that are vis-
ited frequently on successful trajectories but not on uosssful ones [9], and states that
lie between densely-connected regions of the state spcé1112].

We propose a new method for generating temporally-extermdéidns in RL based on
identifying subgoal states. We define our subgoals in teriiso regions of the state
space that have the following property: transitioning frone region to the other in one
step has a low (but strictly positive) probability, and mafkthese transitions go through a
small set of states. The states in this set are our subgoasnple example is a doorway
between two rooms: all transitions from one room to the ogfothrough the doorway. Our
subgoal definition is similar to those of [10, 11, 12]; we adihye terminology of Simsek

& Barto [11] and call thenaccess statesThe utility of access states as subgoals has been
argued previously in the literature [9, 10, 11, 12]. Theiimeppeal is that they allow more
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Figure 1: (a) The state transition graph of a simple gridd/atbmain. The dashed line
shows a cut of the graph (see text). (b) A sample local viewisfttansition graph.

efficient exploration of the state space by providing eagyess to neighboring regions.
Furthermore, because access states are defined indepgmdéné reward function, they
are useful in solving not only the current task, but also &waof other tasks that share the
same state transition matrix but differ in their reward fimes—getting to the doorway is
useful regardless of what the agent needs to do in the otbar.ro

The main distinction between our method and those that wepmged earlier is in how ac-
cess states are identified. Our method identifies access siaperiodically constructing a
local transition graph(a state-transition graph that reflects only the most rezqueriences
of the agent), finding a cut of this graph with a low betweeneks transition probability,
and accepting as subgoals those states that are endpoedges that consistently cross
the identified cut. The local scope of the transition grapkeigto our subgoal discovery
method. The cuts that are identified are not cuts of the estate space but of only a
small part of it encountered recently. This local perspegpiarallels how access states are
defined—Iocally, in relation to the states that surround thexther than in relation to the
entire state space—and is essential in correctly idengftliem. Methods that use cuts of
the entire state space (e.g., QCut [10]) are not able tocityidentify these states because
an access state may or may not be part of a global cut. Empigéie local perspective
of our method, we call it LCut (which stands for Local Cut).

The only other subgoal discovery method that shares thé peecapective of LCut is RN
(the Relative Novelty Algorithm [11]). LCut and RN both usetmost recent part of the
transition history in identifying access states, but diffehow they do this. LCut takes a
graph-theoretic approach, while RN uses a heuristic measfurovelty. In the discussion
section, we provide a more detailed comparison of LCut, Rid, ather subgoal-based
approaches to automatically creating temporally-extdradions.

In the following sections we expand on the utility of locaksudescribe LCut in detail,
evaluate its performance in a simulated domain, and coaclith a discussion of our
results, related work, and future directions.

2 The Utility of Local Cuts

We illustrate the utility of local cuts using a simple gridibwith the state transition graph
shown in Figure la. All edges are bi-directional; we omitdirections and edge weights
in the figure. In addition to north, south, east, and westitams, this domain includes a
shortcut between the two states colored in black. These tatessare access states—they
provide the only one-step transition from their vicinityttee other part of the grid.

The dashed line in Figure 1a shows a cut of this graph using e@dghts of one and the



NCut metric (which we discuss later). This cut is not usafiubientifying the access states
because a large number of additional states border the #ugegoss the cut.

We show in Figure 1b what a local transition graph in this diomrmaight look like. The
figure communicates clearly the utility of a local perspesti-a cut of this graph is likely
to single out the edge between the two access states. Otcowtsall transition sequences
will yield a graph that looks like this figure. Some will notinde the shortcut edge at alll,
many will show a different edge connecting two otherwiseammected sets of states of
about equal size, and others will have no clear separatitwelea two sets of states. How
to deal with noise due to sampling is an important problent iieeds to be addressed;
LCut does this by combining the evidence from a ensembleoail lvansition graphs as we
describe in the following sections.

The argument for local cuts extends beyond this simple el@anyost real-world naviga-
tion tasks have similar access states—elevators, highwairsstations, airports all impose
shortcuts on top of a more regular grid structure. In genaerakt real-world problems will
show a complex connectivity structure that will not lencetitgo the use of global cuts in
identifying the access states. Analogous situations @xisbntinuous control problems
where, for example, the sequential composition of “furhielsystem dynamics can give
rise to access-like states [13].

3 Description of the Algorithm

LCut is an iterative algorithm that can be used while an RLoatgm is executing or
in exploration mode, for example as the agent performs aommngalk. Each iteration
takes as input a state trajectory (i.e., a sequence of tatesconstructs a corresponding
local transition graph, finds a cut of this graph such thattthesition probability within
blocks is high but between blocks is low, and if any state ifjgalas a subgoal, generates
a temporally-extended action that takes the agent efflgi¢atthis state. Iterations are
performed periodically, after a certain number of transisi (also at the end of each episode
for episodic tasks). The input state trajectory is the oneegrnced since the last iteration
of the algorithm. We describe each step in detail below.

Constructing the Local Transition Graph The local transition graph is a weighted, di-
rected graph constructed from a state trajectory. Veriicgbe graph correspond to the
states in the trajectory; edges correspond to transitietsd®en these states. Edge weights
are equal to the number of corresponding transitions thatpéace in the trajectory.

Finding a Cut Given a graphG = (V, E) whereV is the set of vertices anid is the set of
edges, aut(A, B) of G is a partition ofV; the edges thatrossthe cut are those with one
endpoint in blockA and the other in blocB. LCut uses the Normalized Cut (NCut) [14]
metric to evaluate the quality of a cut. Finding a partitidragyraph that minimizes NCut
is NP-hard [14]; LCut finds an approximate solution using ecsal clustering algorithm,
as described in [14]. This algorithm has a running tim&of ?), whereN is the number
of vertices in the graph. When using LCtwill typically be much smaller than the total
number of states in the MDP, because LCut constructs, réftiaer the entire transition
graph, docal transition graph that shows only a small part of the ageta®drajectory.

The original NCut measure was intended for undirected graptte modify it to include
directed edges. For a graph partitioned into blo&kandB, let ¢;; be the weight on the
edge from vertex to vertexj, let cutsiz€A, B) be the sum of the weights on edges that
originate inA and end irB, and letvol(A) be the sum of weights of all edges that originate
in A. We define NCut as follows:



cutsize(A, B) = cutsize(B, A)
N = . 1
cut vol(A) + vol(B) @

Our choice of NCut as a cut evaluation metric is not arbitr&igr a local transition graph,
the first term in Equation 1 is the number of observed tragrsitirom a state in blockto a
state in blockB divided by the total number of transitions from a state irchla. This is an
estimate of the probability that the agent transitions ¢@bB in one step given that it starts
in block A under its current policy. A similar argument can be madeHergecond term in
Equation 1. The NCut value, therefore, is an estimate ofahed probabilities of crossing
the cut from each block, a metric particularly well suiteddar problem—partitioning the
graph such that transitioning between blocks has a low [ibtysand transitioning within
blocks has a high probability.

In practice, we found it useful to use the Laplace correctionomputing each term in
Equation 1, which adds one to the number of edges within thekiAnd to the number of
edges going out to the other block. The Laplace correctiengnts either term from eval-
uating to zero, a perfect score, when the sample graph hatges érom the corresponding
block to the other one.

We note here that there are two alternative cut metrics tteat@ammonly used in graph
partitioning: MinCut [15] and RatioCut [16]. MinCut is them of edge weights that cross
the cut, while RatioCut equatsitsize(A, B)/|A| + cutsize(A, B)/|B| for an undirected

graph. Neither of these meets our needs as well as NCut doe€ullin particular, creates
a bias towards cuts that separate a small number of nodestlfimnest of the graph, for
example a single corner state in a gridworld, and is cleafBrior to the other two metrics.

Subgoal Evaluation Criteria A cut of the local transition graph with a low NCut value
(below a threshold value.) indicates a good separation between the blocks, and those
states that are endpoints of the edges that cross the cutilagead candidates. We call
these statehits. Accepting all hits as subgoals will not be effective: in didea to the
access states of the domain, this will identify as subgoalaraber of other states that
look like access states in the sample transition graph. iSl@Tonsequence of using short
trajectory samples to construct the graph. Even in a doméim no access states, for
example a square gridworld with no walls, a local transitioaph may return a cut with a
low NCut value, making some states appear to be access.states

We need to be able to differentiate those states that arssastates of the domain from
those thatppearto be so in the current local transition graph. In other wpwas need
to deal with noise, and the tool at our disposal is repeatetbbag. Lettargetsbe the
access states in the domain. Because targets will be metg tikbe hits than non-targets,
over repeated samples, a target will be a hit relatively naften than non-targets. In
fact, assuming independent, identically-distributed@iémg of a local transition graph, the
number of hits follows a Binomial distribution, with a susseprobability that is higher for
targets than for non-targets, and what we face is a cladsificisk that aims to distinguish
targets from non-targets. This is a simple classificatiak {47] that has the following
optimal decision rule:

Label state as target if
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wheren; is the number of times the state was a hits the number of observations on this
state (i.e., the number of times the state was part of the Isatrgmsition graph)p is the
probability that a target will be a hit, is the probability that a non-target will be a hit,,



N oW Ao

Steps to Goal
N
o
o

Q-Learning

2 3 4 5

<
-
XV P <
@

0 500 1000 1500
Episodes

(@ (b) (c)

Figure 2: (a) The taxi domain, (b) Subgoals identified (simgdnly the grid location
variables), (c) Mean steps to goal.

is the cost of a false alarm,,,;, is the cost of a misg(7) is the prior probability of a
target, ang (V) is the prior probability of a non-target.

This decision rule is a simple threshold on the proportiotiroés a state was a hit when
it was part of the sample graph. The first term on the right isrestant that depends only
on class-conditional probabilities. The second term ddgpém addition on the number of
observations, the priors, and the relative cost of each ¢f@eror. This term is inversely

related to the number of observations, therefore its inflaethecreases with increasing
number of observations.

While we can not use Rule 2 directly—we do not know the valuesarfyrof the quantities
in this equation—we use it to motivate the following algomithAccept a state as subgoal
only if the number of observations on this statg (s above a threshold value,j and if
the proportion of observations in which the state was a tgrésiter than some threshold
value ¢,).

Generating Temporally-Extended ActionsIn defining temporally-extended actions, we
adopt the options framework [5, 4]. When a new subgoal is ifledt LCut generates an
option whose policy efficiently takes the agent to this sabgd@he option’s initiation set
is specified using those cuts that identified the subgoal at dttincludes those states
that were in the opposite block and whose distance in the Igagnaph to the subgoal was
less than theption lag(l,), a parameter of the algorithm. The option’s policy is sfiedi
through an RL process employing action replay [18] usingeugds reward function [3].
The policy learned takes the agent to the subgoal state evatirfie steps as possible while
remaining in the option’s initiation set. The option teriaies with probability 1 if the agent
reaches the subgoal, or if the agent leaves the initiatignotieerwise, it terminates with
probability 0.

The time complexity of a single iteration of LCut is &¥), whereh is the length of the
state trajectory used to construct the sample transitiaptgr. The running time does not
grow with the size of the state space because the algoritvayalworks with a bounded
set of states, regardless of the size of the actual state spac

4 Experimental Results

We present experimental results in a simulated taxi taskdoiced in [3]. The task is to
pick-up and deliver a passenger to her destination drnxa grid depicted in Figure 2a.
There are four possible source and destination locatitveggrid squares marked with R, G,
B, Y. The source and destination are randomly selected imegisode. The initial location
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Figure 3: Mean steps to goal in the taxi task using LCut (a wit0.05,¢,=0.1, 0.3, 0.4,
0.5, (b) witht.=0.1,£,=0.1, 0.3, 0.4, 0.5.

of the taxi is one of the 25 grid squares, picked uniformlyd@m. At each grid location,
the taxi has a total of six primitive actionsor t h, east , sout h, west , pi ck- up, and
put - down. The navigation actions succeed in moving the taxi in thended direction
with probability 0.80; with probability 0.20, the actiorkess the taxi to the right or left of
the intended direction. If the direction of movement is laled, the taxi remains in the same
location. The actiompi ck- up places the passenger in the taxi if the taxi is at the same
grid location as the passenger; otherwise it has no effantilaBly, put - down delivers
the passenger if the passenger is inside the taxi and thistaixihe destination; otherwise
it has no effect. Reward is -1 for each action, an additio2él for passenger delivery, and
an additional -10 for an unsuccessfulck- up or put - down action. Successful delivery
of the passenger to the destination marks the end of an episod

This domain has 500 states: 25 grid locations, 5 passengggidas (including in-taxi), and
4 destinations. It includes two types of states that confiorour definition of access states:
completion of subtasks (arriving at the passenger locatiwh picking up the passenger)
and navigational bottlenecks (grid squares (2,3) and )j3,3)nder various pairings of
passenger location and destination, subtask subgoalsrnwo8?2 states and navigational
subgoals to 40 states.

In our experiments, the agent used Q-learning wititeedy exploration witla = 0.1. The
learning rate ¢) was kept constant at 0.05; initial Q-values were 0. Thematars of
LCut were set as followsh = 500, [, = 10, t. = 0.05, t, = 0.1, t, = 10. These settings
were based on our intuition; developing methods for settiregn automatically is a topic
of current research. No limit was set on the number of opttbhascould be generated; no
filter was employed to exclude certain states from beingtified as subgoals.

The performance of the algorithm was evaluated over 10Q ikigsire 2b is a visual repre-
sentation of the grid locations of the subgoals, ignorirggdther two state variables. The
color of a square in this figure corresponds to the numbemuoégiit was identified as a
subgoal, with lighter colors indicating larger numbersehean number of subgoals iden-
tified per run was 30.0. Of these, 52% corresponded to piakmnthe passenger, and 12%
corresponded to the navigational subgoals. Another 35% states within two transitions
of these. Figure 2c shows learning curves for LCut, RN, anléapiing. We used the
parameter settings for RN specified in [11], which the awgthumed for this same task (with
identical Q-learning parameters). LCut showed an earlyravgment in performance in
comparison to both RN and Q-learning.

It is important to examine the behaviour of LCut under vasigattings of its key parame-
ters:t., the threshold on cut quality, angl, the threshold on the number of hits required to



qualify as a subgoal. The former parameter defines a thésindhe probability of transi-
tioning between blocks in the sample graph. Higher valuicaiise more states to qualify
as subgoals. This intuitive interpretation makes settinglatively easy. Furthermore, we
expect its ideal setting to be fairly consistent between alosm We experimented with
t.=0.05, 0.1 and,=0.1, 0.3, 0.4, 0.5. The corresponding learning curves aggented in
Figure 3. For both settings of, the figure shows a gradual decrement in performance with
increasing values of,. Interestingly, all settings of the parameters either imnpd on or
replicated the performance of Q-learning.

A promising extention to LCut would be using, instead of @#nold parameter on the pro-
portion of hits, a simple clustering technique (e.g., k-n®dhat partitions the observed hit
proportions into two categories—above and below thresholithewt an explicit setting
of the threshold.

5 Discussion

Our initial results suggest that LCut is effective in idéyitig access states working with

only recent state trajectories. An alternative use of loa#s is to build the entire transition

graph, but perform cuts on local neighborhoods, for exaropla part of the graph that

contains only the states that are within a certain distaheg@andomly selected state. This
approach would be effective in identifying access stated veould not have to address any
issues that result from sampling the graph (as LCut does)it bas the disadvantage of
having to build and maintain the entire state transitiorpgra

LCut is closely related to a number of algorithms proposetthénliterature, most notably

to QCut [10] and RN [11]. All three algorithms search for ttaere type of subgoals but
differ in how they do this search. The main distinction besawe)Cut and LCut is the

scope of the transition graph they construct. QCut contsrile entire transition graph
of the underlying MDP, reflecting the entirety of the ageetperience, and finds cuts of
this global graph. In contrast, LCut constructs a local vidgwhe graph and performs cuts
on this small part. This distinction between the two aldons, while subtle, gives rise to
two fundamentally different algorithms and has two impiicas. First, they are expected
to identify different states as subgoals because a locaheytor may not be a global cut
of the entire transition graph; and second, the running tifeCut’s subgoal discovery

method does not grow with the size of the state space, whilaet'®8ubgoal discovery

method has time complexitp(N3), whereN is the number of states visited.

RN and LCut are similar in that they both conduct their searsihg only the most recent
part of the transition history. RN never constructs a trigosigraph, but uses a heuristic
that uses a measure of relative novelty to identify subgtzdés. An advantage RN has
over LCut is its algorithmic simplicity—the running time dgisubgoal discovery method
has a time complexity of O(1). We may think of RN as using a snmguristic to approx-
imate what LCut is doing. Assessing the relative strengtitsvaeaknesses of these two
algorithms is an important research direction.
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