
A Framework for Transfer in Reinforcement Learning

George Konidaris GDK@CS.UMASS.EDU

Autonomous Learning Laboratory, Computer Science Dept., University of Massachusetts at Amherst, 01003 USA

Abstract

We present a conceptual framework for trans-

fer in reinforcement learning based on the idea

that related tasks share a common space. The

framework attempts to capture the notion of tasks

that are related (so that transfer is possible) but

distinct (so that transfer is non-trivial). We de-

fine three types of transfer (knowledge, skill and

model transfer) in terms of the framework, and

illustrate them with an example scenario.

1. Introduction

One aspect of human problem-solving that remains poorly

understood is the ability to appropriately generalise knowl-

edge and skills learned in one task and apply them to im-

prove performance in another.

Although reinforcement learning researchers study algo-

rithms for improving task performance with experience, we

do not yet understand how to effectively transfer learned

skills and knowledge from one problem setting to another.

It is not even clear which problem sequences allow trans-

fer, which do not, and which do not need to. Although the

idea behind transfer in reinforcement learning is intuitively

clear, no definition or framework exists that usefully for-

malises the notion of “related but distinct” tasks—tasks that

are similar enough to allow transfer but different enough to

require it.

In this paper we present a framework for thinking about the

transfer problem for reinforcement learning agents. The

framework is based on the idea that related tasks share a

common space, and it attempts to capture the notion of re-

lated but distinct tasks.

2. Related Tasks Share a Common Space

Successful transfer requires an agent that must solve a se-

quence of tasks that are related but distinct—different, but

Appearing in the ICML-06 Workshop on Structural Knowledge
Transfer for Machine Learning, June 29, Pittsburgh, PA. Copyright
2006 by the author(s)/owner(s).

not so different that experience in one is irrelevant to expe-

rience in another. We propose that what makes a sequence

of tasks related is the existence of a feature set that is shared

and retains the same semantics across tasks. These features

model the common elements between tasks, and we call

the space generated by them an agent-space because it is

associated with an agent, not an individual task.

The agent also requires a descriptor that is sufficient to dis-

tinguish Markov states in each individual task. This in-

duces a task-specific Markov Decision Process (MDP) with

a set of actions that are common across the sequence (be-

cause the agent does not change) but with a set of states,

transition probabilities and rewards that refer to a particular

task. We call each of these spaces a problem-space.1 The

core idea of our framework is that task learning takes place

in problem-space, but transfer takes place in agent-space.

Consider a class of environments generated by an under-

lying parameterized environmental model (e.g., gridworlds

with goal, size and obstacle location parameters) where the

agent must solve a sequence of task instances E1, ..., En

obtained by setting the model parameters. The agent may

employ various observation functions that map an environ-

ment (described by its parameters) and its state to a real-

valued vector. Particularly important are the reward func-

tions, r1, ..., rn, which map each state in each environment

to a single real-valued reward.

An observation function is a problem-space generator for

environment Em if the descriptors (sm
t at time t) it pro-

duces are Markov for Em. In general, an ideal problem-

space is discrete and small. If we choose to use a function

approximator, it should preferably be be smooth with re-

spect to rm (so that similar states have similar values).

An observation function is an agent-space generator if it

is defined over and returns a descriptor of the same form

for all of the environments. This requires an agent-space

observation function that is a function of an environment

description and its state, rather than just state as is standard

1We recognize that not all solution methods require the
Markov property, but we treat this as the ideal case. More gen-
erally problem-space must provide enough structure to allow a
solution to be found.



A Framework for Transfer in Reinforcement Learning

in reinforcement learning. In general, an ideal agent-space

contains all useful commonalities but may not necessarily

be Markov.

We note that in some cases the agent-space and problem-

spaces used for a sequence of tasks may be related, e.g.

each problem-space is formed by appending a task-specific

amount of memory to agent-space. However, in general

it may not possible to recover an agent-space descriptor

from a problem-space descriptor, or vice versa. They are

separate observation functions which must be designed (or

learned outside of the reinforcement learning process) with

different objectives.

We define a sequence of tasks to be related if that sequence

has an agent-space, i.e. if a set of (given or engineered)

features exist in all of the tasks. We define the sequence to

be reward-linked if every task has the same reward obser-

vation function (rm ≡ r,∀m) so that rewards are allocated

for the same types of interactions in all tasks (e.g., reward

is always x for finding food). Note that here r is a function

of an environment description and its state (rather than only

state as is standard in reinforcement learning), so it can be

defined across multiple state spaces.

If a sequence of tasks is related we may be able to perform

effective transfer by taking advantage of the shared space.

If no such space exists there is no common way (how-

ever abstract, noisy or lossy) of describing states across the

tasks. Without such a descriptor, we cannot perform trans-

fer between arbitrary tasks in the sequence without more

information.

If we can find an agent-space that is also a problem-space

for every task in the sequence, then we can treat the se-

quence as a set of tasks in the same space and perform

transfer directly by learning about the structure of this

space. If in addition the sequence is reward-linked then

the tasks are not distinct and transfer is trivial because we

can view them as a single problem. However, there may

be cases where a shared problem-space exists but results in

slow learning, and using task-specific problem-spaces cou-

pled with a transfer mechanism is more practical.

3. Types of Transfer

Given an agent solving n problems with respective state

spaces S1, ..., Sn, we view the ith state in Sj as consisting

of the following attributes:

s
j
i = (dj

i , c
j
i , r

j
i ),

where d
j
i is the problem-space state descriptor (sufficient to

distinguish this state from the others in Sj), c
j
i is an agent-

space sensation, and r
j
i is the reward obtained at the state.

3.1. Knowledge Transfer

We can use reinforcement learning during each task Sj to

learn a value function Vj :

Vj : d
j
i 7→ v

j
i ,

where v
j
i is the expected return for action from state s

j
i .

This function is not portable between tasks because the

form and meaning of d (as a problem-space descriptor)

may change from one task to another. However, the form

and meaning of c (as an agent-space descriptor) does not

change, so we can perform knowledge transfer across the

sequence by introducing a function L that estimates return

for a state given the agent-space descriptor received there:

L : c
j
i 7→ v

j
i .

L will only be a useful predictor of reward when there is a

consistent relationship between some aspect of agent-space

and reward across the sequence of tasks. Thus, knowledge

transfer will only work in reward-linked tasks, where we

can expect such a relationship because reward is always

allocated for the same types of interactions.

Once an agent has completed task Sj and has learned Vj , it

can use its (cj
i , v

j
i ) pairs as training examples for a super-

vised learning algorithm to learn L. Alternatively, learning

could occur online during each task.

After training, L can be used to estimate a value for newly

observed states in problem-space, thus providing a good

initial estimate for V that can be refined using reinforce-

ment learning. Alternatively (and equivalently), L could

be used as an external shaping function (Ng et al., 1999).

Konidaris and Barto (2006a) show that such an agent is able

to significantly improve its performance on a reference task

after experience on even a single small training task.

3.2. Skill Transfer

Often, reinforcement learning agents are either given or

learn a set of macro-actions to reduce the time required

to solve their task. The options framework (Sutton et al.,

1999) provides methods for learning and planning us-

ing options (macro-actions) in the standard reinforcement

learning framework (Sutton & Barto, 1998). Each option

o (as usually defined in problem-space) consists of the fol-

lowing components:

πo : (dj
i , a) 7→ [0, 1]

Io : d
j
i 7→ {0, 1}

βo : d
j
i 7→ [0, 1].

where πo is the option policy (giving action probabilities at

each state in which the option is defined), Io is the initiation



A Framework for Transfer in Reinforcement Learning

set, which is 1 for the states the option can be started from

and 0 elsewhere, and βo is the termination condition, which

gives the probability of the option terminating in each state.

We can define portable agent-space options as:

πo : (cj
i , a) 7→ [0, 1]

Io : c
j
i 7→ {0, 1}

βo : c
j
i 7→ [0, 1].

Although the agent then learns its option policies in a dif-

ferent space from its task policy, it receives both agent-

space and problem-space descriptors at each state so both

policies can be updated simultaneously.

Konidaris and Barto (2006b) show that agents learning

portable options are able to improve their performance in

a reference problem through experience in other problems,

until they approach the performance of agent with perfect

prespecified problem-space options.

3.3. Model Transfer

Finally, it may be useful to learn a model of agent-space:

P : (cj
i , a, c

j
k) 7→ [0, 1],

where P is probability of moving from one agent-space de-

scriptor to another, given action a. This would primarily be

useful for using model-based reinforcement learning meth-

ods to compute L or an agent-space option policy offline.

Alternatively, it could be used to predict the results of ex-

ecuting an option and coupled with knowledge transfer to

estimate the value of first executing an option.

4. An Illustrative Example

Consider a mobile robot, equipped with a laser range finder

and pressure, light and temperature gauges, that must find

heat sources in a sequence of different buildings.

Because its laser-range finder readings are noisy and non-

Markov, the robot will need to construct a map of each

building as it explores in order to search it efficiently. The

resulting pose variables in a particular building’s map are

sufficient to form a problem-space for that building, but

since all the buildings it is likely to see (and the location of

the heat source in them) are different and unknown in ad-

vance, pose variables cannot be used for transfer. However,

the robot’s sensors retain their meaning across all buildings,

so they form an agent-space for the building sequence.

The robot could attempt to learn a relationship between

its sensors and the reward obtained when it finds the heat

source (and hopefully learn that temperature is a heuristic

for distance to the heat source), thus performing knowledge

transfer. This would enable it to to later find heat sources

in larger buildings in less time, but would not by itself be

enough to find heat sources in new buildings because heat

sensor readings are not Markov in problem-space.

The robot could also learn options using only the laser

range finder, corresponding to actions like moving to the

nearest door, thus performing skill transfer. Because these

options are based solely on sensations in agent space

without referencing problem-space (any individual metric

map), they can be used to speed up learning and exploration

in any building that the robot encounters in the future.

Finally, the robot could learn a model predicting the change

in sensor outputs given an action, thus performing model

transfer. For example, it could learn a forward model of its

laser-range finder, and thus be able to learn agent-space op-

tions using model-based reinforcement learning methods.

5. Related Work

Most prior research on transfer in reinforcement learn-

ing involves either finding useful options (Bernstein, 1999;

Pickett & Barto, 2002; Thrun & Schwartz, 1995) or build-

ing structured representations (Mahadevan, 2005; Van Roy,

1998) of a single state space, to speed up learning for tasks

in the same state space but with different reward functions.

Taylor and Stone (2005) perform knowledge transfer from

one instance of a multi-agent task to another with more

agents (and hence a different state space). However, their

approach uses a hand-coded transfer function that must be

manually constructed for every pair of tasks in a sequence.

In supervised machine learning, transfer is viewed as an

inductive bias mechanism that speeds learning and im-

proves generality when learning multiple related tasks from

the same feature set, demonstrating performance improve-

ments using several methods (Thrun, 1996; Caruana, 1997;

Evgeniou et al., 2005).

Baxter (2000) provides a theoretical framework for induc-

tive bias learning over a distribution of related tasks. Silver

and Mercer (2001) consider tasks related with respect to

a learning algorithm when multitask learning using them

improves its performance. In contrast, Ben-David and

Schuller (2003) define related tasks to be those generated

from each other under a given set of transformations. These

methods all assume a single feature space for every task.

6. Discussion

Our framework requires the identification of a suitable

agent-space to facilitate transfer, but it does not specify how

that space is identified. This results in a design problem

that is similar to that of standard state space design, but re-

searchers in the reinforcement learning community have so



A Framework for Transfer in Reinforcement Learning

far developed significant expertise at designing problem-

spaces, not agent-spaces. We expect that the two design

problems are equivalently difficult, and that with practice

finding agent-spaces for related tasks will become easier.

It may be possible to automatically construct such spaces

given a sequence of environments, but that will likely re-

quire explicit descriptions of the environments and their

regularities across the sequence of tasks—information that

is not available to reinforcement learning agents.

The idea of an agent-centric representation is closely re-

lated to the notion of deictic or ego-centric representa-

tions (Agre & Chapman, 1987), where objects are rep-

resented from the point of view of the agent rather than

in some global frame of reference. We expect that for

most problems, especially in robotics, agent-space repre-

sentations will be egocentric, except in manipulation tasks,

where they will likely be object-centric. In problems in-

volving spatial maps, we expect that the difference between

problem-space and agent-space will be closely related to

the difference between allocentric and egocentric represen-

tations of space (Guazzelli et al., 1998).

7. Summary

We presented a conceptual framework for transfer in rein-

forcement learning. The framework attempts to capture the

idea that for tasks to be related but distinct they must share

an common space (an agent-space) but have different in-

dividual state spaces (problem-spaces). We defined three

types of transfer (knowledge, skill and model transfer) in

terms of the framework and illustrated them with an exam-

ple transfer scenario.

Acknowledgments

We would like to thank Andy Barto, Pippin Wolfe

and Özgür Şimşek for their useful comments. George

Konidaris was supported by the National Science Founda-

tion under Grant No. CCF-0432143. Any opinions, find-

ings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily re-

flect the views of the National Science Foundation.

References

Agre, P., & Chapman, D. (1987). Pengi: An implementation of
a theory of activity. Proceedings of the Sixth National Confer-
ence on Artificial Intelligence (AAAI 87) (pp. 268–272).

Baxter, J. (2000). A model of inductive bias learning. Journal of
Artificial Intelligence Research, 12, 149–198.

Ben-David, S., & Schuller, R. (2003). Exploiting task relatedness
for multiple task learning. Proceedings of the The Sixteenth
Annual Conference on Learning Theory (pp. 567–580).

Bernstein, D. (1999). Reusing old policies to accelerate learn-
ing on new MDPs (Technical Report UM-CS-1999-026). De-
partment of Computer Science, University of Massachusetts at
Amherst.

Caruana, R. (1997). Multitask learning. Machine Learning, 28,
41–75.

Evgeniou, T., Micchelli, C., & Pontil, M. (2005). Learning mul-
tiple tasks with kernel methods. Journal of Machine Learning
Research, 6, 615–637.

Guazzelli, A., Corbacho, F., Bota, M., & Arbib, M. (1998). Af-
fordances, motivations, and the world graph theory. Adaptive
Behavior, 6, 433–471.

Konidaris, G., & Barto, A. (2006a). Autonomous shaping:
Knowledge transfer in reinforcement learning. Proceedings of
the Twenty Third International Conference on Machine Learn-
ing.

Konidaris, G., & Barto, A. (2006b). Building portable options:
Skill transfer in reinforcement learning (Technical Report UM-
CS-2006-17). Department of Computer Science, University of
Massachusetts Amherst.

Mahadevan, S. (2005). Proto-value functions: Developmental re-
inforcement learning. Proceedings of the Twenty Second Inter-
national Conference on Machine Learning (ICML 05).

Ng, A., Harada, D., & Russell, S. (1999). Policy invariance un-
der reward transformations: theory and application to reward
shaping. Proceedings of the 16th International Conference on
Machine Learning (pp. 278–287).

Pickett, M., & Barto, A. (2002). Policyblocks: An algorithm for
creating useful macro-actions in reinforcement learning. Pro-
ceedings of the Nineteenth International Conference of Ma-
chine Learning (ICML 02) (pp. 506–513).

Silver, D., & Mercer, R. (2001). Selective functional transfer: In-
ductive bias from related tasks. Proceedings of the IASTED In-
ternational Conference on Artificial Intelligence and Soft Com-
puting (pp. 182–189).

Sutton, R., & Barto, A. (1998). Reinforcement learning: An in-
troduction. Cambridge, MA: MIT Press.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs and
semi-MDPs: A framework for temporal abstraction in rein-
forcement learning. Artificial Intelligence, 112, 181–211.

Taylor, M., & Stone, P. (2005). Behavior transfer for value-
function-based reinforcement learning. Proceedings of the
Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems (pp. 53–59).

Thrun, S. (1996). Is learning the n-th thing any easier than learn-
ing the first? Advances in Neural Processing Systems 8 (pp.
640–646).

Thrun, S., & Schwartz, A. (1995). Finding structure in reinforce-
ment learning. Advances in Neural Information Processing
Systems (pp. 385–392). The MIT Press.

Van Roy, B. (1998). Learning and value function approxima-
tion in complex decision processes. Doctoral dissertation, Mas-
sachusetts Institute of Technology.


