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ABSTRACT
Path planning for mobile robots in stochastic, dynamic en-
vironments is a difficult problem and the subject of much
research in the field of robotics. While many approaches to
solving this problem put the computational burden of path
planning on the robot, physical path planning methods place
this burden on a set of sensor nodes distributed throughout
the environment that can communicate information to each
other about path costs. Previous approaches to physical
path planning have looked at the performance of such net-
works in regular environments (e.g., office buildings) using
highly structured, uniform deployments of networks (e.g.,
grids). Additionally, these networks do not make use of real
experience obtained from the robots they assist in guiding.
We extend previous work in this area by incorporating rein-
forcement learning techniques into these methods and show
improved performance in simulated, rough terrain environ-
ments. We also show that these networks, which we term
SWIRLs (Swarms of Interacting Reinforcement Learners),
can perform well with deployment distributions that are not
as highly structured as in previous approaches.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Experimentation, Performance

Keywords
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1. INTRODUCTION
Navigation and path planning for mobile robots in stochas-

tic, dynamic environments are fundamental and difficult prob-
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lems for which many approaches have been developed. The
majority of these approaches place the burden of computing
a solution to each of these problems on the robot itself. For
the local navigation (obstacle avoidance) problem, i.e. navi-
gation in which obstacles and the goal destination are within
sensing range of the robot, some egocentric solutions have
been developed that work very well in dynamic, stochas-
tic environments with minimal computation [3]. The global
navigation (path planning) problem, however, in which po-
tential obstacles and the goal destination are not immedi-
ately observable to the robot, introduces a higher level of
uncertainty that poses a serious problem for such egocentric
solutions.

Some methods for solving the global navigation problem
egocentrically rely on building a probabilistic model of the
environment based on sensor information and past experi-
ence, and performing computationally expensive algorithms
using the model to infer the least cost path to a desired goal
[5]. Other less computationally expensive methods build
topological maps based on landmarks [8, 10], but these ap-
proaches generally suffer from the problem of aliasing, in
which partial observability and sensor noise prevent deter-
ministic discrimination between landmarks. While these ap-
proaches have met with moderate success in certain types
of environments, they are all generally limited to specific
classes of environments about which certain restrictive as-
sumptions can be made a priori.

More recently, the path planning problem has been ap-
proached from a distributed intelligence perspective [1, 9,
11]. In these approaches, sensor networks of stationary
nodes embedded in an environment provide global sensing,
computational, and communication resources for mobile robots
navigating stochastic, dynamic terrains. In these approaches,
a mobile robot interacts with a sensor network by requesting
suggested routes to a goal, which the sensor network then
computes by invoking distributed algorithms that arrive at
globally optimal solutions using only local communication.
Such approaches have been termed physical path planning
methods [11]. The primary benefit of these distributed ap-
proaches is the removal of the computational burden of path
planning from the robot and the distribution of this burden
over a large number of unsophisticated sensor nodes. Each
node performs simple computations asynchronously and in
parallel, sharing information about its environment with its
neighbors through local communication. This disbursement
of data collection and computation over a distributed sensor
network allows for much faster convergence of global solu-



tions than would be possible given a single robot with only
local sensing capabilities.

We introduce an extension of previous approaches to phys-
ical path planning and show that our approach performs well
in broader classes of environments and deployment configu-
rations than can be handled by existing methods. The rest
of this paper is organized as follows. Section 2 outlines pre-
vious approaches to physical path planning in more detail
and presents some theoretical background in the fields of
reinforcement learning and distributed network routing pro-
tocols. Section 3 discusses our approach to physical path
planning. Section 4 presents some preliminary results of a
SWIRL performing physical path planning in various sim-
ulated environments. Discussion of our results and future
directions of research are presented in Section 5.

2. BACKGROUND AND PREVIOUS WORK

2.1 Distributed Path Planning
Previous distributed approaches to path planning [1, 9,

11] have been tested only in highly structured, uniformly
distributed deployments of sensor networks (i.e., grid-like
distributions) over topologically uniform environments (e.g.,
office buildings). A more interesting application for physi-
cal path planning is unstructured network deployment over
rough, topologically diverse terrain (e.g., a sensor network
dropped from a plane over a dense forest). Such deployment-
environment combinations create several problems for pre-
vious approaches, primarily because all previous approaches
have used hop count as a cost metric for finding shortest
paths between nodes. While this assumption is valid for
uniform, structured network deployments and environments
with even terrain and few obstacles, this cost metric does not
generalize well to the more difficult cases mentioned above.

The validity of hop count as a cost metric for distributed
path planning algorithms requires the restrictive assumption
that one can place reasonable bounds on the differences in
time it takes a robot to travel between any two nodes. If the
terrain is regular and all nodes are nearly equidistant from
each other, a robot’s travel time between any two nodes (one
hop) will be relatively constant. However, in cases where the
terrain is irregular, nodes are not evenly distributed, or there
are obstacles not detectable by the nodes, the variance of
one-hop travel time may be very high, and a network using
hop-count as a cost metric will likely converge on suboptimal
solutions.

Essentially, the hop-count cost metric ignores information
about the difficulty a mobile robot may have in actually
traversing the terrain between any two nodes and about the
actual distance between those nodes. One approach [9] at-
tempts to correct for this by having the network compute
a “danger” potential field over the environment, which the
network takes into account when computing the least cost
path. However, the cost metric in this case is simply this
potential field summed with the traditional hop-count met-
ric. The approach also assumes that the individual nodes
can sense relevant stimuli that indicate potential danger to
a robot, which is not often a valid assumption.

Another drawback of prior physical path planning meth-
ods is that once the network converges on a solution given
a specific goal, it holds all routes in the solution fixed until
the goal is changed or obstacles that can be sensed by the
nodes are added or removed. Because no information aside

from the number of hops is taken into consideration when
computing least-cost paths, real data from robots travers-
ing the network cannot be used to update true path cost
estimates (e.g. actual time to traverse a path, energy con-
sumed by a robot traversing the path, etc.). Thus, using a
hop-count cost metric precludes any potential learning by
the network based on actual experience obtained from the
robots it guides.

We address these issues in our approach and develop a
reinforcement learning [13] approach to physical path plan-
ning. More specifically, we introduce a more realistic and
relevant cost metric that is used to compute least cost paths
over a wide range of environments given various (possibly
unstructured) deployments of sensor networks. Using ba-
sic concepts from swarm intelligence [7], which deals with
collections of relatively unsophisticated agents that commu-
nicate locally to achieve sophisticated, globally optimal be-
havior, we model our approach as a Swarm of Interacting
Reinforcement Learners (SWIRL).

2.2 Distance Vector Routing
The algorithms used in distributed approaches to path

planning are very similar to common network routing proto-
cols, where the sensor nodes are analogous to packet routers
and the individual robots can be likened to packets routed
through the network. The objective of the network is to
route each packet from a given source to a given destination
with minimal latency. One of the more common techniques
for packet routing is distance vector (DV) routing [12], in
which each node maintains an estimate of the minimum cost
to each other node in the network (a distance vector). Each
node broadcasts its DV to neighboring nodes and updates
its current estimates based on the DV estimates it receives
from its neighbors. Updates are made to a node’s DV by
computing the direct cost to each of its neighbors and, for
each destination node, taking the minimum over all of its
neighbors of the sum of this cost and the minimum cost to
the destination advertised by that neighbor.

More formally, if d(x, y) represents the cost of a direct
link between node x and its neighbor y, the minimum cost
D(x, z) of routing a packet from node x to a destination
node z is computed as

D(x, z) = min
y∈N(x)

d(x, y) + D(y, z), (1)

where N(x) is the set of neighbors of x.
Every node in the network maintains an estimate for reach-

ing each destination node z ∈ V (where V is the set of all
nodes in the network) and routes packets bound for a specific
destination along the link that minimizes this value accord-
ing to equation 1 (i.e., the arg min of Equation 1). Distance
vector routing is a distributed form of the Bellman-Ford
algorithm for computing shortest paths in a graph [4]. Al-
though this method is guaranteed to converge to a global
optimum even with asynchronous updates, convergence can
be slow in many cases, and various enhancements are often
used in network routing protocols to alleviate this drawback.

In the case of physical path planning, however, commu-
nication time is much faster than the time it takes to route
robots through the network, since robots have much stricter
motion constraints than radio or infrared waves. By ad-
justing the frequency of message passing employed by each
node, one can allow for more than enough distance vector
estimates to pass through the network to ensure convergence



rapid enough to be useful to a robot navigating through the
network. Therefore, as network topology changes, or new
obstacles are introduced, convergence time for computing a
new solution is much less of an issue than it is in packet
routing networks where packet traversal time is the same as
traversal time of the distance vector estimates.

2.3 Reinforcement Learning
Reinforcement Learning (RL) [13] is a well established

theoretical learning framework that lies between supervised
learning and unsupervised learning. A reinforcement learn-
ing agent takes actions that affect the state of its environ-
ment and receives state information and a scalar reward
signal from that environment. The agent’s goal is to max-
imize its expected return, which is defined as the expected
sum of future rewards received from the environment. It
generally does this by learning a policy, π, that maps states
to actions. RL problems are often formulated as Markov
Decision Processes (MDPs), since there are formal conver-
gence proofs for various RL methods if one assumes that the
state representation of the problem is Markov (i.e., that the
representation of the current state is a sufficient statistic for
determining the distribution of possible next states given an
action).

Formally, an MDP is defined as a four-tuple < S, A, T, R >,
where S is a set of states, A is a set of actions, T is a tran-
sition probability function that maps transitions between
states (given an action) to probabilities (T (s, a, s′) 7→ [0, 1]),
and R is a reward function that maps state-action pairs
to real numbers (R(s, a) 7→ <). One of the more common
RL methods, Q-Learning [14], estimates a value function
Qπ(s, a), s ∈ S, a ∈ A for a policy, π, that maps state-action
pairs to scalar values representing the expected return for
taking action a in state s and from then on acting accord-
ing to π. The value function estimated by the Q-Learning
algorithm has been proven to converge to the optimal value
function Q∗(s, a) given sufficient exploration [15]. An agent
who acts greedily according to Q∗(s, a) when selecting ac-
tions (by choosing the arg max over all Q-values in a state
s) acts optimally for a given MDP.

The network routing problem was formulated as a dis-
tributed Q-Learning problem by Boyan and Littman (1993)
[2]. In this formulation, states are represented as source-
destination pairs, and the set of actions admissible in a state
is the set of neighbors of the source node — i.e., the source
node can choose to route a packet to any one of its neigh-
bors. The transition function arises from the topology of the
network and the reward function is determined by packet la-
tency between nodes (thus each agent is actually trying to
minimize “reward” in this case). The value function in this
formulation is actually distributed across the network, and
thus the network can only converge on an optimal policy by
sharing information about each node’s portion of the value
function through local communication.

We formulate the physical path planning problem as an
MDP in a similar manner. States are source-destination
pairs of sensor nodes in the network, and the set of admissi-
ble actions for each node n is the set of communicable neigh-
bors of n. The transition function arises from the topology
of the sensor network embedded in the environment and re-
wards are one-hop travel times measured and communicated
to sensor nodes by the robots traversing the terrain.

3. PHYSICAL PATH PLANNING WITH
SWIRLS

3.1 Model and Assumptions
In our approach to physical path planning, the sensor

nodes of a SWIRL provide computational resources for com-
puting the value function of the routing task as well as com-
munication capabilities for transmitting value information
to other nodes and guidance information to robots. The
robots provide a means of actuation within the environment
that allows for data collection about travel times that sensor
nodes need to update their value function. In this way, the
interaction of a single sensor node and one or more robots
constitutes a single RL agent, and the interactions of many
of these agents constitute a SWIRL.

The utilization of interactions between many (possibly di-
verse) unsophisticated agents using only local communica-
tion to perform complex global behavior is a hallmark of
the field of distributed or swarm intelligence. Swarm intel-
ligence [7] has been formalized into a powerful optimization
framework that performs well on many tasks in which cen-
tralized control or information processing is either impossi-
ble or highly inefficient. Interesting applications of physical
path planning, such as wireless sensor networks deployed
over large geographical regions (e.g. a large forest or moun-
tain range) would render central control extremely ineffi-
cient, whereas distributed control methods have the poten-
tial to perform quite well.

Our approach assumes that each sensor node and robot
has a method of obtaining the location of and Euclidian dis-
tance to each of its neighbors (nodes and robots within its
communication range). In practice this can be accomplished
in many ways (e.g., GPS, radio signal strength, etc.), some
more accurate than others.1 Note that this does not trivial-
ize the path planning problem because such an assumption
provides no information to the network about the difficulty
of traversing different types of terrain, with the possible ex-
ception of altitude, which can only provide a crude estimate
of such difficulty. We further assume that each node com-
municates through radio transmission (e.g., standard 802.11
wireless) and thus does not necessarily have line of sight
visibility to its neighbors, as was assumed in previous ap-
proaches.

Robots are assumed to posses a scheme for local naviga-
tion (i.e., simple obstacle avoidance) that allows them to
move towards a given position in as straight a line as possi-
ble while avoiding obstacles along that route (e.g., see [3]).
We also assume that all robots traversing the network are
similar enough in their locomotion capabilities to have the
same maximum velocity over equivalent terrains. In this
way we can abstract out obstacle avoidance and rough ter-
rain and model them simply as reductions in average speed.
Robots are also assumed to be able to communicate with
nearby nodes to submit queries for next hops given a des-
tination node and to transmit travel time information that
nodes use to update their value functions. Finally, we as-
sume that robots are always able to travel between any pair
of nodes. While we could assume that robots have a method

1We use absolute node location in our simulations to provide
a heading for robots. If robots have local sensing capabilities
sufficient to obtain both heading and distance to a given node
then this assumption can be dropped.



d ← destination node
current← null
next← closest neighboring node
while(distance to d > ∆):

restart timer
while(distance to next > ∆):

move towards next using local navigation
end
if(current != null):

send UPDATE(next, timer) to current
endif
send QUERY(d) to next and wait for TARGET(n)
current← next
next← n

end

Figure 1: Pseudocode for algorithm run by robots.

of measuring travel progress and modify our algorithms to
allow robots to send infinite travel times to nodes in cases
where they decide that a certain link is impassable, we do
not address this scenario in our current work.

3.2 Formal Specification and Algorithms
Each sensor node in the SWIRL will store a local portion

of the value function in tabular form indexed by neighbor
and destination. Formally, each node x will learn path cost
estimates Qx(n, d), n ∈ N(x), d ∈ V , where N(x) is the
set of communicable neighbors of x and V is the set of all
nodes in the network. Each of these estimates represents
the expected travel time of a robot sent along a path from
x to neighbor n bound for destination d.

A node x joins the network by initializing its Q-value
Qx(x, x) to 0 and broadcasting its position xpos to neighbor-
ing nodes in a HELLO message. Upon receipt of a HELLO
message from a neighbor n, a node x checks to see if n is
in its current set of neighbors N(x). If n /∈ N(x), x adds
n to N(x), sends a HELLO message back to n containing
its own position xpos, and initializes the Q-value Qx(n, n) to
an optimistic estimate of the time a robot will take to travel
directly from x to n. In our simulations we simply made this
value the quotient of the Euclidian distance between the two
nodes and the maximum velocity of a robot over even ter-
rain with no obstacles. This optimistic initialization of the
value function has been shown to provide a good method of
initial exploration [13]. Otherwise, if n ∈ N(x), x ignores
the HELLO message.

After broadcasting its HELLO message, a node x starts
regularly broadcasting a portion of its current value function
out to its neighbors in ESTIMATE messages. The distance

vector ~dvx that it broadcasts is computed by taking the
minimum path cost estimate for each destination node d ∈
V (x) over all neighbors n ∈ N(x), where V (x) is the set of
nodes in the network of whose existence x is aware. That is,

for each destination node d ∈ V (x), ~dvx[d] is the estimate
Qx(n∗, d) that satisfies

Qx(n∗, d) = min
n∈N(x)

Qx(n, d). (2)

Upon receipt of an ESTIMATE message from neighbor n,
node x updates its value function table with the Q-values for

Initialize Qx(x, x)← 0
broadcast HELLO(xpos)
loop forever:

process any received messages m using receive(m)

compute distance vector ~dvx according to
~dvx[d]← minn∈N(x) Qx(n, d), ∀d ∈ V (x)

broadcast ESTIMATE( ~dvx)
end

receive(m):
if(m is HELLO(npos) && n /∈ N(x)):

N(x)← n ∪N(x)
initialize Qx(n, n) optimistically based on npos

send HELLO(xpos) to n
endif

if(m is ESTIMATE( ~dvn)):

Qx(n, d)← ~dvn[d] + Qx(n, n), ∀d ∈ ~dvn

if(d /∈ V (x)): V (x)← d ∪ V (x), ∀d ∈ ~dvn

endif
if(m is QUERY(d)):

send TARGET(arg minn∈N(x) Qx(n, d))
to querying robot

endif
if(m is UPDATE(n, timer)):

Qx(n, d)← Qx(n, d) + α[timer−Qx(n, n)], ∀d ∈ V (x)
endif

end

Figure 2: Pseudocode for algorithm run by a given
sensor node x.

routing robots through n with these new estimates, adding
its current estimate of Qx(n, n) to each one. If any of the es-
timates are for a destination node d which is not in V (x), x
adds d to V (x) as well. This specification for message pass-
ing of path cost estimates is sufficient for computing least
cost paths through the network assuming even terrain over
which robots can travel at maximum speed. To address the
issue of navigating rough terrain with potential obstacles,
we next specify the types of messages robots and nodes can
send to each other.

A robot begins a path through the network towards a
specified goal node by approaching the nearest node x to its
current position, which is assumed to be in communication
range of the robot. Once within a small distance ∆ of x,
the robot transmits a QUERY message to that node con-
taining its destination node d. The node x responds with a
TARGET message containing the ID of the neighbor node
n ∈ N(x) for which Qx(n, d) is minimized. The robot then
starts a timer t and travels towards node n using its local
navigation algorithm. Once within ∆ units of n, the robot
stops the timer and transmits an UPDATE message back
to node x containing the ID of node n and the value of the
timer t. It then sends a QUERY message to node n and
the process repeats until the robot comes within ∆ units of
node d, at which point it has reached its destination.

Sensor nodes receiving UPDATE messages update their
value function as follows. For every destination node d ∈
V (x), node x updates its Q-value Qx(n, d) according to the



(a) (b) (c)

Figure 3: (a) The rough terrain environment used in our experiments. Darker regions indicate areas with
higher impedance. (b) The grid-structured network deployment used in our experiments. (c) A sample
random network deployment.

following update rule

Qx(n, d)← Qx(n, d) + α[t−Qx(n, n)], (3)

where n is the node specified in the UPDATE message, t is
the value of the timer included in the message, and α ∈ (0, 1]
is a constant step size parameter.

This update has the effect of moving the estimate of the
one-hop path cost between node x and node n towards an
exponential recency-weighted-average (parameterized by α)
of past travel times observed by robots that actually tra-
versed this link, and adding the change in that estimate to
all other estimates that route robots through node n. There-
fore, as robots are sent through the network along various
paths they will collect statistics about actual travel times be-
tween pairs of nodes and report them back to the network,
allowing the network to adjust its value function towards an
accurate estimate of expected travel time between all source-
destination pairs. The parameter α should be set less than
1 to prevent oscillation or divergence of the value function
as a result of variance in travel time statistics. In all of
our simulations, α was set to 0.7. Figures 1 and 2 present
pseudocode for the algorithms run by the robots and sensor
nodes, respectively, of our SWIRLs.

4. EXPERIMENTAL RESULTS
This section outlines the experimental setup used in our

simulations with SWIRLs and some results with different
types of network deployments over simulated rough terrain
environments. In all of our experiments we generated an ar-
tificial terrain that was 300x300 arbitrary units of distance.
Robots were arbitrarily set to move at a speed of 80 units
per second over smooth terrain. Rough terrain was modeled
as a noisy impedance factor which divided the maximum
speed of a robot passing over that portion of the terrain.
In our experiments, uneven terrain patches of the environ-
ment’s surface were set to have a certain average impedance
i ∈ {2, 3, 4, 5} defined by a mean i Gaussian distribution
with variance σ2. The proximity constant ∆ was set to 1
unit of distance in all simulations.

A sample rough terrain environment is shown in Figure
3(a). White areas are those with no impedance, while gray

patches indicate areas with non-zero impedance, with darker
grays indicating higher impedance. In all of our experi-
ments, the impedance distribution for the lightest gray re-
gion was N(2, 1), where N(i, σ) is the Gaussian distribution
with mean i and standard deviation σ. The next darkest
gray region’s impedance distribution was N(3, 1), and the
left and right innermost gray regions had impedance distri-
butions N(4, 2) and N(5, 2), respectively.

We experimented with two different types of sensor net-
work deployments. For highly structured, uniform deploy-
ments we generated a grid network structure over the terrain
by placing a node 20 units in each direction from the top left
corner and spacing all other nodes out by a distance of 50
units in each direction until the terrain was covered. This
grid structure resulted in a network of 36 nodes. An illus-
tration of the grid deployment is shown in Figure 3(b). Ad-
ditionally, we tested random grid deployments which were
chosen by selecting a pre-specified number of (x, y) positions
over the terrain uniformly at random and placing a node at
each of these positions. Figure 3(c) shows a sample random
network deployment.

The communication radius of sensor nodes was arbitrarily
set to be 75 units. We observed empirically that 50 nodes
in a random deployment were enough to provide sufficient
coverage of the terrain (in terms of connectivity of the net-
work) 95% of the time, given this communication range.
This choice of communication range and number of nodes
in a random deployment was chosen to facilitate data collec-
tion in our simulations. Network coverage is an important
issue that must be dealt with more carefully in practice and
we discuss this issue further in Section 5.

In our first experiment we compared the performance of
a SWIRL containing ten robots to that of a network with
ten robots that used a hop count cost metric on the ter-
rain and grid deployment shown in Figure 3(b). Each robot
was started at the upper left node of the network and as-
signed the lower right node of the network as a goal node.
Robots were introduced into the network at two second in-
tervals until all ten robots were in the network. When a
robot reached the goal it was transported back to the start
node and began moving towards the goal again. A run for
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Figure 4: Average time to goal comparison between
a hop-count based network and a SWIRL on a rough
terrain, grid-structured network deployment task
with 10 robots and a single start/goal node pair.

each type of network consisted of 100 trajectories, each one
ending when a robot reached the goal node. The dynamics
of the simulation and the choice of impedance parameters
in this experiment make it such that the optimal route from
the selected start node to goal node is to go around either
edge of the terrain, remaining in the white region for the
entire route. This optimal path will, on average, result in a
travel time of approximately 6.2 seconds. A direct line path
from the start node to the goal node through the center of
the terrain will, on average, result in a travel time of about
10.8 seconds.

The results of this experiment, shown in Figure 4, show
the average time to goal for a robot starting at the start
node as a function of the number of trajectories experienced
by the network. Average time to goal was computed using
a moving windowed average of trajectory length with a win-
dow size of 10, and was updated every time a robot reached
the goal. The curves represent an average over 100 runs of
the experiment. These result clearly show the limitations
of the hop-count cost metric in rough terrain environments,
even given a highly structured network deployment in which
most node-to-node links are equal in length.

Since the hop-count-based network does not take into ac-
count the travel time information provided by the robots,
no learning takes place and the performance of the network
stays constant. The SWIRL uses the updates reported by
the robots to refine its estimates of time to goal for given
state-action pairs and switches its action (routing) choices
to new routes not yet tried in practice until the minimal-
time path is found. This exploration of untested paths is
an implicit result of the optimistic initialization of the value
function at each node. It should be noted that the SWIRL
converges to the optimal path within about 60 trajectories
using 10 robots. The effect of the number of robots in a
SWIRL on convergence time will be addressed shortly.

Our next experiment looked at the difference in average
one-hop travel time for each network type given random
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Figure 5: Average one-hop travel time compar-
ison between a hop-count based network and a
SWIRL on a rough terrain environment task with a
grid-structured network deployment and 10 robots.
Start/goal node pairs were chosen randomly for each
trajectory.

choices of start and goal nodes for robots. This experiment
used the same setup as experiment 1 (rough terrain, grid-
structured network deployment, 10 robots), but now robots
were placed at random nodes to begin each trajectory to-
wards goal nodes that were also randomly chosen. When a
robot reached a goal, it updated a global moving average of
one-hop time by dividing its total travel time for the trajec-
tory by the number of hops in the trajectory, and was then
restarted at a new random node with a new random goal. A
run consisted of 150 trajectories and an average of 100 runs
for each network type is shown in Figure 5.

Again we see the benefit of the real-time cost metric and
its facilitation of learning from real data. The performance
curves show that after about 100 trajectories the nodes learn
to route robots along the outer edge of the terrain whenever
possible, even if it means more hops to a destination. We
see from this graph that the learning ability of the SWIRL
allows it to achieve a significant decrease in average latency
for every link traversed on the path to a goal as compared
to the network using the hop-count cost metric.

We next experimented with random network deployments
over rough terrain environments. Using the same terrain as
in experiments 1 and 2, we deployed 100 different random
networks of 50 nodes each, whose individual locations were
chosen uniformly at random using a pseudo-random num-
ber generator with 100 different randomly generated seeds.
This was done so that we could reproduce the same 100 de-
ployments for both the hop-count based network and the
SWIRL. As before, we placed each of 10 robots at a start
node that was determined to be the node closest to the up-
per left corner of the terrain and assigned them a goal node
which was the node closest to the lower right corner of the
terrain. A sample random network deployment is shown in
Figure 3(c). Figure 6 presents the results of this experiment,
plotting average time to goal as a function of the number of
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Figure 6: Average time to goal comparison between
a hop-count based network and a SWIRL on a rough
terrain, random network deployment task with 10
robots and a single start/goal node pair.

trajectories.
It should be noted that in all of our experiments we have

shown convergence speeds as a function of the number of
sampled trajectories. If one is interested in the speed of con-
vergence as a function of real time, then the rate at which
these trajectories can be sampled (which depends on the
number of robots in the network) becomes relevant. Clearly,
having more robots simultaneously traversing the network
on different routes allows for simultaneous trajectory sam-
pling and thus a decrease in convergence time. However,
one would also expect a saturation effect (or diminishing re-
turns) as the number of robots increases due to the increased
probability of overlap in trajectories during the early learn-
ing phase. We next conducted an experiment to determine
the effect the number of robots in the network has on con-
vergence time.

Figure 7 shows the results of this experiment, which used
the same setup as our first experiment. We see that with
only one or two robots available in the SWIRL, convergence
time is severely hampered since the network essentially has
to wait for “access” to the robots to try out unexplored rout-
ing paths. However, with just a few more robots the rate of
convergence seems to saturate very quickly for this particu-
lar task. As the size of the network increases, however, this
saturation effect will likely be observed only for much larger
numbers of robots.

5. CONCLUSIONS AND FUTURE WORK
We have presented a distributed approach to the path

planning problem faced by mobile robots in dynamic, stochas-
tic environments by combining ideas from swarm intelli-
gence and reinforcement learning. Our SWIRLs were shown
to perform much better than static, hop-count based sen-
sor networks on simulated, rough terrain environments with
non-deterministic dynamics using both highly structured and
uniformly random network deployments. The interaction of
stationary sensor nodes with mobile robots as we formulate
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Figure 7: Average time to goal using a SWIRL with
varying numbers of robots as a function of total ex-
perience time on a rough terrain, grid-structured
network deployment task with a single start/goal
node pair.

it provides a sufficient framework for performing distributed
reinforcement learning over the topological map defined by
the sensor network.

It is worthy to note that although we only addressed one
cost metric about which robots could provide data from
real experience, there are certainly other metrics relevant
to robot navigation that could be substituted or combined
into the “reward” function for the SWIRL (e.g., robot en-
ergy consumption or sources of danger, such as high tem-
peratures). Although defining an effective reward function
can sometimes be the most difficult part of designing an RL
system, the versatility of RL agents stems from their sole
objective of maximizing (or minimizing) this scalar signal.
If a decent reward function can be defined for a given cost
metric, then a SWIRL will likely perform very well at the
task posed to it.

We next present some possible directions of future re-
search by addressing some of the assumptions made in our
simulations. First, it may be unrealistic to assume that
low power wireless sensor nodes can regularly broadcast
their current value function at a specific frequency. More
often than not such nodes are highly energy constrained
and must conserve power as much as possible. There are
a number of possible approaches that may alleviate this
problem, including ongoing research involving performance-
aware power management in systems that can harvest en-
ergy from the environment [6]. Another approach is to im-
plement ad-hoc on-demand distance vector (AODV) rout-
ing [12] to propagate the value function through the net-
work. Nodes implementing AODV routing for the most part
only send routing messages when requested by other nodes
(hence, on-demand). In the SWIRL specification this would
apply not only when neighboring nodes make requests for
value function estimates, but also when update messages
from robots are received, since the value function has likely
changed in some capacity. AODV routing would greatly de-



crease power consumption in a SWIRL, and future research
with SWIRLs should focus on such an implementation.

Second, increasing the number of robots available to the
network was shown to increase speed of convergence towards
an optimal policy, but it may not always be possible to have
large numbers of robots in any given SWIRL. Future work
should also focus on decreasing convergence time by making
efficient use of the data provided by robots in a SWIRL.
One possible way this can be achieved is through the use
of eligibility traces in value function updates [13]. As im-
plemented in this paper, the updates performed after robot
data is received only update one-hop time estimates. It is
possible, however, to have the robot report back tempo-
ral data about larger sections of its trajectories to provide
nodes with more unbiased samples of trajectory times. By
introducing a parameter λ that controls the rate of decay
of the traces, information about large sections of trajecto-
ries could be used in updates by weighting them according
to their eligibility. This is a common technique in reinforce-
ment learning methods to speed convergence, but whether it
will help significantly in the physical path planning problem
as posed in this paper is a topic worthy of future research.

Another avenue of future research relates to the algorithm
currently run by the robots in the SWIRL; namely, to query
the closest node for the optimal next hop and move all the
way to that node before querying again. This policy imposes
restrictions on the optimality of the paths that a robot can
take to a goal, since it may have to deviate from the true
optimal path to the goal to reach the node it has to query
next. One can imagine, however, the robot querying mul-
tiple nodes surrounding its current position and estimating
a value surface over these nodes using some interpolation
method (e.g., linear), and then proceeding in the direction
that maximizes (or minimizes, in the case of cost) the gradi-
ent of the surface, reestimating the surface at regular inter-
vals as it travels. In this way, the robot need not complete
its journey to a particular node to determine which direction
to travel next, and thus can learn paths whose optimality
is not constrained by the implicit discretization imposed by
the sensor network.

Finally, one of our assumptions in using randomly de-
ployed sensor networks was that there were sufficient num-
bers of nodes to provide connectivity of the network. This
may not always be the case in practice and so another di-
rection for future work lies in considering the case where the
sensor nodes are themselves (perhaps limitedly) mobile. If
this is the case, one could envision having the sensor net self-
organize itself from an initial random configuration to one
that is more uniform. Additionally, if the nodes are mobile,
data from robots could also be used to learn optimal node
positions as well as routing policies. For example, it may be
the case in some rough terrains that a uniform distribution
of sensor nodes over the terrain might be inefficient, and
the network may exhibit better performance if nodes are
clustered closer together in regions through which robots
are routed frequently or where goals are often located. A
SWIRL could potentially perform very well on such a par-
allel learning task. In short, mobility of the sensor nodes
in a SWIRL opens up many potential directions for future
research.
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