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Abstract

We study the properties of off-policy reinforce-
ment learning algorithms when applied to a real
world clinical scenario. Towards this end, we
evaluate standard off-policy training methods on
ventilation and sedation control using the MIMIC-
III dataset. We further evaluate off-policy policy
evaluation (OPE) methods in the context of this
problem. We analyze the limitations exhibited by
these methods and propose possible solutions.

1. Introduction
Off-policy reinforcement learning refers to the task of learn-
ing a policy while using a possibly different behavior policy
to interact with the environment. This class of Reinforce-
ment Learning (RL) algorithms can be trained using retro-
spective data, and therefore is of particular interest in the
context of clinical applications. For example, the training
data could be collected through behavior policies employed
by clinicians in a hospital. This property allows off-policy
RL methods to build a model of the action policy without
being actively interacting with a patient. However, methods
in this class come with their own set of challenges. The two
main challenges are how to efficiently learn the action policy
from a limited dataset (which is quite common in clinical
settings) and how to evaluate the learned policy without any
real-world usage.

Several methods have been proposed for off-policy learning
such as Q-learning (Sutton & Barto, 1998), off policy actor-
critic (Degris et al., 2012) and their variants (Gu et al., 2016;
Munos et al., 2016). The main methods for off-policy pol-
icy evaluation (OPE) are based on either model estimation
(Hallak et al., 2015) or importance sampling (Precup et al.,
2000; Thomas et al., 2015; Jiang & Li, 2015). The model
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estimation methods work by forming an estimate of the un-
derlying Markov decision process (MDP). They are more
sample efficient (Hester et al., 2010; Hallak et al., 2015),
however it may be difficult to quantify the approximation
error or the model bias of these methods. It is often even
more difficult to choose an appropriate function class in the
clinical domain due to its complexity. The second evalua-
tion method uses importance sampling in order to build an
estimate of the expected return (Precup et al., 2000; 2001).
These importance sampling estimates are unbiased, but they
can have very high variance leading to unstable evaluations.

It is also imperative that OPE methods provide performance
guarantees before being deployed in the real world. This is
particularly important when using a high variance estimator
like importance sampling. Such guarantees can be provided
by calculating confidence bounds on the OPE return. Sta-
tistical tools like concentration inequalities (Thomas et al.,
2015) or bootstrap confidence bounds (Hanna et al., 2017)
can be used to calculate lower bounds on off policy return.

Reinforcement learning methods have been used to learn
policies for several clinical applications. Ernst et al. (2006)
use fitted Q-iteration (FQI) (Ernst et al., 2005) to obtain
treatment policies for simulated HIV data. Prasad et al.
(2017) use FQI with Gaussian process based preprocessing
on ICU data for ventilation and sedation control. Nemati
et al. (2016) use Q-learning with a partially observable MDP
formulation to learn a policy for heparin dosage. Raghu
et al. (2017) use Q-learning to optimize policy for sepsis
treatment.

In this work we examine the limitations of standard off-
policy RL and OPE methods for clinical applications. To-
wards this end, we apply off-policy RL methods in a clinical
scenario. We enumerate a set of properties that are neces-
sary for a clinical RL algorithm. We design our experiment
with these guidelines using standard, widely used RL and
OPE methods. We analyze the properties and limitations
of these methods. Lastly, we discuss possible extensions to
them in order to improve their utility in the clinical domain.



Towards High Confidence Off-Policy Reinforcement Learning for Clinical Applications

2. Nomenclature
We adapt the nomenclature used by Thomas et al. (2015).
We use S and A to denote state and action spaces. π(a|s; θ)
denotes a policy or a probability density of taking action
a, conditioned on the state s and parameterized by θ. The
shorthands πb and πe denote the behavior and evaluation
policy respectively. In a clinical application we are provided
the data set D, that consists of K trajectories (patient histo-
ries). Each trajectory τi is composed of sequence of state,
action and reward.

Rewards for a trajectory τi at time-step t are denoted by rt,i.
The total reward throughout the trajectory τi is denoted by
ri.

3. Properties of a Clinical RL Algorithm
We enumerate a set of properties that are required in an off-
policy RL algorithm for a clinical application. This is not an
exhaustive list, since we focus on properties relevant to our
current model. For example, properties like interpretability
of results are outside the scope of this work.

Off policy: As discussed in the introduction section,
Off-policy is a de facto model in the clinical domain due to
its reliance on retrospective data.

Confidence bounds: To deploy an off-policy method in the
real world, it needs to provide “safety” guarantees. This is
especially true for applications in clinical settings, where
a sub-optimal action can have extremely negative conse-
quences. These guarantees can be provided in terms of
lower bounds on evaluation metrics using methods like con-
centration inequalities or bootstrap.

Estimation of underlying models: Both class of methods
used for off-policy evaluation depend on estimation of un-
derlying model dynamics. In the case of model based eval-
uation, it is the estimate of the underlying MDP. Whereas,
in the case of importance sampling methods it is the esti-
mate of the behavior policy. Care should be taken to reduce
approximation and estimation errors in both cases.

For importance sampling methods, a few additional con-
ditions must be met. The behavior policy should be soft
(i.e., it should have a non zero probability πb(a|s; θ) for any
action a ∈ A and state s ∈ S). It may also be possible
that the data is obtained through multiple behavior policies,
instead of a single one.

Action Space: Clinical therapies involve decisions in both
discrete and continuous action spaces. Decisions like intuba-
tion or dosage of oral medications can be modeled through
discrete action spaces. But actions like dosage rates of IV
drugs entail continuous action spaces. Additionally, clinical

applications may have very large action spaces, due to a
large number of drug and procedure choices. A clinical RL
method should therefore be able to deal with continuous or
large action space.

Long horizon: Hospital stays for critical patients in ICU
wards or even out-patient therapy typically spans long time
intervals. For example, ICU stays in the MIMIC-III dataset
(Johnson et al., 2016) have a median length of 2.1 days while
a median hospital stay is 6.9 days. In an ICU, where several
decisions are taken within an hour, this could translate to
a very long horizon. The variance of importance sampling
estimators may grow exponentially with the length N of
the time horizon (Glynn, 1994; Guo et al., 2017) which
increases the sample complexity of these methods exponen-
tially. Therefore an off-policy algorithm and its evaluation
method should be designed to deal with a long horizon.

4. Dataset Description
For our analysis we use a simplified version of the clini-
cal application used by Prasad et al. (2017). They look at
the problem of ventilation management and sedation regu-
lation in ICU patients gathered from MIMIC-III (Johnson
et al., 2016) data. Mechanical ventilators are medical de-
vices which help critical care patients breath by assisting
in ventilation of air to and from the patient’s lungs. The
process of mechanical ventilation is initiated and finished
by intubation and extubation procedures respectively.

Weaning a patient off the ventilator is a challenging task.
Extubating the patient before their respiratory system is
strong enough to function on their own, leads to repeated re-
intubations which increase the chance of complications. On
the other hand, ventilating the patient longer than necessary
increases discomfort and elongates ICU stay. As noted
by Prasad et al. (2017) a successful extubation event in
retrospective data only provides an upper bound on the
time that the patient was ready for extubation. However,
repeated intubation and extubation indicate a sub-optimal
control policy. Therefore, to simplify this analysis, we
compose our reward function based only on the number of
failed extubation procedures. A reward is provided only
at the end of each trajectory, and no reward is given for
the intermediate states. So if a trajectory only has one
extubation procedure, we give it a final reward of 0. For a
trajectory with k failed extubations (k+1 total extubations)
we give final reward of −k. Each end reward was offset by
+0.8 in order to approximately center the reward returns.

While on mechanical ventilation, these patients also require
sedatives to reduce discomfort and improve patient safety.
However, providing patients with the correct sedative and
dosage is also a non-trivial task. Both over-sedation and
under-sedation are detrimental to the overall health of the
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patient.

We limit our action space to only sedatives and intuba-
tion/extubation choices. We use six commonly used seda-
tives in the ICU data. To further simplify our scenario, we
do not consider the dosages for each sedative. This reduces
our action space to only seven binary decisions. Six action
variables controls whether that drug will be administered.
The seventh binary variable, denotes whether the patient is
on mechanical ventilation. Overall this leads to 128 unique
action combinations.

We use eighteen input features which are relevant to our
problem. The features are Arterial pH, Inspired O2 Fraction,
O2 Flow (lpm), PEEP Set, Plateau Pressure, Mean Airway
Pressure, Arterial CO2 Pressure, Systolic Blood Pressure,
Diastolic Pressure, Peak Inspiratory Pressure, Mean Blood
Pressure, Spontaneous Respiratory Rate, Respiratory Rate,
Tidal Volume, SpO2, weight, age and gender. These features
are sampled at different frequencies. To deal with irregularly
sampled time series data, we use a simple interpolation
scheme that uses the most recent value for each feature. The
input features are normalized by scaling [µ− 3σ, µ+ 3σ]
to [−1, 1].

In order to reduce the number of time steps in the trajectory,
we split the time-line based on when a change in action
space variables was recorded in the data. This changes our
problem formulation by only requiring a decision when one
was made in the true dataset. However, in the context of our
analysis of off-policy evaluation, this simplification should
not introduce any bias. Additionally, this simplification does
not completely eliminate the long horizon problem. Our
processed dataset still has a significant number of trajecto-
ries that are longer than 100 time steps. In total we extracted
4436 patient trajectories with an average trajectory length
of 101.2.

5. Methods
We used two off-policy learning methods, namely FQI and
direct policy search to understand the challenges in using RL
algorithms for clinical applications. The policies generated
through these methods were evaluated using weighted im-
portance sampling (Precup et al., 2000). We use bootstrap
sampling to provide the percentile bootstrap confidence
lower bounds. The methodology and the relevant challenges
are described in the following subsections.

5.1. Fitted Q Learning

We use Fitted Q Iteration (Ernst et al., 2005) to estimate
the action-value function for our problem. Similar to Q-
Learning, FQI can be used in an off-policy setting. It uses
tuples of (st, at, rt, st+1) with the aim of estimating q∗,the
optimal action value function, irrespective of the behavior

policy πb used to create the dataset. For further details about
FQI refer to Ernst et al. (2005).

We use a simple one-layer neural network with approximate
RBF kernel feature maps (Rahimi & Recht, 2008) to es-
timate the Q function. To simplify inference, the output
dimensionality of the neural network is equal to number of
possible action combinations. In our problem formulation
we have seven binary actions as described in Section 4 and
therefore we have 128 possible unique action combinations.
Only 75 of these action combinations are used in our dataset,
so our Q network has a 75 dimensional output.

FQI uses a regression algorithm to iteratively update the Q
estimate towards the Q value calculated from the next step.
This broadly translates to running the following update for
each (st, at, rt, st+1) tuple in the dataset.

Qi+1(st, at)
FQI←− rt + γmax

a′
Qi(st+1, a

′) (1)

Here, Qi is the approximation obtained by the regression
algorithm for the ith iteration of FQI and γ is the discount
parameter. In the (i + 1)th FQI iteration, the regression
algorithm uses the right hand side of (1) as the target.

It has been well documented (Glorot & Bengio, 2010) that
initialization of the neural network has a significant effect
on its performance. While single layer linear networks
are not affected by saturation regions, due to the rarity of
certain actions combinations in the clinical domain it is still
important to carefully initialize the weights and biases of the
Q network. For example, in our problem formulation, the
reward can be between [−9.2, 0.8] as described in Section 4.
Consider the case where the initial biases of our Q network
are kept at a positive value, while the weights are scaled
using Xavier initialization (Glorot & Bengio, 2010). Notice
that the right hand side of (1) has a max over all actions, but
since it is the target of the FQI update, the max action itself
is never updated.

This phenomenon can cause issues with FQI training if there
are certain action combinations (say amax) that are rarely
present in the dataset. Since the network bias corresponding
to amax is updated very slowly, it remains at the relatively
high initialization value. Therefore, for most states the max
operation on the RHS of (1) will return Qi(st, amax). This
results in very slow or stalled training if amax is extremely
rare. It is possible to encounter such rare action combi-
nations, especially in the large action space of a clinical
scenario. Therefore, it is important to offset the biases so
that the initial output of Q-network underestimates the ac-
tual Q value. We accomplish this by initializing all biases
to large negative values and initializing the weights using
variance scaling.

We train the Q network till convergence using mini-batch
stochastic gradient descent. The convergence is estimated
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by calculating the mean squared TD error on a validation
set. The exact procedure for validation and convergence is
described in Section 6.

5.2. Direct Policy Search

The second method uses a gradient free optimization method
to search for a policy that maximizes the return over a train-
ing dataset Dt.

θ′ ∈ argmax
θ

J(πθ|Dt) (2)

Here, πθ is a policy function parametrized by θ. The func-
tion J(π|Dt) evaluates the policy π over the training dataset
and outputs a return. It is formally defined in Section 5.4.
We can use black box optimization algorithms like Evolu-
tion Strategy optimizers, to search for the policy which can
maximize the return J(π|Dt).

In this work, we use CMA-ES (Hansen et al., 2003) to find
suitable parameters for the policy function. The general
design of the policy function is the same as that used in Sec-
tion 5.1. We use approximate RBF kernel maps to generate
the input representation which is then fed into a single layer
neural network. However, the output size of this network is
only seven instead of 27. Since this method uses the policy
estimate directly, it does not require a max over all action
combinations for inference. This significantly reduces its
complexity during inference as compared to action-value
methods like Q learning. Another advantage of this method
is that it can model problems with both continuous or cat-
egorical action spaces. We use an identical discrete action
space in order to compare this with FQI.

To normalize all seven outputs as individual action proba-
bilities, we use a sigmoid function as the output activation
layer. The probability of best action is obtained by taking a
product over all seven individual action probabilities.

5.3. Estimation of Behavior Policy

As mentioned in Section 3, estimation of the behavior pol-
icy is an important step in IS based OPE methods (Precup
et al., 2000). The aforementioned WIS and IS estimators
use the behavior policy probabilities πb(at|st) to calculate
the weights. We use Kernel density estimation to estimate
the conditional πb(at|st). Kernel density estimation (Aitchi-
son & Aitken, 1976; Bowman, 1980) is a non-parametric
estimation method which is biased but consistent. We use a
KDE formulation from Li & Racine (2003) for categorical
action variables and continuous state variables.

The histogram of behavior policy estimated from training
data and evaluated on a held out test set is shown in Figure
1. Since, we have 75 valid action combinations, a uniform
random probability over all actions would amount to a prob-
ability estimate of 0.0133. The figure shows that KDE

estimates are generally much higher than 0.0133 for (state,
action) pairs in the test dataset. This suggests that it is able
to successfully fit the behavior policy.

Figure 1. Histogram of behavior policy predictions πb(at|st) for
all state, action pairs in the held-out test set. The red vertical line is
at x = 0.0133 which is the value of a uniform random distribution
over actions.

5.4. Importance Sampling

Importance sampling can be used to produce an unbiased
estimate of the expected return of the evaluation policy πe,
using trajectories that were constructed using a different
policy πb. While importance sampling is unbiased if πb is
known, it is shown to have very high variance. Weighted
Importance Sampling (WIS) estimator drastically reduces
this variance, but is a biased estimate. Nevertheless, the
biased WIS estimator is more useful in practice due to its
limited variance.

In our case since we do not explicitly know πb and our KDE
estimate is biased, the IS estimator is also biased. Therefore
to reduce the variance we use WIS to estimate the returns of
our evaluation policies. Additionally, since we only have a
reward at the end of a trajectory, per-decision WIS (Precup
et al., 2000) and WIS estimators are the same. However, in
cases where the reward is distributed throughout the trajec-
tory, per-decision WIS estimators should be preferred. The
IS weight of a trajectory τi in the dataset D using evaluation
policy πe and behavior policy πb is

w(τi, πe, πb) =

Ti∏
t=1

πe(at|st; θ)
πb(ait|sit)

. (3)
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The WIS return J(D,πe, πb) calculated on a dataset D is

J(D,πe, πb) =

∑K
i=1 riw(τi, πe, πb)∑K
i=1 w(τi, πe, πb)

. (4)

Mixed Policy Evaluation

The deterministic policy provided by Q-learning or FQI
is incompatible with off-policy policy evaluation (OPE)
because it will reduce w(τi, πe, πb) to zero, if even one
of its predicted actions deviates from the behavior policy.
The policy obtained from CMA-ES is not deterministic, but
can still produce small enough values that cause numerical
instability while calculating J(D,πe, πb). To mitigate these
problems, we use a mixed policy (Kakade et al., 2003)
in order to estimate the WIS return. The mixed policy is
calculated as

πm = απe + (1− α)πb. (5)

We use α = 0.5 in our case. Using a mixed policy also
ensures that the evaluation policy is closer to the behav-
ior policy. This reduces the variance of the importance
sampling estimator. The WIS returns discussed in later sec-
tions denote the return obtained through the mixed policy
J(D,πm, πb).

5.5. Confidence Intervals

We use bootstrap samples to calculate the confidence in-
tervals. Bootstrapping does not have any assumptions on
the distribution of the samples, and is suitable for our task.
Bootstrap methods have been used in reinforcement learning
(Hanna et al., 2017) as well as biomedical applications (For-
man et al., 2004; Njeh et al., 2000; Rochon et al., 2008). We
adapt the bootstrap method used by Hanna et al. (2017) to
calculate the 95% confidence lower bound for our off-policy
methods.

We modify the procedure as shown in Algorithm 1. Both
FQI and CMA-ES are used to produce the evaluation poli-
cies.

6. Experiments and Results
We randomly shuffle the dataset and select 600 trajectories
as the held out test set. The remaining trajectories form
the training set for the algorithms. Both FQI and CMA-ES
are trained for 100 epochs or till convergence criteria are
met. We treat a small split from the training data as the
validation set to tune the hyper-parameters and to calculate
convergence. In the case of FQI, the learning-rate, the
learning rate scheduler and the l2 weight penalty are the
tunable hyper-parameters. The γ parameter for FQI in (1)
is fixed at 0.9. In the case of CMA-ES, only the σ is tuned.

Algorithm 1: Confidence Intervals for evaluation policy πe
input : Evaluation policy πe,Test Dataset DT with N tra-

jectories, a behavior policy πb, a confidence value
δ ∈ [0, 1], number of bootstrap samples M , and policy
mixing parameter α

output : (1− δ) confidence lower bound for WIS return on
DT

1: for i = 1 to M do
2: D̃i

T ←− {τ i1, ..., τ iN} where τ ij ∼ U(DT ) // U is the
uniform distribution

3: πm ←− α ∗ πe + (1− α) ∗ πb
4: for j = 1 to N do
5: wij ←− IS-weight(τ ij , πm, πb)
6: W i

j ←− Clip(wij , 10
−20, 103)

7: end for
8: V̂i ←−WIS-estimate(W i, D̃i

T ) // Weighted impor-
tance sampling return

9: end for
10: sort({V̂i|i ∈ [1,M ]}) // Sort ascending
11: l←− bδMc
12: Return V̂l

In both CMA-ES and FQI, we run multiple training session
for each hyper-parameter combination and select the best
policy based on the validation set.

The policy obtained from these training methods is mixed
with the KDE estimated behavior policy to obtain πm from
(5). The mixed policy πm is then used to estimate the impor-
tance sampling weights for the trajectories in the test dataset.
Figure 2 plots the histogram of log importance sampling
weights. The most important observation in this figure is
the distribution tail on the right side. It denotes a few values
that are between 20-50. This implies that importance sam-
pling weights for certain trajectories approach extremely
large values. In both IS and WIS estimators, such a large
IS weight will dominate all other values. In order to avoid
this, we clip all importance weights at 1000. This reduces
the effect of the large outliers.

Using Algorithm 1 we can now obtain the bootstrap distri-
butions of WIS returns for both FQI and CMA-ES on our
test split. The mean and 95% confidence bounds for these
are shown in the Table 1. A histogram of the returns from
1000 bootstrap samples are also provided in Figure 3. The
mean reward under the behavior policy is −0.0216. Based
on these results, the bootstrap bounds for WIS returns are
well above the mean reward under behavior policy.

It is important to note that the mean importance sampling
return from the bootstraps is very low for CMA-ES. This
can be explained by the fact that we use WIS return as the
optimization objective. So it only searches for a parameter
combination which maximizes the WIS return, irrespective
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Figure 2. Histogram of log importance sampling ratios. The evalu-
ation policy used is a mixed policy πm where the evaluation policy
is trained using FQI. α is 0.5

METHOD WIS CB WIS MEAN IS MEAN

BEHAVIOR POLICY — — -0.0216
CMA-ES 0.4504 0.6744 0.0045
FQI 0.3766 0.6269 13.0724

Table 1. This table shows 95% confidence lower bound and mean
of the WIS return for both algorithm. The median and confidence
lower bounds are calculated from 1000 bootstrap samples. The
mean of IS returns for these samples are also provided. The mean
reward under the behavior policy is -0.0216.

of whether the result is actually a better policy. In order to
obtain meaningful policies with CMA-ES or similar policy
search methods a more specialized objective function needs
to be used. FQI or Q Learning in this regard seems to
behave better than CMA-ES. It leads to improved WIS and
IS returns even though it does not directly optimize for them.
The histogram for Q Learning in Figure 3 is bi-model with a
very sharp peak near the max-reward. One interpretation of
this maybe that several examples in our test set produce very
high IS weights. Even though these weights are clipped at
1000, they still dominate the WIS return in their bootstrap
samples and push the result near to its maximum possible
value of 0.8.

7. Discussion
In the previous sections we have used off-policy model-free
training methods to propose policies for our clinical scenario.

Figure 3. Histogram of WIS returns for bootstrap samples of the
test dataset. The policy evaluated is a mixed policy πm. Here the
evaluation policy is trained using Q-Learning(FQI) and CMA-ES.
α is 0.5. The red line indicates the average reward return under the
behavior policy.

These policies have been tested by obtaining bootstrap based
lower bounds for WIS returns. However, there are certain
other conditions that still need to be satisfied in order to
ensure that we cover all the aspects required in a good RL
algorithm for clinical applications.

One important requirement is to ensure our evaluations are
stable even when the horizon is long. In our experiments
we have clamped the values of WIS to reduce the variance
of IS weights. However, a few IS weights clamped at 1000
can still dominate the WIS return and overshadow the con-
tribution of other examples. This can be seen in the Figure
2 where a very small portion of the IS weights attain values
near a thousand or higher. A large majority of weights are
closer to one or below it, but they contribute much less to
the WIS return than small minority of high IS weights. This
is also evidenced in the bimodal histogram for Q-learning
in Figure 3. In real life clinical scenarios, the horizon may
be much longer than our mean horizon length of 101.

A possible solution to this would be to clip the IS weights
to even smaller values, but that would result in severely
limiting the return of our evaluation policy in all cases irre-
spective of their contexts. Another possible solution might
be to ensure that the learned policy only deviates from the
behavior policy for a small number of states in the trajec-
tory. Our predictions currently deviate from the behavior
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policy almost continuously during the episode length. This
is evident from the Figure 4 where the cumulative product
of likelihood ratios is continuously changing. The second
trajectory in Figure 4 is an extreme example of this. Here
the cumulative product first reaches very low values and
then shifts upwards to reach a very high IS weight at the
end of the trajectory. The behavior of CMA-ES policy is
also similar to that shown in Figure 4.

If we bias our prediction model to avoid frequent deviations,
it may naturally reduce the variance of the IS estimator.
Additionally, if only a few πm values differ from πb in a
very long trajectory, most of the likelihood ratios will be
very close to one. This reduces the long horizon problem
in IS estimators. It is also easier for end users to interpret
the differences in behavior and evaluation policy if they
diverge only for a few states in the trajectory. One caveat
of this assumption is it may lead to bad solutions if the
behavior policy is very far from optimal. However in clinical
scenarios, we can safely assume that the policies used by
trained clinicians is most likely close to optimal.

Figure 4. This graph shows the progression of unclipped per-
decision IS weights (cumulative product of πm/πb ratios) over
four different trajectories in our test dataset. The evaluation policy
used is πm, the mixed policy obtained with FQI training. The
four plots shown here are examples of trajectories with extreme
IS weight predictions. The top two episodes a have very high IS
weight and the bottom two episodes have very low IS weights.

The design of the training algorithm also needs careful con-
sideration. FQI, which has been very effective in our off-
policy experiments, and similar action value methods do not
handle continuous action spaces well. On the other hand,
direct policy search can work well with continuous action

spaces but without a well designed objective customized to
the problem, it may not produce a meaningful policy. An-
other class of methods based on Actor Critic models (Degris
et al., 2012) can also be considered.

Other possible improvements include behavior policy esti-
mation. In this work we assume all decisions are taken
through a common behavior policy. Depending on the
dataset, this assumption can be relaxed to estimate several
physician specific behavior policies. This may help account
for physician specific trends. Lastly, clinical applications
can also be treated as a partially observable MDP instead
of the MDP formulation we use. This may be helpful be-
cause it is often not possible to account for all variables in a
clinical or biomedical application.

8. Conclusion
We have used a simplified clinical scenario to analyze the
performance of FQI and CMA-ES in the context of clinical
applications. We show that these off policy algorithms need
to be further improved, in order to be effective enough
for real world deployment. We also show that variance
reduction measures such as clamped WIS estimator can also
give unreliable results. Further steps need to be taken, both
in the design of policy estimators and IS return estimators
in order to generate a high confidence policy for clinical
use. We have outlined the specific areas of improvement.
Implementing these recommendations remains as our future
work.
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