Combining Reinforcement Learning with a Local Control Algorithm

Jette Randlgv

RANDLOV @NBI.DK

CATS, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen &, Denmark

Andrew G. Barto
Michael T. Rosenstein

BARTO@CS.UMASS.EDU
MTR@CS.UMASS.EDU

Department of Computer Science, University of Massachusetts, Amherst, MA 01003 USA

Abstract

We explore combining reinforcement learning
with a hand-crafted local controller in a man-
ner suggested by the chaotic control algorithm of
Vincent, Schmitt and Vincent (1994). A closed-
loop controller is designed using conventional
means that creates a domain of attraction about
a target state. Chaotic behavior is used or in-
duced to bring the system into this region, at
which time the local controller is turned on to
bring the system to the target state and stabilize
it there. We describe experiments in which we
use reinforcement learning instead of, and in ad-
dition to, chaotic behavior to learn an efficient
policy for driving the system into the local con-
troller’s domain of attraction. Using a simulated
double pendulum, we illustrate how this method
allows reinforcement learning to be effective in
a problem that cannot be easily solved by rein-
forcement learning alone, and we show how rein-
forcement learning can improve upon the chaotic
control algorithm when the domain of attraction
can only be approximately determined. Similar
results are shown using the HBon map. This is a
simple and effective way of extending reinforce-
ment learning to more difficult problems.

1. Introduction

For reinforcement learning (RL) methods to find wider use
as on-line methods for improving control performance of
real systems it is important to devise methods that take
advantage of existing control methodologies to 1) reduce
the complexity of the learning problem and 2) to provide
for acceptable system behavior during learning. In this pa-
per we explore combining RL with an algorithm proposed
by Vincent, Schmitt, and Vincent (1994) that switches be-
tween chaotic behavior and a local controller to bring a
nonlinear system to a target state and stabilize it there (see
also Vincent, 1997a, 1997b; Vincent & Grantham, 1997).

Vincent’s algorithm applies to nonlinear systems that are
chaotic or that can be made to produce chaotic behavior
by an open-loop control. Called the chaotic control algo-
rithm, it works as follows. A closed-loop controller, which
we will call the local controller, is designed using standard
design methods that is guaranteed to drive the system to
the desired target state from any state within some neigh-
borhood of the target and to stabilize the system there. The
largest such neighbourhood is called the controllable set of
the local controller. If the controllable set intersects the
system’s chaotic attractor, then starting from any state in
the domain of attraction of the chaotic attractor will guar-
antee that the system will eventually enter the controllable
set. The chaotic control algorithm detects when the sys-
tem enters the controllable set, or a subset thereof, and then
turns on the local controller (and at the same time turns off
the open-loop controller that may have been used to induce
chaotic behavior). Under this closed-loop control, the sys-
tem then stabilizes at the target state.

The key requirements are that a suitable local controller can
be designed such that its controllable set has a non-empty
intersection with the chaotic attractor and that entry into the
controllable set, or a subset thereof, can be detected. Vin-
cent (1997b) and Vincent and Grantham (1997) start with a
system model, linearize it about the target state, and design
a linear quadratic regulator (LQR) about the target state us-
ing standard LQR methods (e.g., Ogata, 1987). Various
methods exist for determining the controllable set, but it
is often necessary to settle for an approximation. In some
cases only a rough approximation of the controllable set is
possible, and it is necessary to turn on the local controller
several times before the system is captured to the desired
target state, turning it off each time the system exits the pu-
tative controllable set (Vincent, Schmitt, & Vincent 1994).

This chaotic control algorithm suggests several ways that
RL can be similarly used in conjunction with chaotic be-
havior and a hand-crafted local controller. Assume that we
have been able to design a local controller for a desired tar-
get state and that we have a method for determining when
the system enters its controllable set (or a reasonably large



subset of it). RL can adjust a closed-loop controller for use
outside of the controllable set with the objective of reach-
ing the controllable set in minimum time. If the system
is chaotic, or is made to exhibit chaotic behavior via an
open-loop control, this chaotic behavior can be used as the
mode of exploration of the RL system. With this scheme,
the prior knowledge embodied in the local controller can
make the learning part of the task much easier due to the
increased size of the RL system’s goal set (now the control-
lable set of the local controller). At the same time—if the
rewards are defined appropriately—RL can improve upon
the chaotic control algorithm by learning to avoid states
in the putative controllable set of the local controller that
are not in its actual controllable set. These are states from
which the local controller cannot stabilize the system.

In this paper we describe several experiments motivated
by these ideas using a simulated double pendulum moti-
vated by the work of Vincent, Schmitt and Vincent (1994).
We then describe experiments with a simpler but naturally
chaotic system, the HBon map, motivated by the work of
Vincent (1997b), that allowed us to further explore some of
the questions raised by the double pendulum results.

A variety of methods have been proposed for using domain
knowledge and/or learned models for improving learning
on pendulum swingup tasks related to our double pendulum
problem (e.g., Atkeson & Schaal, 1997; Atkeson & Santa-
maria, 1997; Boone, 1997a,b). Switching control is also a
well-known approach to these and other nonlinear control
problems (e.g., Spong, 1995; Spong & Praly, 1996), and
RL has been used in the control of the H&on map and other
chaotic systems (Gadaleta & Dangelmayr, 1999). How-
ever, we are not aware of studies that consider the combi-
nation of RL with switching control that we propose here.

2. Double Pendulum

The double pendulum has two links, one attached at the end
of the other. At the base of each link is a motor with limited
power (Figure 1).

The system’s equations of motion are:

6, = [sy(my+mysin®(6,— 92))]_1

: <_ §,M, 67 sin(6; — 6,) cos(6; — 6)
—m,s,62sin(6,— 6,) + gm,sin 6,c0s(6; — 6,)
—g(m, +m,)sin 91‘“1)

é (— 5,6, cos(6, — 8,) +s,67sin(6, — 6,)

, T.
—gsiné, + EZ)

where 8, and 6, are respectively the angles from the first
and second links to vertical, m; = 1 kg and m, = 1 kg are
the respective masses of the first and second links; s, = 1
meter and s, = 1 meter are their lengths; and 1; and 1,
are the torques the controller applies at the first and second
joints. The maximum torque is 8.5 newtons, so that 7,, 7, €
[—8.5N,8.5N].

The system starts with both Base of pendulum

links hanging maotionless
downwards.  The objec-
tive is to balance both links
straight up vertically, i.e.,
to stabilize about the tar-
get state (6, = 6, = 11,6, =
8, = 0).  Although the
motors generate sufficient
torque to produce stability
in the neighbourhood of the
target state, they do not
generate sufficient torque to
achieve this target directly
from the initial state without following an oscillatory tra-
jectory. It is an underpowered nonlinear system for which
no linear controller is globally effective. We simulated this
system using an Euler method with a step size of 0.001 sec-
onds.

Figure 1. The Double Pen-
dulum. There is a motor at
each joint.

3. Reinforcement Learning

Reinforcement learning consists of a collection of methods
for approximating solutions to stochastic optimal control
problems (Sutton & Barto, 1998). These methods adjust
a closed-loop control rule, or policy, which is a mapping
from system states to control actions. Usually formulated
for discrete-time systems with an immediate reward r,_ ;
being delivered to the learning system in response to the
execution of control action u; in state %, the most com-
monly studied objective is to maximize for each time step t
the expected discounted return defined to be the discounted
sum of rewards over future time steps:

(o]
> Wi
K=o

where y, 0 < y < 1 is a discount factor.

In this study, we use the RL algorithm known as Sarsa(A)
(Rummery, 1995; Sutton & Barto, 1998) with replacing
eligibility traces (Singh & Sutton, 1996). This algorithm
works as follows. Let Q;(x,u) denote the estimate at time
t of the value of the state-action pair (x,u). This is an es-
timate of the expected return starting from state x, execut-
ing control action u, and following an optimal policy there-
after. At each time step, this estimate is updated for all



state-action pairs using the update equation

Qa6 u) = QX u) + age(x,u),

where & is the temporal difference error at step t:

Mo T YQ (% i 15 Uyg) — Q% W),

and e(s,u) is the value of the eligibility trace for state-
action pair (x,u) at time t, and a is a positive step-size pa-
rameter. The eligibility trace is updated for all state-action
pairs (s,u) as follows:

1 if x=x and u=u;
yAe_;(x,u) otherwise.

axu = {

where A, 0 < A <1, is the trace-decay parameter.

The most up-to-date value estimates of the state-action
pairs containing the currently observed state x; are used to
determine the control action the learning system takes at
time step t. Specifically,

U = argmax[Q (x,u') + ],
ul

where, for the double pendulum, n; is a random number
drawn uniformly from the interval [—0.00005,0.00005].
The addition of this small noise term produces some ex-
ploratory behavior, especially at the beginning of learning
when the value estimates are nearly equal. In our experi-
ments, we set o = 0.1, y=0.98, and A = 0.99.

In applying Sarsa(A) to the double pendulum, we let the
learning algorithm select from a set of nine control actions
consisting of the torque pairs (1;, T,), where T, = £8.5 or 0
fori e {1,2}. Every 20 time steps of the double pendulum
simulation, the learning system selected an action (a pair
of torques) and held it constant for 20 time steps. Thus, the
time step for learning corresponded to 0.02 sec, whereas
the pendulum simulation time step was 0.001 sec. We used
a simple rectangular aggregation method to represent the
estimated values of the state-action pairs. For each of the
nine actions, we created a table with 2,432 entries. Each
entry was the value associated with the corresponding ac-
tion and a rectangular region of state space determined by
the following non-overlapping intervals: for each of 6, and
6,: 0, £0.6, 2.4, +mrradians; and for each of 8, and 6,:
0, £0.25, 0.5, 4o radians per second.

One might attempt a simple, pure RL approach to this prob-
lem. For example, one could define the reward r; to be —1
for each time step in which the state of the double pen-
dulum is not within some small region of the target state,
and set r, = 0 within this region. This would set up the
RL system to attempt to learn to drive the system to this
target region in the minimum number of time steps and
keep it within that region. This approach has almost no

chance of producing an acceptable solution within any rea-
sonable time period. The target state—both links motion-
less upwards—is a repelling state. For a simple RL system
to get close to this state at all would be extremely unlikely.
The learning time for such a RL system would be so long
that we could say that the task is effectively unlearnable by
such a system.

4. A Local Controller

Following the derivation method in Vincent and Grantham
(1997) pp. 91-114 and using standard LQR techniques,
we obtained a saturating LQR control rule for the dou-
ble pendulum linearized about the target state. To obtain
this control rule, we first found the closed-loop control rule
u = u(x) that minimizes, for the linearized system, the fol-
lowing expression:

J:/Ooo [(x=%)T(x=%) +u"u] dt, €))

where X is the target state. These controls are then restricted
to lie in the appropriate region of control space. Specifi-
cally, our saturating LQR control rule for the double pen-
dulum is given by

<T1>_(—19.6243 8.2425 —19.6666 —2.4341>
1,)  \—19.6666 3.4245 19.6243 5.8586
6,—m
6,
6, -6,
92

provided that |7;| < 8.5, i € {1,2}; otherwise, if T, > 8.5
then 1; = 8.5, and if 1; < —8.5then 1, = —8.5.

This control rule is guaranteed to bring the system to the
target state and stabilize it there from any state within its
controllable set. Characterizing the actual controllable set
is a difficult problem for this system, but there are several
ways to approximate it. We followed Vincent, Schmitt and
Vincent (1994) and used as an estimate of the controllable
set the region in which the angles of both links are less than
0.75 radians away from the target state (i.e., away from 1T
radians). In the chaotic control algorithm the local con-
troller is turned on whenever both link angles are within
0.75 radians of .

5. The Chaotic Control Algorithm

As mentioned above, the chaotic control algorithm relies on
inducing chaotic behavior that causes the system to enter
the estimated controllable set of the local controller. When
this is detected, the local controller is turned on to stabi-
lize the system about the target state. We induced chaotic
behavior in the double pendulum system by driving the it



with the following open-loop control signal:

T, =8.5c0s(1.5t) and T1,=8.5c0s(0.7t)

where t is the time in seconds. Of several open-loop con-
trollers with which we experimented, this one is the fastest
on average to cause the system to enter the estimated con-
trollable set of the local controller described in Section 4.
This open-loop control signal is turned off when the local
controller is turned on whenever the system enters the es-
timated controllable set. However, because there may be
states in the estimated controllable set that are not in the
actual controllable set, we let the open-loop controller take
over again if the system leaves the estimated controllable
set.

In our experiments with a number of different open-loop
controllers, we found that the number of time steps it takes
the chaotic control algorithm to stabilize the system is
1,651 (+102) on average for a good open-loop controller,
and up to 3,000 for a less good one. We used the fastest we
found for further experiments. The averages where mea-
sured over 50 runs.

6. Combining the Local Controller and RL

First we combined the local controller and the RL con-
troller by letting the RL controller take over the role of
the open-loop controller in the chaatic control algorithm: if
the RL controller drives the double pendulum into the es-
timated controllable set, the local controller takes over. If
the local controller makes the system leave the controllable
set, the RL system regains control.

How should reward signals be supplied to the RL controller
to make this scheme work? If we just reward it for getting
the double pendulum into the estimated controllable set,
then it will be rewarded even if it drives the system to a
state in the estimated controllable set that is not in the ac-
tual controllable set. In this case, the local controller will
not be able to stabilize the system so that the desired out-
come will not be achieved. The method we found to work
well is to reward the RL controller when the state enters the
estimated controllable set, and to punish it slightly more if
it has to regain control from the local controller (i.e., if the
double pendulum does not stabilize and the RL controller
has to take control again). Additionally, when the RL con-
troller is not in control, its learning algorithm is shut off
as well. This means that the RL controller experiences the
time interval during which the local controller is engaged as
if it were a single time step. It may seem a little strange that
we punish the RL controller for another controller’s failure,
but the RL controller is the only adapting component, and
therefore the only part that has a chance of avoiding punish-
ment by placing the system into states that are in the actual
controllable set.

Table 1 describes the main points in the algorithm for this
way of combining the local controller with RL. It describes
what happens during each learning trial, which begins with
the double pendulum in its initial state (both links hanging
motionless downwards) and ends when the target state is
reached (at which we know the local controller can stabi-
lize the system). A learning run begins with initialization of
the state-action value function, Q, and the eligibility func-
tion, e, to zero, and consists of a large number of learning
trials. We adopted the approach commonly used in RL of
rewarding the system with a —1 on each time step until a
goal state is reached (in this case, until the estimated con-
trollable set is reached) to encourage the system learn to
reach the goal in the minimum number of time steps.

Table 1. The main points in the combination of the RL controller
and the local controller.

1.  The RL controller generates a control action and
updates Qand e.

2. If the system has not entered the estimated
controllable set, the RL controller receives a
reward of —1. Jump to 1.

3a. Otherwise the system has entered the estimated
controllable set, and the local controller takes
over. The RL controller receives a reward of 1.

3b.  The local controller generates the next action.

3c.  If the system exits from estimated controllable
set, the RL controller receives a reward of —2.
Jump to 1.

3d. If the system reached the target state, the trial
terminates.

3e.  Otherwise jump to 3b.

Figure 2 shows the learning curve for the RL controller
combined as described above with the local controller. The
number of time steps per trial is the total number includ-
ing the those during which control is provided by the local
controller.

These results show that this way of combining the RL con-
troller with the local controller works very well. From Fig-
ure 2 we can see that the RL controller combined in this
way with the local controller achieved on average much
faster stabilization times—Iless than 250 time steps—than
the 1,651 time steps we achieved for the best chaotic con-
trol algorithm. An especially interesting result is that the
RL controller learns to avoid states in the estimated con-
trollable set that are not in the actual controllable set of
the local controller. Figure 3 shows the number of times
the double pendulum entered the estimated controllable set
but the local controller was later turned off because it could
not actually stabilize the system. From the start of learning,



4000 : : . . .

3500 |- .
53000 | i
£ 2500 i
o
22000 -
7))

21500 |- .
F 1000 |- -
500 | i

0 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000
Trial

Figure 2. Learning curve for a RL controller combined with the
local controller. Average of 100 runs.

3 T T T T T

N
3]
T

1

N
T
|

I
T
I

Number of entries to false
controllable area per second
o =
(] (]
: -
1 1

0 ! L | stk o 1t
0 10000 20000 30000 40000 50000 60000
Seconds

Figure 3. The RL controller learns to avoid states in the estimated
controllable set that are not in the actual controllable. One second
consists of 50 time steps. Average of 100 runs.

this number increases as the RL controller learns to get the
double pendulum into the estimated controllable set, and
then it decreases as the RL controller learns which states in
this set work and which should be avoided. This improve-
ment is caused by the RL controller being punished for the
local controller’s failure to stabilize the system.

7. Combining the Chaotic Control Algorithm
with Reinforcement Learning

We also experimented with combining the RL controller
with the chaotic control algorithm, that is, with combining
RL with the open-loop controller described in Section 4
that induces chaotic behavior, as well as with the local con-
troller. Here the idea is to let the chaotic behavior provide
the exploratory behavior from which the RL controller can
learn. One way to do this is to run the RL controller at the
same time as the open-loop controller and let both of their
control decisions determine the actual control action sent to
the double pendulum. We let the control action be a convex
linear combination of the control choices of the chaotic and
RL controllers, with the coefficient varying during learning

to adjust the relative contribution of each controller. At the
start of each learning run, control choices were due entirely
to the open-loop control rule, while the RL controller con-
troller learned as if these were its own decisions. As each
learning run proceeded, we altered the coefficient so that
an increasing proportion of the control was due to the RL
controller’s choices.

We experimented with several methods for decaying the in-
fluence of the open-loop controller. Our best results were
obtained with a linear and an exponential decay. Specifi-
cally, for the linear method

w=min{1, 1355}
and the control action is:
T, = Wt + (1 - w) Ti°pe”"°°p

for i € {1,2}. For the exponential decay
w=min{ 1,exp (=222
- P\ " 200

T = (1— )T + wrPPerioop

and

fori € {1,2}, wheret is the trial number in a learning run.

Figure 4 shows our best results averaged over 100 runs. At
the start of each run, the control actions were due entirely to
the open-loop controller. As the number of trials increases,
the RL controller’s actions contribute an increasing propor-
tion. Comparing Figure 4 with Figure 2, one sees that both
methods for phasing in RL eliminate the very long trials at
the beginning of learning, but they add more area under the
learning curve. In total, the result is a much larger number
of time steps before a good level of performance is reached
than achieved using RL alone outside of the estimated con-
trollable set.

8. Improving over the Local Controller in
terms of Time to Target

The local controller is not a minimum-time controller (it
minimizes a measure that combines distance from the tar-
get and the motor force needed). Therefore theoretically it
should be possible for the RL controller to do better than
the local controller in terms of the time taken to reach the
target state. In terms of the performance level eventually
achievable, it might be better to use a smaller estimated
controllable set than a larger one, since this would decrease
the region in which the non-minimum-time local controller
would operate. To study this possibility, we experimented
with decreasing the estimated controllable set during learn-
ing, and then compared the local controller’s original per-
formance with that of this new combination that has more
freedom of action near the target state.



4000 T T T T T

3500 s
3000
2500 R
2000 s
1500 s
1000 E
500 B

Time stepsitrial

Trial

O 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000

4000 T T T T T
3500 e
3000
2500
2000
1500
1000
500

Time steps/trial

O 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000
Trial

Figure 4. Learning curves for combinations of the chaotic and RL controllers for the double pendulum. For the left graph, the weighting
of the chaotic controller decreases linearly, and for the right graph it decreases exponentially. Both graphs are averages of 100 runs.

Specifically, we used the combined RL and local con-
trollers as described in Section 6 for the first 12,000 trials,
activating the local controller if both links of the double
pendulum got within 0.75 radians from the target state.’
We decreased this activation angle during trials 12,000 to
24,000 linearly from 0.75 to 0.01 radians, at which setting
the RL controller was allowed to learn for an additional
12,000 trials.

After the first 12,000 trials the average number of time
steps from the time that the 0.75 radian criterion was met
for the last time until the target was reached, was 70.12
(£0.03). This number is the local controller’s original
performance. After decreasing the estimated controllable
set and learning for 24,000 additional trials, the number
of time steps had dropped to 69.88 (+0.02). These num-
bers are based on 100 runs and trials 11,900-12,000 and
35,900-36,000. This improvement is not very large, but
it shows that the RL controller can learn a control rule that
can improve on a carefully hand-crafted system-specific so-
lution.

9. Hénon Map

To further explore some of the observations described
above, we followed Vincent(1997b) and conducted addi-
tional experiments using the HBon map (Hgon, 1976),
one of the simplest systems to exhibit a chaotic attractor.
This system has a two-dimensional state space which al-
lowed us to more easily visualize the results of various con-
trol methods. It is given by

X (t+1) =
X,(t+1)

—1.4x5(t) + %, (t) +1
0.3x,(t)

and is known to have an unstable fixed point x =
[0.6314,0.1894]T.

1\We used a finer quantization of the state space for this experi-
ment than that described in Section 3. The quantization thresholds
for 6, and 6, were 0, +0.6, £2.4, £2.8, £ radians.

We implemented Vincent’s (1997b) saturating LQR con-
trol rule to stabilize the system about x. A one-dimensional
control signal, u(t), was added to the equation for x;, and
the control rule was derived from a local linearization of
the system about x in a manner analogous to that described
above for the double pendulum. The controls were re-
stricted to a interval [—um,Uy]. We used uyn =0.1. To
investigate the ability of RL to learn to avoid subregions
of an estimated controllable set, we purposefully used an
overly-large estimate of the controllable set given by a cir-
cular region of radius 0.25 centered at X.

We implemented several control schemes for stabilizing the
Haéon map at x. In all cases, we initiated trials by ran-
domly selecting initial states according to a circular Gaus-
sian distribution with standard deviation 0.1 centered at
[—0.2,0.15]T. Trials ended when the state entered a tar-
get region of radius 0.025 about X or when it exited the
region —1.5 <x; < 1.5 and —0.4 < x, < 0.4 (Figure 7).
We called these latter trials ‘failures’ (although it is pos-
sible that some of these trials, if continued long enough,
would have re-entered the region of interest). The control
schemes were:

LQR: global use of the saturating LQR controller. Al-
though this controller cannot stabilize the system from
arbitrary starting states even with no constraints on the
control magnitude (Vincent, 1997b), its performance
provides a useful baseline.

Chaos+LQR: saturating LQR control within the esti-
mated controllable set, and no control (u = 0) outside
of this set (the chaotic control algorithm of Vincent et
al., 1994).

global use of RL. We used Sarsa(0) with a reward
of —1 on each time step until a trial ended, with an
additional reward of —1000 if the trial was a failure.
The actions were —um, 0, or um, SO that the extreme
values coincided with LQR’s saturated controls. The

RL:



state space was represented by a lookup table aggre-
gating states into rectangular regions determined by
a 50 x 50 grid over the region —1.5 < x; < 1.5 and
—0.4 <x, <0.4. We set a =1, a value determined
by experiment to work well for this problem when RL
was combined with the local controller. We also set
y = 1 since the trials were of finite duration, and we
did not use random exploration, relying instead on the
system’s chaotic behavior. Note that global RL does
not necessarily stabilize the system at x.

RL+LQR: saturating LQR within the estimated control-
lable set and Sarsa(0) outside of it (implemented as
for global RL). Additional rewards were determined
according to the scheme given in Table 1.

Figure 5 gives performance or learning curves for these
controllers. Significant improvement is apparent for the RL
controllers, especially for RL+LQR. Hitting the small tar-
get region with chaos alone took on average 238 (+-8.83)
steps; RL+LQR learned to take on average 6.1 (+0.06)
steps. Not shown is the decrease with learning in the num-
ber of failure trials (e.g., from an average of 32.5 (+1.8)
over 10 runs of trials 1-100 of RL+LQR, to an average
of 1.0 (+.31) over 10 runs of trials 4900-5000). Fig-
ure 6 shows that, as in the double pendulum experiments,
RL+LQR learns to reduce the frequency with which tra-
jectories reach states in the estimated controllable set that
are not in the actual controllable set. Figure 7 shows the
policy learned by RL+LQR. The shaded squares are those
visited during learning, and their grey levels code the action
selected by the learned control rule. Within the estimated
controllable set only the LQR actions are selected. The
black squares outside of the estimated controllable set are
those in which the learned control rule’s actions happened
to coincide with those that the saturating LQR controller
would have generated in those states. This allows one to
see how the learned control rule differs from the global ap-
plication of the saturating LQR rule.

10. Discussion and Conclusion

The studies here were inspired by the chaotic control al-
gorithm of Vincent, Schmitt, and Vincent (1994), which
suggested that a similar combination of RL with a local
controller might increase the range of applicability of RL
methods. Exploring this using a simulated double pendu-
lum and the HBon map, we observed the following results.
First, using an RL controller alone until control shifted to
the local controller was able, after leaning, to achieve sta-
bilization significantly faster than could be achieved by the
best chaotic control algorithm we tried. This is not a sur-
prising result because the chaotic control algorithm does
not improve its performance through learning.

25

B A TR 5.7 AT
R S
20 | chaos+LQR
8
E 15
i)
2]
E 10 +
'_
57 RL+LQR
0
0 500 1000 1500 2000 2500
Trial

Figure 5. Learning curves for combinations of the chaotic and RL
controllers for the Hénon map. Curves are averages of 10 runs.

40

area per 100 trials
N w
o o

=
o
T

Number of entries to false controllable

0 500 1000 1500 2000 2500
Trial
Figure 6. The controller RL+LQR learns to avoid states in the es-

timated controllable set that are not in the actual controllable set.
The curve is an average of 10 runs.

A second result that is somewhat more surprising is that
letting induced chaotic behavior of the double pendulum
guide the exploratory behavior of the RL controller can re-
duce the length of initial learning trials, but does not nec-
essarily reduce the total time needed to learn a good global
control rule. One possible explanation is that the RL con-
troller is learning to compensate for the chaotic component
of the control action and has to continue changing its pol-
icy as the weight of the chaotic component decreases. Of
course, we experimented with just a few methods for in-
tegrating RL with chaotic behavior, and many others are
possible.

A third result—and perhaps the most interesting—was ob-
served with both the double pendulum and Héon map.
The RL controller learned to compensate for our over-
estimation of the local controller’s controllable set. We
observed that the RL controller learned to avoid driving
the system to states in the estimated controllable set from
which the local controller could not actually stabilize the



RL+LQR

0.40

0.20+

> -0.00+

-0.20+

0495 075 0bo 075 1k0
X
Figure 7. The Hénon state space. The estimated controllable set is
shown as the large ellipse centered on x = [0.6314,0.1894]T. The
small ellipse is 1 standard deviation of the initial state distribution
from [—0.2,0.15]7. Grey levels code the control rule learned by
RL+LQR.

system. This is important because the most difficult aspect
of the chaotic control algorithm, and our adaptation of it, is
the accurate estimation of the local controller’s controllable
set. Our results suggest that it may be a good strategy to
make a fairly coarse approximation of the controllable set
and let learning adjust for its inaccuracies. Further research
is needed to determine how learning time changes with in-
creasingly large estimates of the controllable set. Finally,
our observations from successively shrinking the estimated
controllable set while learning suggest that this might be
a good method for compensating for sub-optimal perfor-
mance of the local controller. But here also further research
is needed to determine if substantial improvements can be
obtained in this way.

Overall, these results provide additional evidence that con-
ventional control methodology provides a rich avenue for
injecting prior knowledge into RL systems and that RL can
help improve the utility of conventional control methods
when extended to complex nonlinear control problems.

Acknowledgements

We would like to thank Adelle Coster and Preben Al-
strgm for comments and interesting discussions, especially
about reinforcement learning interacting with constraints.
We would also like to thank the anonymous reviewers for
their constructive comments and pointers to relevant liter-
ature. This project was funded by the Air Force Office of
Scientific Research, Bolling AFB (AFOSR F49620-96-1-

1054) and the National Science Foundation under Grant
No. ECS-9980062. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

References

Atkeson, C. G. and Santamaria, J. C. (1997). A comparison of di-
rect and model-based reinforcement learning. In International
Conference on Robotics and Automation, pages 3557-3564.

Atkeson, C. G. and Schaal, S. (1997). Robot learning from
demonstration. In Fisher, D. H., editor, Machine Learning:
Proceedings of the Fourteenth International Conference, pages
12-20. Morgan Kaufmann.

Boone, G. (1997a). Efficient reinforcement learning: Model-
based acrobot control. In International Conference on Robotics
and Automation, pages 229-234.

Boone, G. (1997b). Minimum-time control of the acrobot. In
International Conference on Robotics and Automation, pages
3281-3287.

Gadaleta, S. and Dangelmayr, G. (1999). Optimal chaos control
through reinforcement learning. Chaos, 9:775-788.

Hénon, M. (1976). A two-dimensional map with a strange attrac-
tor. Communications of Mathematical Physics, 50:69.

Ogata, K. (1987). Discrete-Time Control Systems. Prentice Hall,
Englewood Cliffs.

Rummery, G. A. (1995). Problem Solving with Reinforcement
Learning. PhD thesis, Cambridge University Engineering De-
partment.

Singh, S. P. and Sutton, R. S. (1996). Reinforcement learning with
replacing eligibility traces. Machine Learning, 22:123-158.

Spong, M. W. (1995). The swing up control problem for the ac-
robot. |EEE Control Systems Magazine, 15:49-55.

Spong, M. W. and Praly, L. (1997). Control of underactuated
mechanical systems using switching and saturation. In Morse,
A. S., editor, Control Using Logic Based Switching, pages 162—
172. London: Springer-Verlag. Lecture Notes in Control and
Information Sciences 222.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforce-
ment Learning. MIT Press/Bradford Books.

Vincent, T. L. (1997a). Control using chaos. |EEE control Sys-
tems, pages 65-76.

Vincent, T. L. (1997b). Controllable targets near a chaotic at-
tractor. In Judd, K., Mees, A., Teo, K. L., and Vincent, T. L.,
editors, Control and Chaos, pages 260-276. Birkhauser.

Vincent, T. L. and Grantham, W. J. (1997). Nonlinear and Opti-
mal Control Systems. John Wiley & Son Inc.

Vincent, T. L., Schmitt, T. J., and Vincent, T. L. (1994). A chaotic
controller for the double pendulum. In Mechanics and Control:
Proceedings of the 5th Workshop on Control Mechanics, pages
257-273.



