Journal of Mathematical Psychology 45, 497-542 (2001) ®
doi:10.1006/jmps.2000.1295, available online at http://www.idealibrary.com on IDE %l.

Minimum Principles in Motor Control

Sascha E. Engelbrecht

University of Massachusetts

Minimum (or minimal) principles are mathematical laws that were first
used in physics: Hamilton’s principle and Fermat’s principle of least time are
two famous example. In the past decade, a number of motor control theories
have been proposed that are formally of the same kind as the minimum prin-
ciples of physics, and some of these have been quite successful at predicting
motor performance in a variety of tasks. The present paper provides a
comprehensive review of this work. Particular attention is given to the
relation between minimum theories in motor control and those used in other
disciplines. Other issues around which the review is organized include: (1) the
relation between minimum principles and structural models of motor planning
and motor control, (2) the empirically-driven development of minimum prin-
ciples and the danger of circular theorizing, and (3) the design of critical tests
for minimum theories. Some perspectives for future research are discussed in
the concluding section of the paper.  © 2001 Academic Press

Motor control tasks tend to be ill-defined in the sense that task requirements can
generally be met by a large (or infinite) number of different movements. Bernstein
(1967) was the first to draw attention to this issue, and Saltzman (1979) has treated
it in considerable detail. For illustration, consider a simple point-to-point reaching
task. In such a task, the trajectory of the arm (here defined as the time evolution
of arm configurations) is ill-defined on three levels of description. First, the tip of
the arm (i.e., the hand) may approach the target along any arbitrary geometric
curve (or hand path) as long as that curve connects the initial and target hand loca-
tions; second, the progress of the hand along any such path may be timed in an
arbitrary fashion as long as overall constraints on movement duration are satisfied;
and third, each spatial location of the hand may generally be achieved by an infinite
number of joint-angle configurations (arm postures).
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These indeterminacies would not be of particular interest to the motor control
researcher if they were resolved randomly, ie., if people arbitrarily selected
movements from the set of those that are compatible with the task requirements.
But this is not the case: Experimental studies have consistently found that the
kinematics of arm movements are highly stereotypical under a large variety of
experimental conditions. For instance, the velocity profiles of point-to-point
movements of various amplitudes and durations are consistently bell-shaped, single-
peaked, and approximately symmetrical (Abend, Bizzi, & Morasso, 1982; Atkeson
& Hollerbach, 1985; Morasso, 1981, 1983); they generally vary little within and
between subjects (e.g., Miall & Haggard, 1995), and variability tends to decrease
with practice (Georgopoulos, Kalaska, & Massey, 1981).

One explanation of this behavioral uniformity is that certain movements are
systematically preferred over others because they satisfy some efficiency criterion
(such as the minimization of movement time or of metabolic energy requirements)
that is common to all people. In this view, alternative movements are ranked according
to the cost that their execution is expected to incur and movement selection is
understood as a process of cost minimization. Theories of this kind (we shall refer
to them as minimum theories) have become quite influential in the field of motor
control due to the landmark works of Hogan (1984a), Flash and Hogan (1985),
and Uno, Kawato, and Suzuki (1989), which have been followed by many others.

The objective of the present paper is to provide an integrative review of the con-
tributions that minimum theories have made to our understanding of motor
behavior. The paper is organized as follows. First, the general theoretical approach
and some of the basic mathematical tools are introduced. This is done by discussing
the classic use of minimum principles in mechanics, more recent applications in
biology and engineering, and the relation of these to the use of minimum principles
in motor control. Second, a comprehensive overview of the work in motor control
is provided. Minimum principles in motor control are usually motivated by indeter-
minacies that arise at various stages of a sensorimotor transformation. They may
therefore be classified based on the particular indeterminacy they are intended to
resolve, and the overview is organized along the lines of this taxonomy. Third, we
address several issues of broader concern such as the danger of circular theorizing
associated with the empirically-driven development of minimum principles and the
problem of designing critical tests for minimum theories. Fourth, in the concluding
section of the paper, some perspectives for future research are discussed.

APPLICATIONS IN MOTOR CONTROL AND RELATED SCIENCES

Minimum theories are not unique to the field of motor control but play impor-
tant roles in a variety of sciences including physics (particularly mechanics),
chemistry, biology, economics, and engineering (for a review, see Schoemaker,
1991). The application of minimum principles to motor control is most closely
related to their use in mechanics, evolutionary biology, and engineering. Below, we
shall briefly review the use of minimum principles in these three disciplines and
compare it to their role in motor control.
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Mechanics

Mechanics is the study of the laws that govern the movement of dynamical
systems. One type of law that can be used to describe the motion of such a system
is the functional relation, an expression of the form x=1(7), where x denotes the
configuration of the system (i.e., the position and orientation of all the system
components), and ¢ denotes time. We may, for instance, study the free fall of a point
mass and find that its motion is well described by the expression

x(t)=xo+Xot — 381, (1)

where g is the gravitational acceleration near the surface of the earth, x, denotes the
mass’s initial position (height), and x, denotes its velocity. Similarly, we may study
the motion of a mass attached to a (frictionless and massless) linear spring and find
that it obeys

x(t) = x,,+ A cos wt + B sin wt, w=./k/m, (2)

where x,, is the equilibrium point of the spring, k is the spring constant, 4 and B
are constant coefficients whose values depend on the initial position and velocity of
the spring, and m is the mass.

The problem with this type of approach is that we obtain a different law for each
type of motion. In mechanics, we know that such a diversity of laws is unnecessary:
At least theoretically, all phenomena of classical mechanics may be derived from
Newton’s laws. (Note, though, that Newton’s second law is not a functional
relation but a differential one.) Alternatively, they may also be derived from a single
unifying law known as

Hamiltow’s principle' . This law is not a functional relation, nor is it a differ-
ential one; it is a minimum (or, more precisely, a variational) principle. It states
that the trajectory of any dynamical system is such that it extremizes (i.c.,
minimizes or maximizes) the time integral of the scalar quantity L =T — U, where
T and U are the kinetic and potential energies of the dynamical system, respectively.

For the point mass discussed above, the kinetic energy is T'=imx?, and its
potential energy is U=mgx. According to Hamilton’s principle, the trajectory of
the point mass is some function x(z) that has the property that it extremizes the
integral

Cx] :Lth(x(t), (1)) dt. (3)

0

! Hamilton’s principle was formulated by Sir W. R. Hamilton (1805-1865), Irish mathematician and
astronomer. It is central to analytical mechanics, and variations of it have also been applied to a number
of other domains of physics. For instance, one of the fundamental features of the equations that underly
the modern theories of general relativity and quantum mechanics is their self-adjoint character, which
means that they are derivable from a variational principle. Two excellent sources for further study of the
variational principles of physics are Gossick (1967) and Lanczos (1970).
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The appropriate methods for finding x(¢) are provided by the calculus of variations?,
an extension of the calculus to optimization problems that have a function rather
than a variable as the unknown quantity. Fundamental to the calculus of variations
is the Euler—Poisson equation

n k - (k)
¥ (—l)k% —af(x’;;;;;x !0, (4)
k=0

where x®) denotes the kth time derivative of x and, in our particular case, n=1
and f = L(x, X). This equation provides a necessary condition x(z) must satisfy if
C[ x] is to attain a minimum or maximum. Using our definitions of the kinetic and
potential energy and inserting these into Eq. (4), we have X = g, and after integrat-
ing this twice, we obtain Eq. (1), the equation of motion of the point mass. For the
spring, we may proceed in the same fashion. The kinetic energy of the attached
mass is 7'=3mx? and its potential energy is U= 3k(x —x,,)>. Application of the
Euler—Poisson equation now yields the ordinary second-order linear differential
equation

J 4w’y =0, VEX— Xy (5)

the solution of which is given by Eq. (2).

Hamilton’s principle is extremely powerful. It not only allows us to describe the
motion of a point mass or a linear spring, but (as Newton’s laws) applies to any
mechanical system, no matter what its complexity. It is not an alternative to the
Newtonian theory of mechanics, which we know is quite correct; indeed, it is
entirely consistent with that theory?. It does, however, provide an alternative device
for dealing with complicated mechanical problems that is often superior to the
Newtionian approach. It has the advantage of not requiring any knowledge of the
forces among the particles of which a mechanical system is composed. It also has
the advantage that its application leads to equations of motion that are invariant
under any coordinate transformation (which results from the statement of the
principle being independent of any special coordinate system). This permits the
formulation of mechanical problems in terms of generalized coordinates, which
greatly facilitates the representation of constraints among the particles of a
dynamical system.

Hamilton’s principle does not, however, offer any mechanistic explanation for the
behavior of dynamical systems, except for the absurd one that each such system is
endowed with a form of intelligence that computes optimal trajectories. However,
contrary to popular belief, many other physical laws do not have a mechanistic

2 An introduction to the calculus of variations can be found in Dreyfus (1965), and in-dept treatments
are provided by Akhiezer (1962) and Bliss (1946). For a history of the calculus of variations, see
Goldstine (1980).

3 For complex systems, this is not always obvious because the structure of the obtained results is
typically quite different for the two approaches. The results are nonetheless equivalent, as can usually
be shown by transforming the result obtained with one approach into the result obtained with the other.
Silver (1982) discusses this in detail for the dynamics of open-loop kinematic chains.
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explanation either. Consider, for instance, the law of universal gravitation. When
Newton first proposed it, many of his contemporaries rejected it because they could
not conceive of a mechanism that would allow one object to act on another across
a vacuum (cf., Kline, 1962, Chap. 17), Today, we still do not know of any such
mechanism, but physicists have long accepted that all we may obtain from this and
other laws are quantitative mathematical descriptions of physical phenomena rather
than mechanistic explanations (cf, Feynman, Leighton, & Sands, 1963, Chap. 7,
Kline, 1962, Chap. 17).

Hamilton’s Principle and other minimum principles in physics should therefore
be regarded descriptive laws and not as explanatory ones. In evolutionary biology,
the situation is a different one. We shall consider this field next.

FEvolutionary Biology

Since the early 1970s, evolutionary biologists have increasingly invoked minimum
(or optimality) principles in their study of such diverse types of animal behavior
as patterns of locomotion (Alexander, 1980, 1989), foraging (Kamil, Krebs,
& Pulliam, 1987; Krebs, 1984), competition (Maynard Smith, 1974, 1982), coopera-
tion (Axelrod, 1984; Axelrod & Hamilton, 1981) and reproductive behavior (Daly
& Wilson, 1983), The general motivation behind this research is the idea that the
process of natural selection continuously improves the genetic design of animals
with respect to traits that are closely related to the animals’ reproductive success.
It is believed that in many instances these improvements have actually led to
optimal designs.

A good example of the general approach is Krebs, Kacelnik, and Taylor’s (1978)
study of the foraging behavior of the great tit, a small insect-eating bird. In that
study, a number of these birds were given the opportunity to operate two machines
that dispensed units of food with different but unknown probabilities. The question
was whether the birds were able to sample the two machines in a way that would
maximize their total food intake (or equivalently would minimize their feeding time
per unit of food). To do so, the birds had to solve an instance of what statisticians
call a bandit problem* . Ideal solutions to this type of problem involve an optimal
combination of random exploration (to estimate the different reward probabilities)
and exploitation of what appears to be the more promising action. Interestingly, the
birds’ feeding strategy was found to closely approximate the optimal one: an
impressive finding, considering that the mathematical determination of such an
optimal strategy is extremely challenging and requires extensive numerical
computations.

Unlike physicists, biologists are generally not satisfied to view minimum
principles as purely mathematical laws whose main purpose it is to describe
behavior rather than to explain it. At least in theory, biological minimum principles
are intended to reflect costs whose minimization is closely related to the animal’s

#For a comprehensive mathematical treatment of bandit problems, see Berry and Fristedt (1985). An
introduction from the perspective of reinforcement learning is provided by Sutton and Barto (1998,
Chap. 2).
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success at proliferating its genes, i.e., to its fitness. If experimental results are consis-
tent with such a minimum principle, this is not only viewed as a confirmation of
the predictive power of the minimum principle but also as a confirmation of the
effectiveness of natural selection. A biological minimum principle may therefore be
viewed not only as a mathematical description of an animal’s behavior but also as
an explanation of that behavior in terms of evolutionary concepts.

Engineering

Minimum principles in engineering are not used to predict behavior but to
optimize performance. Typical performance measures are the time it takes to carry
out a certain process or the energy that is consumed by it. For most applications,
global optimization is impossible or at least impractical. The engineer therefore
often assumes a certain system design as given and restricts optimization to a few
indeterminate control parameters within that system.

Take robot motion planning as an example. Here, the mechanical design of the
robot and the properties of the motors that drive it (such as their energy
requirements and their maximum torque output) are assumed to be given, and
optimization is restricted to the selection of a movement trajectory. In fact, trajec-
tory planning may be further divided into subprocesses such as the planning of an
end-effector trajectory and the conversion of that trajectory into a joint-space
trajectory. Optimization is then performed at the level of these subprocesses®.

Motor Control

The use of minimum principles in motor control is influenced by all three of the
disciplines discussed above. Like engineers, motor-control theorists often assume a
certain system design as given. For instance, a classic theory in motor control
postulates that movement planning is achieved by a hierarchy of transformations
that successively generates a hand trajectory, a joint-space trajectory, a sequence of
joint torques, and a sequence of muscle-activation patterns (Saltzman, 1979).
Except for the joint-space trajectory to torque transformation, all transformations
in this hierarchy are indeterminate because they are mappings from lower- to
higher-dimensional spaces. To explain the resolution of these indeterminacies,
motor control researchers often invoke minimum principles. One example is the
popular minimum-jerk theory (Hogan, 1984a; Flash & Hogan, 1985), which
postulates that hand trajectories are chosen such that the time integral of the
squared magnitude of hand jerk (jerk is the third time derivative of position or,
equivalently, the time derivative of acceleration) is minimal. This theory predicts
unique hand trajectories, but it does not resolve any other indeterminacies in the
movement planning hierarchy. To resolve these, additional performance criteria
would need to be specified as functions of joint-space and muscle-space coordinates.

5 Some landmark papers on the optimal control of robot manipulators are Hollerbach and Suh
(1985), Nakamura and Hanafusa (1985), Sahar and Hollerbach (1986), Suh and Hollerbach (1987),
Uchiyama, Shimizu, and Hakomori (1985), and Yoshikawa (1984).
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Like evolutionary biologists, most motor-control researchers also believe that
minimum principles should reflect some sort of biological utility. Often, however,
such utility considerations are only introduced a posteriori. For instance, Uno et al.
(1989) experimented with a number of minimum theories (such as minimum
energy, minimum torque, and minimum time) before they decided to postulate the
minimum-torque-change theory, the minimum-jerk theory’s most influential
competitor. The choice of this theory was based on its empirical success, and its
potential biological utility (the minimization of wear and tear on the musculoskeletal
system) was only discussed as an afterthought.

Other motor control researchers have adopted a completely nonbiological
perspective. An example is Hogan (1984a), one of the authors of the minimum-jerk
theory, who has argued that minimum theories in motor control should not be
“presented as the cause of the behavior they describe but rather as a distillation of
its essence.” This view is completely abstract and mathematical and is reminiscent
of the one taken in physics.

MINIMUM PRINCIPLES AND THE RESOLUTION OF INDETERMINACY

In this section, we shall discuss minimum principles in motor control from an
engineering perspective, regarding them as tools for resolving indeterminacies that
arise in the process of transforming sensory into motor information. We shall focus
on the transformation of a movement goal into a kinematic movement plan. Addi-
tional indeterminacies arise in the process of transforming a kinematic plan into
muscle or motorneuronal activation patterns (Saltszman, 1979). Cost minimization
may also play a role at these lower levels of the motor hierarchy (one performance
objective may be the minimization of muscle co-activation: Kamon & Gormley,
1968; Pedotti, Crenna, Deat, Frigo, & Massion, 1989), but we shall not consider
this in detail.

In robotics, two basic types of schemes are used for generating kinematic
movement plans: Cartesian-space planning and joint-space planning®.

In Cartesian-space planning, the movement goal (i.e., the desired terminal
configuration of the hand) is first translated into a hand trajectory, which is sub-
sequently translated into a joint-space trajectory. The first of these transformations
is obviously indeterminate because any hand trajectory that yields the desired end
configuration may be used, and the second transformation is also indeterminate
because the mapping from joint configuration to hand configuration is many-to-one.

Joint-space planning, in contrast to Cartesian-space planning, does not involve
the explicit representation of a hand trajectory. Here planning is organized as
follows: First, the end configuration of the hand is converted into a terminal joint-
angle configuration, and second, a joint-space trajectory from the initial to the
terminal joint-angle configuration is generated. Both of these transformations are
indeterminate as well.

¢ A comprehensive introduction to these planning schemes is provided by Craig (1989, Chap. 7), and
additional information may be found in Brady (1982). For a discussion from the perspective of motor
control, see Hollerbach (1990).
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Cartesian-Space Planning

Consider the task of picking up a cup of coffee with your hand and lifting it to
your mouth. To avoid spilling, the cup must be held upright while being lifted, and
large inertial forces on the cup need to be avoided. To achieve this, it scems advan-
tageous to make the trajectory of the hand the direct object of control and to view
the rest of the arm merely as the mechanical means by which the hand is moved
(cf., Hollerbach, 1982). This is the general approach taken in Cartesian-space planning.
Bizzi and Mussa-Ivaldi (1989), Flash and Hogan (1985), and many others have
argued that this planning scheme is generally used in human motor control, even
for tasks that do not require the hand trajectory to be explicitly controlled.

Hand trajectory indeterminacy. Whereas complex manipulation tasks may
impose severe constraints on the trajectory of the hand, this is generally not the
case for simpler tasks such as unconstrained reaching. Any trajectory that
transports the hand from its initial to its target position may be used to successfully
perform the latter type of task. But if movement planning is based on the Cartesian-
space scheme, a particular hand trajectory needs to be selected. To make this
selection, one may proceed as follows: First, associate a cost value with each of
these trajectories, and second, select the trajectory for which the cost is lowest.
Generally, one may formulate a cost functional (a functional is a scalar-valued
function whose domain is a function space) of the form

CIr] =jt" g(x(2), ¥(1), .. ¥(1)) d, (6)

)

where g represents some instantaneous cost associated with the hand configuration
r(¢) and its time derivatives. We may then use the methods of the calculus of
variations to identify the hand trajectory for which C[r] is minimized.

In motor control, the best-known minimum principle of this type is the mini-
mum-jerk principle, initially proposed by Hogan (1982, 1984a) and further
elaborated by Yashin-Flash (1983) and Flash and Hogan (1985). It suggests that
hand trajectories are organized such that the integral

ctrl=|" e d (7)

)

is minimal. The procedure for solving this minimization problem is analogous to
the one used for the two physics problems discussed above. First, we apply the
Euler—Poisson equation to Eq. (7) to obtain

r'(1)=0. (8)
Next, we integrate this equation six times (which yields a quintic polynomial),
choose o= — T and t,= T, for mathematical convenience, and impose the boundary
conditions

r(—T)=ro—r1,, ®T)=ro+r,, HET)=0, H+T)=0 (9
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for a movement of amplitude 2r , and duration 27. Thence, we obtain the minimum-
jerk trajectory equation

r(t)=ro+ gr4(157 — 107> + 37°), (10)

with t=1¢/Te[ —1, 1]; the corresponding normalized velocity equation is

ir(r):%rd(l—212+r4). (11)

If movement duration is dictated by task requirements, the above fully specifies
the minimum-jerk solution for a point-to-point trajectory. If, on the other hand,
movement duration is not given, it is appropriate to consider its selection as part
of the optimization problem. However, for the minimum-jerk principle (as well as
for most other minimum principles discussed in this paper) the optimal movement
duration is infinity. (This can be easily verified by noticing that jerk cost
approaches zero as the duration of a minimum-jerk trajectory approaches infinity.)
The most straightforward way to avoid such an absurd prediction is to augment the
cost function by adding a secondary term that penalizes duration (Hoff, 1994). If
the cost function is altered in this way, its minimum is always achieved at some
well-defined value of 7, and the optimal trajectory is simply the minimum-jerk
trajectory for this duration.

Let us now turn to some important properties of minium-jerk trajectories. From
Egs. (10) and (11) it is straightforward to derive the following trajectory charac-
teristics: (1) straight-line hand paths, (2)linear amplitude scaling, (3)endpoint
translation invariance, (4) movement duration invariance, and (5) velocity profile
symmetry. The first two characteristics result from r, multiplying all t-dependent
terms in Eq. (10); the third one follows from the fact that r, remains unchanged if
a constant is added to the start and endpoints of the trajectory; the fourth one
follows from Eqgs. (10) and (11) being independent of 7; and the fifth one results
from the fact that all terms in Eq. (11) are even in .

At the time the minimum-jerk theory was proposed, it concisely summarized the
majority of the available arm movement data: Morasso (1981) and Flash and
Hogan (1985) had found straight hand paths for various horizontal-plane
movements, Hollerbach and Flash (1982) and Soechting and Lacquaniti (1981) had
reported data suggesting that trajectory shape is unaffected by changes in move-
ment duration, and the studies of Abend et al. (1982), Georgopoulos, Kalaska, and
Massey (1981), and Morasso (1981) had shown that velocity profiles are bell-
shaped and approximately symmetric. Because of its excellent agreement with these
experimental observations, the minimum-jerk principle became one of the most
influential motor control theories. In several publications, Flash (1990), Hogan
(1988), and Hogan and Flash (1987) further popularized the minimum-jerk theory,
and a number of researchers have since expanded its scope in various directions.

One important extension of the theory is concerned with feedback-based trajec-
tory modifications. The need for such modifications may arise from several sources.
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First, a movement may deviate from its course due to an unexpected external
perturbation; second, normal motor output variability (Schmidt, Zelaznik,
Hawkins, Frank, & Quinn, 1979) may also lead to such a deviation; and third, the
movement target may unexpectedly change its position during movement execution.

Flash and Henis (1991) showed experimentally that, when the location of a
target stimulus is unexpectedly changed (either shortly before or shortly after move-
ment onset), the movement is initially directed toward the original target before
smoothly changing direction toward the new target location. They suggested that
trajectories of this kind can be modeled as the temporal superposition of two
minimum-jerk trajectory components, with the first component extending from the
initial hand position to the original target location and the second one extending
from there to the shifted target location. Results consistent with this superposition
scheme were reported by Flash and Henis (1991) and Henis and Flash (1992,
1995), and further support for it comes from infant reaching movements, whose
multipeaked velocity profiles are well modeled as temporal superpositions of
minimum-jerk trajectory units (Berthier, 1996).

While the superposition scheme uses feedback only at isolated points in time
(e.g., when a target switch occurs), it is also conceivable that feedback is used on
a more continuous basis. This can by achieved by an optimal feedback control
design that uses an estimate of the arm’s current state and an estimate of target
location as input and generates a jerk control signal as output. Hoff and Arbib
(1993) discuss this control scheme in detail and show that it is consistent with
results from various target perturbation studies.

A second direction in which the minimum-jerk theory has been extended involves
the consideration of tasks with trajectory constraints. One relatively simple
constraint arises when the movement is required to pass through a via point. In this
case, the minimum-jerk trajectory can be shown to be composed of two trajectory
components, each of which is a fifth-order polynomial (Flash & Hogan, 1985). The
first component starts at rest (zero velocity and acceleration) and extends to the via
point, while the second component starts at the via point and terminates with zero
velocity and acceleration at the target location. At the via point, both components
must have the same velocities and accelerations; but these do not need to be zero.
Instead, these two values, as well as the time of passage through the via point, are
additional parameters that must be optimized. The minimum-jerk model’s predic-
tions for via-point movements were tested by Flash and Hogan (1985), who found
good quantitative agreement between theoretical and experimental trajectories. Of
particular interest was the observation that the minimum-jerk trajectories predicted
roughly equal durations for the two trajectory components, even if these differed
considerably in length. This prediction, which is closely related to the isochrony
principle (Viviani & Terzuolo, 1982), was found to be consistent with the experimental
data.

Usually, in a via-point movement, only the position at the via point is given,
while the velocity is determined as part of the optimization problem. In other
applications, it may, however, be useful to dictate the velocity at the via point as
well. Edelman and Flash (1987) showed that, by doing so, a variety of trajectory
shapes can be generated, and these may be used to simulate strokes that closely
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resemble those found in handwriting. Furthermore, if one has two strokes whose
boundary conditions are such that the final velocity of the first matches the initial
velocity of the second, the strokes may be joined to produce a more complex
trajectory; a third stroke may then be concatenated to this trajectory, and so
forth.

A particular instance of a complex trajectory arises when the start and endpoints
of a chain of concatenated trajectory components coincide. In that case, one may
remove the constraint that the initial and final velocities and accelerations must be
zero, and the closed trajectory may be traversed repeatedly, resulting in a cyclical
movement. Viviani and Flash (1995) had participants perform various cyclical
figure tracing tasks and showed that a concatenation of minimum-jerk trajectory
components can be used to successfully predict the experimental trajectories. These
trajectories were furthermore shown to be consistent with the two-thirds power law
(Lacquaniti, Terzuolo, & Viviani, 1983; Viviani & Schneider, 1991), which suggests
a close relationship between this law and the minimum-jerk principle.

The above discussion gives an impression of the wide variety of tasks to which
the minimum-jerk theory has been successfully applied. However, despite these
successes, the theory has not gone unchallenged. For instance, there is now ample
evidence that, contrary to the theory’s prediction, hand paths of point-to-point
movements are not shape-invariant throughout the workspace. In numerous
experiments, it has been shown that horizontal-plane point-to-point movements are
essentially straight if they are performed near the workspace center and are directed
along the anterior—posterior axis (Flash & Hogan, 1984; Haggard, Hutchinson, &
Stein, 1995; Miall and Haggard, 1995; Morasso, 1981), but if they start or end near
the workspace boundaries, they are noticeably curved (Osu, Uno, Koike, &
Kawato, 1997; Suzuki, Yamazaki, Mizuno, & Matsunami, 1997; Uno et al., 1989).
Curved hand paths have also been found by Atkeson and Hollerbach (1985) and
Flanagan and Ostry (1990) for vertical as well as for inward-and-upward diagonal
movements in the sagittal plane, by Lacquaniti, Soechting, and Terzuolo (1986) for
inward-and-upward movements directed toward the subjects’ noses, and by
Desmurget et al. (1995) for outward-and-upward reach-to-grasp movements. Other
inconsistencies between experimentally observed hand paths and minimum-jerk
predictions have been found for vertical-plane movements through a via point
(Furuna & Nagasaki, 1993) and for horizontal-plane obstacle avoidance
movements (Dean & Briwer, 1994).

Certain details of the temporal characteristics of arm movements also seem to be
inconsistent with the minimum-jerk theory. In studies of one-degree-of-freedom
horizontal-plane forearm movements, Nagasaki (1989) and Wiegner and
Wierzbicka (1992) found that the ratio of peak to average velocity is a function of
movement duration, which indicates that velocity profiles are not shape invariant
under changes in movement duration. Furthermore, it was found that velocity
profiles are not always symmetric; they tend to be right-skewed for slow movements
(Moore & Marteniuk, 1986; Nagasaki, 1989) and left-skewed for fast movements
(Wiegner & Wierzbicka, 1992).

Some of the minimum-jerk model’s controversial predictions such as straight
hand paths (for point-to-point movements) and velocity profile symmetry extend to
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other Cartesian-space cost measures such as squared acceleration and squared snap
(Yashin-Flash, 1983) and, more generally, to any cost functional of the form

[ ey 2 (12)

0

This expression comprises a rather broad class of cost functionals, but it certainly
does not exhaust all possible formulations of a Cartesian-space minimum principle;
there may be others that make entirely different predictions.

Inverse kinematics indeterminacy. Most of the original work on minimum prin-
ciples was done in the context of planar movements involving two mechanical
degrees of freedom (DOF), one at the shoulder and one at the elbow. For these
movements, the transformation from hand-space to joint-space coordinates (usually
referred to as the inverse kinematics transformation) is completely determinate, i.e.,
the trajectory of the hand uniquely determines the joint-space trajectory of the arm,
given the biomechanical joint-range limits are taken into account. Only recently
have researchers begun to given more attention to unrestricted movements in all
three spatial dimensions (e.g., Soechting, Buneo, Herrmann, & Flanders, 1995;
Soechting & Flanders, 1992). For these, the inverse kinematics transformation is
indeterminate.

Unrestricted movement of the hand is effected by the rotation of two major
joints, the three-DOF spherical shoulder joint and the one-DOF elbow joint.” We
shall use the symbol 0 =(0,, 0,, 05, 0,)" to denote the joint-angle configuration of
the arm and ©®* to denote the set of all biomechanically admissible joint-angle con-
figurations. The shoulder joint angles 6,, 6,, and 65 specify the jaw, pitch, and roll
of the upper arm, respectively, and the elbow joint angle 8, specifies the interior
angle between the upper arm and forearm. This description of arm configuration is,
of course, not unique. It is a convenient choice for the discussion that follows, but
other coordinate systems may very well be more meaningful from a psychophysical
perspective (Soechting & Ross, 1984).

Independent of the choice of coordinates, it should be clear that the shoulder and
the elbow joint have a total of four mechanical DOF, one in excess of the three
DOF necessary to uniquely specify a location in Cartesian space. This excess DOF
makes it possible to rotate the elbow around an axis through the hand and the
shoulder, while maintaining the hand in a fixed position (see Fig. 1).

The curve that is traced by the rotating elbow may be found as the intersection
of two spheres, one with center at the shoulder and radius /, and the other one with
center at the hand and radius /,, where /; and /, are the lengths of the upper arm
and forearm, respectively (cf., Hollerbach, 1985). The following result gives an
analytical expression for this curve:

7Small changes in hand position may also be effected by the radioulnar (one DOF) and radiocarpal
(two DOF) articulations of the forearm and wrist. For simplicity, these are disregarded (i.e., the wrist
is assumed to be braced). Furthermore, only the position of the hand is considered, but its orientation
is ignored.
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FIG. 1. The inverse kinematics indeterminacy for an arm with three-DOF spherical shoulder joint
and one-DOF elbow joint. The figure depicts three different arm configurations that result in identical
hand positions. The configurations shown in (b) and (c) are obtained from the one shown in (a) by
rotation of the elbow around an axis through the shoulder and the hand.

LEMMA.  Consider an arm with three-DOF spherical shoulder joint and one-DOF
elbow joint. If the hand is positioned at v, the elbow position q must be an element of

the set Q(r)={qlq=q(r, ), ye[ —n, n)}, with

| ro+i+10 0
q(r, V):FR_—(VU) R (ry) 0 4-\/412 c—(ro+ =13 cosy |,
’ 0 sin y

where R. and R, are matrix operators that perform z-axis and y-axis rotations,
respectively, ro=tan~'(r,,r,), ry=sin"'(rsfr,), and r,=|r|| are spherical
coordinates, and tan ~'(x, y) =tan ~'(y/x) 4+ sgn(y)(1 —sgn(x)) /2.

The above lemma illustrates that any hand position r is compatible with an
infinite number of elbow positions q € Q(r) and hence with an infinite number of
joint-angle configurations. A unique joint-angle configuration is, however, defined
if both the hand position r and the elbow position q are given.® The set of all joint-
angle configurations that can place the hand at r may therefore be generated by
moving the elbow along the curve q(r, y), while the hand rests at r. An explicit
expression for this inverse kinematics set is given by the following theorem:

THEOREM (Inverse kinematics). All inverse kinematics solutions of an arm with
three-DOF spherical shoulder joint and one-DOF elbow joint are members of the set
={0(r,y) |ye(r)}, with

8 Strictly, there are always two joint-angle configurations, 0 and ¢’, that can generate identical position
pairs {q,r}. However, given the limited biomechanical range of motion of the elbow joint, ie.,
0, <[0, ), only one of the two is physically realizable (see Engelbrecht, 1997, for further detail). For
all practical purposes, we may therefore treat the relation between {q, r} and 6 as one-to-one.
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01(r, y) = tan = (g,(x, 7)/q:(x, ),

0(r, y) =tan = '(/qi(r, ) + g5(x, ), ¢5(x, 7)),

O(r, y) =tan = '(21,(r2q:(x, ) = r1qa(x, 9)), 25515 = (rl + 13+ 13) g5(x, ),
O4(r, y) =cos~((r] + 17 —13)/21,1,),

I'(r)y={ye[—=n n)|0(r,y) 0@,

where q(r, y) is as defined in the above lemma.

For brevity, we omit a proof of this result and refer the reader to Engelbrecht
(1997).

Besides confirming that the inverse kinematics transformation is indeed indeter-
minate, the above theorem provides an explicit parametrization of the set of all
inverse kinematics solutions by means of the function O(r,y). Some significant
benefits are associated with this. Consider, for instance, the problem of identifying
a joint-space trajectory 6(¢) that minimizes some cost function while transporting
the hand along a trajectory r(¢). Without the above result, this would be represen-
ted as a variational problem involving four unknown functions (for the four DOF
of the arm) and three constraint equations (resulting from the requirement that the
hand must follow a given trajectory). The above theorem allows us to reduce the
problem to an unconstrained one that involves only the single scalar-valued func-
tion y(z); this greatly simplifies the treatment of such problems, and we shall take
advantage of it on several occasions.

From the above result, we know that each pair of functions {r(z), y(¢)} uniquely
determines a joint-space trajectory. Consequently, if the hand trajectory r(z) is
prescribed, all that needs to be determined is the function y(z) € I'(x(¢)). Clearly,
there is an infinite number of such functions. To identify a particular one, we may
define a functional of the form

/A

1= g0 50). /(1)) d (13)

4]

that assigns a different cost to each candidate function. A unique joint-space trajec-
tory may then be identified by requiring that y(¢) be chosen to minimize C[y]. For
instance, one could consider applying the minimum-jerk principle to the inverse
kinematics transformation by defining jerk-cost in joint-space coordinates:

g(0)=110(x(0), y(2), (1), 7, 5(1))]1. (14)

Possibly as a result of the research focus on nonredundant two-DOF planar
movements, this has not been attempted, nor have motor control researches applied
any other minimum principle to this trajectory conversion problem®. The inverse

® There is, however, an abundance of related robotics work. For a comprehensive review, see
Nakamura (1991).
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kinematics transformation has nevertheless attracted considerable research, albeit in
a different context, that of joint-space planning.

Joint-Space Planning

As reviewed by Craig (1989, Chap. 7), Cartesian-space planning is associated
with a number of problems that may be avoided if movements are directly planned
in joint-space coordinates. All of these problems result from the nonlinear relation
between hand-space and joint-space coordinates. We shall illustrate one of these by
considering simple two-DOF planar arm movements. For these, it is relatively
straightforward to show that the ratio of the magnitude of joint velocity to the
magnitude of hand velocity obeys

101 /1307 cdp +F55)* + (L Fy c0, + 17, cdp + 1,75 50, + L, 5¢)°
[E] 111, /13 +73 50, (15)

CX = COS a, sa = sin a, d=0,+0,,

where /; and /, are the lengths of the upper arm and forearm, respectively, r=
(r,,r,)T are the coordinates of the hand, and §=(6,, 0,)" are the joint angles at
the shoulder and the elbow. As can be seen from the above expression, the ratio
|0/||F| varies greatly as a function of joint-angle configuration, and it, in fact,
diverges if the arm approaches the singular configurations 0=(0,,0)" or
0=(0,,7)". Hand trajectories that bring the arm into the vicinity of these
singularities may therefore require extremely inefficient or even unrealizably large
joint velocities (for an example, see Fig. 2) and should thus be avoided whenever

a b
50
1164
il 25
Iy Iy

FIG. 2. Straight-line hand movement. Movement starts at r, and terminates at r,. Near the middle
of the path, the shoulder is forced to perform a full z rad rotation that brings the hand only minimally
closer to the target (Panel a). At that point, the ratio of the magnitude of joint velocity to the magnitude
of hand velocity (in units of rad/m) increases dramatically (Panel b). From an engineering point of view,
hand paths of his kind are extremely inefficient and should be avoided whenever possible.
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possible. But it is difficult to see how this can be done if hand trajectory planning
strictly precedes the generation of a joint-space trajectory. The most straightforward
way of avoiding these singularities is to plan a movement directly in joint-space
coordinates. From an engineering point of view, joint-space planning is therefore
preferable over Cartesian-space planning whenever the task does not explicitly
constraint the trajectory of the hand.

End-configuration indeterminacy. The first step in joint-space planning involves
the computation of the inverse kinematics transformation, which has already been
discussed in the context of Cartesian-space planning. But whereas in Cartesian-
space planning this transformation is computed along a complete hand trajectory,
joint-space planning invokes its computation only at the movement endpoint r,. As
a consequence, we may now resolve the inverse kinematics indeterminacy by simply
requiring that some static cost

Cly) = g(0(xs, 7)) (16)

be minimized. Note that this is not a problem in the calculus of variations but is
instead a straightforward parameter optimization problem; its solution may simply
be determined from the following two conditions:

d d?

C(y)>0. (17)

A variety of end-configuration costs may be considered, ranging from engineering
measures such as manipulability (Yoshikawa, 1985) to psychological measures such
as postural comfort. Concerning the latter, there are psychophysical data indicating
that subjects consistently rate certain postures (joint-angle configurations) as more
comfortable than others (Cruse, 1986; Cruse, Wischmeyer, Briiwer, Brockfeld, &
Dress, 1990; Rosenbaum, Vaughan, Jorgensen, Barnes, & Stewart, 1993). Cruse
(1986) argued that each joint has an associated discomfort function and that these
functions can be added to obtain a measure of overall postural discomfort. The dis-
comfort associated with an individual joint is highest near the joint’s biomechanical
range limits and lowest for some optimal configuration, which tends to be near the
middle of the joint’s range of motion.

To test the hypothesis that target joint-angle configurations are chosen to mini-
mize posture discomfort, Cruse et al. (1990) asked subjects to perform a number of
horizontal-plane reaching movements involving the shoulder, the elbow, and the
wrist. Additionally, subjects were asked to rate the discomfort they associated with
a variety of different arm configurations. The results of these kinematic and
psychophysical measurements were found to be consistent with the minimum-
discomfort hypothesis.

Additional support for this hypothesis comes from a number of studies by
Rosenbaum and his collaborators (Rosenbaum & Jorgensen, 1992; Rosenbaum,
Vaughan, Marchak, Barnes, & Slotta, 1990; Rosenbaum, Vaughan, Barnes, &
Jorgensen, 1992; Rosenbaum et al., 1993). The general type of task investigated in
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these studies required a subject to grasp an object and then transport it to a new
location or to place it in a new orientation. The final position and orientation of
the object were prespecified, but the subject was free to decide how to grasp the
object (e.g., by using an underhand or an overhand grip). In correspondence with
the results obtained by Cruse et al. (1990), it was found that subjects consistently
chose grasps that minimized the awkwardness of final wrist orientation.

A problem with the above studies is that the concept of discomfort is not well
defined. For instance, by rating one posture as being less uncomfortable than
another, a person may simply mean that, given the choice, he or she would prefer
the former posture over the latter one. If discomfort is interpreted in this fashion,
the minimum-discomfort hypothesis translates into the following circular statement:
“People prefer to adopt those postures that they prefer to adopt.” Of course,
discomfort may also be taken to refer to some more objective cost measure such as
proximity to the biomechanical joint-range limits or magnitude of the torques
necessary to maintain a given posture. However, in each of these case, it seems
advantageous to replace the term discomfort with the more specific physical
interpretation.

In general, two types of cost measures may be differentiated: kinetic costs and
kinematic costs. Kinetic costs derive from the muscle-generated forces or torques
that are applied to the arm. Kinematic costs, on the other hand, are independent
of these and derive exclusively from the configuration of the arm and its time
derivatives. An external force that is applied to the arm may therefore affect the for-
mer type of cost, but it cannot affect the latter one. Cruse et al. (1990) carried out
an experiment that speaks to this distinction. In this experiment, target-directed
arm movements were performed under two conditions; in one condition, a spring
was mounted across the subject’s elbow, while in the other one, no external force
was applied to the arm. For all investigated movements, the terminal joint-angle
configurations were significantly different in the two conditions. This finding is
inconsistent with any exclusively kinematics-based minimum theory; it can only be
explained if kinetic costs are also taken into consideration.

A kinetic cost of particular interest is the sum of the squared torques that are
applied to the joints during movement or while a posture is maintained. In robot
manipulators that are driven by electric torque motors, this measure is directly
proportional to the power consumption of the motors. More importantly, this
measure also appears to be approximately proportional to the metabolic energy
that is consumed by the muscles when they generate torque at a joint (Hogan,
1984b).

The relation between arm movement kinematics and torque can be derived from
the Lagrange equation

_d oL, 0) 2L(0,0)

N(6, 0, (0)
dr (6 o0

; (18)

where N denotes torque, and L is defined as the difference between the kinetic and
potential energies of the arm; ie., L(0, )= T(6, ) — U(0). If we consider only the
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torques necessary to maintain the terminal arm configuration 0(rs, y), Eq.(18)
reduces to the much simpler expression

ou(b(ry, 7))

00 (19)

Nf(e) =

because the kinetic energy is zero when the arm is at rest. Since N, is uniquely
determined by 0(r/, y), the squared posture-maintenance torque at the movement
endpoint may be written as

C(y) = IN(0(xs, 7)), (20)

from which the minimum-torque configuration 6(r,, y*) may be found by
application of Eq. (17).

In a number of experiments, Engelbrecht (1997) tested the hypothesis that final
joint-angle configurations are chosen to minimize squared posture-maintenance
torque (SPMT) as defined by Eq.(20). The general type of task investigated in
these experiments had three components: (1) a target-directed arm movement, (2) a
period of posture maintenance at the target, usually lasting between 15 and 45 s,
and (3) a movement returning the arm to its initial posture. The studied movements
involved all three rotational DOF at the shoulder and one DOF at the elbow; as
a consequence, each target location could be reached with an infinite number of
joint-angle configurations (see above theorem). When subjects performed the
experimental task while holding a 2.27-kg weight, their target joint-angle configura-
tions were well predicted by the minimum-SPMT theory (see Fig. 3), but when the
same task was performed without a weight, the theory failed. In the latter
experiment, target joint-angle configurations varied greatly as a function of the arm
posture at movement onset (see also Fischer, Rosenbaum, & Vaughan, 1997;
Soechting et al., 1995), which suggests that static configuration costs, whether
kinematic or kinetic, are generally not sufficient to predict terminal joint-angle
configurations. Costs arising from the transition between initial configuration and
terminal configuration must also be taken into consideration.

Trajectory indeterminacy. From Engelbrecht’s (1997) experimental results, one
may conclude that the selection of a target joint-angle configuration and the
selection of a joint-space trajectory are problems that need to be resolved
simultaneously. For this purpose, it is useful to formulate a cost function of the
form

CL01=[" 1(000). 1), 0(0)) i+ 5(011), (21)

where g, is some instantaneous cost associated with 0(¢) and its time derivatives,
and g, is some static cost associated with the terminal joint-angle configuration
0(t;) = 0(r, y). A unique joint-space trajectory (including the terminal configuration
0(t,)) may then be identified by requiring that it be chosen to minimize the above
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FIG. 3. Observed vs. predicted performance (minimum-SPMT criterion). Movement was either
directed toward a Near target or a Far target, and movement started with the elbow in either a High
position to the right of the shoulder or a Low position near the hip. The subjects held a 2.27-kg weight
in their right hands and were required to maintain the final posture for 30s. Mean final postures
(averaged over four subjects and sic repetitions) for the (a) Near-High, (b) Near-Low, (c) Far-High, and
(d) Far-Low conditions are shown in the left column, and the corresponding minimum-SPMT postures
are shown in the right column.
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cost function subject to a set of appropriate boundary conditions. At movement
onset, 0(t,) =0, must be satisfied since the initial arm configuration is fixed. At
movement termination, on the other hand, we do not need to impose such a rigid
constraint, but may instead allow any arm configuration 0(z;) e ®(r(¢,)) that
positions the hand at the target. With this more relaxed constraint, the selection
of the end-configuration becomes part of the optimization problem, and the end-
configuration and joint-space-trajectory indeterminacies are resolved simultaneously.

Uno et al’s (1989) minimum-torque-change principle is the best-known minimum
theory of this form. It has inspired a wealth of experimental and theoretical work
(Kawato, 1992, 1996; Kawato, Maeda, Uno, & Suzuki, 1990; Osu et al., 1997,
Wada & Kawato, 1993, 1995; Wada, Koike, Vatikiotis-Bateson, & Kawato, 1995),
and it is worth considering in more detail. As a first step, let us examine how torque
change depends on the joint-space trajectory of the arm. This relation may be
derived from the Lagrange Eq. (18); hiding the details, it takes the form

N(2) =D(0(2), 6(1), (0(1), B(1)), (22)

where D represents a nonlinear third-order vector differential equation. The torque-
change cost is therefore a function of 0(¢) and its first three time derivatives and is
given by the equation

¢ = "IN, 600 o). o) s o)

which does not include an end-configuration cost term since N(¢) = 0 when the arm
is at rest.

To find the minimum-torque-change trajectory, we now apply the Euler—Poisson
equation to Eq. (23). This yields

OIN|I> do|N|? d?a|N|* d®a|N|?
o0  dt 90  di* 00  dr 0

0, (24)

a nonlinear sixth-order vector differential equation. It is generally not possible to
solve this equation analytically, but numerical methods may be used to find
individual solutions for given sets of boundary conditions and limb-segment
parameters (inertias, masses, and viscosities). Uno et al. (1989) did this for several
two-DOF horizontal-plane movements and obtained trajectories that were highly
consistent with experimentally observed ones. In particular, they found that the
hand paths of horizontal-plane arm movements (which are essentially straight for
inward and outward movements near the workspace center but are noticeably curved
for transverse movements) were well predicted by the minimum-torque-change
theory. This represented an important improvement over the minimum-jerk theory,
which does not predict these workspace variations in hand-path curvature:
Minimum-jerk hand paths are straight regardless of workspace location and
movement direction, unless additional assumptions, such as incomplete control of
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movement execution (Flash, 1987; but see Gomi & Kawato, 1996; Osu et al., 1997)
or visual misperception of hand-path curvature (Wolpert, Ghahramani, & Jordan,
1994; but see Osu et al., 1997), are introduced.

While Uno et al. (1989) obtained their results by use of numerical methods,
Engelbrecht and Fernandez (1997) showed that for the important special case of
one-DOF planar-horizontal movements, minimum-torque-change trajectories may
also be found analytically. For these movements, it can be shown that minimum-
torque-change trajectories exhibit a number of properties that hold for any move-
ment duration and for any set of arm-dynamical parameters. These properties are:
(1) a symmetric velocity profile, (2) a ratio of peak velocity over average velocity
greater than 3/2 but smaller than 15/8, and (3) an acceleration peak after less than
21.13% of the total movement duration. Although these properties may hold for
certain types of arm movements, a review of the experimental literature shows that
they are not universally correct: As was mentioned above, there is evidence that the
velocity profiles of slow movements are generally right-skewed (Moore &
Marteniuk, 1986; Nagasaki, 1989), while those of extremely fast movements are
left-skewed (Wiegner & Wierzbicka, 1992). Fast movements also tend to have ratios
of peak to average velocity that significantly exceed 15/8 (Nagasaki, 1989; Wiegner
& Wierzbicka, 1992), and their acceleration peaks may occur significantly later
than 21.13% of total movement duration (Baba & Marteniuk, 1983).

Summary

None of the considered minimum principles is fully accurate. The minimum-jerk
principle, as well as all other minimum principles that are instances of Eq.(12),
incorrectly predicts straight hand paths regardless of workspace location. The mini-
mum-discomfort and minimum-SPMT theories only predict terminal joint angle
configurations but not trajectories. These theories make accurate predictions under
certain circumstances. In general, however, they fail because they cannot account
for the dependency of terminal arm posture on initial arm posture. The minimum-
torque-change principle stands out from the others because it correctly predicts the
workspace-dependency of hand-path curvature, but its predictions concerning the
temporal characteristics of movement are not entirely accurate.

DEVELOPMENT AND TESTING OF MINIMUM THEORIES

Without proper constraints, the development of a minimum theory may easily
become an exercise in circular reasoning. Gould and Lewontin (1979) argued that
in evolutionary biology such circular reasoning is not uncommon, caricaturing it as
follows: Convinced of the omnipotence of natural selection, the evolutionary
biologist studies the behavior of an animal with the intention to identify a perfor-
mance measure with respect to which the behavior is optimal. Given sufficient
imagination, the evolutionary biologist always succeeds at finding such a measure,
which is then presented as evidence that animal behavior is indeed optimally
adapted.
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Although others (Maynard Smith, 1978; Mayr, 1983) have disagreed with Gould
and Lewontin (1979) about the extent to which such circular arguments are
actually employed in evolutionary biology, there seems to be some consensus that
minimum (or optimality) principles lend themselves to such arguments if proper
care is not taken.

Surprisingly, no such concerns have been voiced with respect to minimum
principles in motor control. Yet, as we shall see below, the same danger of circular
reasoning exists for these as well.

A Posteriori Theory Development

It is not particularly difficult to develop a minimum theory that makes
reasonable predictions. The following example will illustrate that. As an alternative
to the minimum-torque-change principle, consider a minimum theory that
associates costs with both the first and the second time derivative of torque, so that

CI0] =rf(zv2(t) +2N2(1)) dr. (25)

Ty

The relative weight of the terms N2 and N2 is determined by A, which will be given
in units of kHz. For one-DOF horizontal-plane movements, it is straightforward to
find the trajectory that minimizes this cost functional. If viscosity is negligible, we
have

N(1)= 10, (26)
where [ is the inertia of the limb segment. We insert Eq. (26) into Eq. (25) and
apply the Euler-Poisson equation to obtain the homogeneous second-order
ordinary differential equation
—2p=¢,  ¢=0° (27)
with solution

¢(t) = ag A8 cosh At + a, A° sinh At; (28)

sixfold integration then yields
O(t)=ag+a t+ayt> +ast> + ast* + ast® + ag cosh At + a, sinh At. (29)
The unknown coefficients of this equation can be found from the boundary condi-
tions. For mathematical convenience, we choose the origin of the time axis such
that zy= —T and 7,=T. For the same reason, and without loss of generality—the

cost function (25) does not depend on 6(z) and is therefore translation
invariant—we choose 6(—T7)= —0, and O(T)=0, With movement starting and
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ending at rest, and assuming continuity of () and its first three time derivatives,
we then have

O0—T)=—0, OT)=0, O+T)=6+T)=0+T)=0.  (30)

From Eq. (30) we determine the coefficients a, — a,, and inserting these into (29),
we obtain

15 5
0(t)=0,0(w) <8 (8w + w* —5w? tanh w) 7 +2 (3w? tanh w — w?) 73

(w® — w? tanh @) t° — 15

(31)

0| W

+
cosh w

sinh wr>
with t=t/Te[ —1,1], o= AT, and O(w)=1/(15w + @* — (15 + 6w?) tanh w).

Equation (31) represents a family of trajectories that is parametrized by w. To
obtain a few example trajectories, we let A =0.1 kHz and consider the following two
movement durations: 27'=100 ms and 27 = 1000 ms. The time-normalized trajec-
tories that correspond to these values are shown in Fig. 4 (dashed curves), together
with a minimum-torque-change trajectory!® (solid curve). As can be seen from the
figure, trajectories that obey Eq. (31) are duration dependent: The 100-ms move-
ment is characterized by a velocity profile with a tall and narrow peak, whereas the
velocity profile of the 1000-ms movement is wider and flatter and nearly coincides
with that predicted by the minimum-torque-change principle. correspondingly, the
ratio of peak velocity to average velocity is 2.11 for the fast movement (100 ms)
compared to 1.91 for the slow one (1000 ms).

From the above results, we see that the simultaneous minimization of costs
associated with the first and the second time derivative of torque predicts trajec-
tories whose peak-velocity to average-velocity ratio increases as movement duration
decreases. This is consistent with experimental data showing that this ratio is about
1.8-1.9 for slow movements (Nagasaki, 1989) and about 2.0-2.2 for fast movements
(Nagasaki, 1989; Wiegner & Wierzbicka, 1992). As discussed above, the minimum-
torque-change principle incorrectly predicts that this ratio cannot exceed 1.875
(Engelbrecht & Fernandez, 1997). With respect to this trajectory characteristic, our
newly developed theory therefore makes more accurate predictions than the
minimum-torque-change theory.

One may object, however, that the good performance of our new minimum
principle is no surprise because it is apparent that the cost functional (25) and the
value of 4 were specifically chosen to produce such a god fit to the experimental
data. This criticism is certainly valid, but, to a large extent, it also applies to other
minimum theories. The minimum-torque-change principle, for instance, was
proposed by Uno et al. (1989) based on their experimentation with a number of

19 1f viscosity is negligible, as is assumed here, one-DOF horizontal-plane minimum-torque-change
trajectories are independent of movement duration. For a treatment of the minimum-torque-change
principle that includes viscosity, see Engelbrecht and Fernandez (1997).
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FIG. 4. Trajectories for one-DOF horizontal-plane movements that minimize the time derivative of
torque (solid line) or a weighted sum (4= 0.1 kHz) of the time derivative and the second time derivative
of torque (dashed lines). (a) Position, (b) velocity, and (c) acceleration.
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different minimum principles, and a similarly empirical approach was used by
Yashin-Flash (1983) in her development of the minimum-jerk theory. The selection
criterion for both minimum principles was the accuracy of their predictions relative
to the considered alternatives.

Let us take the above approach one step further by considering the following
procedure for theory selection: First, find the function that best describes arm
movement trajectories. Second, find a cost functional with regard to which this
trajectory function is optimal'’. Obviously, this approach corresponds to the one
caricatured by Gould and Lewontin (1979) and thus invites the same criticism of
circular reasoning. But this criticism only applies to minimum principles that are
used in the explanatory sense that is typical of evolutionary biology. If, on the other
hand, one views a minimum principle as a purely descriptive tool that concisely
summarizes a set of experimental data, as is the case in physics, nothing is wrong
with this approach.

The performance measures that underlie most current minimum principles in
motor control are specifically designed to predict experimental data as accurately as
possible. A circular argument is therefore made if the observed behavior is, in turn,
explained as an optimal adaptation with respect to these performance measures. To
avoid such circular arguments, empirically-derived minimum principles are best
viewed as abstract laws whose sole purpose it is to describe behavior in a compact
mathematical form.

Critical Tests for Descriptive Minimum Theories

In the behavioral sciences, mathematical laws that are used in a purely descrip-
tive fashion are not uncommon. Three famous examples are the Weber—Fechner
law of subjective intensity perception (Fechner, 1860/1966), the logarithmic law of
memory decay (Ebbinghaus, 1885/1964), and the logarithmic speed—accuracy trade-
off (Fitts, 1954). All three of these are functional relations. How do laws of this type
relate to minimum principles?

If we consider only a single behavioral task with fixed boundary conditions, we
find that there is generally a one-to-one relation between minimum principle and
functional relation, so that the former appears to be no more than an unnecessarily
complicated way of stating the latter. The situation is different, however, if a
number of tasks are considered, each of which imposes a different behavioral
constraint. In this case, a minimum principle may predict a different functional
relation for each task. Minimum principles are therefore more general than
functional relations and may be used to combine a number of these into a single
unifying law.

Most experimental research in motor control has been concerned with
unconstrained point-to-point reaching movements, which may be described quite

1 Formally, this amounts to solving an inverse problem of the calculus of variations. Rosen (1967,
Chap. 5) gives some insight into how this can be done.
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accurately by a variety of simple functional relations (Plamondon, Alimi, Yergeau,
& Leclerc, 1993). To find a minimum principle that corresponds to one of these is
by itself not a significant achievement. However, if such a minimum principle is
then applied to a new task for which it predicts a different functional relation, and
this new prediction is accurate as well, one may claim that an important discovery
has been made.

For certain minimum principles, interesting or even surprising predictions may
arise when tasks are considered that require a movement to be performed against
an externally applied force or torque. We shall illustrate this for the minimum-
torque-change principle. Consider a horizontal-plane one-DOF arm movement
with negligible viscosity performed against an external torque that varies linearly
with the arm’s angular position. As in Eq. (26), the torque N(z) that is generated
by the muscles is proportional to the angular acceleration of the arm, but now an
additional torque is necessary to oppose the external torque. Hence,

N(t) =10 + KO0, (32)

where K determines the magnitude of the external torque. We take the time derivative
of Eq. (32) and square the resulting expression to obtain the instantaneous torque-
change cost

N?=T1%0%+ K?0* + 2IK00. (33)
Application of the Euler—Poisson equation to Eq. (33) then yields
Q225+ f=0,  ¢=0, p=/KIL (34)

a homogeneous fourth-order linear differential equation, whose solution takes the
form

¢(t) = d’ cos ft + a5 sin ft + ayt sin ft + a’st cos fit, (35)
and after double integration, we have
0(t)=ag+ a,t+ a, cos ft + a; sin ft + a4t sin ft + a5t cos fit. (36)
We find the coefficients a,—as from the boundary conditions

0—T)=—0, O(T)=0,, O(+T)=H+T)=0 (37)

and insert them into Eq.(36), thus obtaining the minimum-torque-change
trajectory equation

(2% + w sin 2w) 7 — (2w cos w + 4 sin w) sin wt + 2w(sin w) 7 cos wt
2 ¢os 2w +  sin 2w + 2w? —2

() =0, ,

(38)

with o=Tf=T./K/[>0 and t1=¢t/Te[ —1,1].
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FIG. 5. One-DOF horizontal-plane minimum-torque-change trajectories for movements that are
subjected to an externally-applied torque. The external torque decreases linearly with the angular
position of the arm and changes sign halfway between the initial and target positions. (a) Position,
(b) velocity, and (c) acceleration.
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Equation (38) represents a family of trajectories that is parametrized by w. Three
members of that family, corresponding to w =(3/4) n, @ =(3/2) n, and w = 3=, are
shown in Fig. 5.

Note that the trajectory corresponding to w=(3/4)n has a single-peaked
velocity profile, as is typical for unconstrained point—point movements, while those
corresponding to w=(3/2) = and w=3xn have double-peaked and triple-peaked
velocity profiles, respectively. This result is quite interesting; it seems to suggest that
the number of velocity extrema is proportional to w and thus to the square root of
K, the magnitude of the external torque. Careful analysis of Eq. (38) shows that this
is indeed the case. In particular, we may assert the following:

THEOREM (External torque). Let Q=w/n, and let | Q] denote the greatest
integer not larger than Q. Trajectories obeying Eq.(38) have exactly 2| Q2 1+3
velocity extrema and saddle points in the interval [ —1, 1] if cot w < 1/w and w # k=,
ke Z. Otherwise, they have 2| Q_|+1 velocity extrema and saddle points in the
interval.

A proof of this theorem is given in Appendix A.

We have chosen to present the above result because it exemplifies the form a
critical test of the minimum-torque-change theory, or of any other minimum
theory, should take. The predictions are so curious that they offer and ideal oppor-
tunity either to falsify the theory or, alternatively, to confirm its universal
applicability.

It is also worth noting that the above result sets the minimum-torque-change
principle in direct opposition to the minimum-jerk principle, which predicts
complete independence of trajectory shape from movement dynamics. We therefore
have identified a paradigm that gives us completely contradictory predictions for
the two theories, and if these predictions are put to an experimental test, it is
essentially guaranteed that at least one of the two theories will be refuted.

EXPLANATORY THEORIES RECONSIDERED

In motor control, minimum theories are often reverse engineered to fit certain
sets of experimental data. Accordingly, their function is best viewed as a purely
descriptive one. In evolutionary biology, on the other hand, a minimum theory is
usually selected based on the relation of its underlying cost measure to the concept
of biological fitness (but see Gould & Lewontin, 1979). The objective of such a
minimum theory is not only to predict behavior but also to explain it as the result
of optimal adaptation.

Two cost measures that are almost certainly related to biological fitness are the
metabolic energy that is required to perform a movement and the time that it takes
to perform it. Few biologists would doubt that animals are generally well adapted
with respect to these measures'?. Motor control theorists have also considered these
measures (for mathematical treatments, see Nelson,1983; Oguztoreli & Stein, 1983),

2 For a general discussion of low-pass filtering in the nervous system, see Partridge (1973).



MINIMUM PRINCIPLES 525

but seem to have concluded that their minimization fails to predict the charac-
teristics of human arm movement (for instance, Kawato, 1996; Uno et al. 1989).
Indeed, the preference for the empirically-based development of minimum theories
among motor control researchers is likely a result of these failures. However, the
rejection of biologically-motivated minimum theories may have been premature.
We shall demonstrate this for the minimum-time principle.

Minimum Time

Again, it will be instructive to consider the simplest possible case, that of one-
DOF horizontal-plane movements. For these, the angular acceleration of the arm
is a linear function of the torque that is applied to the joint. As discussed in Hermes
and LaSalle (1969), minium-time control of such a linear system is always of the
“bang-bang” type: The control variable (in the present case, torque) adopts only
two values, its maximum and its minimum, and it switches from one to the other
no more than n— 1 times, where n is the order of the dynamical system.

If viscosity is negligible, the dynamics of a one-DOF planar-horizontal arm are
described by the second-order Eq. (26) or, equivalently, by the system of two first-
order equations

d . d .
— 0= — 0= N/L
S 0=0.  — =N (39)

We therefore have n =2, and the time-optimal control for the arm switches only
once; it obeys

N(1) =

N, tost<t
{ max 0 < K} (40)

— Nax 1, <t<ty,

where ¢, denotes the switching time, and N, is the largest admissible torque. If
movement starts and ends at rest, it follows that the minimum-time trajectory is
characterized by three acceleration discontinuities, one at the start, one at the
switching point ¢;, and one at the end. But even when subjects are instructed to
move at maximum speed, their arm movement trajectories do not show such
acceleration discontinuities (Wiegner & Wierzbicka, 1992). It thus seems that
human arm movements are indeed not time-optimal.

This conclusion, however, depends on the constraints one is willing to impose on
the set of functions from which N(¢) is to be chosen. Note that, in the above deriva-
tion, we assume that |N(7)| is constrained to be no larger than N,,,,. It is necessary
to impose this constraint if one wants to avoid the absurd prediction that the time-
optimal control must be composed of an infinitely short and infinitely tall positive
torque pulse followed by an infinitely short and infinitely tall negative one, resulting
in an infinitely fast arm movement. Most optimality theories in biology require such
constraints. Otherwise, they would predict that organisms are infinitely strong,
infinitely fecund, and infinitely long-lived (cf. Alexander, 1982, Chap. 6).

But once one accepts that N(z) needs to be bounded, one should be willing to
consider other constraints on it as well. It is to be expected that the general
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architecture of the neuromuscular control system limits the set of realizable torque
functions in a number of ways. One way of incorporating these constraints is to
develop a detailed neuromuscular model and to consider the input to this model
(rather than torque) as the variable that is to be optimized. Hatze (1976) and
Pandy, Zajac, Sim, and Levine (1990) models are instances of this approach. While
this is a reasonable way to proceed, it is clear that this approach leads to a great
increase in model complexity, and it thus sacrifices the simplicity and elegance of
the minimum principles we have considered so far.

Some of this complexity may be unnecessary. This is so because many com-
ponents of the neuromuscular controller do not impose any constraints on the set
of realizable torque functions, which makes them irrelevant with regard to the
optimal control solution. An alternative approach is, therefore, to restrict con-
sideration to those features of the neuromuscular controller than obviously do
impose constraints on the controller’s output. One such constraint arises from the
low-pass filtering property of muscle. When a muscle is electrically stimulated by a
sinusoidal pulse of low frequency, the muscle generates contractions at a frequency
that corresponds to that of the stimulus signal. But when the stimulus frequency is
increased, these contractions become less and less forceful until they vanish altogether
(Partridge, 1966). The muscle therefore responds selectively to low-frequency
signals and ignores those of higher frequency; it acts as a low-pass filter.

In the nervous system, low-pass filtering not only occurs when a signal is
transmitted from a motoneuron to a muscle; it also occurs whenever a signal is
transmitted from one neuron to another'® . The cause for this seems to be the
temporal summation that occurs when a signal is transmitted across a synaptic
junction. Mathematically, we may describe this by a convolution integral of the
form

o) =[ 1) ooz -0 (41)

where ¢(7) is the postsynaptic signal, ¢(¢) is the presynaptic signal, and f(¢) is a
weighting function. Often f(¢) decreases exponentially with time, and the convolu-
tion integral takes the form

o .(1) = —lnocftoct(po(‘[—l)df, ae(0, 1) (42)

0

As we show in Appendix B, Eq. (42) instantiates a filter that is formally equiv-
alent to a dynamical system whose behavior is governed by the following first-order
linear differential equation:

P1(t) + 079, (1) = pol1), w=—Ina (43)

13 For a general discussion of low-pass filtering in the nervous system, see Partridge (1973).
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By extension, a signal that is submitted to a series of n such filters (as a result of
being transmitted across a number of synapses) may be described by a system of
n first-order linear differential equations:

Pu(t) + 07 (1) = @p_ (1), k=1,2,.. n. (44)

What are the implications of these considerations for the minimum-time control
of arm movement? To answer this question, let us assume that ¢,(¢) determines the
torque input to the one-DOF arm whose dynamics are given by Eq. (39), and let
us further assume that the only variable subject to explicit control is ¢(7). Since the
dynamical system that is instantiated by Eqgs. (39) and (44) is governed by a system
of n+2 first-order linear differential equations, time-optimal control is still of the
bang-bang type, but now the control has n+ 1 switches instead of just two, i.e.,

n+1

Po(1) = Pmax 2. (=1 (H(t—1,) =H(t — 15, 1)), (45)

k=0

where ¢, denotes the maximum admissible value for |@(#)|, H(¢) is the Heaviside
step function, and the ¢, are start, end, and switching times.

But even though the control signal ¢,(#) is bang-bang and thus discontinuous,
the torque command ¢,(¢) is a continuous function. As we show in Appendix C, the
response of the nth-order filter (44) to a step input is

n—1

w

k
</3n(t)=H(t)<1e_W’ > k'tk>’ (46)
k=0 :

assuming ¢.(0)=0 for k=1,2,.,n, and its response to ¢q(¢) follows from
Egs. (45) and (46) by application of the principle of superposition:

n+1

Pa(1) = Prmax 2, (=1 (Dot = 1) = Pt =11 1)) (47)

k=0

As we can see from this expression, ¢, (#) is continuous, and so is the acceleration
of the arm because 0(7) = N(¢)/I and N(¢) = ¢, (). From the acceleration function,
the minimum-time trajectory equation is then obtained by double integration and
imposition of the initial conditions 0(0) =6, and 0(0) =0, which yield
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FIG. 6. One-DOF horizontal-plane minimum-time trajectories. The control signal generates torque

after passing through zero (solid line), two (short dashes), or six (long dashes) first-order low-pass filters
with @ =30. Time is given in seconds and angular position in radians.
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with

? n nn+l Zl (n—k)(n+1—k)w*2 k> (48)

9([)=H(t) <2wt+260)€_wtkz o t
-0 .

This equation has n + 2 unknown coefficients, the switching times ¢; through ¢, ,
and the final time ¢, ,. These must be found from the terminal boundary condi-
tions

H(tn+2):Hfa é(tn+2):()a ¢k(ln+2)=0, k:O’ 19 wes H (49)

Equation (48) represents a family of minimum-time trajectories that is
parameterized by n, the number of filters that intervene between the control input
@o(t) and the torque command ¢,. Figure 6 shows three of these for systems with
zero, two, and six filters. The trajectories corresponding to the two- and six-filter
systems have continuous acceleration profiles, and the trajectory for the six-filter
system is qualitatively quite similar to those observed in studies of rapid arm move-
ment (Wiegner & Wierzbicka, 1992; Zelaznik, Schmidt, & Gielen, 1986). Our
results therefore suggest that the minimum-time principle has indeed been rejected
prematurely: Human arm movement may after all be time-optimal, at least within
the constraints imposed by the low-pass filtering property of the nervous system.

STOCHASTIC MODELS

An important aspect of human movement that we have ignored so far is its
stochastic nature. On the behavioral level, this is a well-established phenomenon.
When participants are instructed to repeatedly produce identical movements of
prescribed amplitude and duration, they instead produce a distribution of move-
ments that is characterized by a scattering of endpoints whose standard deviation
scales linearly with average movement speed (Schmidt et al., 1979; Meyer, Smith,
& Wright 1982); quite apparently, participants do not and cannot produce identical
movements across a series of trials. In addition to the behavioral evidence, there is
physiological data suggesting that stochasticity is, in fact, a fundamental charac-
teristic of neural information processing (Calvin & Stevens, 1968; Clamann, 1969).

Despite these facts, it has been common practice to model human movement
control as a deterministic rather than a stochastic process. Indeed, all minimum
theories discussed so far have implicitly made this simplifying assumption. These
theories have nonetheless been successful at describing important phenomena, such
as the main kinematic characteristics of arm movement. Other phenomena,
however, are difficult to explain within a deterministic framework. One example is
the logarithmic speed—accuracy trade-off, known as Fitts’s law (Fitts, 1954).
Empirically, this law has proved extremely robust across a plethora of motor
activities and experimental conditions (e.g., Kerr, 1973; Langolf, Chaffin, & Foulke,
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1976; Meyer et al., 1982). Its interpretation, however, has been highly controversial.
Fitts’s original information-theoretic explanation, which is based on a rather
strained analogy between the motor system and a band-limited communication
channel (Kvalseth, 1979), has generally not been taken very seriously (Meyer,
Smith, Kornblum, Abrams, & Wright, 1990). An alternative theory, the deter-
ministic iterative-corrections model put forward by Crossman and Goodeve
(1963/1983), was more convincing, but several of its predictions turned out to be
inconsistent with experimental data (Meyer et al., 1990).

Currently, the best explanation of Fitts’s law is offered by the stochastic
optimized-submovement model (Meyer, Abrams, Kornblum, Wright, & Smith,
1988). This model assumes that a reaching movement may consist of two move-
ment units, an initial and a corrective one. The endpoint of the initial movement
is a random variable that follows a normal distribution with mean at the center of
the target and standard deviation proportional to average movement speed. If, due
to its stochastic nature, the initial movement misses the target, a corrective move-
ment is initiated. The endpoint of this movement is also a normal random variable,
again with mean at the center of the target and standard deviation proportional to
the unit’s average speed. The speeds of the two movement units are selected such
that expected total movement duration is minimized, subject to the constraint that
the corrective movement, when invoked, has a fixed probability of terminating on
the target. With speeds chosen in this fashion, one obtains a speed—accuracy trade-
off that follows a square-root law. This law is similar to Fitts’s law (which predicts
a logarithmic trade-off), and it may actually be somewhat more accurate than the
latter (Kvalseth, 1980).

At least one of the assumptions of the Meyer et al. (1988) model is, however,
questionable: Empirically, it has been found that the mean amplitude of the initial
movement unit is not always equivalent to target distance. Indeed, for saccadic eye
movements, it is well established that the initial saccade systematically undershoots
the target by an average of 5 to 10% of movement amplitude (Becker, 1989;
Henson, 1978), and systematic undershoots are also known to occur in high-precision
arm movement (Milner, 1992). In infants, this wundershoot bias is even more
pronounced; for infants less than 20 weeks of age, systematic undershoots of 50 %
of total amplitude have been reported, both for arm movement (Hofsten, 1991) and
for saccadic eye movement (Aslin & Salapatek, 1975).

It is therefore a natural extension of the stochastic optimized-submovement
model to make the amplitudes of the movement units part of the optimization pro-
cess as well. Using this approach, Harris (1995) showed that, given the typical
endpoint variability of saccades, it is time-optimal for initial saccades to undershoot
the target by about 5 to 10% of total amplitude. Berthier (1996) extended this
analysis to infant reaching movements, which are characterized by multiple move-
ment units and large initial-unit undershoots (Hofsten, 1991). With increasing age,
the number of these units decreases, the amplitude of the initial unit increases, and
the speed of the individual units follows an N-shaped curve (increase—decrease—
increase). Berthier showed that this complex developmental pattern can be
reproduced if one assumes that infants behave according to a stochastic time-
optimal strategy that is continuously adapted to the level of motor noise, which
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decreases with the infant’s age. His results suggest that the motor control system is
capable of optimally adapting its control policies to changing levels of stochasticity.

Further Refinements

So far, a rather important consequence of the stochastic nature of human motor
control has been ignored: In combination with information delays due to slow
transmission and processing of perceptual information, stochastic control leads to
incomplete observability of state information (Engelbrecht & Katsikopoulos, 1999).
(Note that proprioceptive delays are at least 30 ms, and visual delays easily exceed
100 ms.) This is so because delayed perceptual information is not sufficient to define
the motor system’s current state with certainty, even if it is augmented by informa-
tion about the intervening motor commands. The most one can obtain from the
available information is a probability distribution over current states, and this
significantly alters the nature of the control problem (cf. Sondik, 1978). The
implications of this for the optimal control of motor behavior are far-reaching, and
their investigation is an important research topic for the future.

SUMMARY AND CONCLUSIONS

Minimum principles may contribute to our understanding of motor performance
in two ways, as descriptive tools and as explanatory ones. As descriptive tools, they
provide concise mathematical summaries of large sets of experimental data, and as
explanatory tools, they interpret motor performance as the result of an optimal
adaptation with respect to some (biologically relevant) efficiency criterion.

However, if the efficiency criterion itself is selected to obtain a maximally
accurate fit to the behavioral data, as has been the case for most minimum prin-
ciples in motor control, the explanatory function becomes tautological. Minimum
principles of this kind should therefore be used as purely descriptive tools and not
as explanatory ones.

Some minimum principles, such as the minimum-jerk principle (Flash and
Hogan, 1985) and the minimum-torque-change principle (Uno et al., 1989), have
been quite successful at summarizing the gross characteristics of point-to-point arm
movements and have accordingly enjoyed considerable popularity. However, point-
to-point arm movements are also well described by a number of simple functional
relations. In fact, if a minimum principle is applied to a single type of task, there
is usually a one-to-one correspondence between functional relation and minimum
principle, so that the former is no more than an arcane restatement of the latter.
Critical tests of minimum principles should therefore involve tasks that are
sufficiently different from those that prompted their formulation. For each such
task, a minimum principle may predict a different functional relation, and some of
these predictions may turn out to be surprising or even counterintuitive.

Most current minimum principles in motor control have been chosen empirically,
based on their success at predicting the characteristics of arm movement, and
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biological relevance has often only been considered as an afterthought. Efficiency
criteria such as the minimization of movement time and the minimization of
metabolic energy requirements, which biologists believe to be of great adaptive
value, have generally been ignored, apparently because they seem to predict move-
ment trajectories that are inconsistent with experimentally observed ones. However,
this conclusion is only valid if we assume that the neural control signal may be any
function of bounded magnitude. Imposition of additional constraints upon the
control signal may lead to entirely different predictions, as we demonstrated for the
minimum-time principle: If the low-pass filtering property of neural signal process-
ing is admitted as a constraint upon the set of physically realizable torque
functions, theoretical minimum-time trajectories are qualitatively quite similar to
those observed in rapid arm movement.

Another property of the neuromuscular control system that must be dealt with
is the stochastic nature of control. This property is important because control
strategies that are optimal for a deterministic system are often nonoptimal for the
corresponding stochastic system and vice versa. For instance, while Fitts’s law and
the undershoot bias are difficult or impossible to explain within a deterministic
optimal control framework, straightforward interpretations are possible once
stochasticity is explicitly taken into consideration.

For future research, it will be an important task to determine which properties
of the neuromuscular control system make a difference with regard to the optimal
control of movement. Considerable progress in our understanding of motor
behavior can be expected from the identification of these properties and from their
inclusion in minimum theories.

APPENDIX A

Proof of the External-Torque Theorem

A necessary and sufficient condition for a velocity extremum or saddle point is
d?0/dr®> = 0. From Eq. (38), we obtain

d? (cos o sin wt — (sin ) T cos wt

£ 0(t) = 2%
2 0(7) =200, 2 cos 2w + w sin 2w + 2w? —2

dr >’ TE[—I,]], (Al)

Hence, any 7 that is the location of a velocity extremum or saddle point must be
a solution to the equation

cos w sin w7 = (sin W) T cos wr. (A.2)
If o=jmr, j=1, 2, .., the above equation reduces to

sin wt =0, (A.3)
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which is solved by any 1=kQ !, keZ. Since e[ —1,1], we have ke[ —Q,
—Q+1,.., Q—1, Q], so that there are a total of 2Q + 1 solutions.
If @ # k=n, we may divide Eq. (A.2) by sin w to obtain

cot w sin Wt =17 COos WT. (A4)

Three obvious solutions of this equation are =0 and 7= +1. It appears
impossible to find the other solutions of this equation by analytical means, but we
shall nevertheless be able to determine their number. To simplify Eq. (A.4), we
divide both sides of it by sin wt (note that sin wz =0, t#0, is not a solution) to
obtain

cot w =1 cot wr. (A.S)

This equation has exactly 2| Q |+ 3 solutions if cot w < 1/w; otherwise, it has
21 Q]+ 1 solutions. To prove this, we need to consider the following properties of
the cotangent function,

lim 7 cot wr=1/w, (A.6)
T—0
lim 7 cotwrt— — oo, k=1,2, .., (A7)
7> (k/Q2)—
lim 7 cotwt— o0, k=1,2, .., (A.8)
7 (k/Q) +
d » . .
e 7 cot wt =csc” wt(cos wt sin wt — wt) <0 if 7>0. (A9)
T

We invoke the intermediate-value theorem to conclude from the above properties
that 7 cot wt takes on all values between — oo and 1/w for 7€(0, 1/Q) and that it
takes on all values between —oo and oo for ((k—1)/2, k/Q), k=2, 3, ... From
Eq. (A.9), we know that in each of these intervals the mapping 7 — 7 cot wt is one-
to-one. Hence, Eq.(A.4) has exactly one solution in the interval (0, 1/Q] if
cot w < l/w; otherwise it has no solution in that interval. It also follows from above
that Eq.(A.4) has exactly one solution in each interval [(k—1), 2, k/Q],
k=2,3,.. Q] Finally, we note that (L Q /2, 1]=(LQ21/Q, 2+ 1/Q] implies
that the obvious solution 7 =1 is the only one in the interval (| 2/, 1]. Combin-
ing all of the above results, we conclude that Eq. (A.4) has | Q |+ 1 solutions in the
interval (0, 1] if cot w < 1/w; otherwise, it has | € | solutions in that interval. Since
dO(t)/dr 1s even, the number of extrema and saddle points in [ —1, 0) corresponds
to the one in (0, 1]. In conjunction with the obvious solution 7 =0, this yields a
total number of 2| 2 | + 3 extrema and saddle points if cot w <1/w and 2 | Q |+ 1
extrema and saddle points if cot w = 1/w.
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APPENDIX B

Dynamical Systems Representation of a Linear Filter

Let us consider the following two expressions:
P1(1) + 07 (1) = pol1), o= —Ina, (B.1)

o= —Ina roctgao(r—l) dr. (B2)

Application of the convolution theorem to Eq. (B.2) yields

L{p(0)} = —InaZ{a'} L{py(1)}

—Ina

s—Ina

L{po(1)}, (B.3)

where Z{¢(1)} denotes the Laplace transform of ¢(¢). Substituting w = — In o and
rearranging terms, we may rewrite this as

(14+s0~") L{p.(1)} = L{p(1)}. (B4)

Assuming that the system is at rest at 7,=0, we have sZ{p(1)} = Z{¢,(1)}, and
inserting this into Eq. (B.4), we obtain

L{p()} + o' L{gi(1)} = L{po(1)}, (B.5)

which is also the Laplace transform representation of Eq. (B.1). Hence, Egs. (B.1)
and (B.2) are equivalent.

APPENDIX C

Response of an Nth Order Linear Filter to a Step Input

Let the Heaviside step function H(z) be the input to the linear filter defined
by (44). The response of the filter is then determined by the following set of n
first-order linear differential equations:

@1(1) + 0~y (1) = H(1), (C.I)

P(t)+ 07 (1) = pr_i(2), k=2,3,..,n (C2)
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We solve these by application of the Laplace transform. We let ¢, = 0, for mathematical
convenience, so that ¢,(0)=0, assuming the system is initially at rest. We then
have

L1} S(w_llsﬂ), (C.3)
Pog =Tl ka3 (C4)
and by recursive application of Eq. (C.4), it follows that
L{ P} Z%- (C5)
s(w™is+1)"
To find the inverse Laplace transform of this expression, we rewrite it as
L100) ZS(Siw)"z(na—) ! ((:J:al);' % (C6)
and let
" -1 |
so that
ZL{pa} =F(s) G(s). (C.8)
The inverse Laplace transforms of F(s) and G(s) are
f(t)= LY F(s)} = —2— e, (C9)
(n—1)!
g()=2"H{G(s)} =H(1), (C.10)

and the inverse Laplace transform of their product may be obtained from the
convolution theorem:

2Y(F(s) G(s)) =j;f(r) o(t—1)dr. (C.11)

Thus

@.(1) :L’ f(x) H(t —1) dr, (C.12)
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and since this expression vanishes for 1 <0, we may rewrite it as

Pl ) =H(1) | f(z) dr. (C.13)

Replacement of f(r) with its definition (C.9) and integration by parts then yield

n

w

%(Z):H(I)m

t
J‘ 7’_nflefw'r dT
0

—H(1) <1—ew'ni1 C]:Tt">. (C.14)

k=0

REFERENCES

Abend, W., Bizzi, E., & Morasso, P. (1982). Human arm trajectory formation. Brain, 105, 331-348.
Akhiezer, N. L. (1962). The calculus of variations. New York: Blaisdell.

Alexander, R. M. (1980). Optimum walking techniques for quadrupeds and bipeds. Journal of Zoology
(London), 192, 97-117.

Alexander, R. M. (1982). Optima for animals. London: Arnold.

Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiological Reviews,
69, 1199-1227.

Aslin, R. N., & Salapatek, P. (1975). Saccadic localization of visual targets by the very young human
infant. Perception & Psychophysics, 17, 293-302.

Atkeson, C. G., & Hollerbach, J. M. (1985). Kinematic features of unrestrained arm movements. Journal
of Neuroscience, 5, 2318-2330.

Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.

Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211, 1390-1396.

Baba, D. M., & Marteniuk, R. G. (1983). Timing and torque involvement in the organization of a rapid
forearm flexion. Quarterly Journal of Experimental Psychology, 35A, 323-331.

Becker, W. (1989). Metrics. In R. H. Wurtz, & M. E. Goldberg, (Eds.), The neurobiology of saccadic eye
movements (pp. 13-67). Amsterdam: Elsevier.

Bernstein, N. (1967). The coordination and regulation of movements. London: Pergamon.

Berry, D. A., & Fristedt, B. (1985). Bandit problems. New York: Chapman and Hall.

Berthier, N. E. (1996). Learning to reach: A mathematical model. Developmental Psychology, 32,
811-823.

Bizzi, E., & Mussa-Ivaldi, F. A. (1989). Geometrical and mechanical issues in movement planning and
control. In M. L. Posner (Ed.), Handbook of cognitive science (pp. 769-792). Cambridge, MA: MIT
Press.

Bliss, G. A. (1946). Lectures on the calculus of variations. Chicago: The University of Chicago Press.

Brady, M. (1982). Trajectory planning. In M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Pérez,
& M. T. Mason (Eds.), Robot motion: Planning and control (pp.221-243). Cambridge, MA: MIT
Press.



MINIMUM PRINCIPLES 537

Calvin, W. H., & Stevens, C. F. (1968). Synaptic noise and other sources of randomness in motoneuron
interspike intervals. Journal of Neurophysiology, 31, 574-587.

Clamann, H. P. (1969). Statistical analysis of motor unit firing patterns in a human skeletal muscle.
Biophysics Journal, 9, 1233-1251.

Craig, J. J. (1989). Introduction to robotics (2nd ed.). Reading, MA: Addison-Wesley.

Cruse, H. (1986). Constraints for joint angle control of the human arm. Biological Cybernetics, 54,
125-132.

Cruse, H., Wischmeyer, E., Britwer, M., Brockfield, P., & Dress, A. (1990). On the cost functions for the
control of the human arm movement. Biological Cybernetics, 62, 519-528.

Daly, M., & Wilson, M. (1983). Sex, evolution, and behavior (2nd ed.). Boston: PWS-Kent.

Dean, J., & Briiwer, M. (1994). Control of human arm movements in two dimensions: Use of the wrist
in short pointing movements. Experimental Brain Research, 97, 497-514.

Desmurget, M., Prablanc, C., Rossetti, Y., Arzi, M., Paulignan, Y., Urquizar, C., & Mignot, J.-C. (1995).
Postural and synergetic control for three-dimensional movements of reaching and grasping. Journal
of Neurophysiology, 74, 905-910.

Dickinson, M. H., Lighton, J. R. B., & Lighton, J. R. B. (1995). Muscle efficiency and elastic storage in
the flight motor of Drosophila. Science, 268, 87-90.

Dreyfus, S. E. (1965). Dynamic programming and the calculus of variations. New York: Academic Press.

Ebbinghaus, H. E. (1964). Memory: A contribution to experimental psychology, H. A. Ruger,
C. E. Bussenues, Trans. (Eds.). New York: Dover. (Original work published 1885)

Edelman, S., & Flash, T. (1987). A model of handwriting. Biological Cybernetics, 57, 25-36.

Engelbrecht, S. E. (1997). Minimum-torque posture control. Doctoral dissertation. University of
Massachusetts, Amherst. (University Microfilms No. 9721446).

Engelbrecht, S. E., & Fernandez, J. P. (1997). Invariant characteristics of horizontal-plane minimum-
torque-change movements with one mechanical degree of freedom. Biological Cybernetics, 76,
321-329.

Engelbrecht, S. E., & Katsikopoulos, K. V. (1999). Planning with delayed state information. Technical
Report 99-30. Amherst, MA: University of Massachusetts, Department of Computer Science.

Fechner, G. T. (1966). Elements of psychophysics, H. E. Adler, Trans.. New York: Holt, Rinehard and
Winston. (Original work published 1860).

Feynman, R. P., Leighton, R. B., & Sands, M. (1963). The Feynman lectures on physics. Reading, MA:
Addison-Wesley.

Fischer, M. H., Rosenbaum, D. A., & Vaughan, J. (1997). Speed and sequential effects in reaching.
Journal of Experimental Psychology: Human Perception and Performance, 23, 404-428.

Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude
of movement. Journal of Experimental Psychology, 47, 381-391.

Flanagan, J. R., & Ostry, D. J. (1990). Trajectories of human multi-joint arm movements: Evidence of
joint level planning. In V. Hayward, & O. Khatib (Eds.), Experimental robotics (pp. 595-613). New
York: Springer-Verlag.

Flash, T. (1987). The control of hand equilibrium trajectories in multi-joint arm movements. Biological
Cybernetics, 57, 257-274.

Flash, T. (1990). The organization of human arm trajectory control. In J. M. Winters, & S. L.-Y. Woo,
(Eds.), Multiple muscle systems: Biomechanics and movement organization (pp.281-301). New York:
Springer-Verlag.

Flash, T., & Henis, E. (1991). Arm trajectory modifications during reaching towards visual targets.
Cognitive Neuroscience, 3, 220-230.

Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed
mathematical model. Journal of Neuroscience, 5, 1688—1703.

Furuna, T., & Nagasaki, H. (1993). Trajectory formation of vertical arm movements through a
via-point: A limit of validity of the minimum-jerk model. Perceptual and Motor Skills, 76, 875-884.



538 SASCHA E. ENGELBRECHT

Georgopoulos, A. P., Kalaska, J. F., & Massey, J. T. (1981). Spatial trajectories and reaction times of
aimed movements: Effects of practice, uncertainty, and change in target location. Journal of
Neurophysiology, 725-743.

Goldstine, H. H. (1980). A4 history of the calculus of variations from the 17th through the 19th century.
New York: Springer-Verlag.

Gomi, H., & Kawato, M. (1996). Equilibrium-point control hypothesis examined by measured arm
stiffness during multijoint movement. Science, 272, 117-120.

Gossick, B. R. (1967). Hamilton’s principle and physical systems. New York: Academic Press.

Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm:
A critique of the adaptionist programme. Proceedings of the Royal Society of London, 205, 581-598.

Haggard, P., Hutchinson, K., & Stein, J. (1995). Patterns of coordinated multi-joint movement.
Experimental Brain Research, 107, 254-266.

Harris, C. M. (1995). Does saccadic undershoot minimize saccadic flight time? A Monte-Carlo Study.
Vision Research, 35, 691-701.

Hatze, H. (1976). The complete optimization of a human motion. Mathematical Biosciences, 28, 99—135.

Henis, E. A., & Flash, T. (1992). A computational mechanism to account for averaged modified hand
trajectories. In J. E. Moody, S. J. Hanson, & R. P. Lippman, (Eds.), Advances in neural information
processing systems. San Mateo, CA: Morgan Kaufmann.

Henis, E. A, & Flash, T. (1995). Mechanisms underlying the generation of averaged modified
trajectories. Biological Cybernetics, 72, 407-419.

Henson, D. B. (1978). Corrective saccades: Effects of altering visual feedback. Vision Research, 18, 63-67.

Hermes, H., & LaSalle, J. P. (1969). Functional analysis and time optimal control. New York: Academic
Press.

Hoff, B. (1994). A model of duration in normal and perturbed movement. Biological Cybernetics, 71,
481-488.

Hoff, B., & Arbib, M. A. (1993). Models of trajectory formation and temporal interaction of reach and
grasp. Journal of Motor Behavior, 25, 175-192.

Hofsten von, C. (1991). Structuring of early reaching movements: A longitudinal study. Journal of Motor
Behavior, 23, 253-270.

Hogan, N. (1982). Control and coordination of voluntary arm movements. In M. J. Rabins,
& Y. Bar-Shalom, (Eds.), Proceedings of the 1982 American Control Conference (pp.522-528).
Picataway, NY: IEEE.

Hogan, N. (1984a). An organizing principle for a class of voluntary movements. Journal of Neuroscience,
4, 2745-2754.

Hogan, N. (1984b). Adaptive control of mechanical impedance by coactivation of antagonist muscles.
IEEE Transactions on Automatic Control, 29, 681-690.

Hogan, N. (1988). Planning and execution of multijoint movements. Canadian Journal of Physiology and
Pharmacology, 66, 508-517.

Hogan, N., & Flash, T. (1987). Moving gracefully: Quantitative theories of motor coordination. Trends
in Neuroscience, 10, 170-174.

Hollerbach, J. M. (1982). Computers, brains and the control of movement. Trends in Neuroscience, S,
189-192.

Hollerbach, J. M. (1985). Optimum kinematic design for a seven degree of freedom manipulator.
In H. Hanafusa, & H. Inoue (Eds.), Robotics research. The second international symposium
(pp. 215-222). Cambridge, MA: MIT Press.

Hollerbach, J. M. (1990). Fundamentals of motor behavior. In D. N. Osherson, S. M. Kosslyn, & J. M.
Hollerbach (Eds.), An invitation to cognitive science (pp. 153-182). Cambridge, MA: MIT Press.

Hollerbach, J. M., & Flash, T. (1982). Dynamic interactions between limb segments during planar arm
movement. Biological Cybernetics, 44, 67-77.



MINIMUM PRINCIPLES 539

Hollerbach, J. M., & Suh, K. C. (1985). Redundancy resolution of manipulators through torque
optimization. In Proceedings of the IEEE 1985 International Conference on Robotics and Automation
(pp. 1016-1021). Silver Spring, MD: IEEE Computer Society Press.

Holt, K. G., Hamill, J., & Andres, R. O. (1991). Predicting the minimal energy costs of human walking.
Medicine and Science in Sports and Exercise, 23, 491-498.

Hoyt, D. F., & Taylor, R. T. (1981). Gait and the energetics of locomotion in horses. Nature, 292,
239-293.

Kamil, A. C., Krebs, J. R., & Pulliam, H. R. (1987). Foraging behavior. New York: Plenum Press.

Kamon, E., & Gormley, J. (1968). Muscular activity pattern for skilled performance and during learning
of a horizontal bar exercise. Ergonomics, 11, 345-357.

Kawato, M. (1992). Optimization and learning in neural networks for formation and control of
coordinated movement. In D. E. Meyer, & S. Kornblum, (Eds.), Attention and performance XIV:
Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 821-849).
Cambridge, MA: MIT Press.

Kawato, M., (1996). Bi-directional theory approach to integration. In T. Inui, & J. L. McClelland,
(Eds.), Attention and performance XVI. Information integration in perception and communication
(pp- 336-367). Cambridge, MA: MIT Press.

Kawato, M., Maeda, Y., Uno, Y., & Suzuki, R. (1990). Trajectory formation of arm movement by
cascade neural network model based on minimum-torque change criterion. Biological Cybernetics, 62,
275-288.

Ker, R. (1973). Movement time in an underwater environment. Journal of Motor Behavior, 5, 175-178.

Kline, M. (1962). Mathematics: A cultural approach. Reading, MA: Addison-Wesley.

Krebs, J. R. (1984). Optimal foraging: Decision rules for predators. In J. R. Krebs, & N. B. Davies,
(Eds.), Behavioural ecology (pp.23-63). Sunderland, MA: Sinauer.

Krebs, J. R., Kacelnik, A., & Taylor, P. (1978). Tests of optimal sampling by foraging great tits. Nature
(London), 275, 27-31.

Kvalseth, T. O. (1979). Note on information capacity of discrete motor responses. Perceptual and Motor
Skills, 49, 291-296.

Kvalseth, T. O. (1980). An alternative to Fitts’ law (1980). Bulletin of the Psychonomic Society, 16,
371-373.

Lacquaniti, F., Soechting, J. F., & Terzuolo, C. A. (1986). Path constraints on point-to-point arm
movements in three-dimensional space. Neuroscience, 17, 313-324.

Lacquaniti, F., Terzuolo, C. A., & Viviani, P. (1983). The law relating kinematic and figural aspects of
drawing movements. Acta Psychologica, 54, 115-130.

Lanczos, C. (1970). The variational principles of mechanics. Toronto: University of Toronto Press.

Langolf, G. D., Chaffin, D. B., & Foulke, J. A. (1976). An investigation of Fitt’s Law using a wide range
of movement amplitudes. Journal of Motor Behavior, 8, 113-128.

Maynard Smith, J. (1974). The theory of games and the evolution of animal conflicts. Journal of
Theoretical Biology, 47, 209-221.

Maynard Smith, J. (1978). Optimization theory in evolution. Annual Review of Ecological Systems, 9,
31-56.

Maynard Smith, M. (1982). Evolution and the theory of games. New York: Cambridge University
Press.

Mayr, E. (1983). How to carry out the adaptionist program. American Naturalist, 121, 324-334.

Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. K. (1988). Optimality in
human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95,
340-370.

Meyer, D. E., Smith, J. E. K., Kornblum, S., Abrams, R. A., & Wright, C. E. (1990). Speed-accuracy
tradeoffs in aimed movement: Towards a theory of rapid voluntary action. In M. Jeannerod (Ed.),



540 SASCHA E. ENGELBRECHT

Attention and performance XIII. Motor representation and control (pp.173-226). Hillsdale, NIJ:
Erlbaum.

Meyer, D. E., Smith, J. E. K., & Wright, C. E. (1982). Models for the speed and accuracy of aimed
movements. Psychological Review, 89, 449-482.

Miall, R. C., & Haggard, P. N. (1995). The curvature of human arm movements in the absence of visual
experience. Experimental Brain Research, 103, 421-428.

Milner, T. E. (1992). A model for the generation of movements requiring endpoint precision.
Neuroscience, 49, 487-496.

Moore, S. P., & Marteniuk, R. G. (1986). Kinematic and electromyographic changes that occur as a
function of learning a time-constrained aiming task. Journal of Motor Behavior, 18, 397-426.

Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42, 223-227.

Morasso, P. (1983). Three dimensional arm trajectories. Biological Cybernetics, 48, 187-194.

Nagasaki, H. (1989). Asymmetric velocity profiles and acceleration profiles of human arm movements.
Experimental Brain Research, 74, 319-326.

Nakamura, Y. (1991). Advanced robotics: Redundancy and optimization. Reading, MA: Addison-Wesley.

Nakamura, Y., & Hanafusa, H. (1985). Task priority based redundancy control of robot manipulators.
In H. Hanafusa, & H. Inoue, (Eds.), Robotics research. The second international symposium
(pp. 155-162). Cambridge, MA: MIT Press.

Oguztoreli, M. N., & Stein, R. B. (1983). Optimal control of antagonist muscles. Biological Cybernetics,
48, 91-99.

Osu, R, Uno, Y., Koike, Y., & Kawato, M. (1997). Possible explanation for trajectory curvature in
multijoint arm movements. Journal of Experimental Psychology: Human Perception and Performance,
23, 890-913.

Pandy, M. G., Zajac, F. E., Sim, E., & Levine, W. S. (1990). An optimal control model for maximum-
height human jumping. Journal of Biomechanics, 23, 1185-1198.

Partridge, L. D. (1966). Signal-handling characteristics of load-moving skeletal muscle. American Journal
of Physiology, 210, 1178-1191.

Partridge, L. D. (1973). Integration in the central nervous system. In J. H. U. Brown, & S. S. Gann
(Eds.), Engineering principles in physiology (pp.47-98). New York: Academic Press.

Pedotti, A., Crenna, P., Deat, A, Frigo, C., & Massion, J. (1989). Postural synergies in axial
movements: Short and long-term adaptation. Experimental Brain Research, 74, 3-10.

Plamondon, J., Alimi, A. M., Yergeau, P., & Leclerc, F. (1993). Modelling velocity profiles of rapid
movements: A comparative study. Biological Cybernetics, 69, 119-128.

Rosen, R. (1967). Optimality principles in biology. London: Butterworths.

Rosenbaum, D. A., & Jorgensen, M. J. (1992). Planning macroscopic aspects of manual control. Human
Movement Science, 11, 61-69.

Rosenbaum, D. A., Vaughan, J., Barnes, H. J., & Jorgensen, M. J. (1992). Time course of movement
planning: Selection of handgrips for object manipulation. Journal of Experimental Psychology: Learn-
ing, Memory and Cognition, 18, 1058-1073.

Rosenbaum, D. A., Vaughan, J., Barnes, H. J., Marchak, F., & Slotta, J. (1990). Constraints on action
selection: Overhand versus underhand grips. In M. Jeannerod (Ed.), Attention and performance XIII:
Motor representation and control (pp. 321-342). Hillsdale, NJ: Erlbaum.

Rosenbaum, D. A., Vaughan, J., Jorgensen, M. J., Barnes, H. J., & Stewart, E. (1993). Plans for object
manipulation. In D. E. Meyer, & S. Kornblum, (Eds.), Attention and performance XIV: Synergies in
experimental psychology, artificial intelligence, and cognitive neuroscience (pp.803-820). Cambridge,
MA: MIT Press.

Sahar, G., & Hollerbach, J. M. (1986). Planning of minimum-time trajectories for robot arms. Interna-
tional Journal of Robotics Research, 5, 90-100.

Saltzman, E. (1979). Levels of sensorimotor representation. Journal of Mathematical Psychology, 20,
91-163.



MINIMUM PRINCIPLES 541

Schmidt, R. A., Zelaznik, H. N., Hawkins, B., Frank, J. S., & Quinn, J. T. (1979). Motor output
variability: A theory for the accuracy of rapid motor acts. Psychological Review, 86, 415-451.

Schoemaker, P. J. H. (1991). The quest for optimality: A positive heuristic of science. Behavioral and
Brain Sciences, 14, 205-245.

Silver, W. M. (1982). On the equivalence of Lagrangian and Newton-Euler dynamics for manipulators.
International Journal of Robotics Research, 1, 60-70.

Soechting, J. F., Buneo, C. A, Herrmann, U., & Flanders, M. (1995). Moving effortlessly in three
dimensions: Does Donders’ law apply to arm movement?. Journal of Neuroscience, 15, 6271-6280.
Soechting, J. F., & Flanders, M. (1992). Moving in three-dimensional space: Frames of reference, vec-

tors, and coordinate systems. Annual Review of Neuroscience, 15, 167-191.

Soechting, J. F., & Lacquaniti, F. (1981). Invariant characteristics of a pointing movement in man.
Journal of Neuroscience, 1, 710-720.

Soechting, J. F., & Ross, B. (1984). Psychophysical determination of coordinate representation of human
arm orientation. Neuroscience, 13, 595-604.

Sondik, E. J. (1978). The optimal control of partially observable Markov processes over the infinite
horizon: Discounted costs. Operations Research, 26, 282-304.

Suh, K. C., & Hollerbach, J. M. (1987). Local versus global torque optimization of redundant
manipulators. In Proceedings of the IEEE 1987 International Conference on Robotics and Automation
(pp. 619-624). Silver Spring, MD: IEEE Computer Society Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT
Press.

Suzuki, M., Yamazaki, Y., Mizuno, N., & Matsunami, K. (1997). Trajectory formation of the center-of-
mass of the arm during reaching movements. Neuroscience, 76, 597-610.

Uchiyama, M., Shimizu, K., & Hakomori, K. (1985). Performance evaluation of manipulators using the
Jacobian and its application of trajectory planning. In H. Hanafusa, & H. Inoue, (Eds.), Robotics
research. The second international symposium (pp. 447-454). Cambridge, MA: MIT Press.

Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human
multijoint arm movement. Biological Cybernetics, 61, 89-101.

Viviani, P., & Flash, T. (1995). Minimum-jerk, two-thirds power law, and isochrony: Converging
approaches to movement planning. Journal of Experimental Psychology: Human Perception and
Performance, 21, 32-53.

Viviani, P., & Schneider, R. (1991). A development study of the relation between geometry and
kinematics in drawing movements. Journal of Experimental Psychology: Human Perception and
Performance, 17, 198-218.

Viviani, P., & Terzuolo, C. (1982). Trajectory determines movement dynamics. Neuroscience, 7, 431-4377.

Wada, Y., & Kawato, M. (1993). A neural network model for arm trajectory formation using forward
and inverse dynamics models. Neural Networks, 6, 919-932.

Wada, Y., & Kawato, M. (1995). A theory for cursive handwriting based on the minimization principle.
Biological Cybernetics, 73, 3—13.

Wada, Y., Koike, Y., Vatikiotis-Bateson, E., & Kawato, M. (1995). A computational theory for
movement pattern recognition based on optimal movement pattern generation. Biological
Cybernetics, 73, 15-25.

Wiegner, A. W., & Wierzbicka, M. M. (1992). Kinematic models and elbow flexion movements:
Quantitative analysis. Experimental Brain Research, 88, 665-673.

Wolpert, D. M., Ghahramani, Z., & Jordan, M. (1994). Perceptual distortion contributes to the cur-
vature of human reaching movements. Experimental Brain Research, 98, 153-156.

Yashin-Flash, T. (1983). Organizing principles underlying the formation of arm trajectories.
Unpublished doctoral dissertation, Massachusetts Institute of Technology.

Yoshikawa, T. (1984). Analysis and control of robot manipulators with redundancy. In M. Brady &
R. Paul (Eds.), Robotics research (pp. 735-747). Cambridge, MA: MIT Press.



542 SASCHA E. ENGELBRECHT

Yoshikawa, T. (1985). Manipulability of robotic mechanisms. International Journal of Robotics Research,
4, 3-9.

Zelaznik, H. N., Schmidt, R. A., & Gielen, S. C. A. M. (1986). Kinematic properties of rapid aimed hand
movements. Journal of Motor Behavior, 18, 353-372.

Received: February 24, 1998



	APPLICATIONS IN MOTOR CONTROL AND RELATED SCIENCES 
	MINIMUM PRINCIPLES AND THE RESOLUTION OF INDETERMINANCY 
	FIG. 1 
	FIG. 2 
	FIG. 3 

	DEVELOPMENT AND TESTING OF MINIMUM THEORIES 
	FIG. 4 
	FIG. 5 
	FIG. 6 

	STOCHASTIC MODELS 
	SUMMARY AND CONCLUSIONS 
	APPENDIX A 
	APPENDIX B 
	APPENDIX C 
	REFERENCES 

