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Rapid human arm movements often have velocity profiles consisting of several bell-shaped
acceleration-deceleration phases, sometimes overlapping in time and sometimes appearing sep-
arately. We show how such sub-movement sequences can emerge naturally as an optimal con-
trol policy is approximated by a reinforcement learning system in the face of uncertainty and
feedback delay. The system learns to generate sequences of pulse-step commands, producing
fast initial sub-movements followed by several slow corrective sub-movements that often begin
before the initial sub-movement has completed. These results suggest how the nervous system
might efficiently control a stochastic motor plant under uncertainty and feedback delay.

1. Introduction

It has been consistently observed that rapid human arm movements in both infants and adults
often consist of several sub-movements, sometimes called “movement units” [22]. The tangen-
tial velocity profiles of such movements show sequences of several bell-shaped acceleration-
deceleration phases, sometimes overlapping in the time domain and sometimes completely
separate [10-12,15,18]. These data provide clues about how the nervous system efficiently
produces fast and accurate movements in the presence of noise and significant feedback delay.
Most of modeling efforts concerned with movement units have addressed only the kinematic
aspects of movement [4,6].

We present a model and simulation results that suggest how movement units might emerge as
the result of a learning process that successively approximates an optimal control policy in the
face of uncertainty and feedback delay. We implemented a reinforcement learning model that
learns to produce accurate rapid movements in the presence of feedback delay for a stochastic
dynamic system with nonlinear damping. The dynamics of the system simulate physiological
properties of muscles and spinal reflexes.

2. Fractional-power damping dynamics

To demonstrate the proposed learning scheme we used the fractional-power damping model
of arm dynamics [23]. The simplest model that captures the most critical dynamical features is

*This work was supported by NIH Grant MH 48185-09.



a spring-mass system with the nonlinear damping term:
mi + bis + k(z — u) = 0. (1)

Herez is the position of the mass attached to the springndz are respectively the velocity
and the acceleration of the objegt,is the mass of the object (the mass of the spring is assumed
to be equal to zero}, is the damping coefficient; is the stiffness coefficient; is the control
signal which determines the resting, or equilibrium, position.

This model arises from simplifying assumptions about muscle mechanical properties and
spinal reflex mechanisms. The fraction-power damping in the model represents the result of
interaction between muscle properties and the friction-like property of the stretch reflex. In our
simulations we used a spring-mass system with fractional-power nonlinear damping, which is
the the simplest model that captures the above mentioned critical features [2]. Another essential
characteristics of the neural signal transmission is accounted for by using a cascade of low-pass
filters on motor commands [16].

3. Thelearning algorithm

The learning mechanism of the model is a reinforcement learning algorithm [21]. In con-
trast to supervised learning, reinforcement learning systems learn from very simple training
feedback. In our simulations, the system is rewarded only upon successful completion of a
movement, where use of a discount factor effectively caused the reward to increase as the time
to completion decreased. The learning architecture of the model was motivated by the cor-
respondence between reinforcement learning methods that use temporal difference algorithms
and the activity of dopamine cells in the basal ganglia [1,9]. In particular, the model makes use
of the actor-critic algorithm as described in [21].

To simulate delayed feedback, the learning model observes the state of the motor plant with
a 200 ms delay. The learning system also makes control decisions at 200 ms intervals, main-
taining a newly selected activation level until the next control decision. To simulate variability
inherent in the motor control process, eachvation level is modified by additive Gaussian
noise. This intermittent action selection scheme is supported by biological evidence (e.g., [13])
as well as by computational considerations. It allows the use a compact internal representation
and preserves the Markovian property of the underlying process.

We have implemented the actor-critic algorithm for a continuous state space and a finite set
of actions, i.e., activation level magnitudesevenly spaced every 1 cm between 0 cm and
10 cm. To represent functions defined over the continuous state space we have used a CMAC
representation with 10 tilings, each tiling spans all three dimensions of the state space and has
10 tiles per dimension. The tilings have random offsets drawn from the uniform distribution.
Learning is done in episodes. At the beginning of each episode the plant is at a fixed initial
state, and the episode is complete when the plant reaches the target region of the state space.
Table 1 shows the parameter values used in the simulations.

4. Reaults

The proposed reinforcement learning architecture successfully learned to move the mass
quickly and accurately to the target in approximately 1,000 episodes. Figure 1 shows the corre-
sponding learning curve.



Table 1

Parameter values used in the simulations.
description value description value
massymn 1 kg initial velocity Ocm/s
damping coefficient) 3N (S/m)% target position 5cm
stiffness . 30N/m target velocity 5cm
the basic simulation time step 1 ms target position radius 0.5cm
the feedback delay) 200 ms threshold velocity radius 0.1cm/s
initial position Ocm standard deviation of the noise 1 cm
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Figure 1. The learning curve averaged over 100 trials. The performance is measured in time-
per-episode.

Figure 2 shows a typical movement accomplished by the controller after learning. The move-
ment shown in Figure 2 has two acceleration-deceleration phases called movement units or
sub-movements.

Corrective sub-movements may occur before the plant reaches zero velocity. The controller
generates this corrective sub-movement “on the fly,” i.e., before the initial fast sub-movement
is completed. Figure 3 shows a sample movement accomplished by the controller after learning
where such overlapping sub-movements occur. This can be seen clearly in panel (b) of Figure 3
where the velocity profile of the movement is shown. Each of the sub-movements appears as a
bell-shaped unit in the tangential velocity plot.

5. Discussion

The model learns to produce control sequences consisting of pairs of high activation steps
followed by low activation steps. This feature stands in good agreement with pulse-step mod-
els of motor control [7,8,20]. Each of the pulse-step combinations produces a sub-movement
characterized by a bell-shaped unit in the velocity profile.

The first sub-movement is always fast and covers most of the distance from the initial position
to the target. All of the subsequent sub-movements are much slower and cover much shorter
segments in the position space. This is in accord with the so-called dual control model [12,14,
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Figure 2. A sample movement accomplished by the controller after learning. Panels (a) and (b)
respectively show the position and velocity time courses. Panel (c) shows the motor command
time course, where the thin solid line shows thevation level selected by the learning model,

the thick solid line shows the perturbed activation which is sent as the control signal to the

motor plant, and the dashed line shows the activation after the temporal filtering is applied.

Panel (d) shows the phase-plane trajectory of the movement. The thick bar at the lower-right
corner shows the target region.

17], where the initial part of a movement is conducted in a ballistic manner and the final part is
conducted under closed-loop control.

Additional evidence for this kind of dual control strategy comes from experiments in which
subjects were given visual feedback only during the initial stage of movement, which did not
provide much improvement compared to trials in which subjects were deprived of visual feed-
back during the entire movement [3,5]. In another set of experiments, proprioceptive feedback
was altered by stimulations of muscle tendons. Movement accuracy decreased only when the
stimulation was applied at the final stages of movement [19].

Our model does not follow the dual control strategy, but the movement patterns which emerge
naturally from the existing constraints and conditions are similar to those produced while fol-
lowing the dual control strategy. The reinforcement learning component is encouraged by the
reward structure (and the use of discounting) to accomplish each movement as quickly as possi-
ble. On the other hand, it faces high uncertainty in the system behavior. The uncertainty in the
system behavior is high for states with high velocities and is low for states with low velocities.
Thus, in a low velocity state the information available to the model determines the actual state
of the plant very accurately. If the model were to adopt a policy in which it attempts to directly
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Figure 3. A sample movement accomplished by the controller after learning with a well ex-
pressed predictive correction.

hit the target in one fast sub-movement, then very often it would miss the target and spend long
additional time to accomplish the task. The optimal policy in this situation is to drive the plant
close to the target by one fast sub-movement and then apply a few slow sub-movements to ac-
curately drive plant into the target region. This can be accomplished because the trajectories of
the latter sub-movements do not leave the low velocity area of phase space.
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