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We describe a set of computational experiments aimed at studying the hypothesis that key proper-
ties of  variability in fast reaching movements are due to nonlinear dynamical properties of the plant.
Specifically, we studied ballistic single degree-of-freedom movements generated by a fractional-
power damping model of the plant driven by various pulse-step motor commands. We show that
fractional-power damping naturally produces both linear and logarithmic relationships between
movement velocity and end point variance.
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Fractional-power damping model
The fractional-power damping model arises from certain simplifying assumptions about muscle
mechanical properties and spinal reflex mechanisms (Houk 1981; Wu et al. 1990). The simplifying
assumptions reduce the muscle stiffness of the muscle-reflex system to a linear stiffness. Fractional-
power damping in the model arises from the interaction of muscle properties and the friction-like
property of the stretch reflex. The simplest model that captures the above mentioned critical fea-
tures is a spring-mass system with  fractional-power damping term:

To account for dynamic properties of muscle cell activation and of signal transfer within the central
nervous system, the dynamic model was augmented with the second-order low-pass temporal filter.
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Fractional-power damping
causes a relatively high
damping force for lower ve-
locities and relatively low
damping force for higher ve-
locities.

The low damping for higher velocities allows the mass to move fast from one location to another.
The high damping for lower velocities allows it to stop efficiently without waiting too long for
oscillations to decay. These features make it possible to accomplish movements faster and to stop in
a desired location relatively easily.
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linear damping, b=3          
linear damping, b=30         
fractional power damping, b=3

A movement of the mass with frac-
tional-power damping compared with
two movements with linear damping
with two different damping coeffi-
cients. A small damping coefficient
causes the linear damping system to
oscillate before it stops. A large

Fractional-power damping gives rise to dynamic behavior that includes a �stiction region�: an ex-
tended region in the state space where movement effectively stops away from the system�s equilib-
rium state (Barto et al., 1999). For each fixed control signal, the stiction region has well-defined
borders, and final position variability can only take place within the region.

Experiments
The purpose of the experiments was to assess the final position variability for a series of similar
movements with noisy control signals or plant dynamics. To produce different movements we used
pulse-step combinations with different pulse magnitudes with the same pulse duration and the same
step magnitude. For each particular pulse magnitude, we simulated a large number of movements
while various parameters of the control signal or the state of  the plant were perturbed. We per-
turbed a chosen parameter one at a time while all other parameters remained fixed for the particular
set of movements. We have studied several noise injection models: stochastic pulse magnitude,
stochastic pulse duration,  stochastic plant dynamics. In all these noise injection schemes the vari-
ance of the final position arises due to the presence of the stiction region. The main purpose of this
research was to investigate how the final position variance depends on the pulse magnitude and
average velocity, amplitude, and duration of the movements.

Results
For a set of movements generated by noisy command signals, the speed-accuracy relationship criti-
cally depends on the proportion of movements that hit the inner area of the stiction region versus the
proportion of movements that undershoot or overshoot the region, thereby effectively stopping on
an edge of the region. These results provide a new perspective on possible mechanisms for both the
linear and logarithmic speed-accuracy relationships observed in reaching.
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The graphic panels at the top of the right column show representative movements generated in our
experiments and the speed-accuracy relationship data with the corresponding linear and logarithmic
fit lines. Only data for stochastic pulse duration are shown. Results obtained for stochastic pulse
magnitude and stochastic plant dynamics are similar.

Discussion
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The obtained data stand in good agreement with the hypothesis on linear speed-accuracy relation-
ship (e.g. Schmidt et al., 1979; Wright and Meyer, 1983):

The data for undershooting sets and for overshooting sets are well fit by Fitts� law (Fitts, 1954) as
well:
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here s is the standard deviation of final positions for a set of movements, A is the average amplitude
for a set of movements, MT is the average movement time, a, b, c, and d are the corresponding fit
parameters.
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This is an obvious contradiction, especially if we notice that the intercept c in our data is equal to
zero:

MT

A
dc ⋅+=σ ,

0 100 200 300 400 500 600

0

2

4

6

8

t, ms

p
o

si
tio

n
, 

cm

position

0 100 200 300 400 500 600
0

10

20

30

40

t, ms

ve
lo

ci
ty

, 
cm

/s

velocity

0 100 200 300 400 500 600

0

5

10

15

t, ms

a
ct

iv
a

tio
n

, 
cm

control signal

0 2 4 6 8

0

5

10

15

20

25

30

35

40

position, cm

ve
lo

ci
ty

, 
cm

/s

phase plane trajectory

undershooting movements                  
hitting the inner area of stiction region
overshooting movements                   

Representative movements from sets
of three different kinds: a set contain-
ing movements undershooting the stic-
tion region, a set with all movements
hitting the inner area of the stiction re-
gion, a set containing movements over-
shooting the stiction region.
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Each point on each graph corresponds to one set of movements
like those shown above. Data for sets containing undershoot-
ing movements,  sets with all movements hitting the inner area
of the stiction region, and sets containing overshooting move-
ments are well fit by three different linear functions. Data for the
undershooting and overshooting sets are well fit by Fitts� law.
The lower-left panel shows the results of two different methods
for computing average velocities (see below). The two methods
produce identical results for inner area sets, and different re-
sults for undershooting and overshooting sets.
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A possible explanation is that in the linear relationship formula the average velocity V is used
instead of  A/MT:

while Fitts� law formulation always averages A and MT separately:
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here Ai and MTi are respectively the amplitudes and the movement times of separate movements, n
is the number of movements in the set (n was equal 10,000 for all sets). In the general case these
two computations produce different results:
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In our data the two computations produce identical results for sets of move-
ments which hit the inner area of the stiction region, while for sets contain-
ing undershooting or overshooting movements the results are completely
different. This is shown in the lower-left panel above.

damping coefficient causes the entire movement to be very slow.
Fractional-power damping allows the combination of  fast move-
ments with efficient stopping without oscillations.
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