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Abstract

We presenta new, model-freereinforcementearningalgo-

rithm for learningto control partially-obserable Markov de-

cision processes. The algorithm incorporatesideas from

action-walue basedreinforcementiearningapproachessuch
asQ-Learning,aswell asideasfrom the stochastioptimiza-
tion literature.Key to our approachs a new definitionof ac-

tion value,which malesthealgorithmtheoreticallysoundfor

partially-obserable settings. We shav that specialcasesof

our algorithmcanachie/e probability oneconvergenceto lo-

cally optimalpoliciesin thelimit, or probablyapproximately
correcthill-climbing to a locally optimal policy in a finite

numberof samples.

Intr oduction

Many intelligent agentsface sequentialdecisionproblems
that are naturally and realistically formulatedas partially-

obsenable Markov decisionprocesse$POMDPS). Often,

however, the dynamicsof an agents ervironmentand ob-

senationsare unknovn. And even whenthesedynamics
areknown, finding optimal solutionsis usually NP-hardor

harder dependingon the type of solutionrequired(Littman

1994;Madani,Condon & Hanks1999).For suchproblems,
reinforcementearning (RL) methodsare an attractive op-

tion for finding approximatesolutions.

The simplestRL approachis to ignore the fact that the
agents ervironmentis partially obsenable. StandardRL
algorithmssuchas Q-Learningor Sarsal) canbe applied
by treatingobsenationsasif they were statesof a Markov
decisionproblem(MDP). Researchers/ere quick to point
out that this approachcanleadto suboptimalbehaior or,
worse, that the parametersadjustedby the learning algo-
rithm canfail to corvergeor evendiverge (Whiteheadl992;
Baird 1995). Allowing theagentto conditionits learningon
therecentistoryof obsenations(McCallum1995)orto use
an internalmemorycan sometimeslleviate thesedifficul-
ties. And empirically, Sarsak) andMonte Carloapproaches
appeanuiterobustto partialobsenability (Pendrith& Ryan
1996;Loch & Singh1998). However, Sarsaf) and Monte
Carlo approacheganfail to corverge even on somevery
simpleproblems(Gordon1996).As long astheagentsrep-
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resentatiorof the ervironmentis not fully Markov, thethe-
oreticalsoundnessf applyingsuchaction-waluebasedRL
algorithmsis questionable.

Partly asa responsdo this situation,learningalgorithms
thatperformvariouskinds of stochastigradientdescenbn
afixederrorfunctionhave beendeveloped(Williams 1992;
Baird & Moore 1999; Suttonet al. 2000). Usually, such
algorithmssearchthrougha continuousspaceof stochastic
policieswhich conditionactionchoiceontheagentsimme-
diateobsenation,or on theimmediateobsenation plus the
stateof aninternalmemory Underappropriateconditions,
thesealgorithmscorvergeto a policy thatis atleastlocally
optimal. Theevidenceto datesuggestshatthesealgorithms
learnmuchmore slowly thanaction-\alue basedRL algo-
rithms suchas Sarsajf), thoughthis questionis still under
study

Ouraimisto provideanalgorithmthatis similarin design
andempirical performanceo the betteraction-valuebased
RL algorithms,but which enjoys superiortheoreticalprop-
erties, similar to those of the gradient-basedpproaches.
Our algorithmis mostsimilar to the Monte-CarloExplor-
ing Startsalgorithmfor MDPs (Sutton& Barto 1998),and
thuswe call it Monte-CarloExploring Startsfor POMDPs
(MCESP).In its simplestversion MCESPmaintainsatable
of obsenation-actionvalues,which are updatedbasedon
Monte-Carlosamplesof the return. Key to our algorithm
is a new definition of action value, which is inspired by
the fixed-pointanalysesof Pendrithand McGarity (1998).
Underthis definition, actionvaluesgive information about
the valueof policiesin alocal neighborhoodf the current
policy. MCESPcanbe interpretedasa theoretically-sound
algorithmfor performinglocal searchthroughthe discrete
spaceof policiesthatmapobsenationsto actions.

MCESPs free parametersan be chosento incorporate
anumberof existing ideasfrom the stochastioptimization
literature. Experimentsreportedin the final section,how-
ever, demonstratéhatthe strengthof MCESPIlies not only
in its connectiondo stochasticoptimization. The RL-style
updatingof actionvaluescan produceperformancehatis
superiorto existing, standardptimizationapproachesand
competitve with thebestreportedRL resultswhicharedue
to Sarsal) (Loch& Singh1998).



Problem Formulation

We assuméeheagentservironmentis modeledasaPOMDP
(see,e.g., McCallum 1995) with an arbitrary underlying
MDP, but with afinite obsenationsetO. Whentheerviron-
mentemitsobsenationo € O, theagentchoosesanaction
a from afinite setA (o). A deterministicreactive policy, r,
is afunctionthatmapseacho € O to somea € A(0). The
agentstaskis to learna gooddeterministicreactize policy,
basedn experiencegatheredn the POMDP!

We considerepisodictasks,in which thereis a start-state
distribution andoneor moreterminalstatesandwe assume
thatepisodegerminatewith probability oneunderary pol-
icy. LetT = {o0o,a0,70,01,01,71,02,02,T2,...,0r} de-
note a trajectoryin the POMDR where or is an obsena-
tion correspondindo a terminal state. We assumehat ev-
ery policy, w, generates well-definedprobability measure,
u(m), overthe setof all possibletrajectories This probabil-
ity measuralsodepend®nthestart-statalistribution of the
POMDPandthe underlyingMDP, but we suppresshesein

thenotation sincethey areconstantLet R(r) = ZZ;O yiry
denotethediscountedeturnin trajectoryr, wherey € [0, 1]
is adiscountfactor We definethevalueof = astheexpected
discountedeturn:

VT = Trop(m) {R(T)} )
which we assumeo bewell-definedfor all =. We canwrite
thepolicy valuemorebriefly asV™ = E™{R(7)}.
An importantaspectof MCESPIis its interpretationasa
local searchalgorithm.We considerpoliciesw andr’ neigh-
borsif they assignthe sameactionto all obsenationsexcept

one. « is locally optimalif V™ > V= for all neighborsr’.

More generally 7 is e-locally optimalif V™ +¢ > V™ for
all neighborsr’.

Defining Action Value

In MDPs, thevalueof state-actiorpair (s, a) with respecto
policy 7 is usuallydefinedasthe expecteddiscountedeturn
if the ervironmentstartsin states, the agenttakesactiona,
andthenfollows 7 afterward (Sutton& Barto 1998). Our
definition of obsenation-actiorvaluesfor POMDPsdiffers
in several key respectsWe presentour definitionfirst, and
thencontrasit with the standardefinitionfor MDPs.

Let 7 be a trajectoryand o an obsenation. We define
Rpre—o(T) to betheportionof R(r) comingbeforethefirst
occurrencef o in 7, if ary; andwe defineR,,5;—,(7) to be
the portionof R(7) following thefirst occurrencef o in 7,
if thereis one,andzerootherwise. For example,if o first
occursin 7 attime stepj, thenR,,._o(1) = Z;;é yir;
andRyost—o(7) = E;’ij ~'r;. Notethatfor ary o, we can
rewrite thevalueof apolicy as:

VTt = E"{R(r)}
E™ {Rpre—o(T)} + E™ {Rpost—o(T)} -

IMore generally the POMDP’ obseration setcanbe infinite
andthe agents actionscandependon the history of obsenations,
rewards,andactions—adong the agentcanbe describecasmap-
ping eachhistory to one of a finite numberof table entriesand
associatindgo eachentryavaluefor eachaction. Thatis, theagent
aggr@atesthe setof all historiesinto afinite numberof partitions.

This motivatesour definition of the value of obsenation-
actionpair (o, a) with respecto apolicy 7. Let 7 + (0,a)
representhe policy thatis identicalto = exceptthatobser
vationo is mappedo actiona. (Of coursesr < (o,7(0)) is
justz.) Thenwe define:

fa = B0 (Bpouy (1)}

0,a

In words,Q7 , is the portionof the expectedreturnthatfol-
lows the first occurrenceof o, if the agenttakes actiona
wheneerit obseneso andadhereso = otherwise. Thisdef-
inition differsin threekey respectdrom the standardstate-
actionvaluedefinitionfor MDPs. First,thenotionof starting
in states is replacedoy a first occurrenceof obsenationo.
Secondthe agentdoesnot take actiona andthenfollow 7
afterward. The agenttakesactiona andfollows 7 + (o, a)
afterward. In otherwords, the agenttakes actiona every
time it seesobsenation o. Third, the obsenation-action
valueis the portion of the policy’s expecteddiscountedre-
turn that follows o, not the discountedreturn following o
itself. This makesa differencein how the discountfactor
comesinto play if o's first occurrenceeanhappenat differ-
enttimesin differenttrajectories—théatero occurstheless
thereturnfollowing o contributesto theoverallpolicy value.
Consider for example, two trajectories,with reward se-
quenceqrg,T1,r2,...,rr}and{r{,ry,ry, ..., rim}. Sup-
posethatin thefirst trajectory o occurson time step2, and
in theother, o occursontime step4. Thenthefirst trajectory
contributesy?ry + 73rs + ... + yTry to the obsenation-
actionvalue, andthe secondtrajectorycontributesy*r} +
Yorl + ...+ AT ri» Underthe standarddefinition, the tra-
jectorieswould contribute ry + yrs + ... + 4T 2r; and
4 rk + ... +~T %L, respectiely.

In MDPs,apolicy is optimalif andonly if it is greedywith
respecto its actionvalues(asnormallydefined).Thisis not
necessarilyrue of the actionvalueslearnedby Q-Learning
or Sarsal), for example,whenappliedto POMDPs. The
theoreticalmotivation for our definition of action value is
thatit preseresthis property to somedegree,in POMDPs.

Theorem1 Forall 7 and#n’ = 7 + (o, a),
Vit e> V" = QI +e>Qr,.

Proof: Letw beary policy andlet#’ = 7 < (0,a) bea
neighboringpolicy. Then:

Vite>V™
< ET {RPT?_G(T)} + ET {Rposf_o(r)} +e€
> E™ {Rpre—o(T)} + E™ {Rpost—o(T)}
<~ E7 {Rposth(T)} +e> Er—(0.a) {Rposth(T)}
— Qg,w(o) +e> Qg,a :

Themiddleequialenceholdsbecausé¢heportionof theex-
pecteddiscountedeturnbeforethefirst occurrencef o can-
notdependon theactiontakenfrom obsenationo. [

Corollary 1 A policy is locally optimal if and only if it is

greedywith respecto its actionvalues(as we havedefined
them).A policy 7 is e-locally optimalif andonly if Qgﬂr(o) +

€ > Q7 , foralloanda.



MCESPQ,m,a.¢)

Inputs: initial actionvalues(@, policy = thatis greedyw.r.t.
@, andlearningrateand comparisorthresholdschedulegy
ande.

1: ¢,,, ¢ 0for all o anda.

22n+0

3: repeat

4:  Choosesomeo anda € A(0).

5.  Generatatrajectory 7, accordingo 7 + (o, a).

6: Qo (1-a(n, co,a))Qo,a +a(n, co,a)Rpost—o(T)
7. Coa & Coput+1

8 if max, Qo — €(N,Coar5Con(0)) > Qo,n(o) then
9: 7(0) « a' € argmaxy Qo,ar — €(N; Co,a75 Co,n(0))
10: n<n+l
11: Cor g + 0 for all o anda”
12:  endif

13: until Termination

Figurel: TheMCESPalgorithm.

The MCESP Algorithm

In this section,we presenthe MCESPIlearningalgorithm,
which is basedon the definition of actionvalueabove. The
algorithmis displayedn Figurel. It maintainsatableof ac-
tion values,@, a currentpolicy, 7, a countof the numberof
timesthecurrentpolicy haschangedn, andcounts, of the
numberof timeseachobsenation-actionpair hasbeenup-
datedsincethelastpolicy change At the beginning of each
trial, the algorithm choosessome obsenation-actionpair
(0,a) to “explore’ It followsthe policy 7 < (o, a) for the
wholetrial, producingatrajectory 7. Theactionvalue@,,
is updatedbasedon Ry,s:—,(7), andthe algorithm checks
if the currentpolicy shouldchange.The learningratesfor
action value updatesfollow a schedule, which depends
on the numberof policy changesincethe algorithmbegan
andon the numberof updateghe actionvaluehasreceved
sincethe policy last changed.Whencheckingwhetherthe
currentpolicy shouldchangeasaresultof anupdatetheal-
gorithm compareghe on-policy actionvalue,Q, (,), With
the off-policy actionvalues@, . for o' # w(0). For a
changeto occur it requiresthatQ, o' > Qo x(o) + €, Where
€ is a comparisorthreshold. (In Figure1 this is written as
Qo,a —€ > Qo x(0)-) Thee allowsoneto expressfor exam-
ple,thatanoff-policy actionmustappeasignificantlybetter
thantheon-policy actionbeforeachangds made.Compari-
sonthresholdsreallowedto vary, dependingonthenumber
of policy changesofarandthe numberof timeseachof the
actionvaluesinvolvedin the comparisorhave beenupdated
sincethelastpolicy change.

This generalpresentatiorof the algorithmleavesopena
numberof choices:how obsenation-actiorpairsarechosen
for exploration,how learningratesand comparisorthresh-
oldsarescheduledandunderwhatconditionsthealgorithm
terminates.By makingdifferentchoicesfor these MCESP
canincorporatevariousideasfrom reinforcementearning

andstochasticoptimization. We begin by discussinga ver-
sionof MCESPthatestimatesictionvaluesby takingafixed
numberof samplegandthencomparinghesampleaverages.
Next, we describea versionof MCESPbasedon Greiners
PALO algorithmwhich offersa PAC-styleguarante®f hill-
climbingto alocal optimum.And lastly, we describea setof
conditionsthat ensureMCESP corvergesto a locally opti-
mal policy in thelimit. Therearemary otherspecializations
of MCESPthatmight be of interest,andwe mentionsome
of thesein the conclusionsection.

The SampleAverageApproximation

If the agentdoesnot know the dynamicsof the POMDP it
mustsolve, thenit cannotexactly evaluateary policy. But it
canestimateapolicy’s valueby generatinggomefixednum-
ber of trajectories,k, underthe policy and computingthe
averagediscountedeturn.In the stochasti@ptimizationlit-
erature this hasbeencalledthe sampleaverageapproxima-
tion (e.g.,Kleywegt etal. 2001). Theideahasalsoappeared
in a numberof PAC-styleresultsin the RL literature (e.g.,
Ng andJordan2000).

A local searchprocedurébasedn this principleproceeds
in stageswhereat eachstagek samplesare taken of the
value of a currentpolicy and of eachneighboringpolicy.
If no neighborhasa bettersampleaveragethanthe current
policy, the algorithm terminates. Otherwise,the neighbor
with thebestaveragebecomeshecurrentpolicy for thenext
stage. MCESP canreproducethis behaior by: 1) choos-
ing obsenation-actiorpairsfor explorationin simpleround-
robin fashion; 2) letting a(n,7) = zﬁ correspondingo
simple averagingof the samplediscountedreturns;3) let-
ting e(n,i,j) = +oo if i < k or j < k andO otherwise,
which effectively rulesout comparisorif fewerthank sam-
pleshave beentaken of eitheractionvalue; 4) terminating
if no policy changesarerecommendedfter taking £ sam-
ples of the value of eachobsenation-actionpair. If these
particularchoicesare made,we call theresultingalgorithm
MCESP-SAA.

If k£ is small,thenoneexpectsthe action-\alueestimates
to bepoor MCESP-SAAcouldeasilyswitchto aworsepol-
icy or stoperroneoushatapolicy thatis notlocally optimal.
If k islarge,thenaction-\alueestimateshouldbegood,and
MCESP-SAAshouldmovestrictly uphill andstopatthefirst
locally-optimalsolutionit encounters.The next versionof
MCESPthatwe consideprovidesa PAC-styleguaranteef
thelattertype of behavior.

PAC Hill-Climbing

Greiners PALO algorithm is a generalmethod for hill-

climbing in the solution spaceof a stochasticoptimization
problemwith finite local neighborhoodstructure(Greiner
1996).Givenary € andd, PALO traverseswith probability
atleastl — ¢, asequencef solutionsthatis of strictly im-

proving quality andterminatesat a solutionthatis e-locally
optimal. At eachstagen, PALO determinesnumber &,,,

of sampleghatshouldbetakenof thevalueof eachsolution
in the currentneighborhood.After k,, samplesPALO ap-
pliesasimplethresholdestbasedn Hoeffding’sinequality



to determineif ary neighboris sufficiently betterthanthe
currentsolutionto warranta switch. PALO alsoincludes
more stringentteststhat allow it to move to a neighboror
terminatebeforeafull k,, samplesaretaken,if the evidence
is overwhelming.Thenumberof samplesakenateachstep,
ky, is polynomialin 1 andlogarithmicin ; andn.
MCESPcanimplementPALO’ s stratgyy. As in theprevi-
oussection MCESPshouldsampleobsenation-actiorpairs
in round-robinfashion,and use learning ratesthat corre-
spondto simple averaging(i.e., a(n,i) = H%). Suppose
that NV is anupperboundon the sizeof ary policy’s neigh-
borhood,andsupposéhatall sampleof obsenation-action
valuesfall in somerange[z,y] C R. Letd, = -8, and

n2n2

k, = [2@;—5)21n %1 ThenMCESPreproduce$ALO’s
comparisortestswith thethresholdschedule:

(y—x)\/%ln(W) ifi=j <k
5 ifi=j7=k,
+o0 otherwise.

€(n,i,j) =

Note thatthresholdsareonly finite wheni = j. In PALO’s
formulation, “one sample”constitutesone samplefrom ev-
ery memberof the currentneighborhoodthusthereis never
anissueof somememberdhaving beensampledmoretimes
than others. We could, of course,allow for comparisons
wheni # j. But to remainfaithful to PALO asoriginally
defined,we choosenot to do so. The algorithmterminates
if, afterk,, samplesno policy changds triggeredor if, after
1 sampledave beentakenof eachactionvalue,

Qo,a < Qo,ﬂ(o) +€— (y — gj)\/l In (Q(ICTL(S;]‘)‘ZV) :

21

for all o andall a # w(0). We call this versionMCESP-
PALO. The theorembelow follows from Theorem1 of
Greiner(1996)andCorollary1.

Theorem?2 For anyd € (0,1) ande > 0, with probabil-
ity at leastl — 4, MCESP-RALO traversesa sequencef
policiesmy, 71, . . ., 77 andterminateswhere ead policyis
of strictly greatervaluethanthe previouspolicy and 7t is
e-locally optimal.

Probability One Convergenceto Locally Optimal
Policies

Becaussample®f actionvaluesarestochasticit is notpos-
sibleto guaranteghata policy is e-locally optimalafterary
finite numberof samples.Supposehaowever, that MCESP
takes samplesof a particularpolicy’s action valuesindefi-
nitely. If the policy is note-locally optimal, theneventually
theactionvalueestimateshouldindicatethatfact, prompt-
ing a switch to anotherpolicy. If, aftern policy changes,
MCESP delayscomparingaction valuesuntil k, samples
aretaken, andif lim,_,- k, = oo, then MCESP should
eventuallycorvergeto ane-locally optimalpolicy. As n in-
creasesthe precisionof the action value estimateshy the
time they startto be comparedncreases.For high enough
n, MCESPshouldnever mistalenly leave astrictly e-locally

+1

H -

START|

Figure2: Parr's andRussells Gridworld

optimalpolicy andshouldalwaysleave anon-<-locally opti-

mal policy for somebetterone.Interestinglyit is notneces-
saryto wait for increasingperiodsbeforecomparingaction
values,noris it necessaryo combinesamplesisingsimple
averaging,or to use“slow” learningratessothatdatahasa

chanceo accumulatdeforea changecanoccut

Theorem 3 If theinitial actionvalueestimatesndall sam-
ples of action valuesare containedin some[z,y] C ®;

e(n,i,j) = € forall n,i, j; I; < a(n,i) < u; for all n,

whee {I;} and{u;} are Robbins-Monoe sequences and
observation-actiompairs are selectedor explorationat ran-
domwith ead pair havingat leastprobability p,,;,, > 0 of
beingselectednanytrial; thenwith probability 1, MCESP
corvergesto an eq-locally optimal policy (i.e., an eg-locally
optimalpolicy becomeshecurrentpolicy at sometime, and
remainghecurrentpolicy forever).

We call this versionMCESP-CE for “constantepsilon’
This theoremdoesnot follow directly from existing theory,
and,unfortunately our proof is ratherdetailedanddoesnot
fit the spaceavailable. A full proof will be availablein a
technicalreport.

Ourtheorem®nNMCESP-RALO andMCESP-CHliscuss
terminationor corvergenceo e-locally optimalpolicies.We
note that, since the policy spaceis finite, for sufficiently
smalle, all e-locally optimal policiesaresimply locally op-
timal. However, thate may not be known, anda morethe-
oretically pleasingsolutionis to let comparisorthresholds
decreasever time, so that corvergenceto locally optimal
policiesis guaranteedWe are presentlyworking on sched-
ulesfor achiesing this goal.

Experiments

We experimentedwith MCESPand Sarsak) in Parr’s and
Russells partially obsenable gridworld domain (Parr &
Russell1995). This problemis small enoughthatwe were
ableto exactly evaluateevery possiblepolicy usingoff-line
dynamicprogramming.This yields a deepemunderstanding
of the problemand sheddlight on the experimentalresults
we obtained.At thesametime, the problemis largeenough
to demonstraténterestingstructureof the sort expectedin
larger, morerealisticdomains.

Thedomainis depictedin Figure2. The 11 opensquares
represenpossiblelocationsof the agent. Eachtrial starts
with the agentin the “START” squareand endsafter 100

2w}, is aRobbins-Monrosequencé z; € [0, 1] for all 4,
> xi =o00,andy; z? < 0.



timestepsor whenthe agententersthe +1 or —1 squares,
which give terminalrewardsof +1 and—1 respectiely. All
othertransitionsreceve a reward of —0.04. In eachstate,
the agentmay take one of four actions: Up, Right, Down,
or Left, which move the agentin the nameddirectionwith
probability 0.8, andin oneof the perpendiculadirections,
eachwith probability 0.1. If oneof thesetransitionswould
take the agentoutsidethe mazeor into the black squarethe
agentstaysin placeinstead.Theproblemis partially observ-
ablebecaus¢heagentonly obseneswhetheror notthereis
anopensquareo theleft andwhetheror notthereis onopen
squareto theright. Thus,the POMDPhas11 states4 non-
terminalobsenations,andjust4* = 256 reacte policies.

Usingdynamicprogrammingo computethe valuesof all
256 reactive policies, we found that 118 have zero proba-
bility of reachingeither of the terminal states. Suchpoli-
cieshave value—4.0. 17 of thosepoliciesarenon-strictlo-
cal optima, being completelysurroundeddy other policies
of their kind; we call thesethe bad locally optimal poli-
cies. Thereis a single globally-optimal policy with value
0.303470.Thus,the policy spaceis qualitatively character
izedashaving a plateauof minimal-valuepolicies,someof
themlocally optimal,andasinglepeakcorrespondingo the
unique,globally-optimalpolicy.

We experimentedwith various versions of MCESP:
MCESP-SAAwith k € {1,2,...,9} U {10,20,...,90} U
{100, 200, . ..,1000}; MCESP-RRALO with ¢ = 0.01 and
6 = 0.99; and MCESP-CEwith uniformly random ex-
ploration, (n,i,7) = 0.01 anda(n,:) = bi P for b €
{0.1,0.25,0.5,1.0} andp € {0.51,0.6,0.8,1.0}. Thed
value for MCESP-RALO is quite high, but even at this
level, ko = 1,986, 744. The Hoeffding bounduponwhich
PALO’s equationsare basedis fairly loose,and MCESP-
PALO tendsto take a large number of samplesbefore
achieving the confidenceto make a policy change. For
MCESP-CEwe reportresultsjustfor (b, p) = (1,1), corre-
spondingo simpleaveragingand(b, p) = (0.1,0.6), which
hadthe bestasymptoticperformance We alsoran Sarsak)
in thesamemannemrsdescribedn LochandSingh(Loch &
Singh1998); We refer the readerto their paperfor details.
Loch’s and Singh’s resultswith Sarsa(0.9prethe bestre-
portedfor model-freeRL on a variety of problems,includ-
ing the Parr and Russellgridworld. They found that Sarsa
quickly andconsistentlyfoundthe optimal policy, sothisis
ahigh standardo compareto.

Figure 3 presentsthe result of our experiments. For
MCESP-SAAandMCESP-RRALO, whichareterminatingal-
gorithms,we plot the meanvalueof thefinal policy against
the time to termination,measuredn total timestepspr ac-
tions taken, in the POMDR The set of white boxescorre-
spondgo MCESP-SAA with k increasingrom left toright.
For small k, the algorithm often erroneouslyterminatesat
policiesthatarenotlocally optimal,leadingto pooraverage
performance For higherk, MCESP-SAArarely movesto
alower-valuepolicy, but oftengetstrappedn the setof bad
locally-optimalpolicies. MCESP-RALO behaesessentially
like MCESP-SAAwith very large k. In the 1000runs,we
never obsened MCESP-RRALO makinga changdeadingto
a worsepolicy, althoughin theorythereis somechanceof
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Figure3: Resultson Parr’'s andRussells Gridworld

this happening.932 runsendedat the optimal policy, with
68 endingat oneof thebadlocally-optimalpolicies.

For MCESP-CEand Sarsawe plot the mean current-
policy valueoverthe courseof theruns. Every run of Sarsa
convergedto the optimal policy by aroundthe 200, 000"
step(about10,000trials). EncouraginglyMCESP-CEwith
(b,p) = (0.1,0.6) performedcomparably Asymptoticper
formancewasslightly worse,as5 of 1000runscorvergedto
oneof thebadlocally-optimalpolicies. Learningspeedvas
comparable which was surprising since MCESP updates
only one action value per trial, which comesout to about
oncepertwentytimestepsTheseresultsarealsoencourag-
ing becauseve spentlittle time hand-tuninghe parameters
of MCESP By contrast,we spentapproximatelytwo days
trying to getSarsaf) to behae well beforewe gave up and
implementedhe exactdesignof Loch andSingh(1998). It
turnsout that Sarsas behavior is very sensitve to how ac-
tionsarechoserfor exploration. Not knowing this, we spent
alot of time trying differentchoicedor A, differentlearning
rates,anddifferentversionsof accumulatingandreplacing
eligibility traceg(Sutton& Barto1998).

MCESP-CEwith (b,p) = (1,1) did not fareaswell as
Sarsal) or the otherversionof MCESP-CE thoughperfor
mancewasdecent.29 runscorvergedto oneof thebadpoli-
cies, with the restcorverging to the optimal policy. Com-
paringthe two versionsof MCESP-CEit appearshatusing
learningrate schedule®therthan simple averagingcan be
beneficial. Using simple averaging,the first updateto an
actionvalueaftera policy changecompletelywipesout the
old actionvalue. By contrastthe (b, p) = (0.1, 0.6) sched-
ule allows actionvalueinformationto persistacrosspolicy
changes—thérst update for example,is averagedn to the
old actionvalue with a learningrateof 0.1. This canbe a
goodideaif, for example,changingthe actionassociatedo
oneobsenationis unlikely to affecttherelative (or absolute)
valuesof otherobsenation-actionvalues. Sucha schedule
mightalsobe expectedo reducevariancewhichis oftenan
issuewith Monte Carloalgorithms.



Conclusion

Weformulatedanew definitionof actionvaluefor reinforce-
ment learning of reactve policies for POMDPs,and pre-
sentech generablgorithm, MCESR basednthisdefinition.
MCESPIis similar in designto action-valuebasedRL algo-
rithmssuchasQ-Learning,Sarsal), andespeciallyMonte-
Carlo Exploring-StartSutton& Barto 1998). But, unlike
thosealgorithms MCESPis provably soundfor application
to partiallyobsenablesettings We have shovn thatMCESP
can be specializedto achieve PAC hill-climbing to locally
optimalpolicies,or probabilityonecorvergencan thelimit
to locally optimally policies.

Suchtheoreticaguaranteearea double-edgedword. In
experimentswe foundthatall versionsof MCESPsuffered
to somedegreefrom corverging to locally-but-not-globally
optimal policies. Encouragingly though, one version of
MCESP performedcomparablyin termsof learningspeed
andmeansolutionqualityto Sarsal), whichwaspreviously
reportedo bethebest-performingnodel-freeRL algorithm
for learningreactve policiesfor POMDPs(Loch & Singh
1998). Further experimentalwork is neededto seehow
well this resultgeneralizesparticularly for more complex
domainghantheonestudied.

Our useof MCESPto datehasbeenunrefinedin mary
ways. For example,in all casesve have usedsimpleround-
robin or uniformly-randomexploration. But thereis ev-
ery reasonto believe that more sophisticatedexploration
stratgiescouldbebeneficialin identifying superiomolicies
morequickly (Kaelbling1993;Maron& Moore 1994). We
are alsointerestedin the possibility of letting comparison
thresholdshe negative at times, allowing occasionamoves
to policiesthatmay seemworse. This ideahasprovenvery
successfuln the simulatedannealingalgorithmfor combi-
natorialoptimization,andcouldbe usefulin RL aswell.
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