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Abstract

We presenta new, model-freereinforcementlearningalgo-
rithm for learningto controlpartially-observableMarkov de-
cision processes. The algorithm incorporatesideas from
action-valuebasedreinforcementlearningapproaches,such
asQ-Learning,aswell asideasfrom thestochasticoptimiza-
tion literature.Key to our approachis a new definitionof ac-
tion value,whichmakesthealgorithmtheoreticallysoundfor
partially-observablesettings.We show that specialcasesof
our algorithmcanachieve probabilityoneconvergenceto lo-
cally optimalpoliciesin thelimit, or probablyapproximately
correcthill-climbing to a locally optimal policy in a finite
numberof samples.

Intr oduction
Many intelligent agentsfacesequentialdecisionproblems
that are naturally and realistically formulatedas partially-
observableMarkov decisionprocesses(POMDPs). Often,
however, the dynamicsof an agent’s environmentandob-
servationsare unknown. And even when thesedynamics
areknown, finding optimal solutionsis usuallyNP-hardor
harder, dependingon thetypeof solutionrequired(Littman
1994;Madani,Condon,& Hanks1999).For suchproblems,
reinforcementlearning(RL) methodsare an attractive op-
tion for finding approximatesolutions.

The simplestRL approachis to ignore the fact that the
agent’s environment is partially observable. StandardRL
algorithmssuchasQ-Learningor Sarsa(

�
) canbe applied

by treatingobservationsasif they werestatesof a Markov
decisionproblem(MDP). Researcherswerequick to point
out that this approachcan lead to suboptimalbehavior or,
worse, that the parametersadjustedby the learningalgo-
rithm canfail to convergeor evendiverge(Whitehead1992;
Baird1995).Allowing theagentto conditionits learningon
therecenthistoryof observations(McCallum1995)or to use
an internalmemorycansometimesalleviate thesedifficul-
ties.And empirically, Sarsa(

�
) andMonteCarloapproaches

appearquiterobustto partialobservability (Pendrith& Ryan
1996;Loch & Singh1998). However, Sarsa(

�
) andMonte

Carlo approachescan fail to converge even on somevery
simpleproblems(Gordon1996).As longastheagent’s rep-

Copyright c
�

2002, American Associationfor Artificial Intelli-
gence(www.aaai.org). All rightsreserved.

resentationof theenvironmentis not fully Markov, thethe-
oreticalsoundnessof applyingsuchaction-valuebasedRL
algorithmsis questionable.

Partly asa responseto this situation,learningalgorithms
thatperformvariouskindsof stochasticgradientdescenton
a fixederror functionhave beendeveloped(Williams 1992;
Baird & Moore 1999; Suttonet al. 2000). Usually, such
algorithmssearchthrougha continuousspaceof stochastic
policieswhichconditionactionchoiceontheagent’s imme-
diateobservation,or on the immediateobservationplus the
stateof an internalmemory. Underappropriateconditions,
thesealgorithmsconvergeto a policy that is at leastlocally
optimal.Theevidenceto datesuggeststhatthesealgorithms
learnmuchmoreslowly thanaction-valuebasedRL algo-
rithms suchasSarsa(

�
), thoughthis questionis still under

study.

Ouraimis to provideanalgorithmthatis similar in design
andempiricalperformanceto the betteraction-valuebased
RL algorithms,but which enjoys superiortheoreticalprop-
erties, similar to thoseof the gradient-basedapproaches.
Our algorithm is most similar to the Monte-CarloExplor-
ing Startsalgorithmfor MDPs (Sutton& Barto 1998),and
thuswe call it Monte-CarloExploring Startsfor POMDPs
(MCESP).In its simplestversion,MCESPmaintainsa table
of observation-actionvalues,which are updatedbasedon
Monte-Carlosamplesof the return. Key to our algorithm
is a new definition of action value, which is inspired by
the fixed-pointanalysesof PendrithandMcGarity (1998).
Underthis definition, actionvaluesgive informationabout
thevalueof policiesin a local neighborhoodof the current
policy. MCESPcanbe interpretedasa theoretically-sound
algorithmfor performinglocal searchthroughthe discrete
spaceof policiesthatmapobservationsto actions.

MCESP’s free parameterscan be chosento incorporate
a numberof existing ideasfrom thestochasticoptimization
literature. Experimentsreportedin the final section,how-
ever, demonstratethat thestrengthof MCESPlies not only
in its connectionsto stochasticoptimization. TheRL-style
updatingof actionvaluescanproduceperformancethat is
superiorto existing, standardoptimizationapproaches,and
competitivewith thebestreportedRL results,whicharedue
to Sarsa(

�
) (Loch& Singh1998).



Problem Formulation
Weassumetheagent’senvironmentis modeledasaPOMDP
(see,e.g., McCallum 1995) with an arbitrary underlying
MDP, but with afinite observationset � . Whentheenviron-
mentemitsobservation ����� , theagentchoosesanaction� from a finite set �
	��
� . A deterministic,reactivepolicy, � ,
is a functionthatmapseach����� to some� ���
	��
� . The
agent’s taskis to learna gooddeterministic,reactivepolicy,
basedon experiencegatheredin thePOMDP.1

We considerepisodictasks,in which thereis a start-state
distributionandoneor moreterminalstates,andweassume
thatepisodesterminatewith probabilityoneunderany pol-
icy. Let ����������� � ������������ 
� �  !���� !���!"�� � "
����"��$#$#�#$�%�!&(' de-
note a trajectory in the POMDP, where �!& is an observa-
tion correspondingto a terminalstate. We assumethat ev-
ery policy, � , generatesa well-definedprobabilitymeasure,) 	*�+� , over thesetof all possibletrajectories.This probabil-
ity measurealsodependsonthestart-statedistributionof the
POMDPandtheunderlyingMDP, but we suppressthesein
thenotation,sincethey areconstant.Let ,-	*�.�/��0 &1*2 �43 1 � 1
denotethediscountedreturnin trajectory� , where3 �65 78��9;:
is adiscountfactor. Wedefinethevalueof � astheexpected
discountedreturn:<>= �@?BADC+EGF =
H ��,-	*�.�I'J�
which we assumeto bewell-definedfor all � . We canwrite
thepolicy valuemorebriefly as

< = �@? = �D,-	��.�K' .
An importantaspectof MCESPis its interpretationasa

localsearchalgorithm.Weconsiderpolicies � and �ML neigh-
borsif they assignthesameactionto all observationsexcept
one. � is locally optimal if

< =ON < =
P
for all neighbors�ML .

More generally, � is Q -locally optimal if

< =SR Q N < =
P for
all neighbors�ML .

Defining Action Value
In MDPs,thevalueof state-actionpair 	�T�� � � with respectto
policy � is usuallydefinedastheexpecteddiscountedreturn
if theenvironmentstartsin stateT , theagenttakesaction � ,
andthenfollows � afterward (Sutton& Barto 1998). Our
definitionof observation-actionvaluesfor POMDPsdiffers
in severalkey respects.We presentour definitionfirst, and
thencontrastit with thestandarddefinitionfor MDPs.

Let � be a trajectoryand � an observation. We define,VU;WKX%Y4Z
	*�.� to betheportionof ,-	*�.� comingbeforethefirst
occurrenceof � in � , if any; andwedefine,[U�Z%\ 1 Y]Z�	*�.� to be
theportionof ,^	��.� following thefirst occurrenceof � in � ,
if thereis one,andzerootherwise. For example,if � first
occursin � at time step _ , then ,[U$WKX%Y]Z�	*�.�`� 0ba Y4 c 2 � 3 c � c
and , U$Z%\ 1 Y4Z 	*�.�d� 0�ec 2 a 3 c � c . Note that for any � , we can
rewrite thevalueof a policy as:<
= � ? = �D,-	*�.�I'� ? = �D,VU$W%X%Y4Z
	��.�K' R ? = �D,VU�Z�\ 1 Y4Z
	��.�K'�#

1More generally, the POMDP’s observation setcanbe infinite
andtheagent’s actionscandependon thehistoryof observations,
rewards,andactions—aslong theagentcanbedescribedasmap-
ping eachhistory to one of a finite numberof table entriesand
associatingto eachentrya valuefor eachaction.Thatis, theagent
aggregatesthesetof all historiesinto afinite numberof partitions.

This motivatesour definition of the value of observation-
actionpair 	��f� � � with respectto a policy � . Let �6gh	��f� � �
representthepolicy that is identicalto � exceptthatobser-
vation � is mappedto action � . (Of course,�`gi	��f���j	��
��� is
just � .) Thenwe define:k = ZIl m �@? =�n F Z;l m H �D,VU$Z%\ 1 Y4Z
	*�.�I'6#
In words,

k = ZIl m is theportionof theexpectedreturnthatfol-
lows the first occurrenceof � , if the agenttakes action �
wheneverit observes� andadheresto � otherwise.Thisdef-
inition differs in threekey respectsfrom thestandardstate-
actionvaluedefinitionfor MDPs.First,thenotionof starting
in state T is replacedby a first occurrenceof observation � .
Second,theagentdoesnot take action � andthenfollow �
afterward. Theagenttakesaction � andfollows �6go	��f� � �
afterward. In other words, the agenttakes action � every
time it seesobservation � . Third, the observation-action
valueis the portion of the policy’s expecteddiscountedre-
turn that follows � , not the discountedreturn following �
itself. This makesa differencein how the discountfactor
comesinto play if � ’s first occurrencecanhappenat differ-
enttimesin differenttrajectories—thelater � occurs,theless
thereturnfollowing � contributesto theoverallpolicy value.
Consider, for example, two trajectories,with reward se-
quences�D�$������ 
���D"
�$#�#$#�����&/' and ���!L� ���!L ����L" �$#$#�#;���!L& P ' . Sup-
posethat in thefirst trajectory, � occurson time step p , and
in theother, � occursontimestepq . Thenthefirst trajectory
contributes 3 " � " R 34r � r R #$#�# R 3 & � & to the observation-
actionvalue,andthe secondtrajectorycontributes 3]s �!Ls R3]t �!Lt R #�#$# R 3 & P �!L& P Underthestandarddefinition,thetra-
jectorieswould contribute � " R 3 � r R #$#�# R 3 &+Yu" � & and��Ls R 3 �!Lt R #�#$# R 3 & P Y s ��L& P respectively.

In MDPs,apolicy isoptimalif andonly if it isgreedywith
respectto its actionvalues(asnormallydefined).This is not
necessarilytrueof theactionvalueslearnedby Q-Learning
or Sarsa(

�
), for example,whenappliedto POMDPs. The

theoreticalmotivation for our definition of action value is
thatit preservesthisproperty, to somedegree,in POMDPs.

Theorem1 For all � and �MLu�v�`gi	��f� � � ,<>= R Q N <>=
Pxw^y k =ZIl = F Z H R Q N k = Z;l m #
Proof: Let � beany policy andlet �ML+�z�{g|	��f� � � bea

neighboringpolicy. Then:< =>R Q N < =
Pw-y ? = �D, U$W%XKY]Z 	��.�K' R ? = �D, U�Z�\ 1 Y]Z 	��.�K' R QN ? =
P ��,[U$WKX%Y]Z�	*�.�I' R ? =
P ��,VU�Z�\ 1 Y4Z�	��.�K'w-y ? = �D,VU�Z�\ 1 Y]Z
	��.�K' R Q N ? =�n F ZIl m H ��,[U�Z%\ 1 Y]Z�	*�.�K'w-y k = Z;l = F Z H R Q N k = Z;l m #
Themiddleequivalenceholdsbecausetheportionof theex-
pecteddiscountedreturnbeforethefirst occurrenceof � can-
notdependon theactiontakenfrom observation � . }
Corollary 1 A policy is locally optimal if and only if it is
greedywith respectto its actionvalues(aswehavedefined
them).A policy � is Q -locally optimalif andonly if

k = Z;l = F Z H RQ N k = ZIl m for all � and � .



MCESP(
k

,� , ~ , Q )
Inputs: initial actionvalues

k
, policy � that is greedyw.r.t.k

, andlearningrateandcomparisonthresholdschedules~
and Q .
1: � Z;l m g�7 for all � and � .
2: �`g�7
3: repeat
4: Choosesome� and � ���S	��
� .
5: Generatea trajectory, � , accordingto �`gi	��f� � � .
6:

k Z;l m�g�	�94�^~�	*�(�%�$Z;l m���� k Z;l m R ~�	*�(����ZIl m���,VU�Z�\ 1 Y]Z
	��.�
7: �$Z;l m�g���ZIl m R 9
8: if ���!� m P k ZIl m P ��Q�	*�(��� ZIl m P ��� Z;l = F Z H ��� k Z;l = F Z H then
9: �j	��
�/g � LM�x�
�%�j���!� m P k ZIl m P ��Q�	*�(�%� Z;l m P ��� ZIl = F Z H �

10: �`g�� R 9
11: ��Z P P l m P P g�7 for all �!L L and � L L
12: end if
13: until Termination

Figure1: TheMCESPalgorithm.

The MCESP Algorithm
In this section,we presentthe MCESPlearningalgorithm,
which is basedon thedefinitionof actionvalueabove. The
algorithmis displayedin Figure1. It maintainsatableof ac-
tion values,

k
, a currentpolicy, � , a countof thenumberof

timesthecurrentpolicy haschanged,� , andcounts,� , of the
numberof timeseachobservation-actionpair hasbeenup-
datedsincethelastpolicy change.At thebeginningof each
trial, the algorithm choosessomeobservation-actionpair	��f� � � to “explore.” It follows thepolicy ��g�	��f� � � for the
wholetrial, producinga trajectory, � . Theactionvalue

k Z;l m
is updatedbasedon ,VU$Z%\ 1 Y4Z
	*�.� , andthe algorithmchecks
if the currentpolicy shouldchange.The learningratesfor
actionvalueupdatesfollow a schedule,~ , which depends
on thenumberof policy changessincethealgorithmbegan
andon thenumberof updatestheactionvaluehasreceived
sincethe policy last changed.Whencheckingwhetherthe
currentpolicy shouldchangeasaresultof anupdate,theal-
gorithmcomparestheon-policy actionvalue,

k Z;l = F Z H , with
the off-policy action values

k ZIl m P for � L{����j	��
� . For a
changeto occur, it requiresthat

k Z;l m P � k Z;l = F Z H R Q , whereQ is a comparisonthreshold.(In Figure1 this is written ask Z;l m P �^QB� k Z;l = F Z H .) The Q allowsoneto express,for exam-
ple,thatanoff-policy actionmustappearsignificantlybetter
thantheon-policy actionbeforeachangeis made.Compari-
sonthresholdsareallowedto vary, dependingonthenumber
of policy changessofarandthenumberof timeseachof the
actionvaluesinvolvedin thecomparisonhavebeenupdated
sincethelastpolicy change.

This generalpresentationof the algorithmleavesopena
numberof choices:how observation-actionpairsarechosen
for exploration,how learningratesandcomparisonthresh-
oldsarescheduled,andunderwhatconditionsthealgorithm
terminates.By makingdifferentchoicesfor these,MCESP
can incorporatevariousideasfrom reinforcementlearning

andstochasticoptimization. We begin by discussinga ver-
sionof MCESPthatestimatesactionvaluesby takingafixed
numberof samplesandthencomparingthesampleaverages.
Next, we describea versionof MCESPbasedon Greiner’s
PALO algorithmwhichoffersaPAC-styleguaranteeof hill-
climbingto alocaloptimum.And lastly, wedescribeasetof
conditionsthat ensureMCESPconvergesto a locally opti-
malpolicy in thelimit. Therearemany otherspecializations
of MCESPthatmight be of interest,andwe mentionsome
of thesein theconclusionsection.

The SampleAverageApproximation
If the agentdoesnot know the dynamicsof the POMDPit
mustsolve,thenit cannotexactlyevaluateany policy. But it
canestimateapolicy’svalueby generatingsomefixednum-
ber of trajectories,� , underthe policy and computingthe
averagediscountedreturn.In thestochasticoptimizationlit-
erature,this hasbeencalledthesampleaverageapproxima-
tion (e.g.,Kleywegt etal. 2001).Theideahasalsoappeared
in a numberof PAC-styleresultsin theRL literature (e.g.,
Ng andJordan2000).

A localsearchprocedurebasedon thisprincipleproceeds
in stages,whereat eachstage � samplesare taken of the
value of a currentpolicy and of eachneighboringpolicy.
If no neighborhasa bettersampleaveragethanthecurrent
policy, the algorithm terminates. Otherwise,the neighbor
with thebestaveragebecomesthecurrentpolicy for thenext
stage. MCESPcanreproducethis behavior by: 1) choos-
ing observation-actionpairsfor explorationin simpleround-
robin fashion;2) letting ~�	*�(�����`�  c��  , correspondingto
simpleaveragingof the samplediscountedreturns;3) let-
ting Q�	*�(���%��_f�^� R�� if ����� or _b��� and0 otherwise,
which effectively rulesout comparisonif fewer than � sam-
pleshave beentaken of eitheractionvalue; 4) terminating
if no policy changesarerecommendedafter taking � sam-
ples of the valueof eachobservation-actionpair. If these
particularchoicesaremade,we call theresultingalgorithm
MCESP-SAA.

If � is small, thenoneexpectstheaction-valueestimates
to bepoor. MCESP-SAAcouldeasilyswitchto aworsepol-
icy or stoperroneouslyatapolicy thatis not locally optimal.
If � is large,thenaction-valueestimatesshouldbegood,and
MCESP-SAAshouldmovestrictly uphill andstopatthefirst
locally-optimalsolutionit encounters.The next versionof
MCESPthatwe considerprovidesaPAC-styleguaranteeof
thelattertypeof behavior.

PAC Hill-Climbing
Greiner’s PALO algorithm is a generalmethod for hill-
climbing in the solutionspaceof a stochasticoptimization
problemwith finite local neighborhoodstructure(Greiner
1996).Givenany Q and � , PALO traverses,with probability
at least 9���� , a sequenceof solutionsthat is of strictly im-
proving quality andterminatesat a solutionthat is Q -locally
optimal. At eachstage,� , PALO determinesa number, ��  ,
of samplesthatshouldbetakenof thevalueof eachsolution
in the currentneighborhood.After �   samples,PALO ap-
pliesasimplethresholdtestbasedonHoeffding’sinequality



to determineif any neighboris sufficiently betterthan the
currentsolution to warranta switch. PALO also includes
morestringentteststhat allow it to move to a neighboror
terminatebeforea full ��  samplesaretaken,if theevidence
is overwhelming.Thenumberof samplestakenateachstep,�   , is polynomialin  ¡ andlogarithmicin  ¢ and � .

MCESPcanimplementPALO’sstrategy. As in theprevi-
oussection,MCESPshouldsampleobservation-actionpairs
in round-robinfashion,and use learning ratesthat corre-
spondto simpleaveraging(i.e., ~�	*�(���£�¤�  c��  ). Suppose
that ¥ is anupperboundon thesizeof any policy’s neigh-
borhood,andsupposethatall samplesof observation-action
valuesfall in somerange 5 ¦+��§�:�¨ª© . Let �   � « ¢ 
¬ = ¬ and�� J��­�p F¯® Y]° H ¬¡ ¬ ±¯² "%³¢£´[µ . ThenMCESPreproducesPALO’s

comparisontestswith thethresholdschedule:

Q�	*�(���%��_f�j� ¶·¸ ·¹ 	*§S�J¦]�;º  " c ±¯²�» " F�¼ ´ YM H ³¢ ´ ½ if �(��_¤�b�� ¡" if �(��_^�@�� R��
otherwise.

Note that thresholdsareonly finite when �¾�¿_ . In PALO’s
formulation,“one sample”constitutesonesamplefrom ev-
erymemberof thecurrentneighborhood,thusthereis never
anissueof somemembershaving beensampledmoretimes
than others. We could, of course,allow for comparisons
when ����À_ . But to remainfaithful to PALO asoriginally
defined,we choosenot to do so. The algorithmterminates
if, after �   samples,nopolicy changeis triggered,or if, after� sampleshavebeentakenof eachactionvalue,k Z;l m � k ZIl = F Z H R Q/�b	�§S�6¦u�$Á 9p!� ±�²`Â p.	��   �b9D��¥�   Ã �
for all � andall � ��Ä�j	��
� . We call this versionMCESP-
PALO. The theorembelow follows from Theorem1 of
Greiner(1996)andCorollary1.

Theorem2 For any ���Å	�78��9D� and Q��ª7 , with probabil-
ity at least 9S��� , MCESP-PALO traversesa sequenceof
policies �Æ�����] 
�$#$#�#;���u& andterminates,whereeach policy is
of strictly greatervaluethan the previouspolicy and � & isQ -locally optimal.

Probability OneConvergenceto Locally Optimal
Policies
Becausesamplesof actionvaluesarestochastic,it isnotpos-
sibleto guaranteethata policy is Q -locally optimalafterany
finite numberof samples.Suppose,however, that MCESP
takessamplesof a particularpolicy’s actionvaluesindefi-
nitely. If thepolicy is not Q -locally optimal,theneventually
theactionvalueestimatesshouldindicatethatfact,prompt-
ing a switch to anotherpolicy. If, after � policy changes,
MCESPdelayscomparingaction valuesuntil �   samples
are taken, and if ±�Ç �  �È e �   � �

, then MCESPshould
eventuallyconvergeto an Q -locally optimalpolicy. As � in-
creases,the precisionof the actionvalueestimatesby the
time they startto be comparedincreases.For high enough� , MCESPshouldnevermistakenly leaveastrictly Q -locally

START

−1

+1

Figure2: Parr’sandRussell’s Gridworld

optimalpolicy andshouldalwaysleaveanon-Q -locally opti-
malpolicy for somebetterone.Interestingly, it is notneces-
saryto wait for increasingperiodsbeforecomparingaction
values,nor is it necessaryto combinesamplesusingsimple
averaging,or to use“slow” learningratessothatdatahasa
chanceto accumulatebeforeachangecanoccur.

Theorem3 If theinitial actionvalueestimatesandall sam-
ples of action valuesare containedin some 5 ¦+��§G:O¨�© ;QD	��(���K�É_f�^�ÊQ%� for all n, i, j; Ë c^Ì ~�	*�(���£� ÌÎÍ]c for all � ,
where �DË c ' and � Í c ' are Robbins-Monroesequences2; and
observation-actionpairsareselectedfor explorationat ran-
domwith each pair havingat leastprobability ÏÆÐ c   �@7 of
beingselectedonanytrial; thenwith probability1, MCESP
convergesto an Q � -locally optimalpolicy (i.e., an Q � -locally
optimalpolicybecomesthecurrentpolicyat sometime, and
remainsthecurrentpolicy forever).

We call this versionMCESP-CE,for “constantepsilon.”
This theoremdoesnot follow directly from existing theory,
and,unfortunately, our proof is ratherdetailedanddoesnot
fit the spaceavailable. A full proof will be available in a
technicalreport.

Our theoremsonMCESP-PALO andMCESP-CEdiscuss
terminationor convergenceto Q -locally optimalpolicies.We
note that, since the policy spaceis finite, for sufficiently
small Q , all Q -locally optimalpoliciesaresimply locally op-
timal. However, that Q maynot beknown, anda morethe-
oretically pleasingsolution is to let comparisonthresholds
decreaseover time, so that convergenceto locally optimal
policiesis guaranteed.We arepresentlyworking on sched-
ulesfor achieving this goal.

Experiments
We experimentedwith MCESPandSarsa(

�
) in Parr’s and

Russell’s partially observable gridworld domain (Parr &
Russell1995). This problemis small enoughthatwe were
ableto exactly evaluateevery possiblepolicy usingoff-line
dynamicprogramming.This yieldsa deeperunderstanding
of the problemandshedslight on the experimentalresults
we obtained.At thesametime, theproblemis largeenough
to demonstrateinterestingstructureof the sort expectedin
larger, morerealisticdomains.

Thedomainis depictedin Figure2. The11 opensquares
representpossiblelocationsof the agent. Eachtrial starts
with the agentin the “START” squareand endsafter 100

2 Ñ;ÒÔÓ�Õ�ÖÓ¯×8Ø is aRobbins-Monroesequenceif ÒÔÓ4Ù�Ú Û�ÜIÝ�Þ for all ß ,à Ó ÒfÓuá�â , and
à Ó Ò8ãÓ�ä â .



timestepsor when the agententersthe
R 9 or ��9 squares,

whichgive terminalrewardsof
R 9 and ��9 respectively. All

other transitionsreceive a reward of �V78# 7
q.# In eachstate,
the agentmay take oneof four actions: Up, Right, Down,
or Left, which move the agentin the nameddirectionwith
probability 0.8, andin oneof the perpendiculardirections,
eachwith probability0.1. If oneof thesetransitionswould
take theagentoutsidethemazeor into theblacksquare,the
agentstaysin placeinstead.Theproblemis partiallyobserv-
ablebecausetheagentonly observeswhetheror not thereis
anopensquareto theleft andwhetheror not thereis onopen
squareto theright. Thus,thePOMDPhas11 states,4 non-
terminalobservations,andjust q s �@p�å
æ reactivepolicies.

Usingdynamicprogrammingto computethevaluesof all
256 reactive policies,we found that 118 have zeroproba-
bility of reachingeitherof the terminalstates. Suchpoli-
cieshave value �[q.# 7 . 17 of thosepoliciesarenon-strictlo-
cal optima,beingcompletelysurroundedby otherpolicies
of their kind; we call thesethe bad locally optimal poli-
cies. Thereis a single globally-optimalpolicy with value
0.303470.Thus,thepolicy spaceis qualitatively character-
izedashaving a plateauof minimal-valuepolicies,someof
themlocally optimal,andasinglepeakcorrespondingto the
unique,globally-optimalpolicy.

We experimentedwith various versions of MCESP:
MCESP-SAAwith ���¿��9��%pÔ��#$#�#I��çÔ'Vè��G9�7.�%p
7.�$#�#$#K��ç�7Ô'¾è��9D7�7.�%p
7�78��#$#$#%�$9D7�7�7Ô' ; MCESP-PALO with Q{�é78# 789 and�ª�ê78# ç�ç ; and MCESP-CEwith uniformly randomex-
ploration, Q�	��(���K�É_f�{��78# 789 and ~�	*�(�����{�iëK� Y.U for ëv��D7.#¯9���7.# p�åÔ��7.# å8�$9�# 78' and ÏÊ�ì�D7.# å89���7.# æ.��7.# í.�$9�# 7Ô' . The �
value for MCESP-PALO is quite high, but even at this
level, �����Ê9��%ç�í�æ8�Kî!q�q . The Hoeffding bounduponwhich
PALO’s equationsare basedis fairly loose,and MCESP-
PALO tends to take a large number of samplesbefore
achieving the confidenceto make a policy change. For
MCESP-CEwe reportresultsjust for 	Éë���Ï]���À	�9���9D� , corre-
spondingto simpleaveraging,and 	�ë���Ïu�j�ï	�78#�9��%78# æ�� , which
hadthebestasymptoticperformance.We alsoranSarsa(

�
)

in thesamemannerasdescribedin LochandSingh(Loch&
Singh1998);We refer the readerto their paperfor details.
Loch’s andSingh’s resultswith Sarsa(0.9)are the bestre-
portedfor model-freeRL on a varietyof problems,includ-
ing the Parr andRussellgridworld. They found that Sarsa
quickly andconsistentlyfoundtheoptimalpolicy, sothis is
a highstandardto compareto.

Figure 3 presentsthe result of our experiments. For
MCESP-SAAandMCESP-PALO, whichareterminatingal-
gorithms,we plot themeanvalueof thefinal policy against
the time to termination,measuredin total timesteps,or ac-
tions taken, in the POMDP. The setof white boxescorre-
spondsto MCESP-SAA,with � increasingfrom left to right.
For small � , the algorithmoften erroneouslyterminatesat
policiesthatarenot locally optimal,leadingto pooraverage
performance.For higher � , MCESP-SAArarely movesto
a lower-valuepolicy, but oftengetstrappedin thesetof bad
locally-optimalpolicies.MCESP-PALO behavesessentially
like MCESP-SAAwith very large � . In the 1000runs,we
never observedMCESP-PALO makinga changeleadingto
a worsepolicy, althoughin theorythereis somechanceof
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Figure3: Resultson Parr’sandRussell’sGridworld

this happening.932 runsendedat the optimalpolicy, with
68endingat oneof thebadlocally-optimalpolicies.

For MCESP-CEand Sarsawe plot the meancurrent-
policy valueover thecourseof theruns.Every run of Sarsa
convergedto the optimal policy by aroundthe p�7�78�%7�7�7 1�ð
step(about10,000trials). Encouragingly, MCESP-CEwith	�ë���Ïu�[�ñ	�78#�9���7.# æG� performedcomparably. Asymptoticper-
formancewasslightly worse,as5 of 1000runsconvergedto
oneof thebadlocally-optimalpolicies.Learningspeedwas
comparable,which was surprisingsince MCESP updates
only oneaction valueper trial, which comesout to about
oncepertwentytimesteps.Theseresultsarealsoencourag-
ing becausewe spentlittle time hand-tuningtheparameters
of MCESP. By contrast,we spentapproximatelytwo days
trying to getSarsa(

�
) to behavewell beforewe gaveup and

implementedtheexactdesignof Loch andSingh(1998). It
turnsout that Sarsa’s behavior is very sensitive to how ac-
tionsarechosenfor exploration.Not knowing this,wespent
a lot of timetrying differentchoicesfor

�
, differentlearning

rates,anddifferentversionsof accumulatingandreplacing
eligibility traces(Sutton& Barto1998).

MCESP-CEwith 	Éë���Ï]�-�ò	�9��$9D� did not fareaswell as
Sarsa(

�
) or theotherversionof MCESP-CE,thoughperfor-

mancewasdecent.29runsconvergedto oneof thebadpoli-
cies,with the restconverging to the optimal policy. Com-
paringthetwo versionsof MCESP-CEit appearsthatusing
learningrateschedulesother thansimpleaveragingcanbe
beneficial. Using simple averaging,the first updateto an
actionvalueaftera policy changecompletelywipesout the
old actionvalue.By contrast,the 	�ë���Ïu�[�ñ	�78#�9��%78# æ�� sched-
ule allows actionvalueinformationto persistacrosspolicy
changes—thefirst update,for example,is averagedin to the
old actionvaluewith a learningrateof 0.1. This canbe a
goodideaif, for example,changingtheactionassociatedto
oneobservationis unlikely to affecttherelative(or absolute)
valuesof otherobservation-actionvalues.Sucha schedule
mightalsobeexpectedto reducevariance,which is oftenan
issuewith MonteCarloalgorithms.



Conclusion
Weformulatedanew definitionof actionvaluefor reinforce-
ment learningof reactive policies for POMDPs,and pre-
sentedageneralalgorithm,MCESP, basedonthisdefinition.
MCESPis similar in designto action-valuebasedRL algo-
rithmssuchasQ-Learning,Sarsa(

�
), andespeciallyMonte-

Carlo Exploring-Starts(Sutton& Barto 1998). But, unlike
thosealgorithms,MCESPis provablysoundfor application
to partiallyobservablesettings.WehaveshownthatMCESP
canbe specializedto achieve PAC hill-climbing to locally
optimalpolicies,or probabilityoneconvergencein thelimit
to locally optimallypolicies.

Suchtheoreticalguaranteesarea double-edgedsword. In
experiments,we foundthatall versionsof MCESPsuffered
to somedegreefrom converging to locally-but-not-globally
optimal policies. Encouragingly, though, one version of
MCESPperformedcomparablyin termsof learningspeed
andmeansolutionqualityto Sarsa(

�
), whichwaspreviously

reportedto bethebest-performingmodel-freeRL algorithm
for learningreactive policies for POMDPs(Loch & Singh
1998). Further experimentalwork is neededto seehow
well this result generalizes,particularly for more complex
domainsthantheonestudied.

Our useof MCESPto datehasbeenunrefinedin many
ways.For example,in all caseswehaveusedsimpleround-
robin or uniformly-randomexploration. But there is ev-
ery reasonto believe that more sophisticatedexploration
strategiescouldbebeneficialin identifyingsuperiorpolicies
morequickly (Kaelbling1993;Maron& Moore1994). We
are also interestedin the possibility of letting comparison
thresholdsbenegative at times,allowing occasionalmoves
to policiesthatmayseemworse.This ideahasprovenvery
successfulin the simulatedannealingalgorithmfor combi-
natorialoptimization,andcouldbeusefulin RL aswell.
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