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Abstract

Model-free, action-value based reinforcement
learning algorithms such as Q-Learning and
Sarsa()) are well-suited to solving Marko-
vian decision problems. For partially ob-
servable Markovian decision problems, how-
ever, such algorithms are less reliable. Their
convergence properties have been questioned
over the years, and several examples have
been developed showing situations in which
Q-Learning, Sarsa()), and related algorithms
provably cannot converge. In this paper,
we show that such convergence problems
can stem from discontinuous action selection
strategies, as were employed in all of the
counterexamples. Discontinuous action se-
lection strategies can result in a lack of fixed
points in the space of action-value functions,
making convergence impossible. We prove
that, for a general class of POMDPs, if an
agent employs any continuous action selec-
tion strategy, such as softmax, then action-
value and policy fixed points are guaranteed
to exist.

1. Introduction

Reinforcement learning algorithms that approximate
value functions, such as Q-Learning, Sarsa()), and
TD(A), are well-suited to Markovian environments. If
a separate value is stored for each state of the envi-
ronment, or for each state-action pair, then these al-
gorithms converge to correct/optimal values in both
policy evaluation and control tasks (Bertsekas & Tsit-
siklis, 1996; Sutton & Barto, 1998). Even when val-
ues cannot be explicitly stored for every state, and a

generalizing function approximator is used to repre-
sent the value function, some theoretical guarantees
remain (Tsitsiklis & Van Roy, 1997a; Tsitsiklis & Van
Roy, 1997b), and there have been notable empirical
successes (e.g., Tesauro, 1994; Crites & Barto, 1998).

In a partially observable Markov decision process
(POMDP), an agent receives, on each time step, an
observation which does not uniquely identify the state
of the agent’s environment. It is natural to try to treat
such observations as if they were states of the envi-
ronment. One could apply, for example, Q-Learning
or Sarsa to learn an observation-action value function
(instead of a state-action value function) and choose a
policy based on those values (Kaelbling et al., 1996).

Unfortunately, there are some serious drawbacks to
this approach. One is that the agent may not be able
to perform optimally. Q-Learning and Sarsa are nor-
mally used to learn stationary, deterministic policies.
In Markov decision problems (MDPs), such policies
map each state of the environment to an action for
the agent to take. It can be shown that no other kind
of policy (stochastic and/or non-stationary) can gain
more reward than the optimal stationary, determin-
istic policy (Bertsekas, 1995). But this is not true
in POMDPs. That is, for many POMDPs there are
stochastic/non-stationary policies which outperform
any deterministic mapping from observations to ac-
tions (Kaelbling et al., 1996).

A second objection is that Q-Learning and Sarsa may
not learn the best observation to action mapping. So,
not only is the class of policies that these algorithms
can learn limited, but they may not even find the
best policies within that class (see, e.g., Pendrith and
McGarity (1998) for several examples). Lastly, and
of greatest relevance to this paper, several example
POMDPs have been constructed on which Q-Learning



and Sarsa provably cannot converge (Gordon, 1996;
Perkins, 2001).

Despite these difficulties, direct application of value
function-based reinforcement learning algorithms re-
tains some appeal. The approach is simple, and em-
pirically it has been found that some algorithms, such
as Sarsa(\), can be quite robust to partial observabil-
ity (Loch & Singh, 1998). Alternatively, augmenting
an agent’s representation of the environment to in-
clude prior observations (McCallum, 1995), or allowing
the agent to keep an internal memory, often reduces
the problems associated with partial observability. It
would be useful if a sound theory could be developed
of how and when value function-based reinforcement
learning algorithms can be safely applied in partially
observable domains.

In this paper, we take a step in this direction by argu-
ing that the convergence difficulties for value function-
based approaches may have been overstated. All of
the counterexamples to convergence that have been
proposed rely on e-greedy action selection, for which
the action selection probabilities are discontinuous in
the action values. By analyzing one counterexample,
we illustrate how this method of action selection may
result in the non-existence of stochastic fixed points
of the agent’s action value function, which leads to
the observed convergence difficulties. We also prove,
however, that for a general class of POMDPs, if an
agent uses any action selection method that is contin-
wous in the action values, stochastic fixed points in the
space of action value functions are guaranteed to exist.
This result addresses one serious theoretical obstacle
to applying algorithms such as Q-Learning and Sarsa
to POMDPs.

2. POMDPs and Reactive Policies

We assume that the agent’s environment is modeled
as a POMDP with finite state set S and finite obser-
vation set O. When the environment is in state s,
the agent observes o with probability P;,. We as-
sume that for all o € O, P;, is positive for some s.
When the agent observes o, it chooses an action from
a finite set A(0). When the environment is in state s
and the agent chooses action a, the agent receives a
stochastic reward which has mean r,, and the envi-
ronment transitions to state s’ with probability P , s .
For ¢t € {1,2,3,...} we use s, o, as, and ¢ to denote,
respectively, the state of the environment at time ¢,
the agent’s observation at time ¢, the action the agent
takes at time ¢, and the reward the agent receives at
time ¢. Because of additional assumptions introduced
below, all of our results are independent of how the ini-

tial state of the POMDP is determined. For simplicity,
we may assume that s; is a fixed state. Rewards are
discounted, with discount rate v € [0,1).

A stochastic, stationary, reactive policy, m, maps each
observation o to a probability distribution over A(0).
(o, a) is the probability that the agent takes action a
after observing o. Let II denote the set of policies that
place positive probability on every action available in
every observation. We assume that the POMDP is
ergodic in the sense that every n € II induces a sta-
tionary distribution over S that is positive everywhere
and can be written as PZ(s) = clim¢_,ooPr(s; = s) >0
for all s € S. By “clim” we mean the Cesaro limit:
climg_, o Pr(s; = s) = limy_, oo % Ei:l Pr(s, = s).

3. Agent Architecture

We consider one of the simplest possible designs for a
reinforcement learning agent in a partially-observable
environment. We assume that the agent maintains an
action-value function, a table, which associates a real
value, Q(o0,a), to each 0 € O and a € A(0). The
agent updates @) according to a rule, U, based on ex-
perience in the POMDP. For example, the Q-Learning
rule states that when the agent observes o, takes action
a, receives reward r, and then observes o', the agent
should perform the update:

Q(o,a) < (1= a)Q(0,a) + a(r +v max Q(d',d)),
a'€A(0")

where « is a learning rate parameter. Other updating
rules of interest include Sarsa, Sarsa()), Q(A), and Ad-
vantage Learning (Sutton & Barto, 1998; Baird, 1994).

We assume that the agent chooses actions stochasti-
cally, with probabilities depending solely on its action
values. Specifically, we assume that the agent follows
an exploration strategy, X, which maps each possible
action value function to a stochastic, stationary, reac-
tive policy # = X(Q). We assume that X(Q) € II
for all ). This definition of exploration strategy en-
compasses, for example, agents behaving according to
a fixed stochastic policy, agents using e-greedy action
selection with fixed €, and agents using softmax (a.k.a.
Boltzmann, Gibbs) action selection with a fixed tem-
perature. These are three of the most common action
selection strategies employed.

For us, then, an agent is primarily characterized by its
updating rule, U, and its exploration strategy, X.



Figure 1. Example POMDP.

4. An Example Demonstrating the
Problem with Discontinuous
Exploration Strategies

Let us motivate our analyses with an example. The
POMDP we consider is depicted in Figure 1. The four
circles represent the four possible states of the environ-
ment. The letters inside the circles indicate what the
agent observes when the environment is in that state.
Thus, the two states on the right appear the same to
the agent. The arcs between the states correspond to
actions, each of which results in a fixed immediate re-
ward and a fixed next state. The arcs are labelled by
an action number and the immediate reward for taking
that action.

Note that only the upper-left-hand state offers any
choice of action. Under e-greedy action selection, then,
the policy an agent follows depends solely on the re-
lationship between QQ(A,0) and Q(A,1). Let the set
of all action value functions be partitioned into three
sets:

01 ={Q:Q(4,0) > Q(4,1)},
02 ={Q:Q(4,0) =Q(4,1)},
®3 = {Q : Q(A,O) < Q(A7 1)} -

Let 1, 2, and 73 be the corresponding e-greedy poli-
cies, so that:

71—1(‘470)=1_67 71—1(1471)267
7r2(A70) = % > 71'2(A,1) Z% >
m3(A,0) =€, m(4,1)=1—¢€.

Now, suppose the agent follows the fixed policy m
and updates its action value function using the Q-
Learning rule. What action values should be learned?
Observation-action pair (A,0) is always followed by
zero reward and observation B. Thus the agent
should learn Q(A4,0) = vQ(B,0). By similar reason-
ing, Q(A,1) should equal 0.1 +vQ(C,0), and Q(B,0)
should equal vQ(C, 0). The case is most interesting for

observation C. When the agent acts according to my, C'
is followed by +1 reward 1 — € fraction of the time, be-
cause that is the fraction of time the agent takes action
0 from observation A. € fraction of the time, a reward
of —1 follows C. In either case, the next observation
is A, so the agent should learn the observation-action
value Q(C,0) = (1 — 2¢) + ymax,e(o,1} Q(4, a).

Suppose v = 0.9 and ¢ = 0.01. Solving the above
system of equations, one finds that the action value
function the agent should learn if it behaves according
to mp is:

Q1(4,0) =456, Q1(4,1)=5.17,
Q1(B,0) =5.07, Q1(C,0)=5.63.

One can also work out that the action values the agent
should learn if it follows policy 72 are:

Q2(A,0) = 0384,  Q2(A,1) =0.527,
Q2(B,0) = 0.426 , Q2(C,0) =0.474 .

And for m3:

Q3(A,0) = —293, Qs(4,1)=-3.15,
Q3(B,0) = -3.25, Q3(C,0)=—3.62.

These calculations reveal the difficulty. 1 € O3 and
Q2 € O3, but Q3 € ©;. Whatever the agent’s ac-
tion values, the e-greedy exploration policy forces it to
learn action values in a different region! What does
this mean? It does not mean that it is impossible for
the action values to converge. They may converge to
the boundary between the regions, forever chattering
between them. It does mean that it is impossible for
the agent’s behavior, the policy it follows, to ever set-
tle down to a fixed policy. The agent’s action values
are forced to move from one region to another indef-
initely, and so the agent’s policy must switch indef-
initely among w1, w2, and 73, never settling on any
of them. The reader may verify that a similar situa-
tion occurs if one considers Sarsa updates instead of
Q-Learning updates. In Section 8, we present simula-
tions in this domain, comparing how the action values
change under e-greedy action selection and under soft-
max action selection, a continuous exploration strat-

egy.

5. Fixed Points

In our analyses, we discuss three types of stochastic
fixed points, which we summarize in Figure 2. The first
describes an action value function being a fixed point
with respect to an update rule and a policy. Suppose
that an agent follows policy 7 and updates its action
value function according to U. Intuitively, we want
to say that @ is a stochastic fixed point if the “ex-
pected update” to @ is zero. That is, @ is a stochastic



Qfixedwrt. Uandnw = Q= Qu(w)
Qfixedwrt. Uand X = Q= Qu(X(Q))
mfixed wrt. Uand X = =« =X(Qu(n))

Figure 2. Three types of fixed points.

fixed point if, over the long-term, the changes to
recommended by U average out to zero. We formally
define the expected update for Q-Learning and Sarsa
individually below. For now, let us suppose that for a
given U and 7 there always exists a unique action value
function that is a stochastic fixed point. We write this
fixed point as Q@ = Qu(n).

One may also think of Qi (7) as the action value func-
tion to which @ converges if the agent behaves ac-
cording to 7 and updates ) according to U with ap-
propriately decreasing learning rates. In general, the
existence of a fixed point, (), does not guarantee that
the agent’s action value function converges to Q). It
turns out, however, that this is true for Q-Learning
and Sarsa updating under the assumptions we have
made. That is, if the agent behaves according to 7,
its action values do converge to Qu(w) (Singh et al.,
1994).

Our next definition describes an action value function
being fixed with respect to an exploration strategy
rather than just a fixed policy. We say @) is a fixed
point with respect to updating rule U and exploration
strategy X if Q = Qu(X(Q)). Intuitively, @ is a fixed
point if an agent with that action value function can
follow its exploration strategy, X, and the updating
rule recommends no change to ) on average.

Lastly, we define 7 to be a fixed point with respect
to U and X if # = X(Qu(nm)). Action value fixed
points exist if and only if policy fixed points exist.
Q= Qu(X(Q), then X(Q) = X(Qu(X(Q)),
so 7 = X(Q) is a policy fixed point. Likewise, if
™ = X(Qu(m)), then Qu(m) = Qu(X(Qu(m))), so
Q = Qu(n) is an action value fixed point. For an arbi-
trary POMDP, U, and X, there may be no fixed points
or there may be infinitely many fixed points. The main
positive result of this paper is to show that, for a gen-
eral class of POMDPs, if an agent uses Q-Learning
or Sarsa updates and follows a continuous exploration
strategy, then there will always be at least one action
value function and corresponding policy that are fixed
points.

Theorem 1 For any ergodic POMDP, updating rule
U, and exploration strategy X, if the mappings Qu
and X are continuous in their inputs, and if Qu(w)
is bounded for all m € II, then there exists at least
one action value function and one policy that are fized
points with respect to U and X .

Proof: Since Qp(7) is bounded for all 7 € II, there is
some M > 0 such that for all 7 € II, 0, and a € A(0),
|Qu(m)(0,a)] < M. Let ®M = {Q : [Q(0,a)| <
M for all 0 and a}. Note that an action value func-
tion can be viewed as an m-dimensional real-valued
vector, where m is the number of observation-action
pairs. Thus, ®M is a closed, bounded, convex sub-
set of ®™. Because Qpy and X are continuous, the
composition, Qy o X is a continuous mapping from
OM into itself. The existence of an action value fixed
point, Q@ = Qu(X(Q)), follows from Brouwer’s Fixed
Point Theorem.! 7 = X(Q) is a policy fixed point
with respect to U and X. O

It is usually obvious whether or not X is continuous.
For example, softmax action selection is continuous in
the action values, whereas e-greedy action selection is
not. Determining whether Qy is well-defined, contin-
uous, and bounded for any given U is less obvious. We
do this for Q-Learning and Sarsa below.

6. Existence of Fixed Points for
Q-Learning

The essence of our argument is that, although the
agent’s environment is partially observable, because
it is ergodic, under any fixed policy there are limit-
ing “empirical rewards” following each observation and
action and limiting “empirical probabilities” that one
observation will follow another. Thus, the expected
update to an observation-action value turns out to be
just the expected update to a state-action value of a
related Markov decision process. This establishes the
well-definedness and continuity of the Qy mapping for
the Q-Learning update rule, which we denote Qgr.

Suppose that the agent behaves according to a fixed
m € II. As noted in Section 2, the ergodicity assump-
tion implies that « induces a stationary distribution
over S, PZ(s) = clim;_,oPr(s; = s), which is posi-
tive for all s. Thus, we can also define a stationary
distribution over O as Pj5(0) = clim;_,Pr(o; = 0) =
climy o0 ), Ps,oPr(sy = s) = >, Ps o PZ(s). Because
we assume that, for all o, P, is positive for some s,
Pj is positive for all o.

'Brouwer’s Fixed Point Theorem states that a continu-

ous mapping from a closed, bounded, convex subset of £™
into itself has a fixed point (Cairns, 1968).



Ergodicity also implies the existence of limiting ex-
pected rewards,
™ =

Toa

)

gl—l>r0n0 E{ry | oy=0, a;=a}

=clim ( E{r, | st=s, oy=0, a;=a} )

t=vo0 £ * Pr(s;=s | op=0, a;=a)

— dlim ( E{r; | s;=s, a;=a} )

t—ro0 £ * Pr(s;=s | o,=0)
E{ry | st=s, ar=a}
=climy_, o Z . Pr(o;=o0 | s4=8)Pr(s;=5s)
s€S Pr(o;=0)
:Zr P, ,PZ(s)
& Palo)

and transition probabilities,

I — al3 — — —
Pl oo _gl_1>ror<1) Pr(oi41=0" | or=0, ar=a)

=clim ( Pr(oj41=0" | s1=5, oy=0, a;=a) >

t-ro0 £ x Pr(s;=s | op=0, ay=a)

=clim
t—o0
sES

=2 (Z Ps,a,s,Ps:,of) (%ﬁ())@) ‘

seS \s'eS

Pr(oir1=0" | st=s, ar=a)
*x Pr(s;=s | op=0)

Recall that the Q-Learning update is: Qo a;)
(1-a)Q(0s, ar) +a(ri+ymaxeeca(o,4,) Q(0t41,a)). We

define the expected Q-Learning update to the action
value function of an agent behaving according to 7 as:
EUGL(0,a) = climy_, o E{r¢ | 04=0, az=a}
m (Ml )
>
=70 +7 ) PolaomaxQ(o,a') .
=

Q is a fixed point with respect to Q-Learning updates
and 7 if Q = EUg. That is, Q is a fixed point when:

Qo,a) =15, +7) P, s maxQ(d,a))
0’

for all 0 and a.

Theorem 2 For any ergodic POMDP, Qqr(w) is
well-defined and bounded for all m € II and is con-
tinuous in m.

Proof: Qg (m) is obviously the optimal action value
function for an MDP with states o, rewards r] ,, and

transition probabilities P}, .. Optimal action values
are known to exist and be unique under the assump-
tions we have made (Bertsekas, 1995). For bounded-
ness, note that for any m, o, and a, 77, < Tmax =
mMax, q |75, Since v < 1, such optimal action val-
ues are bounded in magnitude by ﬁrmax (Sutton &
Barto, 1998). Optimal action values are also known
to be continuous in the MDP’s rewards and transition
probabilities. By inspection, rj , and P], are contin-
uous in PZ. De Farias and Van Roy (2000) showed
that PZ is continuous in m. So Qg (7) is continuous
in7. O

Corollary 1 For any ergodic POMDP and any con-
tinuous exploration strategy, X, there exists at least
one action value function and corresponding policy
that are fized points with respect to Q-Learning updates
and X.

This follows directly from Theorems 1 and 2.

7. Existence of Fixed Points for Sarsa

For Sarsa, a similar argument works. According to the
Sarsa rule, the value of one observation-action pair,
(0,a), is updated based on an immediate reward and
the value of the next observation pair, (o',a’). One
can define limiting empirical probabilities that (o,a)
is followed by (o',a’), which define a Markov chain
evolving on a state set consisting of observation-action
pairs. Formally, let 7 be fixed, and let PZ, Pj, and
5o be as above. We define:

. , ,
Ploa),(orary = ¢lim Pr(op1 =0, arp1=a’ | 0y=0, a;=a)

! '
PI‘(Ot_H =0, t4+1=0a

=clim | st=s, or=0, a;=a)
t—o0
se€S * Pr(s;=s | op=0, at=a)
P, ,PZ(s
=5 (5 Prs et a) BP0
s€S \s’'eS O(O)

Recall that the Sarsa update is Q(o,a:) « (1 —
a)Q(or,at) + a(ry + YQ(0r41,a141)). We define the
expected Sarsa update to the action value function of
an agent behaving according to 7 as:

EUgarsa(O> (l) :ggg E{Tt | 0t=0, at:a}
Pr(ot+1 :Ol, at+1:(ll
+v Z | ot=0, ar=a)

o'a’ * Q(0',a")
=17, 47> Pl (an@(0,a)) .

o',a'
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Figure 3. Evolution of observation-action values under e-
greedy action selection.

Q is a fixed point with respect to Sarsa updates and
7 if Q = EUG,,s,. That is, Q is a fixed point when:

Q(07 a) = r;r,a +7 Z P(Tga),(o’a’)Q(olaa,) )

o’,a’
for all o and a.

Theorem 3 For any ergodic POMDP, Qgarsq(m) is
well-defined and bounded for oll m € II and is contin-
UOUS N T.

Proof: Qggursq(m) is the value function for a Markov
chain with states (o,a), rewards rj ,, and transition
probabilities P(’; ) (0'a)" Value functions are known to
exist and be unique under the assumptions we have
made (Bertsekas, 1995), and state values are bounded
by T2-Tmax = To= MaX,q |Ts,q|. Values are known to
be continuous in tLe reward and transitions probabili-
ties of the chain, which are, by inspection, continuous
in Pg, and thus continuous in 7. O

Corollary 2 For any ergodic POMDP and any con-
tinuous exploration strateqy, X, there exists at least
one action value function and corresponding policy
that are fized points with respect to Sarsa updates and
X.

This follows directly from Theorems 1 and 3.

8. Example Revisited

In this section we present simulation results in the
domain introduced in Section 4. We performed two
runs of Q-Learning with different exploration strate-
gies. In one, the agent used e-greedy action selection

0
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Figure 4. Evolution of observation-action values under
modified softmax action selection.

with € = 0.01. For the other, the agent used soft-
max action selection with a temperature of T' = 0.05.
Thus, at each time step, each action had probability
exp(Q(0,a)/T)/ >, exp(Q(o,a’)/T) of being chosen.
For both runs, the environment started in the upper-
left-hand state (A), and continued for 10 million time
steps. Observation-action values were initialized to
zero and were updated using a fixed learning rate of
a = 0.001.

Figures 3 and 4 display the time-evolution of the four
observation-action values under the two exploration
strategies. Under e-greedy action selection, the ac-
tion values followed a definite, cyclic pattern of rises
and falls. By contrast, under the continuous explo-
ration strategy the values quickly converged and hov-
ered around a fixed point. Qualitatively similar results
were obtained for a variety of other choices for €, T,
and a.

Interestingly, although the action values of the e-
greedy agent did not converge, for the majority of the
time, Q(A4,0) > Q(A,1). Thus, most of the time, the
e-greedy agent followed the optimal policy. By con-
trast, the softmax learning converged to a steady state
in which Q(A4,1) > Q(A,0), and thus performance was
far from optimal. On average, the e-greedy agent re-
ceived 0.212 reward per time step and the softmax
agent received —0.078 reward per time step. In this ex-
ample, then, the non-convergent behavior of e-greedy
agent is associated with greater reward over time than
the convergent behavior of the softmax agent. Further
study is warranted to determine the generality of this
phenomenon.



9. Conclusions and Future Work

We showed that if a reinforcement learning agent
employs a continuous exploration strategy with Q-
Learning or Sarsa update rules, then stochastic fixed
points in the space of action value functions are
guaranteed to exist. These results can be extended
to other, similar algorithms, such as R-Learning
(Schwartz, 1993), Advantage Learning (Baird, 1994),
and, we believe, Sarsa(A). Our results can also be ex-
tended to agents that condition action value estimates
on portions of experience history or on internal mem-
ory, rather than on just the most recent observation.
The essential restriction imposed by our present proof
is that the action value function be tabular—i.e. that
it maps a finite number of different “situations” to ac-
tion values—so that Bellman equations can be estab-
lished relating those action values. Finally, we note
that we have considered continuing tasks (no terminal
states) in ergodic POMDPs, but we anticipate that,
under appropriate assumptions, episodic tasks can be
handled by similar arguments.

An obvious next step in this line of analysis is to try to
establish convergence of the action values to the fixed
points. Perhaps even more important, however, is
characterizing the fixed points in terms of the learning
rule used and in terms of features of the domain. The
example presented in this paper demonstrates that the
policy fixed points created by a continuous action se-
lection strategy may have worse average reward than
is achieved by a non-converging agent. In other work,
it has been shown that, for some POMDPs, the fixed
points for Q-Learning or Sarsa(\) may correspond to
quite bad policies regardless of the continuity of action
selection (Singh et al., 1994; Pendrith & McGarity,
1998).

Empirically, however, it has been found that Sarsa(\)
can often find good policies even in the face of signifi-
cant partial observability (Loch & Singh, 1998). Other
reinforcement learning algorithms can also do well if
enough history or memory is added to the agent’s value
function representation. The intuition behind adding
history or memory is that it leads to a “more Marko-
vian” representation. How “degree of Markovianness”
might be formalized, and how it would affect the fixed
points of algorithms such as Q-Learning or Sarsa()\),
are important questions that warrant study.

Another issue to be addressed is what happens when
exploration strategies vary over time. Often, the ex-
ploration strategy of an agent is not just function of the
action values. In e-greedy or softmax action selection,
for example, € or T, respectively, are sometimes taken
to zero over time. Intuitively, as the agent gains confi-

dence in its action value estimates, there is less need to
test actions estimated to be suboptimal. For an agent
using Sarsa updates in a Markovian environment, con-
vergence to an optimal policy can be guaranteed only
if exploration is taken to zero at an appropriate rate
(Singh et al., 2000). Our results show that under soft-
max action selection, for example, fixed points exist
for any fixed T, but it is unclear what happens if T
varies as a function of time. Especially problematic
is the case in which T goes to zero, because in that
limit, the exploration policy becomes discontinuous in
the action values. The implications of our results for
exploration strategies that vary over time have yet to
be fully determined.

Interestingly, continuous exploration strategies are not
required by all action-value based reinforcement learn-
ing algorithms. Other work has shown that some
Monte Carlo algorithms, which have no or little depen-
dence on Markovian assumptions, have fixed points re-
gardless of the continuity of the exploration strategy—
although other aspects of exploration must be han-
dled with care (Pendrith & McGarity, 1998; Perkins,
2001). Viewed in this light, our work shows that it
is not action-value based methods per se that require
continuous exploration. Rather, it is the combina-
tion of temporal-difference style updating, which de-
pends strongly on the Markov assumption, with partial
observability (violating the Markov assumption) that
make discontinuous action selection dangerous.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation under Grant Nos. ECS-0070102 and
ECS-9980062. Any opinions, findings, and conclu-
sions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
the views of the National Science Foundation. We
thank Daniel Bernstein and Doina Precup for com-
ments on various drafts of this paper.

References

Baird, L. C. (1994). Reinforcement learning in contin-
uous time: Advantage updating. Proceedings of the
International Conference on Neural Networks.

Bertsekas, D. P. (1995). Dynamic programming and
optimal control, vol. 1. Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Belmont, MA: Athena Sci-
entific.



Cairns, S. S. (1968). Introductory topology. New York:
Ronald Press Company.

Crites, R. H., & Barto, A. G. (1998). Elevator
group control using multiple reinforcement learning
agents. Machine Learning, 33, 235-262.

De Farias, D. P., & Van Roy, B. (2000). On the exis-
tence of fixed points for approximate value iteration
and temporal-difference learning. Journal of Opti-
mization Theory and Applications, 105.

Gordon, G. (1996). Chattering in Sarsa()).
CMU Learning Lab Internal Report. Available at
www.cs.cmu.edu/~ggordon.

Kaelbling, L. P., Littman, M. L., & Moore, A. W.
(1996). Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4, 237—285.

Loch, J., & Singh, S. (1998). Using eligibility traces to
find the best memoryless policy in a partially ob-
servable Markov decision process. Proceedings of
the Fifteenth International Conference on Machine
Learning. San Francisco, CA: Morgan Kaufmann.

McCallum, A. K. (1995). Reinforcement learning with
selective perception and hidden state. Doctoral dis-
sertation, University of Rochester.

Pendrith, M. D., & McGarity, M. J. (1998). An
analysis of direct reinforcement learning in non-
Markovian domains. Machine Learning: Proceed-
ings of the 15th International Conference (pp. 421—
429).

Perkins, T. J. (2001). Action value based reinforcement
learning for POMDPs (Technical Report UM-CS-
2001-020). Department of Computer Science, Uni-
versity of Massachusetts Amherst.

Schwartz, A. (1993). A reinforcement learning method
for maximizing undiscounted rewards. Proceedings
of the Tenth International Conference on Machine
Learning (pp- 298-305). Morgan Kaufmann.

Singh, S., Jaakkola, T., & Jordan, M. (1994). Learn-
ing without state-estimation in partially observ-
able Markovian decision processes. Proceedings of
the Eleventh International Conference on Machine
Learning. San Francisco, CA: Morgan Kaufmann.

Singh, S., Jaakkola, T., Littman, M. L., & Szepesvari,
C. (2000). Convergence results for single-step on-
policy reinforcement-learning algorithms. Machine
Learning, 38, 287-308.

Sutton, R. S., & Barto, A. G. (1998). Reinforce-
ment learning: An introduction. Cambridge, Mas-
sachusetts: MIT Press/Bradford Books.

Tesauro, G. J. (1994). TD-Gammon, a self-teaching
backgammon program, achieves master-level play.
Neural Computation, 6, 215-219.

Tsitsiklis, J. N., & Van Roy, B. (1997a). Analysis of
temporal-difference learning with function approxi-
mation. Advances in Neural Information Processing
Systems 9 (pp. 1075-1081). Cambridge, MA: MIT
Press.

Tsitsiklis, J. N., & Van Roy, B. (1997b). Approximate
solution to optimal stopping problems. Advances in
Neural Information Processing Systems 9 (pp. 1082—
1088). Cambridge, MA: MIT Press.



