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ABSTRACT

LYAPUNOV METHODS FOR SAFE INTELLIGENT
AGENT DESIGN

MAY 2002

THEODORE J. PERKINS
B.A., CARLETON COLLEGE
M.Sc., UNIVERSITY OF WISCONSIN - MADISON
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

In the many successful applications of artificial intelligence (AI) methods to real-
world problems in domains such as medicine, commerce, and manufacturing, the Al
system usually plays an advisory or monitoring role. That is, the Al system provides
information to a human decision-maker, who has the final say.

However, for applications ranging from space exploration, to e-commerce, to search
and rescue missions, there is an increasing need and desire for Al systems that dis-
play a much greater degree of autonomy. In designing autonomous Al systems, or
agents, issues concerning safety, reliability, and robustness become critical. Does the
agent observe appropriate safety constraints? Can we provide performance or goal-
achievement guarantees? Does the agent deliberate and/or learn efficiently and in

real time?

vii



In this dissertation, we address some of these issues by developing an approach
to agent design that integrates control-theoretic techniques, primarily methods based
on Lyapunov functions, with planning and learning techniques from AI. Our main
approach is to use control-theoretic domain knowledge to formulate, or restrict, the
ways in which the agent can interact with its environment. This approach allows
one to construct agents that enjoy provable safety and performance guarantees, and
that reason and act in real-time or anytime fashion. Because the guarantees are
established based on restrictions on the agent’s behavior, specialized “safety-oriented”
decision-making algorithms are not necessary. Agents can reason using standard Al
algorithms; we discuss state-space search and reinforcement learning agents in detail.
To a limited degree, we also show that the control-theoretic domain knowledge needed
to ensure safe agent behavior can itself be learned by the agent, and need not be
known a priori. We demonstrate our theory with simulation experiments on standard

problems from robotics and control.
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CHAPTER 1

INTRODUCTION

In recent years, researchers in artificial intelligence (AI) have paid increasing at-
tention to issues of safety and reliability [100, 80, 77, 59, 28, 68, 67]. These issues have
become especially important since the rise of the agent-based view in Al, in which the
goal is to produce an intelligent system capable of operating autonomously in com-
plex, stochastic domains where there is potential for real harm as well as real good.
If a chess-playing program plays a bad move, no one is going to get hurt. However,
a malfunctioning navigation system can scuttle a multi-million-dollar space mission,
and a malfunctioning autopilot for a car could cause a serious traffic accident. Safety
and reliability are concerns especially for learning systems, which may come to behave
in ways not expected by the designer and which must “try things out” in order to
learn that they are bad.

There have been many successful applications of Al techniques to real-world prob-
lems ranging from medical diagnosis, to loan approval, to space mission planning and
monitoring. However, in most applications the Al system has played an advisory role,
with a human decision-maker having the final say [74, 1]. For both practical and aes-
thetic reasons, there is much interest in developing Al systems with greater autonomy.
For example, one of the goals of NASA’s recently-completed Deep Space One mission
was to test new Al software that allowed the spacecraft to orient itself, navigate, and
recover from simulated component failures rapidly and autonomously. By imbuing
spacecraft with greater autonomy, NASA scientists hope to be able to support many

more missions with fewer supervising personnel, and to support missions far from



earth that require rapid decision-making, such as wide-ranging planetary exploration
[21]. However, one need not look to domains as exotic as space exploration to ob-
serve the drive towards fielding intelligent autonomous agents. For example, Thrun
et al. [92] report on a two-week experiment in which a tour-guide robot operated
autonomously at the Smithsonian Museum of Natural History, guiding visitors and
explaining exhibits. The safety challenges facing this robot included not running
into people or exhibits—a difficult task in the crowded (and sometimes adversarial)
museum environment—and not falling down an open escalator, which could be catas-
trophic for the robot as well as anyone standing below. In this thesis we address the
issue of applying Al decision-making techniques while ensuring safety and reliability.

In fields more oriented toward producing and controlling real systems, such as
hardware and software engineering, manufacturing design, and operations research,
safety and reliability have always been important issues. This thesis borrows particu-
larly from techniques developed in applied mathematics, control theory, and robotics
for dealing with continuous-state and time control problems. Historically, and even to
a significant degree today, people working on such control problems have often been
concerned with qualitative goals, such as stabilizing a system around an operating
point; keeping the system state in some range; tracking a desired system trajectory; or
smoothing out or recovering from external disturbances to the system [83, 48, 96, 19].
In many important cases, these control problems can be solved analytically. This
results not just in a control strategy that provably satisfies desirable performance
goals, but also in valuable qualitative domain knowledge about how the problem can
be solved.

The approach we pursue in this thesis is a fusion of qualitative control-theoretic
ideas with AI techniques for sequential decision-making to achieve safe, reliable op-
timal or approximately-optimal control. We formalize what we mean by ‘safe and

reliable’ in Section 3.3. Roughly speaking, we are interested in questions such as:



Does the agent always achieve its goal? Can the agent always achieve its goal? Does
the agent keep the system it controls in a safe, acceptable subset of state space? For
continuing tasks, is the long-term or asymptotic behavior of the agent reasonable?
At the same time we want the agent’s solution to be as cost-effective as possible.

For general infinite-state systems, questions such as these are undecidable, so it
is beyond the capacity of any computational approach, AI or otherwise, to deter-
mine or ensure such properties. However, we show that it is possible to do so for
certain classes of problems using domain knowledge and analytical techniques from
mathematics, control theory, and robotics. We rely on a number of techniques to
design agents, including feedback linearization, linear approximations to non-linear
dynamics, and linear-quadratic regulator methods. Our focus is on Lyapunov-based
methods. Lyapunov functions are a special form of domain knowledge that encode
qualitative information about the connectivity of a state space, and are widely used
for stability and convergence analyses [48, 96].

The primary approach we advocate is to incorporate Lyapunov domain knowledge
into the very formulation of the problem posed to the agent. Based on the Lyapunov
properties of the problem formulation and analyses of individual AT algorithms, we
demonstrated how it is possible to establish that the agent can and will solve the
problem posed, and that the solution generated will be safe. The list below sum-
marizes the thesis chapter-by-chapter and identifies its major contributions. Novel
material begins in Chapter 5 with definitions of Lyapunov functions that are useful
for reasoning about Al algorithms. Chapter 6 introduces several example problems
and provides Lyapunov analyses. These problems are used to demonstrate the process
of taking Lyapunov domain knowledge into account during the problem formulation
phase, and are used in simulation experiments in subsequent chapters. Chapters 7,

8, and 9 contain the main, new theoretical and experimental results of the thesis.



Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Thesis Outline
1 Introduction.

2 Related work is presented, briefly describing the state of the art in establishing
safety and performance guarantees for Al algorithms, and related issues. Key

concepts and approaches from control theory are also discussed.

3 We present the optimal control framework we use to formally define the tasks
AT agents face. We discuss models for an agent’s environment, what constitutes
a solution to an optimal control problem, what types of safety properties can
be established using methods based on Lyapunov functions, and why standard
optimal control algorithms alone are not sufficient for the task of ensuring safe

control.

4 We describe standard numerical methods for solving optimal control problems

and their strengths and shortcomings.

5 The reader is introduced to Lyapunov functions in general, and we define
types of Lyapunov functions and descent properties that are useful for reasoning

about and designing Al systems.

6 We present several example problems that we use to demonstrate the general
Lyapunov-based theory we develop, and that are the basis for simulation exper-
iments in later chapters. In particular, we describe a deterministic pendulum
swing-up and balance problem, a stochastic pendulum swing-up and balance
problem, and a robot arm control problem with deterministic and stochastic

variants.

7 In the context of state-space search, we use Lyapunov functions to establish

the existence of solutions and to provide sufficient conditions under which both



optimal and suboptimal heuristic search algorithms find solutions. Experiments

in the deterministic pendulum and robot arm domains are presented.

Ch. 8 We establish guarantees for much broader classes of agents, basing results
almost entirely on Lyapunov properties of the problem formulation and not on
the algorithm used by the agent. We particularly target reinforcement learning
agents, due to the proven success of reinforcement learning methods in approxi-
mately solving optimal control problems and because of the inherent difficulties
(and hence challenge) of analyzing such agents. Experiments are presented

using all four of the problems introduced in Chapter 6.

Ch. 9 In the chapters above we assume that the agent faces a known problem and
that a Lyapunov function for the problem is known. In Chapter 9, we partly lift
this assumption by supposing that the designer of the Al system hypothesizes a
set, of Lyapunov function candidates. We describe an active exploration strategy
for determining which of these (if any) are Lyapunov functions, and bound the
total loss incurred by the learning process. We demonstrate the approach using
a pendulum swing-up task in which the length of the pendulum is unknown to

the agent.

Ch. 10 We draw conclusions and discuss directions for future work.



CHAPTER 2
RELATED WORK

In this chapter we describe previous work on establishing safety and performance
guarantees for Al systems/controllers. In Section 2.1 we describe work on these topics
from the AI community. In Section 2.2 we discuss some related ideas from control
theory. We conclude in Section 2.3 by relating our uses of Lyapunov functions to

research on methods for expressing domain knowledge in Al systems.

2.1 Safety and Reliability in Artificial Intelligence

Weld and Etzioni, in their paper “The First Law of Robotics: A Call to Arms,”
were among the first in the recent history of Al to stress the importance of safety
considerations if one intends to loose autonomous, intelligent agents upon the world
[100]. The primary concern of their paper was how “harm” could be formalized in
a planning framework and how the potential for harm should be reconciled with the
agent’s desire to satisfy its goals. They defined two types of safety constraints: “do-
not-disturb,” meaning that the agent absolutely should not change some component
of the state of its environment, and “restore,” meaning that the agent is allowed to
change part of the state of its environment, as long as the change is undone by the
time the agent finishes its work. Related to Weld and Etzioni’s restore condition is
the maintainability property defined by Nakamura et al. [56]. Maintainability is the
ability of an agent with partial control over a system to return the system to a desired
set of states if it is taken out of that set by other agents/extraneous influences. While

safety concerns seem not to have stirred much interest in pure planning research,



there has been growing interest in methods for combining constraint-based reasoning
with decision-theoretic reasoning (see, e.g., Walsh [97] for one example and further
references). The main idea of this work is that constraints provide absolute guarantees
on performance, while decision-theoretic planning optimizes behavior within those
constraints.

Safety and performance guarantees are of great interest to researchers that study
learning agents for at least two reasons. First, the behavior of learning agents is
often difficult to predict, even in abstract, theoretical settings. Second, learning
agents typically explore both successful and unsuccessful behaviors in order to learn
to separate one from the other. In on-line learning scenarios, it is often important
that the agent not spend too much time exploring unsuccessful behaviors.

Singh et al. [80] provide the first example of using Lyapunov domain knowledge
to design safe reinforcement learning agents. They study robot motion planning
problems—kinematic problems in which an agent chooses the direction in which the
robot should move next. Connolly and Grupen had previously studied the application
of Lyapunov function methods to this problem [18], using harmonic functions. There
are two natural types of harmonic function for this problem. Singh et al. [80] propose
a formulation of the problem in which movement directions that the learning agent
can choose are all convex combinations of the directions suggested by these two types
of Lyapunov functions. Restricting action choice in this way ensures that the agent
does not collide with objects in its workspace and that it reaches a specified goal
configuration. In general, combining two different Lyapunov functions does not retain
the beneficial properties of either one. In Chapter 8 we explore a related approach

which ensures safety using a single Lyapunov function. In this approach the agent



chooses among a set of actions that all descend on the same Lyapunov function, but
in different ways.!

Huber and Grupen [33, 34, 35] apply reinforcement learning to quadrupedal robotic
walking problems in which the system state is defined by the status of a set of lower-
level closed-loop controllers. Reinforcement learning is used to choose which low-level
controllers to activate, but actions that violate basic safety constraints (such as lift-
ing all four legs at once) are eliminated from the set of admissible actions from the
beginning. In spirit, this is similar to our approach; domain knowledge is used to
constrain the agent to a set of safe behaviors.

Kretchmar [44] has recently proposed a method that combines reinforcement learn-
ing with robust control theory to achieve safe learning of controllers for systems with
partially-unknown dynamics. In simulation, his approach works well for realistic reg-
ulation problems. However, the forms of system dynamics and learning agent that are
allowed by his theory are limited. In Chapter 9 we propose an alternative approach
that allows much broader classes of system dynamics and learning agents, but which
offers weaker guarantees. Gordon [28] has proposed a method in which each con-
trol improvement suggested by a learning component is first verified for safety using
model-checking techniques. Like the work of Kretchmar, her approach uses on-line
verification to ensure that learning never results in an unsafe system.

Schneider [77] and Neuneier and Mihatsch [59] propose learning methods that
attend to the variability of outcomes, resulting in learning controllers that are risk
averse. Although there are no theoretical guarantees on the performance of these
learning algorithms, their goal of safer, more reliable learning matches the general

theme of the work mentioned above.

1The idea that there is more than one way to descend on a given Lyapunov function, and that
this freedom can be used to optimize secondary criteria, is not a novel idea, dating back at least
to Kalman’s and Bertram’s early survey of Lyapunov function methods [36]. Its application in
reinforcement learning is new, as far as we know.



Other work in reinforcement learning has focused on reliability issues more than
safety. Koenig [42] proved the first result that provides a guarantee on the perfor-
mance of an agent during learning.? He studied finite-state minimum cost-to-goal
control problems, and showed that a Q-Learning agent solving such a problem is
guaranteed to find a goal state in time bounded by a polynomial in the size of the
state set. In ground-breaking work, Kearns and Singh [40, 41] showed that with high-
probability, a learning agent can find a near-optimal policy in a finite Markovian
decision problem in time that is polynomial in the number of states. (See Brafman
and Tennenholtz [16] for a simpler proof of some of these results and an extension
to two-player constant-sum Markov games.) Kearns and Koller [37] proved that
for problems represented in a compact, factored form, high-probability near-optimal
learning is possible after an amount of experience that is polynomial in the size of
the compact description. This description is potentially exponentially smaller than
the number of problem states. (Note that it is not known whether the computations
necessary for choosing the right polynomial amount of experience can themselves be
achieved in polynomial time.) While important theoretically, these results have not
yet had a strong impact on how reinforcement learning is usually put into practice,
since even polynomial time complexity is large for the applications that reinforcement
learning researchers would like to solve. The results also do not address continuous-
state problems. Although similar reasoning was used to establish that near-optimal
control can be achieved in problems with general state sets by using forward search,
the search trees required by the theory are impractically large for most problems of
interest [38, 39].

Still farther afield, but important to note because of the example domains we

consider, are the strong theoretical results that have been obtained for dynamic pro-

2Note that the date of publication is at least five years later than when the result was initially
obtained.



gramming approaches to solving continuous-state, continuous-time optimal control
problems described by systems of differential equations [47, 25, 8, 9]. These methods
work by laying a grid of discrete points over a compact subset of the state space
and solving a finite-difference approximation to the control problem, similar to how
partial differential equations are often solved numerically. The general character of
the theoretical results obtained for this type of approach is that as the resolution
of the grid grows arbitrarily fine, the value functions or policies computed by the
finite-difference approximation approach the optimal value functions or policies for
the continuous-state and time control problem. In practice, one often selects a grid
that is as fine as memory and computational limits allow. Simulation experiments
can help determine whether the solution computed is of satisfactory quality.
Pareigis [61, 62] and Munos [54] have extended these ideas to reinforcement learn-
ing systems that start with no prior knowledge of the system dynamics. However,
even with the best adaptive resolution tricks these grid-based do not scale well to
high dimensional problems. For example, state spaces of the demonstration domains
used in the most recent work of Munos [54, 55] have dimension no more than five.
We study a six-dimensional robot arm control problem in Chapters 7 and 8. In pilot
experiments, we attempted to solve the problem using simple uniform-spaced grids.
Even using millions of grid-points, solutions were of poor quality or failed outright to

bring the arm to desired goal configurations.

2.2 Control Theory

For much of its history, and to a considerable extent today, control theory has
been concerned first and foremost with safety and reliability. Typical problems in-
clude stabilization, trajectory tracking, and keeping the state of a system in some
range. Techniques for achieving tasks such as these include Lyapunov-based methods,

feedback-linearization, proportional-integral-derivative control, and a host of tech-

10



niques designed for controlling linear systems [83, 48, 96]. Although these techniques
may produce successful stabilization or tracking controllers, such controllers do not
always score well on other performance measures of interest. A prime example is
feedback linearization-based control of robotic manipulators. Using feedback lin-
earization, a robot manipulator can be moved to a desired configuration or can be
made to track a desired trajectory. However, the movements are inefficient and slow,
“robotic,” and do not take advantage of the natural dynamics of the manipulator
to move quickly or smoothly. Indeed, the whole point of feedback linearization is to
eliminate natural dynamics so that the analytical derivation of a controller becomes
possible.

Of course, control theorists study optimal control as well, but there one runs into
the same problems as one does in Al: exactly solving optimal control problems is
extremely hard. Even solving them near-optimally, usually by numerical methods, is
challenging and may not retain the safety properties implicit in an optimal solution.
There have been attempts to infuse analytical methods, which guarantee safe, reliable
control, with greater sensitivity to cost. We mention two highlights in this genre of
work that focus on Lyapunov methods.

We formally introduce Lyapunov functions in Chapter 5. For the present moment,
one can intuitively think of a Lyapunov function as a distance-to-goal function. In
Lyapunov optimizing feedback control, a Lyapunov function is specified, and a con-
troller is developed that causes the system to descend on that function and approach
the goal[96]. In steepest descent, for example, control choices are made so that the
system follows the gradient of the Lyapunov function with respect to the state vari-
ables as closely as possible. (This assumes the state of the system is described by a
vector of real-valued variables.) In quickest descent, control choices are made so that
the system descends on the Lyapunov function as quickly as possible. In minimum

cost-descent control, costs are associated with each control choice, and controls are
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chosen to minimize a weighted combination of immediate cost and descent on a Lya-
punov function. An appropriate weighting instills some sensitivity to performance
requirements, while still ensuring desirable safety properties [96]. The main method
we propose in Chapter 8 for guaranteeing safety properties of a learning agent can
be viewed as a form of Lyapunov optimizing feedback control. In our case, controls
are not chosen to optimize some quantity involving a Lyapunov function. Rather, in
the simplest case, controls are chosen to optimize estimated long-term performance
subject to the constraint of descending on a given Lyapunov function.

Also important is the relatively recent development of backstepping, forwarding,
and related procedures for stabilization problems, including procedures for robust
stabilization problems, in which the dynamics of the system are incompletely known
[45, 26, 78]. These procedures have increased the range of problems for which Lya-
punov designs are possible and have improved the quality of designs for problems for
which stabilization methods already existed. In particular, these procedures can be
shown to construct controllers that are inversely optimal—optimal with respect to
some “reasonable” performance metric. Interestingly, not all stabilizing controllers
are inversely optimal. Those that are have superior stability properties, such as being
able to stabilize the system despite systematic disturbances in the control signal or
system dynamics. Further, the methods described by Freeman and Kokotovié¢ [26]
include free variables that allow the designer to choose, within some range, what cost
function the stabilizing controller should optimize. This work is quite promising, and
is also important for popularizing the notion of a control Lyapunov function—a func-
tion on which the system can be made to descend by an appropriate choice of control
action [82]. In Chapter 5 we define several new types of control Lyapunov functions
which are particularly suited to the task of analyzing Al decision algorithms such as

state-space search, dynamic programming, and reinforcement learning.
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2.3 Domain Knowledge

One of the most basic discoveries of research in artificial intelligence is the impor-
tant role that domain-specific knowledge plays in making problem solving tractable.
One view of Lyapunov functions is that they are a form of domain knowledge. In
addition to allowing safe control, they can play all the usual roles of domain knowl-
edge: making the computations necessary for solving the problem more time or space
efficient, guiding the solution process, increasing robustness (especially when unfore-
seen or previously unexperienced situations occur), and allowing a learning agent to
perform at a satisfactory level even at the beginning of learning.

A certain amount of domain knowledge goes into formulating an optimal control
problem—that is, in choosing how the state of the agent’s environment is represented,
how the agent interacts with the environment, and how the agent’s performance is
measured. In addition, specific algorithms for solving control problems can be imbued
with prior knowledge in various ways. In state-space search, domain knowledge can be
expressed in the definitions of the search operators and in heuristic functions [64, 74].
In Chapter 7 we use Lyapunov domain knowledge in both of these capacities.

In the field of reinforcement learning, there has been much effort in developing
methods for expressing domain knowledge. Various means for giving“advice” to rein-
forcement learning agents have been explored [101, 95, 17, 49, 93, 50, 27, 51, 76, 2, 20].
Typically, the agent is instructed on which actions are desirable or which actions are
to be avoided in certain situations. Researchers have also experimented with incorpo-
rating suitably expressed prior knowledge directly into value function approximators
(93, 27, 50, 51].

Sometimes, prior knowledge can be expressed simply by the formulation of con-
trol choices for a reinforcement learning agent. As mentioned above, Singh et al.
[80] suggested a parameterization of control choices for motion planning in which the

controller chooses a convex combination of the gradient directions of two distinct Lya-
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punov functions. More generally, recent work in modularity and temporal abstraction
has provided mathematical foundations for dynamic programming-based control and
learning when a single control choice can cause the execution of an entire sequence
of control actions [63, 69, 23]. This allows a designer to specify intelligent courses of
action, which simplifies learning to solve the control problem. Our use of Lyapunov
functions in the context of dynamic-programming based methods, including reinforce-
ment learning algorithms, has this basic character of constraining (or constructing)

the agent’s control choices.

14



CHAPTER 3
OPTIMAL CONTROL FRAMEWORK

In this chapter we define the general optimal control framework we use to de-
scribe the problem faced by an agent. We define Markov processes and Markov
decision processes in Section 3.1. (See Bertsekas [8] or Sutton and Barto [88] for
other presentations.) In Section 3.2 we define two types of solutions to Markov de-
cision processes, action sequences (a.k.a. open-loop controllers) and policies (a.k.a.
closed-loop controllers). In Section 3.3 we define a number of general safety and
reliability properties of interest, and in Section 3.4 we consider whether or not the
optimal control framework presented in this chapter is sufficient for addressing safety

and reliability concerns.

3.1 Markov Processes and Markov Decision Processes

A Markov process (S, Fy, F, ) models a system evolving on an arbitrary state
set S at discrete points in time. The state of the system at time t = 0 is sy € S,
which is determined stochastically according to start state distribution Fy. For ¢ €

{1,2,3,...}, the state of the system is determined by the dynamics equation:

Sip1 = F(s,wy)

where the w; are independent “random disturbances” distributed according to €2. At
this level of generality, rigorously defining probabilities and expectations requires a

measure-theoretic treatment. The general Lyapunov-based theorems we present later
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Figure 3.1. The interaction of an agent and its environment.

are phrased to be applicable in such a general setting, as long as the probabilities and
expectations to which the theorems refer are well-defined. Since it is rather tangential
to our topic, we do not describe the measure-theoretic foundations of Markov pro-
cesses (or Markov decision processes) on general state sets. Rather, we simply assume
that any quantities of interest are well-defined. We refer the reader to Bertsekas and
Shreve [10] and Meyn and Tweedie [52] for background on the general case. In the
example problems studied in the thesis, S is either finite or a closed, convex subset
of R™, and the functions Fy and F' are piecewise smooth. In such cases, the random
disturbances can be taken to be uniform random variables on the interval [0,1], and
the well-definedness of the relevant probabilities and expectations is immediate.

We model the environment of an agent as a Markov decision process
(S, A, Fy, F,C,Q,G). The interaction between the agent and its environment is de-
picted in Figure 3.1, and proceeds as follows. The state of the environment at time
t = 01is so € S, which is determined stochastically according to start state distri-
bution Fy. At times t € {0,1,2,...}, the agent chooses an action, a;, from a set of
allowed actions, A(s;). The immediate cost that the agent incurs, ¢; € R, and the
next state of the environment, s;;; € S, are determined according to the dynamics

equations:

Ct = C(St,@t,ﬂ]t),

Sty1 = F(St,at,wt),
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where w; is a random disturbance distributed according to 2. A particular se-
quence of states, actions, and costs that occurs as an agent interacts with its en-
vironment, (sg, ag, ¢o, S1,01,C1,-..), is called a trajectory. We say that a trajectory
(s0, g, €, S1,a1,C1, . ..) is possible if there exists (wg,ws, ws,...) such that for all
t€{0,1,2,...}, ¢, = C(84, a, wy) and sy41 = F (84, az, wy).

A deterministic Markov decision process is one for which the initial state, sg, is
fixed and for which the dynamics equations are deterministic. That is, the dynamics

equations do not depend on a random disturbance and can be written simply as:

Gy = C(St,at),

8t+1 = F(st,at) .

In some cases, we are interested in controlling a deterministic system from a range of
possible start states. In accordance with the definition above, we take the view that
each start state defines a separate Markov process. Whether different start states
really need to be treated separately depends on the solution method one intends to
use. For example, in a simulated robot arm control problem presented below, we
consider a set of nine start states. In Chapter 7, we use state-space search to find a
separate solution for each start state. In Chapter 8, we use reinforcement learning to
find a single solution that works for all nine start states.

Some Markov decision processes include goal states, which are terminal, or ab-
sorbing, states. If, at some time ¢, s; is a goal state, then the agent incurs no further
costs and there is no further opportunity for the agent to take actions. For example,
if the control problem is to use a robot arm to move an object to a given location,
after the object has been placed at the location, no further control is needed. In such
a case, the trajectory describing the agent-environment interaction takes the form

(S0, @0, Co, S1,01,C1, -« -5 841,041, Ct—1, St)- The set of all goal states, which may be
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empty, is called the goal set and is denoted by G. A minimum cost-to-goal MDP is

one for which G is non-empty and all immediate costs are non-negative.

3.2 Solutions to Markov Decision Problems
What constitutes a solution to an MDP? We consider two types of solutions:
action sequences and policies.

We use action sequences as solutions only for deterministic, minimum cost-to-goal

MDPs. For a deterministic MDP, an action sequence, {ag, a1, . - ., G, ), uniquely deter-
mines a trajectory (So, @, Co, S1,@1,C1, - - -, Sn, Gn, Cn, Sny1), Dy the rules ¢, = C(sy, ay)
and sy = F(sy,a4), for t € {0,1,2,...,n}. Such an action sequence is considered to

be a solution if s,.1 € G. The total cost of an action sequence solution is the sum of
the immediate costs incurred by the agent: >, j¢;. An action sequence solution is
optimal if its total cost is no more than that of any other action sequence solution.
For some problems, there may be no solutions—all goal states may be unreachable
from the start state. On the other hand, there may be infinitely many solutions, but
no optimal solution, as depicted in the example in Figure 3.2. In this diagram, the
circles represent possible states of the environment. An arrow between two circles
means that there is an action that causes the state of the environment to change
from one state to the other. Each arrow is labeled with the immediate cost that the
agent incurs upon choosing the corresponding action. The reader can observe that
there are action sequence solutions of total cost: 3, 2, 12, 12, ... There is no solution
that has total cost less than or equal to that of every other solution. Establishing
the existence of solutions is one of the benefits of Lyapunov domain knowledge, as
discussed in Chapter 7. When we discuss search algorithms for finding optimal ac-
tion sequence solutions, further Lyapunov arguments or other assumptions are used

to ensure that optimal solutions exist.
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Figure 3.2. A deterministic, minimum cost-to-goal MDP with no optimal action
sequence solution.

The second type of solution we consider is a policy. A policy 7 maps each non-goal
state s to an allowed action 7(s) € A(s). A policy completely specifies how the agent
behaves.

To define what it means for a policy 7 to be optimal, we first define the value of 7
with respect to a particular start state of the environment, s. A number of different
definitions of this value have been proposed. One common choice is the expected

undiscounted return:

J{T(s):T}LIEOE{ th|30:5} ,
t=0

where the expectation is with respect to the random disturbances, w;, and is taken
over all possible trajectories. Implicitly, the expectation is conditioned on the fact
that the agent chooses actions according to w. On a particular trajectory, if s; € G,
then for i > ¢, ¢; should be considered zero in the sum above. The quantity J7(s)
need not be finite or even well-defined in general; this issue is discussed further below.

Other common definitions for the value of a policy with respect to a start state

include the expected discounted return:

n—00

T3 (s) = lim E{ thct\&):s} , 7€),
t=0
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and the average cost:

1 n
nge(s):nli_)rgoE{ ﬁth \ sozs} :
t=0

Any of these three definitions can be applied to MDPs with or without goal states,
though the limits may not be well-defined or may be infinite for some MDPs and some
policies. When S is finite there are well-known sets of conditions that are sufficient to
ensure well-definedness [8]. Under the same conditions, it is also known that there is
always at least one policy 7* that is optimal in the sense that J™ (s) < J"(s) for any
other policy 7 and all states s. This is true for any of the three definitions of policy
value above. When S is infinite, there need not be an optimal policy even if J™(s) is
well-defined for all s ¢ G—just as there need not be an optimal action sequence for

a deterministic, minimum-cost-to-goal MDP.

3.3 Safety and Reliability Properties

In this section we formally define several basic safety and reliability properties,
which we use to make concrete, precise claims about the safety and reliability of
different agent designs discussed in subsequent chapters. By no means should this
list of properties be considered exhaustive. Rather, it reflects common kinds of safety
and reliability concerns and illustrates the sort of properties that can be established
using methods based on Lyapunov functions.

Suppose that an agent interacts with an environment that is modeled as an
MDP with state set S. Let T' C S. Recall that a trajectory can have the form
(80, @g, Co, S1,01,C1, - . -) OF (Sg, Ao, Coy 815, A1, Cly - - -5 Sn_1, Un_1, Cn_1, Sn), Where s, € G.
Let I(X) be the set of all time indices that occur in trajectory X—either {0,1,2,...}
or {0,1,2,...,n}. Suppose that for some reason 7T is considered a set of “safe” or

“desirable” states. For example, consider a driver (the agent) driving his car on a

20



highway (the environment). The driver might consider safe states to be those in which
the car in front of him is at least 5 meters away. One of the simplest questions we

may ask is, “Does the state of the environment remain in 7°7”

Definition 3.1 In trajectory X, the state of the environment remains in'T if s, € T

for allt € I(X).

For a deterministic MDP, an action sequence results in a unique trajectory. Thus,
we can say that an action sequence is safe if the state of the environment remains in
T in the resulting trajectory. For an arbitrary MDP, many trajectories may result
when the agent follows a particular policy. Still, we can say that a policy is safe if
the state of the environment remains in 7" in all possible trajectories (or perhaps for
all trajectories in a probability-one subset of all possible trajectories). Even stronger,
we can say that the MDP itself is safe if the state of the environment remains in T
in all trajectories that are possible under any agent behavior.

Another natural question is, “Does the state of the environment reach 7'7”

Definition 3.2 In trajectory X, the state of the environment reaches T if there exists

t € I(X) such that s, € T.

Note that the definition does not require that the state of the environment stay
in T forever. One natural application of this notion is to the case T" = G—that is,
the question of whether the state of the environment reaches the goal. Recall that an
action sequence qualifies as a solution if it causes the state of the environment to reach
G. For agents seeking policies, every policy is usually considered a feasible solution
to the problem. However, it is reasonable to consider that a policy be a solution to a
minimum cost-to-goal problem only if the state of the environment reaches G in all
trajectories that are possible under that policy. If the MDP is formulated such that
the state of the environment reaches GG under any agent behavior, then we have a

basic reliability guarantee—that of goal-achievement.
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A more basic consideration is the reachability of GG. Is there an action sequence or
is there a policy that results/can result in a trajectory in which the state of the envi-
ronment reaches G7 This question is undecidable for general, infinite state systems,
and it is of practical as well as theoretical concern. For example, in continuous-
state, continuous-time control problems, such as robot control problems, one often
discretizes time and approximates continuous control sets with a finite number of
alternatives. Whether or not a given part of state space is reachable under such a
discretization becomes a non-trivial question.

Combining the two properties defined above we have:

Definition 3.3 In trajectory X, the state of the environment reaches and remains

in T if there exists T € I(X) such that for allt € I(X), t>17=s,€T.

In the highway-driver example above, for instance, we might imagine that at some
point in time the state of the environment is not in the set of “safe” states. (That
is, there is less than 5 meters to the car ahead, perhaps because of a busy merge
or because the car ahead decelerates suddenly.) If the driver behaves such that the
reach-and-remain property holds for all possible trajectories, then he is assured of
returning to a safe state of driving.

The question of whether there exists a policy that causes the state of the environ-
ment to reach and remain in 7" in any possible trajectory from any sy ¢ T is similar
to the maintainability property studied by Nakamura et al. [56]. Maintainability
additionally requires that the time to reach T be bounded over all sy ¢ T.

In many problems, causing the state of the environment to reach a given 7" and
remain there forever may be unrealistic or unachievable. A weaker condition is that

the state of the environment s; is in 7" for an infinite number of time steps .

Definition 3.4 In trajectory X, the state of the environment spends infinite time in

T if sy € T for infinitely many distinct t € I1(X).
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The final property we consider describes the state of the environment converging
to T over time. Let 7 : S — R satisfy dr(s) =0 for s € T and d(s) > 0 for s ¢ T

Intuitively, 07 can be thought of as a “distance” to T'.

Definition 3.5 In trajectory X, the state of the environment asymptotically ap-

proaches T if lim;_, o 67(s;) = 0.

Properties such as the first four defined above are often studied in the model-
checking literature. Indeed, Gordon [28] has demonstrated the relevance of model-
checking techniques for verifying learning systems. Asymptotic behavior is usually
studied in control theory, and is one of the primary questions addressed by Lyapunov
methods. Since our MDP framework allows for problems with infinite state sets, all
of these properties are undecidable. Interestingly, even quite innocent-looking finite-
dimensional continuous-state systems can implement Turing machine computations.
(See Blondel and Tsitsiklis [13] for a survey of complexity results from a control
theory perspective.) Nevertheless, we demonstrate that control-theoretic techniques
are quite useful in establishing safety and reliability properties of agents operating in

such environments.

3.4 Does the Optimal Control Framework Adequately Ad-
dress Safety and Reliability?

Certainly one can define optimal control problems that reflect various kinds of
safety properties. For example, suppose we are given an MDP, but that we addition-
ally want the agent to keep the state of the environment in a set T for safety reasons.
Suppose that there is at least one policy that does so, and suppose that policy has
finite expected return or average cost for any initial state sq € T. If we modify the
cost function of the MDP so that actions taking the state of the environment out

of T have infinite cost, then clearly the optimal policy is the best policy that does
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not cause the state of the environment to leave T.}? For goal-achievement problems,
the cost function is usually designed so that optimal behavior causes the state of
the environment to reach the goal set with probability one. If not, then one would
probably argue that the problem is misformulated.

However, even if we formulate an optimal control problem so that it properly
reflects safety concerns, the agent still needs to solve the problem. Since the properties
described in the previous section are undecidable, formulating the problem to reflect
safety does not (cannot) ensure that the agent ends up with a solution that is safe.
Some algorithms [47, 39, 60] promise near-optimal solutions, but by necessity, only
for classes of problems for which near-optimality does not ensure safety. Formulating
the problem such that optimal or near-optimal policies are safe also does not address
the issue of how safely or reliably a learning agent performs during learning. For these

reasons, we favor ensuring safe, reliable agent a priori, using domain knowledge.

! More precisely, the optimal policy keeps the state of the environment in T' with probability one.

2Strictly speaking, we should not assign infinite cost to any action. However, we can create
the same effect by redefining the dynamics of the MDP so that any action taking the state of the
environment out of T brings it to a special infinite chain of states, resulting in an infinite return or
average cost. For example, if costs are undiscounted, the chain of states need merely result in the
cost sequence: 1,1,1,... Other sequences can be designed to ensure that the discounted return or
average cost are infinite.
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CHAPTER 4
SOLUTION METHODS

In this chapter we discuss standard methods for solving, exactly or approximately,
optimal control problems formulated as MDPs. In Section 4.1, we discuss state-
space search algorithms for finding action sequence solutions. Dynamic programming-
based approaches, including several reinforcement learning algorithms, are covered
in Section 4.2. We close the chapter with a brief discussion of direct optimization

approaches.

4.1 State-Space Search for Action Sequences

In this section, we consider state-space search methods for finding action sequence
solutions to deterministic, minimum cost-to-goal MDPs [64, 74]. Recall that in such
problems there is a start state sy and a non-empty goal set G. For each s ¢ G
and a € A(s), the agent incurs a non-negative cost C(s,a) and the state of the
environment becomes F'(s,a). A solution is a sequence of actions that causes the
state of the environment to enter GG, when applied starting from s,. A solution is
optimal if the sum of the costs of the actions is no more than the total cost of any
other solution. We assume that A(s) is finite for all s ¢ G.

In principle, state-space search methods are applicable to a wide range of problems,
from the classical puzzle games (which were the first test applications) to certain
navigation and robotics problems [74, 14]. State-space search methods are also widely
used for more abstract problems, such as controlling the execution of constraint-

satisfaction and planning algorithms [74]. State-space search is usually applied to
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Figure 4.1. Example of a search graph.

problems with finite state sets, but is applicable to infinite state-set problems as well.
We discuss several of the more important state-space search algorithms and theoretical
results, and highlight some of the difficulties that can arise when the state-set of the
environment is infinite.

Because there is a single initial state and a finite number of actions available
from any state, only a countable! set of states is reachable from so. The search graph,
depicted in Figure 4.1, has a vertex corresponding to each reachable state and directed
edges (arcs) corresponding to the effects of actions. Search algorithms differ in how
they explore the search graph, looking for a solution. We focus on four algorithms of
practical and theoretical importance: uniform-cost search; best-first search, including
the special case of A*; depth-first branch-and-bound; and limited look-ahead search.

Before considering solution algorithms, however, note that if there is an infinite

number of reachable states, then certain problems can arise. In Section 3.2, we

LA set is countable if it is finite, or if its elements can be put in one-to-one correspondence with
the natural numbers {1,2,3,...}.
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Figure 4.2. A search graph in which the goal is not reachable.

demonstrated that even if a search graph contains solutions, it may not contain an
optimal solution. In this case, the optimal control problem is ill-formed. Both in
finite and in infinite-state problems, it is possible that a problem has no solutions.
For instance, Figure 4.2 depicts an infinite search graph with no solutions. In fi-
nite search graphs, an exhaustive search can eventually determine that there is no
solution. However, in infinite search graphs, almost any standard search algorithm
does not terminate. Indeed, an algorithm that is complete—i.e. guarantees to find a
solution if one exists—cannot also terminate on all problems that have no solutions.
The problem of deciding whether a solution exists is undecidable, so such a search
algorithm is impossible.

In the following subsections, we present uniform-cost search, best-first search,
depth-first branch-and-bound, and limited look-ahead search. We present these al-
gorithm in forms in which the search graph is treated as if it is tree-structured. So
for example, if a state s appears more than once on a path, or if two different paths
lead to s, then those appearances of s are treated as if they refer to different states.
This makes the algorithms easier to describe and matches our implementations of the
algorithms, which we used for the experiments presented in Chapter 7. However, the
theoretical results that we present in Chapter 7 apply equally well to more sophisti-
cated versions of these algorithms which attempt to exploit graph structure for the

sake of efficiency or completeness.
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For a search algorithm that treats the search graph as if it is tree-structured, any
state s considered during search results from a unique path through the graph from
So. Let g(so,s) denote the total cost of the actions along that path. Let A(s) be the
cost of the optimal solution from s to some state in G, if an optimal solution exists,
and +oo otherwise. The algorithms we present use a heuristic evaluation function iz,
which can be any mapping from S to the non-negative reals. The function h is often
thought of as an estimate of h. If h(s) < h(s) for all s, then h is called admissible.
The total evaluation of state s is f(s) = §(so,s) + h(s). For admissible h, the total
evaluation of s is a lower bound on the cost of an optimal solution from sy to some

g € G that passes through s.

4.1.1 Best-First Search and Uniform-Cost Search

There are several algorithms that go by the name “best-first search.” In Figure
4.3, we present what could be called best-first search using f = g+ h. For the sake
of brevity, we simply refer to it as best-first search from now on.

The algorithm maintains a list of states, (), which it keeps ordered by increasing
f. On each iteration of the while loop, best-first search removes the first state, s,
from the front of the list. It checks if s is a goal state. If so, then the path from s to
s is returned as the solution. Otherwise, the states immediately reachable from s are
placed in the list, sorted according to f . This process is called expanding state s.

The name A* refers to the special case of best-first search in which h is admissible.
A* has several important theoretical properties. First, if A* returns a solution, then
that solution is optimal. Second, if S is finite and if either all costs are positive or
the algorithm is modified slightly to detect and avoid zero-cost loops in the search
graph, then A* is guaranteed to terminate—returning a solution if any exists, and
returning “no solution” otherwise. Under the same conditions, best-first search using

an inadmissible A is complete and is guaranteed to terminate. However, there is no
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Inputs: initial state sy and a heuristic evaluation function h.

’

Outputs: a solution (path from sy to G) or “no solution”.

Let Q be a list of states, initialized to hold sg.
while () is not empty do
Remove the first state from Q. Call it s.
if s € G then
return the path from sg to s.
else
for all a € A(s) do
Add F(s,a) to Q, keeping the states in @ sorted by increasing f =g+ h.
end for
end if
end while
return “no solution”.

Figure 4.3. Best-first search using f =g+ h.

guarantee that a solution produced by such a search is optimal. A third important
property of A* is that it is optimally efficient. Roughly speaking, this means that A*
expands no more states than any other optimal heuristic search algorithm using the
same heuristic function [64].

Uniform-cost search is identical to the best-first search algorithm in Figure 4.3
except that it uses no heuristic evaluation function. States are evaluated and kept
sorted simply by §. Like A*, a solution returned by uniform-cost search is optimal.
Uniform-cost search terminates and is complete under the same conditions mentioned
above for best-first search.

If S is infinite, uniform-cost search and best-first search need not terminate, re-
gardless of whether solutions exists (optimal or otherwise). For best-first search,
the admissibility of h also does not ensure termination. The reader may verify, for
instance, that uniform-cost search search does not terminate on the search graphs de-

picted in Figures 4.2 and 3.2. Figure 4.4 shows a search graph on which uniform-cost
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Figure 4.4. A search graph with an optimal solution on which uniform-cost search
does not terminate. Arcs are labeled with the action costs.

search does not terminate, despite there being an optimal solution. Similar examples
can be constructed for best-first search. What remains true in the case of infinite S
is that if uniform-cost search or A* return a solution, then that solution is optimal.
In Section 7.2.1, we provide sufficient conditions based on Lyapunov functions for en-
suring the termination of best-first search and uniform-cost search in problems with

infinite state sets.

4.1.2 Depth-First Branch-and-Bound

Best-first search maintains a list of states to expand, ), which can grow quite large.
In practice, maintaining this list in memory is often the limiting factor in solving large
problems. The depth-first branch-and-bound algorithm (DFBnB), depicted in Figure
4.5, typically uses memory far more sparingly. DFBnB relies on a heuristic evaluation
function, h. Usually an admissible h is used, although the we allow for inadmissible
h as well.

DFBnB executes a depth-first traversal of the search graph, always keeping track
of the best solution it has found so far. It uses a heuristic evaluation function, iL, to

help decide when to prune a search path. Search does not progress beyond state s if

9(so, s) + h(s) > C, where C is the cost of the best solution found up to that point.
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Inputs: initial state s, and heuristic evaluation function h.
Outputs: P holds the best solution found, if any, and C' holds its cost.

P =“no solution”.
C = +o0.
DFBnBHelper(sy)
return (P,C).

DFBnBHelper(s)

if s € G then
if g(so,s) < C then
P = the path from sy to s.
C = §(so, s).
end if
return
else
if §(s0,5) + h(s) > C then
return
else
for all « € A(s) do
DFBnBHelper(F'(s, a))
end for
end if
end if

Figure 4.5. The depth-first branch-and-bound algorithm.
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Inputs: initial state sq and heuristic evaluation function h.
Outputs: a solution, P.

P = an empty list of actions.

while F'(sq, P) ¢ G do
Perform a limited-complexity search, rooted at F(sg, P).
Let s be the leaf state that minimizes §(F(so, P), s) + h(s )
Append to P the first action on the path from F(sq, P) to

end while

return P.

Figure 4.6. The limited look-ahead search algorithm.

The reasoning is that if h is admissible, then no solution through state s can cost less
than the solution already found.

DFBnB is not guaranteed to terminate when S is finite, because the depth-first
traversal may get trapped in a loop in the search graph. If DFBnB is augmented to
check for revisits to a state along a path (which is a non-standard augmentation),
then it terminates if S is finite. It returns “no solution” if there is no solution and
returns some solution otherwise. Like A*, if h is admissible and if DFBnB returns
a solution, then that solution is optimal. If S is infinite, then termination is not

guaranteed even with loop-checking.

4.1.3 Limited Look-Ahead Search

Limited look-ahead search [24, 43, 74|, also known as staged search and reced-
ing horizon control, is used when time or space limitations make finding an exact
solution to a problem impossible. The algorithm attempts to construct a solution
incrementally, one action at a time, using a series of limited-complexity searches.
The algorithm is presented in Figure 4.7. The variable P holds the growing action

sequence solution. The notation F'(sy, P) should be interpreted as the state that
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Figure 4.7. Example of a limited look-ahead search run.

results when the initial state of the environment is sy and the agent performs the
actions listed in P. Figure 4.7 provides an example of what a run might look like. At
each major iteration, a search is performed to assess which action would best extend
the current partial solution. The first action on the path to the best leaf in the search
tree, shaded in gray in Figure 4.7, is appended to P. This process is repeated until a
complete solution is constructed (if that ever happens).

A limited-complexity search could be, for example, an exhaustive search out to
some depth limit or a best-first search which terminates when a certain node limit
is reached. If a depth-limited DFBnB search is used at each iteration, we call the
algorithm repeated fixed-depth search (RFDS).

Limited look-ahead search is well-suited to real-time control problems, in which
there are typically tight deadlines for choosing what action to take next. One can
control the complexity of the searches in each major iteration in order to respond to
deadlines and still, hopefully, produce a path to goal. In general, there is no guar-
antee that a solution will be constructed, and certainly no guarantee of producing
an optimal solution. Even in settings that do not demand real-time control, limited
look-ahead search is important because it allows one to achieve different trade-offs

between search effort and solution quality. Generally, by putting more effort into the
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searches that happen at each iteration, a lower-cost solution results. One of the im-
portant theoretical contributions in Chapter 7 is providing sufficient conditions, based
on Lyapunov functions, that guarantee that limited look-ahead search constructs a so-
lution. This allows one to trade off search effort for solution quality, without worrying

whether the algorithm will find a solution at all.

4.2 Dynamic Programming-Based Methods

Dynamic programming methods are more general than heuristic search methods
because they can be applied to general, stochastic MDPs. We begin by describing the
standard theory and algorithms for finite state-set MDPs, which are used in numerous
applications in control, operations research, manufacturing, and many other fields.
We then describe reinforcement learning methods, both for finite MDPs and for MDPs
with state sets that are intractably-large for exact solution (including infinite). Our
presentation is based mostly on Bertsekas [8], Bertsekas and Tsitsiklis [11], and Sutton
and Barto [88]. Any result or idea we present in this section that is not explicitly

cited can be found in one of these three books.

4.2.1 Dynamic Programming for Finite MDPs

A finite MDP is an MDP in which the state set S is finite and the set of actions
available for any s € S, A(s), is finite. For the following discussion, we assume that in
any goal state there are no actions available, and that a summation or minimization
over zero actions is zero.

Recall that at time ¢ the state of the environment s; and the agent chooses an
action a; € A(s;). The immediate cost that the agent incurs is ¢; = C(s¢, at, wy) where
wy is a random disturbance. The next state of the environment is s;11 = F'(s4, ag, wy).

The random disturbances are independent and identically distributed for all . Thus,
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the expected immediate cost that the agent incurs when the state of the environment

is s and the agent takes action a can be defined, independently of £, as:
C? = Ew {C(S, a, w)} )

where the expectation is with respect to a random variable, w, which has the same
distribution as the w;. Similarly, one can define the probability that the next state
of the environment is s’ given that its present state is s and the agent chooses action
a as:

Py = Prob,(F(s,a,w) = §") .

We consider the cases of undiscounted or discounted costs, which can be treated
uniformly by allowing v € [0,1]. A thorough discussion of the average cost case can
be found in Puterman [70].

Recall that in Section 3.2 we defined the expected return of policy 7 when the

environment starts in state s as:

() :JEEOE{ S yelso=s } -
t=0

We will refer to J™(s) as the value of state s under policy 7. The Bellman equations

allow us to express the state values recursively as:
J™(s) = ™ + 72 i I (s : (4.1)

An optimal policy, , is defined to be one for which J7(s) < J™ (s) for all states s

and all policies 7. In a finite MDP there is always at least one optimal policy, often
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denoted 7*. Its state values, J™ , or just J*, are the unique solution to the Bellman

Optimality equations:

J*(s) = aIEIB(I;) (CZ + ’yijs,J*(s')> Vs . (4.2)
A policy is optimal if and only if the state values under that policy satisfy equation
4.2. Equivalently, 7 is optimal if and only if, for all s, 7(s) € argmingea(s)(c? +
¥ g PeeJ™(s")). If J* is known, then an optimal policy can be constructed simply
by assigning an action in argmingea(s)(c; + v, Pl J*(s')) to each s.

There are various methods for computing J*. One method is to solve the linear

program:

minimize: ) J(s)

subject to:  J(s) > ¢t + v, piyJ(s') forall s € S and a € A(s).

where J(s) for s ¢ G are the free variables. For s € G, J(s) should be taken as zero.
Since linear programming problems can be solved in polynomial time, the same is
true for finding optimal policies for finite MDPs.

Another method for computing J*, along with an optimal policy, is the policy
iteration algorithm shown in Figure 4.8. The algorithm starts with initial policy m
and computes its state values by solving the linear system of Equations 4.1. The
algorithm then constructs a new policy, 71, that is “greedy” with respect to the state
values of policy 7y, computes the state values under 7;, and so on. It can be shown
that J™ = J™-1 if and only if the policies are optimal. Otherwise, it can be shown
that J™(s) < J™-'(s) for all s and that for some s, J™(s') < J™-'(s'). In other
words, the sequence of policies generated by policy iteration improves at each step
until reaching an optimal policy. Since there are finitely many deterministic policies,

policy iteration terminates after a finite number of iterations.

36



Inputs: initial policy .
Outputs: optimal state values, J*, and an optimal policy, 7*.

140

Solve the system of Equations 4.1 to compute J™.

repeat
1 1+1
For all s, let m;(s) € argminge ags)(c? + 7>y po I 1 (s")).
Solve the system of Equations 4.1 to compute J™.

until J™ = JTi—1

J = Jm

T

return (J*, %)

Figure 4.8. The policy iteration algorithm.

Inputs: initial state values Jp.

for:=1,2,3,...do
For all s, let J;(s) = mingea(s)(c? + v >y ey Ji—1(s"))
end for

Figure 4.9. The value iteration algorithm.
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For most problems, policy iteration is more efficient than the linear programming
solution. However, repeatedly solving the system of equations 4.1 is still a big com-
putational burden. The value iteration algorithm, shown in Figure 4.9, tends to be
faster, and also has the advantage of having an easy implementation. The initial state
values, Jy, can be any assignment of real numbers to states. A good choice is Jy = 0.
Successive J; are generated by iteratively applying the Bellman Optimality equations
4.2 as update rules. Under a variety of conditions, lim; ,, J; = J*.

As written, the algorithm does not terminate. Of course, in reality one must
terminate the algorithm at some point. There are formulas bounding the difference
between J; and J* as a function of 7 or other quantities, and various rules for deter-
mining when to stop. J; converges to J* exponentially quickly, so one does not need
to wait too long to have a good estimate of J*. It is also not necessary to store the J;
separately. One can keep a single vector of estimates, J, and repeatedly update it as:
J(8) <= mingea(s) (c2+7v >, p2yJ(s')). If all states are updated infinitely many times,
then the values converge to J*. This approach is closest in design to the reinforcement

learning methods presented in the next section.

4.2.2 Reinforcement Learning for Finite MDPs.

Linear programming, policy iteration and value iteration are all model-based
algorithms—they assume the expected costs, cj, and transition probabilities, pS,,
are known. By contrast, many reinforcement learning algorithms assume data about
the environment comes as “experiences” of the form (s,a) — (¢, s'), meaning that the
environment was in state s and the agent took action a, which resulted in immediate
cost ¢ and next state s'. One advantage of this assumption is that it allows reinforce-
ment learning agents to be interfaced with real or simulated environments for which

the expected costs and transition probabilities are not known explicitly.
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The algorithms we consider below rely on a slightly different way of writing value
functions than presented in the previous section. Instead of computing the values
of states, these algorithms compute the values of state-action pairs. The value of
a state-action pair (s,a), denoted Q" (s,a), is defined as the expected return if the
environment starts in state s, the agent begins by taking action a, and follows policy

7 thereafter [99]:

QW( ) nh_{goE{Z’YCt‘So—S ao—a} .

t=0

Q™ is related to J™, and to itself, by a linear system of Bellman equations:

QW(S’G) = C +72pss"]ﬂ )
= ¢ +72p88, Z 7(s',a)Q"(s',a') Vs, a .

CLIEA( I)

The Bellman Optimality equations for action-values, whose solution is unique in most

cases, are:

Q" (s,a) = +’yZpSS, min Q (¢',a") Vs,a . (4.3)

a'€A(s
If @Q* is known, an optimal pohcy can be easily identified by letting
7*(s) € argminge 4¢5) Q* (s, a).

One of the best-known reinforcement learning algorithms, Q-learning [99], is pre-
sented in Figure 4.10. For each experience (s;,a;) — (¢4, 5, ), the quantity ¢; +
Ymingeas,) Q(s;, ') can be viewed as a possibly-biased stochastic sample, or esti-
mate, of the return expected from taking action a; in state s;. In other words, it is
a sample of the right-hand side of the Bellman Optimality equation (4.3). Q(s;, a;)
is modified to be closer to this estimate, with a step size parameter o; determining
the “weight” of the update. If the experience sequence contains an infinite number of
independent samples of the outcomes of each state-action pair, and if the step size pa-

rameters q; converge to zero at an appropriate rate, then the estimates () converge to
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Inputs: initial action values @) and an infinite sequence of experience {(s;,a;) —
(ciysh)},1€{0,1,2,...}.

for i=0,1,2,... do
Q(SZ’, a,-) — (1 — (l/i)Q(Si, ai) + O!Z'(Ci + vminuzeA(SIi) Q(S;, CL,)).
end for

Figure 4.10. The Q-learning algorithm.

@* with probability one [88]. The relative number of samples of different state-action
pairs is not important for convergence.

How is the experience used by Q-learning generated? As long as the outcome of
each (s,a) is sampled infinitely many times, it does not matter from a convergence
point of view. In practice, learning is often based on experience from simulated or real
trajectories. In either case, intelligent selection of experience can greatly increase the
speed of learning. When a real environment is being controlled and real costs are being
incurred, there is even more reason for the agent to collect its experience wisely. The
e-greedy Q-learning algorithm combines Q-learning updates with a simple method for
choosing actions (and thus generating experience) in simulation or in reality. This
algorithm is presented in Figure 4.11. At each time step, with probability €, a random
action is selected. This ensures that each action is tried infinitely many times and
that each reachable state is visited infinitely many times. With probability 1 — ¢, an
action currently estimated to have minimal expected long-term cost is selected. This
focuses the experience along “good” trajectories and keeps down incurred costs, which
can be important for on-line learning situations. Again, if the step size parameters,
«;, go to zero at an appropriate rate, () converges to Q*. Note that in the update

equation, if s;;1 € G, that last term is taken to be zero, so that the update is really

just Q(si,a;) + (1 — a;)Q(84, 4;) + e
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Inputs: initial action values (), exploration rate €, and an environment in initial state
S0-

for:=0,1,2,... do
Choose action a;:
Let p be uniformly random in [0,1].
if p < e then
Choose a; uniformly randomly from A(s;).
else
Choose a; from arg minge 4(5;) Q(5i, @).
end if

Ezecute the action:
Apply action a; to the environment.
Observe ¢; and s;41.
Update @:
Q(Si, ai) — (1 — ai)Q(si, ai) + O!Z'(CZ' + ’Ymina:eA(SHl) Q(Si—l—la a')).
Reset environment, if necessary:
if Si+1 € G then
Reset s;;1 according to a start state distribution or by some other means.

end if
end for

Figure 4.11. The e-greedy Q-learning algorithm.
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Another popular reinforcement learning algorithm is Sarsa (the algorithm is due
to Rummery and Niranjan [73]; the name is due to Sutton [87]). Sarsa updates
action-value estimates on the basis of experiences of the form: (s,a) — (c,s',d').
This notation means that the state of the environment was s, the agent chose action
a, incurred immediate cost ¢, the next state of the environment was s’, and the agent

chose action a’. The Sarsa update rule for such an experience is:

Q(s,a) + (1 —a)Q(s,a) + alc+~vQ(s',a")) .

The e-greedy Sarsa algorithm is just like the e-greedy Q-learning algorithm except
that the Sarsa update is used instead of the Q-learning update. Note that if € is small,
o' is usually in argmingeacs) Q(s', @), thus ¢ +vQ(s',a') = ¢ + ymingea) Q(s', a).
That is, the Q-learning and Sarsa updates are identical most of the time. It has been
shown that if o; and € are taken to zero at appropriate rates, then () converges to Q*
under the e-greedy Sarsa algorithm [79].

It is not immediately obvious why Sarsa might be preferred over Q-learning, and
for finite MDPs there often is no significant difference. However, a generalization of
the Sarsa algorithm, called Sarsa()), has variance-reduction properties which usually
allow much faster learning than either Q-learning or Sarsa. Further, when generalizing
function approximators, such as neural networks, are used to estimate )-values for
MDPs with large or infinite state sets, Sarsa(\) has been observed to have much
better stability properties than Q-Learning, Sarsa, and other algorithms [87, 88]:
the approximations are much less likely to not converge. The next section describes
how Q-learning and Sarsa may be combined with generalizing function approximators
such as neural networks. The more complex Sarsa()) algorithm, which we use in our
experiments in Chapters 8 and 9, is described in Appendix B.

There are many other important reinforcement learning algorithms. The TD and

TD(A) algorithms are methods for learning J™ for a given 7 based on experience
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[86]. There are several versions of Q(\) which give alternate methods for learning Q*
[99, 65]. The advantage learning algorithm estimates both J* and @Q* [4]. There are
also approaches to reinforcement learning in which experience is used to learn esti-
mates of the MDP’s immediate costs, ¢}, and transition probabilities, p?,. From this
information, optimal values or policies can be computed by the dynamic programming

methods discussed in Section 4.2 [88].

4.2.3 Reinforcement Learning with Differentiable Value Function Ap-
proximators.

When an MDP’s state set is very large or infinite, one simply cannot store J- or Q-
values for every state. The typical reinforcement learning approach to this problem
is to use a tractably-sized, parameterized function approximator such as a neural
network to approximate the value function. That is, one assumes an action-value
function of the form Q(s, a,w) where w is a vector of free parameters to be adjusted
by the learning algorithm.

When Q is differentiable in w, a common strategy for tuning w is to use a gradient-
based version of one of the standard reinforcement learning algorithms, such as Q-
learning or Sarsa. For example, consider the standard Q-learning update based on

the experience (s,a) — (¢, s'):

Q(Sa a’) — (1 - (l’)Q(S, a) + Q(C + ya/gg:) Q(Sla al)) .

This can also be written as:

Q(Saa) A Q(Saa) + O,/(C+ fyallfenjg’)Q(S,’ CL,) - Q(S, a‘)) ’

or AQ(s,a) = a(cty min Qs'a) —Qs,a)) -

a’€A(s
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The right hand side, after the “a”, can be viewed as an error. For (* the error is
zero on average for all states. If the error is positive, Q(s, a) needs to be increased in
order to reduce the error. If the error is negative, Q(s, a) should be decreased. When
using a differentiable function approximator, Q, one effects a change in Q(s, a,w) by
changing w. Thus, in the gradient-descent version of Q-learning, the free parameters

are adjusted as:

Aw = alc+ry gg(n)Q(s d,w) = Q(s,0,w)) VuQ(s, a,w)

Similarly, the gradient-descent version of a Sarsa update, based on the experience

(s,a) = (¢, §,a), is:

Aw = a(c+7Q(s,d,w) = Q(s,a,w)) VuQ(s, a,w)

Though this approach to approximating value functions has been shown to be
unsound in general [5, 11, 94|, it has generated the greatest successes of the field.
For example, Tesauro’s celebrated backgammon player TD-gammon used the TD())
algorithm with a neural network to approximate J* in a manner similar to how
Sarsa(\) approximates @* [91]. The approach has also been used successfully to solve
a number of dynamical-system control problems (see, e.g., Sutton [87] or Santamaria
et al. [75]). In Chapters 8 and 9 we use the Sarsa()) algorithm along with a special
kind of linear function approximator to learn good policies for pendulum and robot

arm control problems.

4.3 Direct Policy Optimization
A third major class of approaches to solving MDPs is direct policy optimization.
In this approach, a single numerical value is attached to each policy in some set, and

optimization algorithms are used to find the best policy in that set.

44



Recall that in Section 3.2 we offered several definitions for the value of a policy with
respect to a given initial state. A common approach to assigning a single numerical
value to a policy is to average the policy’s value with respect to each possible initial
state, weighed by the initial state distribution of the MDP. That is, the value assigned
to the policy is just the return or average cost that can be expected before the initial
state is observed.

Much of the research in this area has focused on using optimization algorithms
based on gradient-descent to search in a continuous space of stochastic policies—
policies which associate a probability distribution over the allowed actions to each
state. Early work of this sort in the reinforcement learning community includes the
REINFORCE algorithm [102] and certain actor-critic methods (see, e.g., Gullapalli
(30, 29]). Lately, there has been a resurgence of interest in this approach due to its
superior convergence properties compared to the reinforcement learning approaches
described in Section 4.2.3 [6, 89, 7].

Other approaches to policy optimization include evolutionary algorithms (e.g.,
Ram et al. [71], and Moriarty et al. [53]) and various versions of local search (e.g.,
Rosenstein and Barto [72], and Strens and Moore [85]).

We do not use direction optimization methods in this thesis, although we certainly
could. Indeed, such approaches are often at their best when a “reasonable” class of
possible policies can be identified from the outset. This is precisely what Lyapunov

domain knowledge and other control-theoretic techniques provide.
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CHAPTER 5
LYAPUNOV FUNCTIONS

Lyapunov functions are a fundamental tool for studying the stability and con-
vergence of systems that evolve through time. The concept was originally devised
by A. M. Lyapunov for studying the stability of systems of differential equations.
Since then, Lyapunov functions have been adopted and used in many other fields. In
control theory and robotics, Lyapunov arguments are often used to validate control
designs by showing that the dynamics of the controlled system are stable [96, 19, 48].
Lyapunov analyses are used in designing controllers for queues in network routing
problems, where the aim is to ensure stability of the network traffic (see, e.g., Basar
[3]). More esoteric uses of Lyapunov functions include establishing the convergence
of stochastic approximation algorithms [11] and recurrent neural networks [32].

Lyapunov functions are often pictured as energy functions. Although various
definitions are used in different settings, a Lyapunov function is generally a positive,
scalar function of the state of a system that decreases monotonically along system
trajectories. Intuitively, the system “dissipates” the “energy” represented by the
Lyapunov function. A dissipative system, of course, settles into a state of locally
minimal energy—that is, it stabilizes. Another view of Lyapunov functions is as
generalized distance-to-target or error functions. This view is common in robotics,
for example, where Lyapunov functions are used to prove that a robot approaches a

desired target configuration from any initial state or that it tracks a desired trajectory.
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Figure 5.1. Sample trajectories of the system © = —x.

5.1 Two Examples

We present several precise Lyapunov function definitions in Section 5.2. To build
further intuition about Lyapunov functions, we first present stability proofs for two
simple, uncontrolled, continuous-time systems.

For the first example, imagine that a particle is moving along the real line, and
that its position as a function of time is denoted by z(t) for ¢ € [0,00). Suppose the
particle starts at some 2o = 2(0) € R and that the particle’s motion is described by
the differential equation:

T=-—x.

This is one of the most elementary differential equations, and can readily be solved to
yield a closed formula for the particle’s position at any time: z(¢) = zge™*. Examining
the solution, we see that for any x, the particle approaches the origin as ¢ — oo,

t

since lim; ,o, zge™ = 0. Figure 5.1 plots trajectories of the system for several initial

conditions.
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gravity

Figure 5.2. The single-link pendulum.

The same asymptotic result can be established using a Lyapunov argument. Let
L(z) = %xQ, for x € R. L is the Lyapunov function we use to analyze the asymptotic
behavior of the system. Define L(z) = 4L . 4t — 3. (—z) = —2®. Since L(z) < 0 for
all x € R, along any trajectory z(t), L(x(t)) is monotonically non-increasing. Since
L(z) > 0 for all z € R, L(x(t)) must have some lower limit: lim;_,,, L(z(t)) =1 > 0.
Lastly, since L(z(t)) — [, it must be that L(z(t)) — 0. That only happens at the
origin, so we can conclude z(t) — 0.

One of the benefits of the Lyapunov approach is that it does not require explicitly
solving the differential equation, which in general is quite difficult. The Lyapunov
argument above uses only differentiation and simple limiting arguments. Of course,
the Lyapunov approach does not give as much information as a complete solution
to the differential equation. The Lyapunov argument identifies the limiting behavior
of a trajectory, and thus provides a qualitative description of the dynamics of the
system. Questions about the state of the system at precise times are not answered
by the this approach.

As a second example, consider the single-link pendulum depicted in Figure 5.2.
The state of the pendulum is given by an angular position, #, and an angular velocity,
f. We can model the acceleration of the pendulum swinging under the influence of

gravity and slowed by friction as:
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0 =sin(h) — ch ,

where c is a positive constant. This assumes the pendulum has unit length and mass
and assumes a gravitational constant of 1. The sin(f) term is due to gravity and the
—cf term is due to friction.

The mechanical energy of the pendulum is ME(6, ) = 1 + cos(6) + %92, the first
two terms being the potential energy and the last term being the kinetic energy. The
time derivative of ME along system trajectories is ME(6, 8) = —sin(8)0 4 66 = —c#>.
So, ME is non-negative for all system states and non-increasing along all system
trajectories. From any initial state, then, ME converges to some | € R and ME — 0.
Since ME = 0 only when 6 = 0, the pendulum must converge to a state with 6 =0.
Since (6, 0) = (km,0) for k € {0,£1,42,...} are the only equilibrium points with
= 0, the pendulum must converge to one of those points. These are zero velocity
states with the pendulum either perfectly upright or hanging straight down. Since
the upright positions are not stable equilibria, we can conclude that for “most” initial

conditions, the pendulum converges to the zero-energy, hanging-downward position.

5.2 Lyapunov Functions for Discrete-Time Processes and Con-

trol

Markov processes and MDPs describe systems evolving in discrete time on general
state sets. Our definitions of Lyapunov functions are aimed at this sort of environ-
ment, and thus differ in detail from the traditional definitions of Lyapunov functions
for continuous-state, continuous-time systems. Below, we define Lyapunov functions
for Markov processes and control Lyapunov functions for MDPs. We also describe
two types of descent: guaranteed descent and probabilistic descent. Our definition of
the state of a Markov process descending on a Lyapunov function is very similar to

one given in Meyn and Tweedie [52]. The other definitions are new, to our knowledge.
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Figure 5.3. A sample trajectory of the system z(t + 1) = z(t)/2.

Consider a Markov process with dynamics F' and state set S. Let T'C S and let
L:S — R such that L(s) >0 for all s ¢ T.

Definition 5.1 The state of the process descends on L outside of T if there exists

d > 0 such that for all s ¢ T and all w, F(s,w) € T or L(s) — L(F(s,w)) > 4.

In other words, the state of the process descends on L if, from any s ¢ T, the next
state of the process is guaranteed either to be in T or to be lower on L by at least 9.
Let us briefly consider an example.

Consider a Markov process with S = IR and let z(t) denote the state of the process
at times ¢t = 0,1,2,... Suppose the next state of the process is always given by the
rule z(t + 1) = z(t)/2. Figure 5.3 plots a trajectory of this process, starting from
z(0) = 1. Let L(x) = |z| for x € R and suppose 7" = {0}. Does the state of this
process descend on L? It does not. The state certainly approaches 7" from any initial
condition, and L(z(t)) — 0. However, the amount by which the state of the process
descends on L at every step also decreases to zero, and the state never actually reaches

T. If we suppose that T = (—¢, +€) for some € > 0, then the state of the process does
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descend on L. For this choice of 7" and for any s ¢ T, the next state of the process
is always in T or lower on L by at least ¢/2 > 0.

We find this guaranteed-descent definition most useful in studying deterministic
systems. In most realistic stochastic systems, guaranteed descent is unlikely to hold.
For this reason, we define probabilistic descent. Again, consider a Markov process
with dynamics F' and state set S. Let T'C S and let L : S — R satisfy L(s) > 0 for
all s ¢ T.

Definition 5.2 The state of the process descends probabilistically on L outside of T

if there exists § > 0 and p > 0 such that for all s ¢ T':

Prob,(F(s,w) € T or L(s) — L(F(s,w)) >d) > p.

In other words, on every time step the state of the process descends with prob-
ability at least p > 0. What happens the other 1 — p fraction of the time is left
unspecified. We say that L is a Lyapunov function with target set T" for a Markov
process if the state of the process descends on L or descends probabilistically on L
outside of T'.

The reason we are interested in Lyapunov functions is that they provide some
knowledge about how a process behaves over time. What conclusions can be drawn
from knowledge of a Lyapunov function for a Markov process? The following two

theorems provide answers to this question.

Theorem 5.3 If the state of a Markov process descends on a Lyapunov function L
outside of T, then from any so ¢ T, the state of the process enters T in at most

[L(s9)/d] time steps.

Proof: Suppose that the state of the process does not enter 7" within k =
[L(so)/d] time steps. Since the state of the process does not enter 7', each successive

state of the process is at least 6 lower on L. Thus fort € {0,...,k}, L(s;) < L(sq)—16.
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In particular, L(sg) < L(so) —kd = L(so) —[L(s0)/d]0 < L(so)— L(s9) = 0. However,
if sy ¢ T, then L(s;) must be positive. Thus, we have a contradiction. [J

If one only knows that the state of a Markov process descends probabilistically on
a Lyapunov function, then one cannot draw nearly as strong a conclusion. Although
the state descends with probability at least p, with probability as much as 1 — p the
state may do something totally different, such as move “far away” from 7. However,
if L is bounded above outside of T, so that the state of the process cannot get “too

far” from T, then entering 7" eventually is certain.

Theorem 5.4 If the state of a Markov process descends probabilistically on a Lya-
punov function L outside of T, and if L(s) < U for some U € R and all s ¢ T, then
for any sy ¢ T, the state of the process enters T eventually with probability one. The
probability that the state of the process does not enter T' by time 7 s bounded above

by a function that decays exponentially to zero in 7.

Proof: Regardless of s, if the state of the process descends on L for [U/§] steps
in a row, then clearly it must enter 7. The probability of this happening is at least
pr = plU/%1 > 0, where p is the probability of descent on any time step. This means
that the probability that the state of the process does not enter 7" in the first [U/J]
time steps is no more than 1 — py. The probability that the state of the process
does not enter T in the first 2[U/d] time steps in no more than (1 — pr)?. The
probability that state of the process does not enter T in the first £[U/d] times steps

is at most (1 — py)*.

The probability that state of the process never enters T is
limy_,00(1 — pr)* = 0. This establishes both claims of the theorem. [J

For MDPs there is added complexity because the environment receives a control
input, or action, from the agent. We begin by defining what it means for an action

to cause the state of the environment to descend, and then define control Lyapunov

functions for MDPs.
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Consider an MDP with dynamics F' and state set S. Let 7' C Sandlet L: S — R
such that L(s) > 0 for all s ¢ T

Definition 5.5 For s ¢ T, action a € A(s) causes the state of the environment to

descend on L by an amount 6 if for all w, F(s,a,w) € T or L(s) — L(F(s,a,w)) > 4.

Definition 5.6 For s ¢ T, action a € A(s) causes the state of the environment to

descend on L by an amount § with probability at least p if:

Proby, (F(s,a,w) € T or L(s) — L(F(s,a,w)) >§) > p .

Definition 5.7 L is a control Lyapunov function (CLF) with target set T for an
MDP if, for fited 6 > 0, p > 0 and all s ¢ T there exists an action that causes the

state of the environment to descend on L with probability at least p by amount J.

Definition 5.8 If there erists 6 > 0 such that for all s ¢ T, all a € A(s) cause the
state of the environment to descend on L by an amount §, then we say “all actions
descend on L.” If there exists § > 0 and p > 0 such that for all s ¢ T, all a € A(s)
cause the state of the environment to descend on L by an amount § with probability

at least p, then we say “all actions descend probabilistically on L.”

Deriving useful results from these definitions is mostly left for subsequent chap-
ters. First, we make a few brief comments on the conditions under which Lyapunov

functions exist and how they can be identified for particular systems.

5.3 Existence and Identification of Lyapunov Functions

For a Markov process, identifying a Lyapunov function establishes that the pro-
cess can reach the set 7' (and will reach 7', if descent is guaranteed or if L is bounded
above.) Because for infinite-state processes, such reachability questions are undecid-

able in general, Lyapunov functions should be considered a powerful form of domain
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knowledge. This raises the question: under what conditions do Lyapunov functions
exists, and how can they be found? The following discussion focuses on MDPs, though
similar results hold for Markov processes.

For deterministic MDPs, it turns out that a CLF exists if and only if 7" is reachable
from all sy ¢ T. In this case, reachable means that there exists some finite sequence

of actions which, applied from state sq, brings the state of the environment to 7.

Theorem 5.9 Given a deterministic MDP with state set S and T C S, there exists

a CLF L with target set T if and only if T is reachable from all sy ¢ T.

Proof: The forward implication holds because if L is a CLF, then the agent can
always choose an action that descends. By reasoning similar to the proof of Theorem
5.3, T is reachable from s in at most [L(s¢)/d] steps. For the reverse direction, let
Ty = T and define T; = {s : s ¢ U'_(T; and there exists a € A(s) such that F(s,a) €
T;—1}. That is, T; is the set of states for which the minimum length path to 7 is of
length 4. Let L(s) = {i : s € T;}. L is well-defined since we assume 7T is reachable
from every state, and one can easily check that L is a Lyapunov function. [

If one does not restrict attention to deterministic MDPs, then the existence of a
CLF is not equivalent to the reachability of 7. This is demonstrated by the example
MDP in Figure 5.4. In this diagram, the circles represent possible states of the MDP.
T contains only the left-most state. There is only one action available in each state
outside of 7', indicated by the branching arrows exiting the corresponding circles.
With some probability, the action leaves the state of the environment unchanged.
Otherwise the environment moves to the state immediately to the left. In this MDP,
the environment eventually reaches 7" with probability one from any initial state
so ¢ T. However, there is no CLF for this MDP. As indicated in the diagram, the
probability that an action leaves the state of the environment unchanged grows for
states farther to the right. Because this probability grows arbitrarily close to one,

there can be no fixed probability p > 0 of descent for every state outside of 7.
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Figure 5.4. An MDP demonstrating that CLFs, as we have defined them, need not
exist for stochastic systems even if T is reachable.

Actually determining a Lyapunov function for a given problem can be a difficult
task. In practice, Lyapunov functions are usually identified through some combina-
tion of skill, intuition, and expertise. However, one does not always have to develop a
Lyapunov function from scratch. For many general classes of environments, standard
methods for constructing Lyapunov functions are known. Examples include: envi-
ronments whose dynamics are linear or are feedback linearizable [96]; environments
whose dynamics have only upper-triangular non-linearities, only lower-triangular non-
linearities, or certain combinations of the two [45, 78]; and many more. Lyapunov
functions have been developed for many important problem domains, including: robot
manipulator control; robot navigation; satellite, ship, and airplane steering; network
queue control; decentralized /multi-agent coordination; and chemical process control,
to name a few [81, 48, 96, 57]. So, although finding Lyapunov functions is difficult
in general, there are a number of options available to the practitioner who seeks one,
and there have been many successful applications.

For many problems, the designer of the control system also has some degree of
freedom in designing the system to be controlled. For example, robots used in indus-
trial manufacturing are not off-the-shelf, generic items. Typically they are specially
designed for the task they are supposed to perform. This makes the problem of con-
trolling the robot to achieve the desired task much simpler. Similarly, the approach
we advocate is to design the MDP that the agent has to solve using relevant domain
knowledge, such that the control problem is tractable, and theoretical safety and

performance guarantees can be established.
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CHAPTER 6
EXAMPLE DOMAINS AND LYAPUNOV ANALYSES

In this chapter we introduce several problem domains that we use to demonstrate
the main ideas of the thesis. We present Lyapunov analyses and design controllers
that, while not optimal, provably enjoy non-trivial performance guarantees (e.g., guar-
antees on bringing the environment to a goal state on every trial). In subsequent
chapters, we apply optimal control algorithms to these domains. We use the analyses
from this chapter to ensure well-definedness of the control problems we formulate, to
ensure the completeness of the optimal control algorithms we apply, and to establish

performance guarantees for algorithms that do not offer such guarantees otherwise.

6.1 Deterministic Pendulum Swing-Up and Balance

Pendulum control problems have been a mainstay of control research for many
years, in part because pendulum dynamics are simply stated yet highly nonlin-
ear. Many researchers have discussed the role of mechanical energy in controlling
pendulum-type systems [84, 14, 15, 22, 68, 67]. The standard tasks are either to
swing the pendulum’s end point above some height (swing-up) or to swing the pen-
dulum up and balance it in a vertical position (swing-up and balance). In either task,
the goal states have greater total mechanical energy than the initial state, which is
typically the hanging-down, rest position. Thus, any controller that solves one of
these tasks must somehow impart a certain amount of energy to the system.

Recall that the state of the pendulum, depicted in Figure 6.1, is given by an

angular position, § € [—m, 7], and an angular velocity, 0 € R. For the first control
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gravity

Figure 6.1. The single-link pendulum.

task we study, we assume a deterministic, frictionless pendulum controlled by torque

applied to the fulcrum of the pendulum. This results in the acceleration equation:
0 =sinf+u ,

where the sine term is due to gravity and u is the control torque. We assume u is
bounded in magnitude by some ., > 0 that is relatively small. When t,,, < 1,
the influence of gravity is larger than u,,,, for some states, making the pendulum
underpowered. In particular, it is not possible to drive the state of the pendulum
directly to any desired value, nor is it possible to hold the pendulum at any given
position. The first task we study is minimum-time swing-up to any near-upright, near-
stationary state. Specifically, we choose the goal set G, = {(6, 0) : ||(9,0)] < 0.01}.

The mechanical energy of the pendulum is
. 1.,
ME(#,0) =1+ cos§ + 50 . (6.1)

When the pendulum is upright and stationary, it has a mechanical energy of 2. For
any other state with ME = 2, if u is taken to be zero, the natural dynamics of
the pendulum will cause it to swing upright and asymptotically approach the state

(0, 0) = (0,0). The swing-up and balance problem for the single-link, frictionless
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pendulum can thus be reduced to the problem of achieving any state with ME = 2
(assuming the pendulum starts with less energy than 2). In other words, we can
define a surrogate goal set of G2, , = {(f, 0) | ME(6, §) = 2}, and upon reaching that

set, dictate the choice u = 0 in order to allow the pendulum to swing to near-upright.

6.1.1 First Attempt to Design a Controller
Let us design a controller based on the idea of increasing the pendulum’s energy

until it hits the set G]% The time derivative of the pendulum’s energy is

end*
ME = —sin(6)0 + 60 = fu .

An obvious strategy is to pick u to be of the same sign as 0 and of maximum mag-
nitude, %;,q,. This maximizes, at each instant, the rate of increase of ME. When
= 0, a natural choice is to match the sign of € so that the pendulum is accelerated
in the same direction as gravity. This choice also ensures that the control signal, u, is
piecewise continuous from the right in time. We call this strategy the “energy ascent”

(EA) control law:

. +lUpmag 10> 0o0r (9 =0and 6> 0)
EA(0,0) =

—Uma if9<00r(9=0and9<0)

Is this a good control law? Under some circumstances it brings the state of the

pendulum to G}, and then G}, quickly. Under other circumstances it works

end? end?’

poorly or not at all. Figure 6.2 plots the time it takes EA to bring the state of the
and G?

end “eng from initial state (m,0) for a range of Upq,. Generally,

pendulum to G,
as Umger increases, the time to reach the goal set decreases, as one would expect.
However, the precise relationship is complex and non-monotonic. We argue below

that for isolated values of u,,.,,—roughly at the spikes in the time-to-goal curves—
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Figure 6.2. The time it takes EA to bring the state of the pendulum to the two goal
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Figure 6.3. Pendulum controlled by EA approaching equilibrium with gravity.

the state of the pendulum does not reach the goal set at all. The time-to-goal goes
to infinity at these points.

Why is this? When the pendulum is underpowered, any controller must swing the
pendulum back and forth a number of times until it has enough mechanical energy
to swing upright. The step-wise appearance of the curves reflects differences in the
number of swings needed before enough energy is imparted. The spikes in the curves
separate regions of w,,,; for which different numbers of swings are needed to get up,
and this is where the EA controller runs into trouble.

Note that when the pendulum is underpowered (upq; < 1), there are states in
which applying +u,,.,; torque exactly cancels the acceleration due to gravity. In par-

ticular, let us focus on the angular position 6 = sin (Umaz ). For the pendulum

Umaz

to swing upright, its position must pass either 6 or —6 There are three

Umaz Umaz*

qualitatively different behaviors that may occur, as depicted in Figure 6.3. For some

choices of u,,.;, the trajectory generated by EA passes through a state with position

) and on to the upright position. For other choices of u,,;, the pendulum may

Umaz

swing towards position 6 but not reach it, instead swinging back the other way

Umaz

and passing —6 on the way to upright. For isolated values of %4, the pendulum

Umaz

approaches 6 asymptotically, neither passing by, nor swinging back the other way.

Umaz
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This is what happens at the spikes in the curves in Figure 6.2. EA causes the pendu-

lum to approach one of 46 the equilibrium points where +u,,,,; torque exactly

Umaz )
balances the acceleration due to gravity. The pendulum’s velocity is nonzero as it ap-
proaches this equilibrium point, and so the mechanical energy of the pendulum keeps

increasing. However, the rate of increase of the energy goes to zero and the pendulum

never reaches mechanical energy ME = 2. That is, the state of the pendulum never

2
pend’

1

and thus never reaches G, 4.

reaches G

6.1.2 Second Controller and Lyapunov Analysis

The problem with the EA controller is that it can approach equilibrium points
where +u,,,, torque exactly balances the torque due to gravity. This problem can be
avoided if we design a controller that follows the same basic pattern, but that does
something different when the pendulum is near one of these equilibrium points. Our
previous analysis showed that we should choose u to be of the same sign as 0 in order
to ensure ME > 0. To avoid the equilibrium problem, we propose a modification
of the EA controller that switches to a torque of lower magnitude, but of the same
sign, when the pendulum is near equilibrium. For reasons that become clear later,
the modified energy ascent (MEA) control law depends on three parameters: p, the
magnitude of the torque applied by the motor “most of the time”, and € and ¢;,
which determine the “near to equilibrium” region of the state space. Four ranges of
near-equilibrium positions are defined by p and €y, as depicted in Figure 6.4. Letting

0, = sin™' (1), define:

bp=—-1+86,, Eq = 1[0y — €g,60 + €9) ,
6, =—0, , Ei =100, —€,61 +¢)
6, =146, , Ey = (6, — €,05 + €] ,
b3=m—0,, E3 = (63 — €5,03 + €] -
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Figure 6.4. Near-equilibrium ranges for the MEA controller.

The MEA control law is:

+u if(@=0and @ >0)or (§>0and (> ¢;orfd¢ EyUE))

. +1, iffe 0,¢;] and 0 € EgU E
MEAH’@’CG(Q,H) :< ZIU' ‘ ( 9] 0 1
—2p if 0 € [—¢4,0) and 0 € E, U E;

—p if (@=0and # <0)or (§<0and (f<e;orb¢ EyU FEs))

Theorem 6.1 For any A > 0, any p > 0, and appropriate €y and e, there exists
0 > 0, such that for any wnitial conditions (00,90), if the pendulum is controlled
according to MEA, ¢, .. for A time, then the mechanical energy of the pendulum is

greater by at least § at the end of that time.

A proof of this theorem can be found in Appendix A, along with the definition of
appropriate €y and ;.

Suppose the pendulum is controlled by MEA, and consider the state of the pendu-
lum just at the discrete points in time: ¢t = 0, A, 2A, ... Viewed this way, the system
is a deterministic Markov process. Suppose we define Lyenq(6, 0) =2 — ME(6, 0) and

T = {(6,6) : ME(6,0) > 2}. By the previous theorem, the state of the pendulum
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Figure 6.5. The time it takes MEA to bring the state of the penduulum to the two
goal sets.

descends on Ly,q outside of T'. In other words, Lye,q is a Lyapunov function. For
any (6o, 6p) such that ME(0,0) < 2, Theorem 5.3 (the guaranteed-descent theorem
for Markov processes) ensures that the state of the pendulum reaches T within time
[(2—ME 6y, 65))A/8]. Thus, the MEA controller provably brings the state of the pen-
dulum to Giend. From there, applying zero torque allows the state of the pendulum
to reach G},end, so the overall strategy provably succeeds in swinging the pendulum
upright.

Figure 6.5 displays the time it takes for the state of the pendulum to reach G ,,,

and G2,,, under the MEA control law. The curves are subtly different from those

produced by the EA control law. In Figure 6.6 we plot the time to G . for EA

pend
and MEA for a small range of u,,,, surrounding one of the spikes in the curves. The

solid curve shows how the performance of EA degenerates around a specific value of
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Umaz, Tesulting in a trajectory that does not reach G'Il,end. MEA avoids this problem,

as is seen clearly from the dashed curve. The spike in time-to-goal is replaced by a
shallow trough. (MEA appears to have a spike of its own in a different location, but
this spike does not go to infinity, as we prove in Appendix A.) However, note that
neither control law is better than the other for all values of ;4.

Note also that if one increases umq:, then one can apply a strictly greater set
of control laws to the problem. So, the minimum achievable time-to-goal is a non-
increasing function of ;. The non-monotonicity of the time-to-goal curves indicates
that for many values of u,,4., neither EA nor MEA is optimal.

In summary, we can use MEA to increase the pendulum’s mechanical energy
to 2, and then let it free-swing upright. MEA provably achieves the basic task of
swinging the pendulum up and balancing it. However, MEA is not optimal. We

could continue trying to design a good control law by hand. Instead, we explore the

64



possibility of using state-space search and reinforcement learning to determine better
control strategies. In some cases, we incorporate our knowledge of Ly.,q and MEA
into the MDP we formulate, ensuring that the problem can be solved and establishing
performance guarantees for the solution algorithms.

The analysis and design presented above demonstrate several features typical of
Lyapunov-based control design. With some effort, one can design a control strategy
that provably achieves the basic goal of controlling the environment (e.g., swinging
the pendulum upright). However, that solution is typically not optimal, and the re-
lationships between various parameters (e.g., Uyq,) and performance can be complex

and unpredictable.

6.2 Stochastic Pendulum Swing-Up and Balance

Next we consider a swing-up and balance task in which the pendulum’s dynamics
are stochastic. We assume the pendulum’s angular position is continuously disturbed
by Gaussian noise (“white noise”) with zero mean and 0.1 standard deviation. These

dynamics are modeled by the control stochastic differential equations:

dd = 0dt+0.1dW ,

dd = sin(0)dt + udt ,

where W denotes the standard Wiener process.! We also assume that the pendulum’s
velocity is bounded in magnitude by Omaz = 4. If the dynamics push velocity outside

this range, it is simply held at iémm.

ntuitively, a Wiener process is a continuous-time Gaussian-distributed random walk on the real
line. More precisely, the change in the position of the “walker” during any period time At has
a Gaussian distribution with mean zero and variance At. See Higham [31] for an introduction to
Wiener processes.
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The task we consider is to keep the state of the pendulum in a set of near-upright,
low-velocity states, Ty, = {(6,6) : |6] < 0.5, || < 0.3}, as much of the time as possi-
ble. The condition |f| < 0.5 corresponds to pendulum positions within approximately
30 degrees of upright. Because of the stochastic dynamics, no controller can keep the
pendulum upright indefinitely. Indeed, because the Gaussian noise has infinite tails,
for any (0, 0) € T,, there is some probability that the process “jumps” out of T, by
the next time step.

Regardless of the stochastic dynamics, the mechanical energy of the pendulum
when it is upright and has zero velocity is precisely 2. Because the position distur-
bance has zero mean, if the pendulum starts with energy 2, it will tend to maintain
that energy and swing upright. Thus, a sensible control strategy is to increase the
pendulum’s energy whenever it is below 2, and decrease it whenever it is above 2.
If the energy is precisely 2, no control torque need be applied, and the pendulum is
allowed to swing naturally, so that its state reaches T, (if it is not there already).

To increase energy, we can rely on the MEA controller developed above. To
decrease energy, recall that under the deterministic dynamics, ME = u4. Choosing
u = —sgn(é)umaw brakes the pendulum, decreasing ME as quickly as possible. Thus,

we define the MEto2 control law:

MEAumam,fg,Eé (0) 0) if ME(Q, 0) < 2 — €ME
ME02(6,0) = § 0 if 2 — exrp < ME(6,0) < 2+ en

—5g0(0) tmag if ME(0,0) > 2 + enp -
The control law is parameterized by €y and ¢;, for the MEA case, and ey g, which
allows us to specify a range of energies that are close enough to 2 so that no torque

need be applied. Letting L2 (6,0) = [ME(0,0) —2| and T.,,, = {(0,6) : [ME(6, §) —

pend EME

2| < eyp}, we have:
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Theorem 6.2 For any A > 0 there exists 6 > 0 and p > 0 such that for any initial
state (0o, 00) & T.,,,, if MEto2 is used to control the stochastic pendulum for duration
A, then with probability at least p, the state of the pendulum enters T¢,,, or ends up

at least & lower on Liend.

Thus, if the pendulum is controlled according to MEto2, the Markov process that
results from viewing the state of the pendulum at times ¢t = 0, A, 2A, 34, ... descends

probabilistically on the Lyapunov function L2, outside of T,,, . Since § € [—,7]

2

pend Theorem

is bounded above outside of T,

and since we assumed 6 € [—4,4], L B

5.4 guarantees that MEto2 brings the pendulum to the desired energy with probability
one. Afterwards, there is some probability that the pendulum swings up and its state

and fails to enter T,,, then

ups

enters T,,. If the state of the pendulum leaves T¢,,,

Theorem 5.4 ensures that MEto2 brings the state back to T¢,,,, giving it another
chance to enter T,,. Thus, MEto2 is guaranteed to bring the state of the pendulum
to T, eventually from any initial state.

Proof sketch (of Theorem 6.2): Under the deterministic dynamics, § descent
on Liend is guaranteed. There is some probability of a § descent under the stochastic
dynamics because, roughly speaking, there is some probability that the stochastic
dynamics result in a next state “near” to the one that would result under the de-
terministic dynamics. More formally, for any €, there is some probability p = p(e;)
that the random disturbance due to the Gaussian noise would stay within €; over
the course of A time. That means there is some probability that the state of the
stochastic pendulum after A time is near (say within €,) the state that would result
under the deterministic dynamics (which is at least ¢, lower on L2, ;). Since L2, ,
is Lipschitz continuous?, for sufficiently small €; this guarantees some probability of

having a new state at least, say § = d;/2 lower on L2 ]

pend*

2The fact that Lzend is Lipschitz continuous means that there exists some constant ¢ € R such
that for any (01,61) and (62,92), |L2 (01,91) - L%end(02,62)| S C||(01,01) - (02,02)”

pend
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Figure 6.7. Three-link robot arm.

Suppose we let ¢y = %(sin’l(umam) — sin’l(%umam)), ¢, = 0.1, and eyp = 0.01.
Simulating the stochastic dynamics under MEto2 reveals that the state of the pen-
dulum spends approximately 49.2% of the time in T,,. In Chapter 8 we show that
this is far from optimal. An agent that uses the MEto2 controller outside of T,,,, but
does a better job of keeping the state in 7}, once it is there, can keep the pendulum

upright roughly 78% of the time.

6.3 Robot Arm Control

Robot arm, or manipulator, control has numerous applications in manufacturing
and aerospace settings. For example, assembly, loading and unloading, and painting
are common tasks for robot arms. For many such tasks, good control designs have
been developed based on qualitative, analytical methods, but cost-optimizing ap-
proaches are rare. Near-optimal control of even a three-joint arm is challenging even
for state-of-the-art dynamic-programming and optimization approaches [47, 55, 98].

Figure 6.7 depicts the particular three-joint arm design on which we focus. In gen-

eral, a robot arm comprises a series of links connected by n actuated joints. The state
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of an arm is described by a vector of joint angular positions © € R" together with a
vector of joint angular velocities © € R". We first consider a standard deterministic,

frictionless model of the arm dynamics [19]:

©=H'(0,0)(r -V (0,0)—-§G(0)),

where H is the n X n inertia matrix, 7 is the vector of actuator torques applied
at the joints, V models Coriolis and other velocity-dependent forces, and G models
gravitational forces. A friction term could easily be included with minimal change to
the approach taken below, but we omit it for simplicity. We assume that the joint
positions are limited to the range [—m,7|. If a joint position would cross one of the
endpoints of this range, it is held there and the joint velocity is set to zero. Links are
of length one and have mass one. Each link’s mass is modeled as a point mass at the
end of the link.

Note that the single-link pendulum described above can be viewed as a special case
of a robot arm. However, the key assumption that makes controlling the pendulum
interesting is that the control torque is bounded. In our arm control tasks, we assume
that there are no torque limits or that the limits are sufficiently generous that the
controllers we design do not run up against them. This assumption is important
for the particular Lyapunov approach we take, although other Lyapunov approaches
may be possible if actuator torques are limited to smaller ranges than the ones we
use. Since it is fairly common in industrial practice, for example, for actuators to be
sufficiently powerful to implement our control designs, we consider this assumption
reasonable.

The task we consider is minimum-cost control to a region of states near the origin,
Garm = {(©,0) : ||(©,0)]| < 0.01}. For the three-link arm depicted in Figure 6.7,
this corresponds to a set of low velocity states near a fully extended, horizontal

configuration. Let (©(t), O(t)) be the state of the arm at time ¢ and let 7(¢)) be the
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torque at time ¢. Suppose (O(tg), O(te)) € Gurm at some time t;. The cost associated
with the sequence of states and torques until time ¢¢ is fttfo 1O@)|12 + ||7(t) — 7o||?dt,
where 7y is the amount of torque needed to hold the arm at the origin. Intuitively,
the first term penalizes the extent to which the state of the arm is far from the origin,
and thus far from G,.,,,. The second term penalizes the control torque used in getting

the state of the arm to G, except the torque 7, which is unavoidable.

6.3.1 A Control Design and Lyapunov Analysis

A standard approach to arm control combines feedback linearization with some
form of linear system control [19]. In a simple approach to feedback linearization,
we assume that the functions H, V, and G are known and computable. The control
torque choice, 7, is reparameterized in terms of a vector u, where 7 = H (O, @)u +
V(©, @) + G(0). This transformation is lossless, since H is always of full rank, and
has the advantage of tremendously simplifying the equation for the dynamics of the
arm, which becomes:

O=u.

Once the dynamics are expressed in linear form, linear control design methods apply.
We use a linear-quadratic regulation (LQR) approach. This results in a controller that
is able cause the state of the arm to enter G,,,,, and provides a control Lyapunov
function. We briefly describe the general LQR approach.

The “linear” part of LQR comes from the assumption that the system dynamics
are linear. In general, one assumes the form: © = Ax + Bu, where z is the state
vector of the system, u is a control vector, and A and B are constant matrices of
appropriate dimension. There are no bounds on x or u.

Suppose we want to move this system to a target state xp, from any initial state
Zo, and let us assume that a control input of ur holds the system at x,. That is,

Azt 4+ Bur = 0. The “quadratic” part of LQR says that a good control law should
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produce sequences of states z(t) and controls u(t) that minimize the quadratic cost
functional: [~ («(t) — 2r)'Q(x(t) — zr) + (u(t) — ur)'R(u(t) — ur)dt, where Q and
R are positive definite, symmetric matrices, which we can choose. The apostrophe
(") denotes taking the transpose. By varying our choices of @) and R, we can express
different tradeoffs between the value of approaching z7 rapidly versus using little
control effort. Note the similarity to the cost function defined above for the three-
link arm control problem. An important difference is that the LQR design penalizes
u, whereas the cost function we want to minimize penalizes 7 — 7.

If we restrict ourselves to control laws of the form v = —K(z — zr) + ur, where
K is a constant “gain” matrix, then the optimal gain matrix is K = R~'B'P, where

P solves the matrix algebraic Ricatti equation [96]:

PA+ A'P-PBR'BP=-Q.

Typically, the Ricatti equation is solved numerically, although in special cases an
analytical solution is feasible. P is also important because it provides a Lyapunov
function that can be used to prove that the gain matrix K causes the system to
approach zr asymptotically. It turns out that P is always a symmetric, positive
definite matrix, so L(z) = (x — z7)'P(x — xr) is positive for x # zp. Further
L(z) = —(z — 20)(Q + K'RK)(z — ), which is negative definite about z;. We can

easily conclude the following;:

Theorem 6.3 Let T, be an e-ball of states centered on xr. For any A > 0, there
erists & > 0 such that if the system © = Ax + Bu is controlled according to u =
—K(z — x7) + ur for A time, from any initial conditions, then the next state of the

system either enters T, or is at least 6 lower on L.
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6.3.2 Specialization to the Deterministic Three-Link Arm
We now apply these ideas to designing a control law for the three-link arm depicted

in Figure 6.7. If we assume () and R are diagonal, then P can be worked out by hand

from the Ricatti equation. Letting @) = [Qol gz}, then P = [gllzﬂ can be computed

as:

P2 = VRQ17
P3 == \/R(QQ"‘QPQ),

P = RPPy,

For example, suppose we let Q; = diag(1,1,1), Q2 = diag(.01,.01,.01) and R =
diag(1,1,1). This puts equal weight on position error and control effort, and lit-

tle weight on velocity; we have no objection to letting the arm move to the tar-

get point quickly. Then we find P, = P; = diag(v/2.01,v/2.01,4/2.01) and P, =

diag(1,1,1). The optimal gain matrix is K = [K;K;| where K; = diag(1,1,1) and

K, = diag(+/2.01,1/2.01,1/2.01). Using this gain matrix, we define:
i i O )
FL,(0,0) = ~H(©,0)K | | +V(6,0)+6(®).
O

This is a control law based on the feedback linearization transformation and LQR
design, hence the designation, “FL.” The “1” in the subscript anticipates other control
laws based on feedback linearization and LQR design, that we introduce in Chapter

7. By Theorem 6.3, FL; causes the state of the arm to descend on the function

) C)
Lorm = [© ©'P | | outside of Ggrpm. (Note that Ggpp is an e-ball around the
S)

origin with € = 0.01.) In other words, L, is a Lyapunov function for the Markov

process that results when the arm is controlled by FL; and the state is viewed at
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Figure 6.8. Arm state trajectory under FL;.

times t = 0, A, 2A, ... for any A > 0. By Theorem 5.3, we know that the state of the
arm is brought to Gy, from any initial state outside of Gg,,,. If FL; is applied to
the arm indefinitely, without stopping when the state of the arm reaches G, then
the state approaches the origin asymptotically.

Figure 6.8 plots the state trajectory that results from initial configuration ©f =
[1,2,3] and zero velocity. The vertical line shortly after the 4 second mark indicates
the time at which the state of the arm enters Gg.,. The controller is satisfactory,
but it is not optimal for at least two reasons. First, the cost function minimized by
the LQR design is different from the cost function of the control problem. Second,
LQR design produces only linear feedback controllers. Nonlinear control laws allow
better performance. In Chapters 7 and 8, we demonstrate that state-space search

and reinforcement learning agents are able to find lower cost solutions by switching
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among this and other control laws. One weakness of the FL; controller is that it
generates large control signals when the system is far from the target configuration.
The size of this control effort is accentuated by the square in the cost function. In
contrast, a more moderate, sustained acceleration incurs a lower control-effort cost
and can still bring the state of the arm to G, relatively quickly. There are other
issues as well, and these are discussed when we present alternative controls laws and

compute switching policies in Chapters 7 and 8.

6.3.3 Stochastic Arm Control Problem
We also experiment with a stochastic version of the arm control problem, using

dynamics:

G O(dt + 0.2dW)

S) H 1(©,0)(r —V(0,0)—G(©))dt
where W is now to be interpreted as a vector of three independent Wiener processes.
This models mean one, standard deviation 0.2, white noise disturbances to the joint
positions that are multiplicative in the joint velocities. Under these dynamics, the
FL; controller causes the state of the arm to descend probabilistically on L, and
has probability 1 of eventually bringing the state of the arm to G, from any initial

state.

Theorem 6.4 For any A > 0 there exists 6 > 0 and p > 0 such that for any initial
state (09, ©g) € [—m, 7|* x [=7/v/2.01,7/\/2.01)%, if the arm is controlled by FL, for
A time, then with probability at least p, the state of the arm enters Gurm or descends
on Lgrm by at least 6. If the arm is controlled by FL, from (O, @0) indefinitely, then

the state of the arm state stays bounded and with probability 1 eventually enters G g -

Proof (sketch): The descent condition holds for the stochastic arm for the

same reason it holds for the stochastic pendulum—the state of the arm descends
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Figure 6.9. Arm state trajectory under FL; and stochastic dynamics.

under the deterministic dynamics, and the stochastic dynamics we have posited place
some probability mass “near” the deterministic outcome. Why does the state stay
bounded? The joint positions are, by definition, limited to the range [—m,7|. For
joint i, the FL; control law makes the acceleration: ©; = —0,; — v/2.010;. Since O,
is bounded, there is a bounded range of joint velocities under which the joint can
experience acceleration. In particular, suppose ©; > 0. Then —0,; — v/2.018; > 0 =
0, < —0;/v2.01 < m/4/2.01. So the joint’s velocity can only increase if it is below
7/v/2.01. Similarly, velocity can only decrease above —//2.01, and thus velocity
can never increase in magnitude beyond 7/ v/2.01. Because the state stays bounded,
Lgym can be bounded above outside of G;y,, S0 Theorem 5.4 implies that the state

of the arm enters G, eventually with probability one. [
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Figure 6.9 displays one state trajectory from initial configuration ©) = [1,2, 3]
and zero velocity. The position disturbance is evident in the curves, though they
are qualitatively similar to the curves seen under the deterministic dynamics (Figure
6.8). The state of the arm takes more than twice as long to reach Gy, than in the
deterministic problem. Indeed, under the stochastic dynamics there is no finite time
bound by which we can be sure that the state of the arm enters GG,,,,,. Understandably,
it is difficult to bring the state of the arm to a small goal region when the dynamics
are noisy.

We note that in the example above, the state of the arm is seen to approach the
origin asymptotically. Theorem 6.4 implies only that the state of the arm reaches
Gurm, not that it approaches the origin. Given the stochastic dynamics, it is not
obvious that the state should even be able to approach the origin asymptotically, but
it turns out that this is true [46]. We will not argue why this is the case. We simply
note that since the Gaussian disturbances are multiplied by the arm’s velocity, they
approach zero if the arm’s velocity approaches zero. Thus, as the state of the arm
nears the origin, the noise disappears in such a way that an asymptotic approach is

possible.
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CHAPTER 7
LYAPUNOV FUNCTIONS FOR STATE-SPACE SEARCH

In this chapter, we show how Lyapunov domain knowledge can be used to address
a number of the theoretical and practical difficulties that can arise in using state-
space search methods, particularly for problems with infinite state sets. The two

main questions we address are:

1. Under what conditions do solutions exist? That is, under what conditions is
the goal set reachable from all non-goal states? In general, determining whether

solutions exist is an undecidable problem.

2. Under what conditions are standard heuristic search algorithms complete? That

is, under what conditions are they guaranteed to find a solution, if one exists?

We begin the chapter by establishing sufficient conditions, based on Lyapunov func-
tions, for the existence of solutions and for the existence of optimal solutions. These
conditions establish the well-definedness of the control problem. We then establish
sufficient conditions for the completeness of the search procedures described in Section
4.1: best-first search, uniform-cost search, depth-first branch-and-bound, and limited
look-ahead search. We demonstrate the basic theory on simulated pendulum and
robot arm control problems. We show how Lyapunov domain knowledge can be used
to design action formulations, goal sets, and heuristic functions for these problems,
ensuring the existence of optimal solutions and ensuring that solutions are found by

the search algorithms mentioned above.
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7.1 Existence of Solutions and of Optimal Solutions

Recall that we are considering the problem of finding an action sequence solution
to a deterministic, minimum cost-to-goal MDP. There is a start state sq € S and goal
set G C S. We assume that in each non-goal state s, the set of allowed actions, A(s),
is finite and non-empty. Each a € A(s) results in an immediate cost C(s,a) for the
agent and causes the next state of the environment to be F'(s,a). An action sequence
solution (henceforth, simply “solution”) is a sequence of actions that brings the state
of the environment from sy to some state in G. The total cost of a solution is the
sum of the immediate action costs. An optimal solution has total cost less than or
equal to that of any other solution.

In Chapter 5, we established the existence of solutions, although we did not use
that terminology. Taking T' = G, Theorem 5.9 implies that G is reachable from any

initial state sy (i.e., a solution exists) if and only if there exists a CLF with target set

G.

Theorem 7.1 For a deterministic, minimum cost-to-goal MDP with goal set G, so-

lutions exist from every initial state sy ¢ G iff there exists a CLF with target set

G.

Furthermore, knowing a CLF L makes it easy to construct a solution. At each
state, one merely needs to choose any of the actions that cause the state of the
environment to descend on L. One natural approach, called quickest descent, is to
choose the action that decreases L the most. The solution produced in this way need
not be optimal. Indeed, the existence of solutions does not imply the existence of
optimal solutions, as discussed in Chapters 3 and 4. If there is an infinite number of
solutions, it is possible that the infimal cost-to-goal is not attained by any solution,
and that the problem is not well-defined. We propose two conditions under which the

infimal cost-to-goal is guaranteed to be attained by some solution.
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Theorem 7.2 For a deterministic, minimum cost-to-goal MDP with goal set G, if L
is a CLF with target set G and if all actions descend on L, then for any so ¢ G there

erists at least one optimal solution.

Proof: The existence of L implies the existence of some solution. Since all actions
descend on L (i.e., for all s ¢ G and a € A(s), F(s,a) € G or L(s) — L(F(s,a)) > §),
all sequences of [ L(sg)/d] actions bring the state of the environment to G on or before
the [L(sq)/8]™" step. Thus, there is only a finite number of solutions. At least one of
them must be optimal. [

Having all actions descend on a Lyapunov function is a strong condition. If we
know a CLF, we can ensure that all actions descend simply by discarding any actions
that do not descend. However, discarding actions may result in a problem whose
optimal solution is more expensive than that of the original problem. Whether dis-
carding non-descending actions is a good idea depends on the particular problem and
Lyapunov function.

If some actions do not descend, we can ensure the existence of optimal solutions
by making another assumption that rules out the possibility of an infinite number of
low cost solutions. We use the phrase “infinite action sequences have infinite cost” to
mean that: for all sy ¢ G, if ag, a1, as, . . . is an infinite sequence of actions that can be
applied without causing the state of the environment to enter G, then Y = ¢; = o0,

where ¢; is the cost of action a;.

Theorem 7.3 For a deterministic, minimum cost-to-goal MDP with goal set G, if
there exists a CLF with target set G and if infinite action sequences have infinite cost,

then for any sy ¢ G there exists at least one optimal solution.

Proof (by contradiction): Consider any sy ¢ G, and let L be a CLF with target
set G. The existence of L implies the existence of some solution. Suppose this

solution has cost C. Assume an optimal solution does not exist. Then there must be

79



an infinite number of solutions with cost less than C'. Since a finite number of actions
are available from any state, any infinite set of solutions must contain arbitrarily
long solutions. So, if there is an infinite number of solutions with cost less than C|
there must be arbitrarily long solutions with cost less than C. That means there
must be at least one infinite sequence of actions that does not bring the state of the
environment to GG, but which has a total cost less than or equal to C. This contradicts
the assumption that infinite action sequences have infinite cost. [

In summary, if a CLF exists, then a solution exists. If all actions descend on that

CLF, or if infinite action sequences have infinite cost, then an optimal solution exists.

7.2 Completeness of Several State-Space Search Algorithms

Having provided conditions that establish the existence of solutions, the next
question to address is how a solution can be found. A state-space search algorithm is
complete if, given unbounded computational resources, the algorithm eventually finds
and returns a solution for any problem that has one. As described in Section 4.1,
many state-space search algorithms are not complete when S is infinite. In particular,
this is the case for the three search algorithms we consider. Some search algorithms,
including limited look-ahead search, are not complete even when S is finite. In this
section, we consider what additional assumptions on the problem or on the search
algorithms are sufficient to establish completeness. That is, we seek to identify limited
classes of problems or ways of using the search algorithms such that finding solutions
is guaranteed, if there are any to be found.

One important special class of problems are those MDPs for which all actions
descend on a CLF, L, with target set G. From start state sg, no action sequence
longer than [L(sg)/d] is possible. So in this case, only a finite number of states are
reachable from sy. The fact that all actions descend on L also implies that no action

sequence can cause a state to be visited more than once in a trajectory. Further,
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because A(s) is non-empty for all s ¢ G, any sequence of actions not bringing the
state of the environment to GG can always be extended to form a solution. Thus, we

have:

Theorem 7.4 For a deterministic, minimum cost-to-goal MDP with goal set G, if
there exists a CLF, L, with target set G on which all actions descend, then for any
so & G the search graph is finite and acyclic, and all terminal nodes (a.k.a. leaves)

correspond to goal states.

Under these conditions, depth-first search, breadth-first search, best-first search,
uniform-cost search, greedy search, limited look-ahead search, and even random action
selection produce solutions. Again, if we know a CLF for an MDP, we can ensure
that all actions descend by forbidding any actions that do not. Although this may
negatively impact the cost of optimal solutions, the fact that it allows one to use
any search algorithm one wants is a strong incentive for making that restriction.
Intermediate restrictions, such as allowing non-descending actions up to some depth
k, but only allowing descending actions beyond depth k£, may allow for lower-cost
solutions than are possible under a strict descent constraint. Yet, finiteness of the
search graph and completeness of the algorithms mentioned above is still guaranteed.

If L is a CLF for a problem but some actions do not descend, then with the
exception of breadth-first search, none of the search algorithms mentioned above are
guaranteed to find a solution. In the next two subsections, we describe additional
assumptions that are sufficient to ensure that best-first search, uniform-cost search,

depth-first branch and bound, and limited look-ahead search find solutions.

7.2.1 Best-First Search, Uniform-Cost Search and Depth-First Branch
and Bound
If a CLF exists, then the additional assumption that infinite action sequences have

infinite cost is sufficient to make best-first search complete for any choice of h.
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Theorem 7.5 For a deterministic, minimum cost-to-goal MDP with goal set G, if
there exists a CLF with target set G and if infinite action sequences have infinite
cost, then for any sy ¢ G, best-first search terminates and returns a solution. If the

heuristic evaluation function, iL, 18 admissible, then the solution returned is optimal.

Proof: Let L be the CLF. The existence of L implies the existence of some
solution, call it P, with cost C. Every search node on the solution path has some
finite evaluation. Let D be the maximum of all of these evaluations. Now, suppose
the search does not terminate. That means it must expand nodes at arbitrarily large
depths in the search graph. Since infinite action sequences have infinite cost, the
cost-from-root g, and thus total evaluation f , of such nodes grows arbitrarily large.
In particular, it grows larger than D. Best-first search would not expand such nodes
before expanding every node in P, and thus discovering the solution. So we have a
contradiction. Best-first search must terminate. If the heuristic is admissible, then
best-first search is an instance of A* search. Thus, the solution returned must be
optimal [64]. O

A similar proof works for uniform-cost search, thus:

Theorem 7.6 For a deterministic, minimum cost-to-goal MDP with goal set G, if
there exists a CLF with target set G and if infinite action sequences have infinite cost,

then for any so ¢ G, uniform-cost search terminates and returns an optimal solution.

DFBnB is usually applied to domains in which the length of any solution can
be limited a priori. DFBnB is not complete for general finite-state environments
because the left-most search path may never reach a goal state. This can be fixed
by augmenting the algorithm with a closed list [74], but this fix does not work for

infinite-state environments and, in any case, is not standard practice. If one ensures
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that the left-most search path does reach a goal state, and if one assumes that infinite

action sequences have infinite cost, then the algorithm is complete.

Theorem 7.7 For a deterministic, minimum cost-to-goal MDP with goal set G, if
there exists a CLF, L, with target set G; and for all s ¢ G the first action branched
upon, a, descends on L (i.e., F(s,a) € G or L(s) — L(F(s,a)) > 0); and infinite
action sequences have infinite cost, then for any sy ¢ G, DFBnB terminates and
returns a solution. If the heuristic evaluation function, 71, 1s admissible, then the

solution returned is optimal.

Proof: The assumption that the first action searched descends on L ensures that
the left-most search path reaches G. Suppose the corresponding solution has cost
C. The search never again expands a node with total evaluation greater than or
equal to C'. Thus, the search cannot run forever. That would imply expanding nodes
at arbitrarily large depths. Because infinite action sequences have infinite cost, such
nodes have unbounded cost-from-root g, and thus unbounded total evaluation f . The
admissibility of h implies optimality of the solution returned for the same reason that

it does for best-first search. [J

7.2.2 Admissible Heuristics and Lyapunov Functions

Admissible heuristics play a key role in the theory of heuristic search. The ad-
missibility of a heuristic ensures that best-first search and DFBnB return optimal
solutions. Admissibility is also important in the proof of the optimal efficiency of
A*. What is the relationship between Lyapunov functions and admissible heuristics?
Lyapunov functions have a “first derivative” or difference property; one can always
choose an action that causes the state of the environment to descend on the function
and reach the goal set. The precise value of a Lyapunov function at any given state
need not be meaningful. For example, if one scales a Lyapunov function by any pos-

itive constant, the result is still a Lyapunov function. This is not true of admissible
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heuristics. It is quite rare to be able to descend on a heuristic function at every step
and reach a goal state. The defining feature of an admissible heuristic is that it does
not overestimate the minimum cost to goal. A Lyapunov function would make a nice
heuristic function if it were admissible, but this need not be the case.

However, if one makes additional assumptions about the MDP, then it is possible
to construct an admissible heuristic function based on a Lyapunov function. A Lya-
punov function naturally provides an upper bound on the number of actions required
to bring the state of the system to the goal set. For a non-goal state s, this is just
[L(s)/0]. What one needs is a lower bound on the number of actions required to
bring the system to goal. Suppose that for all non-goal states, no action results in
a state more than ., lower on the Lyapunov function. Suppose also that no goal
state has Lyapunov value more than M. Then for any non-goal state s the number
of actions required to bring the system to goal is at least [(L(s) — M)/0max]- If we
assume that costs are bounded below by ¢y, then the minimum cost to goal from
any non-goal state s is at least ¢jon[(L(s) — M)/0max |- Thus we have established the

following theorem:

Theorem 7.8 If L is a CLF with target set G for a deterministic, minimum cost-to-
goal MDP with goal set G; and Omax = SUp,¢; Maxaea(s)(L(s) — L(F (s, a))) is finite;

and M = sup,q L(s) is finite; and cjop = infygqminge a¢5) C(s,a) > 0, then

max(ciow [ (L(s) — M) /0max],0) forsé¢ G
0 forse G

h(s) =

15 an admissible heuristic evaluation function.

Even if a Lyapunov function is not admissible, it may be useful as a heuristic

function. We return to this idea in the discussion section of this chapter.
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7.2.3 Limited Look-Ahead Search

The search algorithms studied above find one or more complete solutions before
returning an answer. Limited look-ahead search is targeted at on-line, real-time
decision-making problems. In the usual scenario, the search algorithm must produce
a “next” action to take before it has discovered a complete path to G. It should come
as no surprise that Lyapunov domain knowledge is valuable for real-time decision-
making. A Lyapunov function offers a measure of progress towards the goal. Given a
Lyapunov function, a simple depth-one search is sufficient to determine which actions
descend and allows one to construct a path to goal. In this section, we demonstrate
that limited look-ahead search can be guaranteed to find solutions without restricting
it to select actions that descend on a Lyapunov function.

Recall that limited look-ahead search constructs a solution by performing a se-
quence of limited-complexity searches. Each search generates a tree in which nodes
are evaluated by the cost-from-root, g, plus a heuristic cost-to-goal evaluation, h. The
it" action of the solution is the first action on the path from the root of the i** search
tree (i.e., s;) to the best leaf in that tree. Our main result is that if a CLF, L, is used
as the heuristic evaluation function in a limited look-ahead search, and if L relates
to the cost function of the MDP in a certain way, then the search is guaranteed to

produce a path to goal.

Theorem 7.9 For a deterministic, minimum cost-to-goal MDP with goal set G, if:
(i) there exists a CLF, L, with target set G; (ii) L is used as the heuristic evaluation
function for non-goal leaves; (iii) for all s ¢ G there exists a € A(s) such that
L(s) — L(F(s,a)) > C(s,a); (iv) for all i, the best leaf of the i" search tree is a goal
node or is expanded in the (i + 1) search tree; (v) infinite action sequences have

infinite cost; then limited look-ahead search terminates, producing a solution.

Condition (iii) is particularly interesting because it relates action costs to changes

in the Lyapunov function. If descent on the Lyapunov function is costly, then a

85



limited-lookahead search might never choose to take descending actions, and might
never produce a path to G. Condition (iii) ensures that there is always some action
that produces more descent on L than the cost incurred. Intuitively, this ensures that
the Lyapunov function “outweighs” the cost function. The solution generated need
not cause the state of the environment to descend on L at every step, but the state
descends enough of the time to be sure of reaching G.

To prove this theorem we require some definitions and a lemma. Suppose that the
first IV iterations of a limited look-ahead search generate actions that produce the
state sequence sy, s1,...,Sy. The last state, sy, may or may not be a goal state. For
i€ {0,...,N—1} let G, be the cost from sg to s;; let [; be the best leaf in search tree
i; let C; be the cost from from s; to /; in search tree 7; let c;p, ..., ¢; n) be the action
costs constituting C;; let H; be the heuristic evaluation of J; (i.e., L(l;) if [; ¢ G and

0 otherwise); and let F,=G;+C;+ H;.

Lemma 7.10 Under the assumptions of Theorem 7.9, fori € {0,..., N —2}, ﬁ‘i+1 <

Proof: For all i € {0,..., N — 2},

A A

Fnh < F
— Gin+Ci+Hy < Gi+C+H

A~

— Cit1+Hiyr < cig+eoo+ ey + Hi .

The last line follows because éi—l—l is just C;‘Z plus the cost of the first action from s; to
l;, namely, ¢;o. The left-hand side is just the cost from s;11 to l;+1 plus iz(liJrl). The
right hand side, ¢;1 + ... 4 ¢in@) + H;, is the cost of a path from s;,1 to I; plus iz(lz)
If I; is a goal node, then the same path and heuristic evaluation are part of search
tree ¢ + 1. Since search tree i 4+ 1 optimizes over that and other paths, the cost of the

best path in search tree ¢+ + 1, C;1 1 + ﬁi+1, can be no worse. If /; is not a goal node,
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then it is expanded in search tree i+ 1. That tree contains path(s) from s;;; through
l; to one or more leaf nodes. On the path to at least one of those leaves, every action
after [; incurs less cost than the drop in L that results, by condition (iii). Thus, the
evaluation of that path must be no higher than ¢;; + ... + ¢ipu) + H;, and so the
evaluation of the best path in tree ¢ + 1, C;11 + I:IHI, must also be no higher. Thus
Fip < F. O

Proof of Theorem 7.9: Suppose the search does not terminate. From the
previous lemma, we have Fo > Fl > FQ > ... On the other hand, FZ > éi, and
because we assume that infinite action sequences have infinite cost, the éz grow
without bound. This is a contradiction, so limited look-ahead search must terminate
and return a solution. [

A given CLF, L, may not meet condition (iii) of Theorem 7.9, or one may not
know if it meets the condition. We propose two methods for generating a CLF which
provably satisfies condition (iii).

The first method we propose is scaling an existing CLF. Let L be a CLF with
target set G. For all s ¢ G, let a; be an action that descends on L. The scaling
method is applicable when
L(s) — L(F(s,a1)) 1

inf =—>0.
;QG C(s,a1) o'

Consider L' = aL.. L' is obviously a CLF. Further, for any s ¢ G,

L'(s) = L(F(s,a)) _ L(s) = L(F(s,a1)) _ 1 _
C(s,a1) C(s,a1) -« .

Thus L'(s) — L'(F(s,a1)) > C(s,a1), meaning L' satisfies condition (iii).
A potential problem with this approach is that the scaling factor, o, may not be
known. In this case, we propose an on-line procedure that automatically determines

an appropriate scaling factor. Note that an overestimate of « also produces a CLF
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satisfying condition (iii). Suppose we let L' = &L for any initial guess & > 0. We then
run a limited look-ahead search, checking during each expansion whether condition

(i) is violated. If a state, s, is encountered for which L'(s) — L'(F(s,a1)) < C(s, a1),

C(s,a)
L(s) — L(F(s,a4

€ > 0. The first term makes the new & consistent with all the states expanded so far,

then the scaling factor can be updated as & «+ 7) + ¢ for some fixed
and the € ensures that condition (iii) will be violated at most a finite number of times
before & becomes large enough to ensure that the search produces a solution. Note
that at no time are we sure that & is greater than «; but we are sure that a limited
look-ahead search using this updating procedure terminates and produces a solution.

A second method for generating a CLF meeting condition (iii) is to perform roll-
outs [90, 12]. Let A be an algorithm that assigns an action to every non-goal state
and suppose that, for any sy, A generates a path that reaches G. For example, if we
know a CLF, L, then an obvious choice for A is quickest descent on L. Let L'(s) be
the cost of the solution generated by A starting at s. L' can be evaluated by actually
constructing the solution. If the costs of the actions chosen by A always exceed some
Clow, then the reader may verify that L' is an CLF (with descent constant § = c¢;oy)
and also satisfies condition (iii). Performing roll-outs can be an expensive method
of heuristically evaluating leaves in a search tree, since an entire path to G must be
generated for each evaluation. However, roll-outs have been found to be quite effective
in both game playing and sequential control; it appears that the results often justify

the effort involved [90, 12].

7.3 Pendulum Demonstration

Having established a theory of when solutions exist and when they can be found by
standard search algorithms, we turn to demonstrating the theory on some example
problems. Our first demonstration is in the deterministic pendulum swing-up and

balance domain introduced in Section 6.1. Recall that the task is minimum-time
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Action Actions Goal Relevant
Formulation Set Theorems
1 MEA (Umaz), MEA(%umw) Gﬁend 72,74
2 MEA (tmaz), MEA(%umaw), FUmazs —Umaz G?Jend 7.3,7.5,7.7,7.9
3 FUmazs —Umaz G2 e none
4 +Umazs —Umaz, PLS Gend none

Table 7.1. Four action formulations for the deterministic pendulum swing-up and
balance problem.

control to the set G}, = {(0, 0) : ||(6,6)]] < 0.01}. Recall also that if the pendulum
has mechanical energy 2, fixing the control torque at zero allows it to swing upright.
The state of the pendulum asymptotically approaches (6, 0) = (0,0), and thus enters
G}wnd. So, the problem of controlling the pendulum to near-upright can be reduced
to the problem of ensuring that the state of the pendulum reaches G2, = {(0, 9) :
ME(6, ) = 2}. In Section 6.1 we described the MEA control law, which increases the

pendulum’s energy to 2. Using MEA to increase energy to 2 and then applying zero

1

torque until the state of the pendulum reaches G,

4 1s one solution to the swing-up
problem.

In order to apply search to a domain like the pendulum, in which a controller
can in principle apply any of a continuum of control torques, it is necessary to limit
the number of control choices to a finite, preferably small, set. We present four
alternative action formulations for controlling the pendulum, which rely to differing
degrees on Lyapunov domain knowledge. In each of these action formulations, each
action corresponds to controlling the pendulum according to a fixed control law, a
mapping from pendulum state to control torque, for a fixed period of time A or until
a goal state is reached, whichever happens first.

We describe the four action formulations in order of decreasing dependence on

Lyapunov domain knowledge. They are summarized in Table 7.1. The first action

formulation uses the Ggend goal set and has two actions corresponding to the control
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laws: MEA (t4,) and MEA(%umm). By MEA (w), we mean the MEA control law

with parameters u = w, €5 = £(sin™'(w) — sin"'(3w)), and ¢; = 0.1. By Theorem
6.1, both of these actions cause the state of the pendulum to descend on Lye,q(0, 0) =

2 — ME(H,@) outside of G? Thus Lyenq is a CLF for action formulation 1, and

pend*

2

all (both) actions descend on Lye,q outside of G7, -

Theorem 7.2 guarantees the
existence of optimal solutions under this formulation.

Action formulation 2 also uses the G, , goal set, but includes two more actions,
corresponding to constant-torque control laws 4 = +,q, and ¥ = —Upq,. These two
actions do not always cause the state of the pendulum to descend on Lyepq, but Lyenq
remains a CLF because of the MEA-based actions. Because infinite action sequences
have infinite cost, Theorem 7.3 guarantees the existence of optimal solutions.

Action formulation 3 drops the MEA-based actions, leaving just ... Our
Lyapunov-based theory offers no guarantee that the problem is solvable with these
simple actions, though the experiments we present below indicate that it is. Given
this empirical observation and the fact that infinite action sequences have infinite
cost, the existence of an optimal solution follows.

Action formulation 4 uses the Gll)end goal set. In pilot experiments, we found that
it was extremely difficult or impossible to control the state of the pendulum until it
reaches this goal set using just the 4u,,,, constant-torque actions. We developed a
control law which we call PLS for “pendulum linear saturating” controller. It is a
standard LQR controller based on a linear approximation to the pendulum dynamics
around the upright, zero-velocity state (see, e.g., Vincent & Grantham [96]). The

LQR controller’s signal is constrained to stay in the range [—tmaz, Umae], r€sulting in

the control law:

PLS(6, §) = max(min(—2.414260 — 2.19746, timaz) — Umaz)
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For some region of states surrounding G* PLS is sufficient to “pull” the state of

pend?

1

send- Action formulation 4 contains three actions, corresponding

the pendulum in to G
to the constant-torque control laws +,,4; and —,qz, and to PLS. We suspect that
under this formulation G}, , is reachable from any so ¢ G4 If that is so, the
existence of optimal solutions follows from the fact that infinite action sequences
have infinite cost.

Under all action formulations, the cost of a non-terminal action of duration A is

just A. The first three action formulations use the G?, goal set. For those, the cost

end
of an action leading to a state s € Gf,end is equal to the time it takes for the state of the
pendulum to reach s, plus the time it takes for the pendulum to swing up afterwards
(i.e. until its state enters G,,,). Under action formulation 4 the cost of an action
leading to a state s € G, is just the time it takes for the state of the pendulum to

reach s. For all action formulations, then, the costs of actions are designed so that

an optimal solution corresponds to a minimal-time trajectory to G;end.

7.3.1 Experiments

For each action formulation, we experimented with a number of different search
procedures: A* or uniform-cost search, DFBnB, and RFDS with three different
heuristic functions. For formulations 1 through 3, which use the Ggend goal set,
we ran A* and DFBnB searches using a heuristic function which we call “admissible

energy deficit” (AED):

AED(,d) = 4 2~ ME(@.0)/Qumaz) T ME(0,0) <2

0 otherwise

The term 2 — ME(4, 9) represents the amount of energy that must be added to

the pendulum in order for its state to reach G For any state with ME(6), 9) < 2,

pend*

0 < 2. So the maximum rate at which energy can be added to the pendulum is
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2

pend> and so 1s an admissible

2Umaz- AED is a lower bound on the time to reach G
heuristic. We note that AED is constructed using essentially the approach described
in Theorem 7.8, but we have analyzed the pendulum domain at the continuous-time
level, rather than at the discrete-time, action-based level. For formulation 4, which
uses the G;end goal set, we ran uniform-cost search and DFBnB with h=0.

Theorems 7.4, 7.5, and 7.7 guarantee that A* and DFBnB searches find solutions
and terminate under action formulations 1 and 2. A priori, we had no such guarantee
for the other action formulations. We ran A*, uniform-cost search and DFBnB for
the choices of action duration: A € {1,1.5,2,3,4}.

Recall that in Section 4.1.3 we described a particular limited look-ahead search
procedure call repeated fixed-depth search (RFDS) in which the search tree built
at each iteration has fixed depth. We ran RFDS at A = 1 and search depths d €
{1,2,3,4,5} with three different heuristic functions. RFDS-Z uses the zero heuristic.
Theorem 7.4 guarantees that RFDS-Z finds a solution under the action formulation
1, but we knew of no guarantees for the other action formulations beforehand.

RFDS-S uses a scaled version of the AED heuristic to evaluate leaves. AED itself
does not meet condition (iii) of Theorem 7.9. We did not know an appropriate scaling
factor, so we used the on-line updating method described near the end of Section 7.2.3.
We began each run of RFDS with a scaling factor of @ = 1. Whenever a state was
expanded for which action one (MEA (t,q,) for formulations 1 and 2, and +t,,, for
formulations 3 and 4) produced a descent § which was smaller than the cost incurred
¢, the scaling factor was updated as & < ¢/J + 0.001. When ¢ was non-positive,
which is possible only under formulations 3 and 4, no update was performed. The
scaling approach does not make much sense under these two formulations since a;
is not guaranteed to descend on AED, but we ran the experiments for information
purposes. Under formulations 1 and 2, updating the scaling factor ensures that the

search eventually returns a solution.
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The last heuristic with which we experimented is based on the roll-out idea de-
scribed at the end of Section 7.2.3. From any pendulum state with mechanical energy
less than 2, control according to MEA (u,,,) brings the state of the pendulum to
G,

For the first three action formulations, which use G? RFDS-R evaluated

end* pend’

non-goal states with the time it took MEA to bring the state of the pendulum to

1

pend: For action

Gf,end plus the time it took for the state of the pendulum to reach G
formulation 4, MEA alone does not suffice since the pendulum can have mechanical
energy greater than 2. MEA, which only increases the pendulum’s energy, does not
bring the state of the pendulum to the goal set in such situations.

In Section 6.2 we introduced the MEto2 control law, which reduces the pendulum’s
energy whenever it is above 2 and increases it whenever it is below 2. We use this
control law, with constant €,z = 0, as the roll-out controller for the RFDS-R runs
under action formulation 4.

For action formulations 1 and 2, Theorem 7.9 guarantees that RFDS-R finds
solutions. This guarantee does not extend to action formulations 3 or 4. The roll-out
is not necessarily a CLF for those action formulations because the roll-outs are based
on control laws that are not part of those action formulations.

The initial state for all searches was the hanging-down rest position, (6, 90) =
(m,0). The RFDS searches were run for a maximum of 1000 iterations, and terminated
if no solution was found by that time. We believe our results are not sensitive to this
particular threshold. In pilot studies, all the runs we observed either terminated
with far fewer major iterations, or appeared to enter a cyclic behavior that would
never produce a solution. A*, uniform-cost search, and DFBnB searches were run
for as long as was feasible. One A* search had to be terminated after it filled up
main memory and started thrashing badly. Several other A* searches crashed, we

believe because of memory problems. We eventually ran them successfully on more
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powerful machines. We also chose to terminate one of the DFBnB searches under

action formulation 2 when it had not completed after running for over two weeks.

7.3.2 Results

Table 7.2 presents the results of the experiments. For each search algorithm, set
of parameter settings, and action formulation, the table either reports the cost of the
solution found and the search effort required, or “dnc,” which indicates that the search
did not complete. Search effort was measured by the number of seconds of pendulum
dynamics that were simulated. For most searches, this correlated closely with more
traditional measures of complexity such as the number of nodes expanded or number
of actions searched. The complexity of RFDS-R, which simulates entire trajectories to
evaluate leaves, appears misleadingly low if measured by node expansions or actions
searched. Hence, we settled on simulation time as the most fair measure of search
effort. A triangle (r) in the upper-left-hand corner of a group of results acts to
remind the reader which searches should have completed eventually, given unbounded
computational resources.

Despite no Lyapunov-based assurances, we found that A* terminated under action
formulation 3 and uniform-cost search terminated under action formulation 4 for
all choices of A. This was not surprising, really, since we had determined by prior
experiments that the problem could be solved under these action formulations, at least
for some choices of A. Except for the case A = 4, the solutions found by A* under
formulation 3 were slightly better than under formulation 1. The solutions found
under formulation 2 were better than either of those. Since the actions in formulation
2 strictly include the actions in formulations 1 and 3, the solutions certainly could
not be any worse. However, the best solutions of all were found under formulation
4. At A = 1, both uniform cost-search and RFDS-R discovered trajectories that

take 18.07 seconds to reach Gll)end. Because formulation 4 uses that goal set instead of
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Action Formulation
Search 1 2 3 4
A* for 1-3, uniform-cost search for 4
A=4 21.70 497 21.50 1.30x10% | 23.64 368 29.33 5367
A=3 21.79 1209 20.92 3.68x10* | 21.22 534 19.38 1017
A=2 21.17 1.04x10* | 20.02 4.54x10% | 20.13 2467 19.03 4572
A=15]2094 822x10* | 19.74 6.33x10% | 19.88 1.15x10* | 18.08 1.90x10*
A=1 20.80 8.08x108 dnc 19.33 2.05x10° | 18.07 2.74x10°
DFBnB
A=4 21.70 497 21.50 1.35x10% dnc dnc
A=3 21.79 1226 20.92 5.68x10% dnc dnc
A=2 21.17 1.04x10* | 20.02 2.63x10° dnc dnc
A=15]2094 841x10* | 19.74 1.49x108 dnc dnc
A=1 20.80 8.17x108 dnc dnc dnc
RFDS-Z
d=1 24.19 73 66.91 742 dnc dnc
d=2 24.18 165 102.87 3835 dnc dnc
d=3 23.67 337 100.77 1.18x10* dnc dnc
d=4 23.11 663 66.75  2.36x10* dnc dnc
d=5 22.50 1218 45.25 5.17x10% dnc dnc
RFDS-S
d=1 24.19 73 22.97 123 2291 62 dnc
d=2 22.46 153 20.81 405 20.45 119 dnc
d=3 22.68 320 21.70 1613 24.63 349 dnc
d=4 23.11 663 21.96 6075 22.13 541 dnc
d=5 21.92 1188 20.33  2.45%x10* | 20.77 966 dnc
RFDS-R
d=1 21.50 559 19.51 934 19.33 468 18.07 758
d=2 20.80 948 19.51 3667 19.33 944 18.07 2326
d=3 20.80 1817 19.51  1.41x10* | 19.33 1862 18.07 6943
d=4 20.80 3460 19.51  5.37x10* | 19.33 3660 18.07 2.05x10*
d=5 20.80 6520 19.33  1.96x10° | 19.33 7124 18.07 5.96x10*

Table 7.2. Results of search experiments in the pendulum domain: solution cost
and search effort (measured in seconds of pendulum dynamics simulated).

95



G2

end> Laster swing-up can be obtained by continuing to accelerate the pendulum after

ME > 2, and decelerating near the end, to approach the upright, balanced position.

From the table of results there is no apparent benefit of DFBnB compared to A*.
However, as noted above, several of our A* runs crashed the first time we ran them,
and we had to use more powerful machines so that they could complete. Though
DFBnB searches took longer than A* searches, their modest memory requirements
allowed them to complete the first time with no problem. Run-time is generally a
softer constraint than memory usage, and so DFBnB is more useful in some situations.

DFBnB found no solutions under the second two action formulations because the
left-most search paths correspond to continuously applying a constant torque of w,q,
to the pendulum. This does not bring the state of the pendulum to the goal set.
Thus, a first solution was never discovered and DFBnB did not terminate.

All the RFDS runs under the first two action sets completed, in many cases after
a fairly modest search effort. The results for RFDS-R are particularly impressive.
Optimal or near optimal solutions were generated for all action formulations, even
with depth one search. Roll-outs appear to provide powerful heuristic information.
The results of RFDS-R under formulation 2 are the best generated for that action
formulation. We do not know the optimal solution under formulation 2 since A*
and DFBnB did not complete at A = 1. These results confirm other reports in the

literature about the empirical value of roll-outs [90, 12].

7.4 Arm Demonstration

In this section, we apply heuristic search to the deterministic robot arm problem
introduced in Section 6.3. Recall that the task is to move the state of the arm to
the goal set Garm = {(0,0) : [|(©,0)]| < 0.01}, which is a set of states near to a
stationary, horizontally-extended configuration (see Figure 7.1). Below, we describe

a number of control laws for controlling the arm. The cost of applying a control law
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Arm folded : .
as by Flg Goal conﬂguratpn /
target configuration
for FL; —FL3
........ .-
Arm folded
as by Fl,

Figure 7.1. Goal configuration and target configurations for several controllers.

for a period of A time is the continuous-time integral: ftio 1O |1* + ||7(t) — 7o]|?dt,
where O(t) is the position of the arm as a function of time, 7(¢) is the torque applied
as a function of time, and 7y is the torque required to hold the arm at the origin. A
good controller moves the state of the arm to the origin, thus avoiding accumulating
a large penalty from the first term, but must not use excessive torque in doing so.
In Section 6.3.2, we proposed a control law, FL;, based on feedback linearization
and LQR methods. We showed that this control law brings the state of the arm to
Gorm from any initial state. Below, we present several other control laws based on
the feedback linearization-LQR approach, with varying choices of gain matrices and
target points. Let LQR(Q, R) stand for the gain matrix resulting from LQR design
with penalty matrices @ and R; let Qo = diag(1,1,1,0.01,0.01,0.01); let Ry be the
3 x 3 identity matrix; let K=LQR(Qo, Ry); let ©, = [0, —%71’, 7|" and ©5 = |0, %71’, —ml';

and let Z([z,y, 2]') = [0, v, z]'. Our first five control laws for the arm are:

FL,(0,0) = —H(0,0)K (? +V(0,0)+G(0),
S
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FL,(0,0) = —H(0,0)K, 9 +V(0,0)+G(0) where K,=LQR(4Q, R,) ,
)
. . ) :
FL3(0,0) = —H(0,0)K; | | +V(0,0)+G(0) where K3=LQR(Qo, 4Ro) ,
)
: : _ 0-06, _ . )
FL4(©,0) =7 | —H(0,0)K _ +V(©,0)+G(O) |,
© J
: : _ 0 — 65 _ : )
FL5(0,0)=Z | —H(0,0)K _ +V(0,0)+G(0) | .
© J

The first three control laws move the state of the arm to the origin, but at different
rates. Compared to FL;, the gain matrix for FL, is based on an LQR design that
places more penalty on the distance of the state of the arm from the origin. Thus,
FL, tends to exert a greater control torque than FL;, moving the state of the arm
to the goal more quickly. The LQR design for FL3 is based on a smaller penalty on
the distance of the state of the arm from the origin, thus FL3 tends to exert smaller
controls torques than FL;, bringing the state of the arm to the origin more slowly.
FL4 and FLj5 do not apply torque to the first joint of the arm, but pull the outer two
links into a folded position, as depicted in Figure 7.1. Although these control laws
do not, by themselves, bring the state of the arm to G, we expected that they
would be useful as part of a solution involving other control laws. By pulling the arm
inward, its moment of inertia is reduced, allowing it to swing more easily around its
first joint.

As discussed in Section 6.3.2, FL; causes the state of the arm to descend on the

quadratic Lyapunov function

Lowm = [0'0'|P
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Action Actions Relevant
Formulation Theorems
1 FLi, FLs, FL3, FLy4, FL5 7.3,7.6,7.7,79
2 FL;, LD[FL,], LD[FL;], LD[FL,4], 7.2,7.4
LD[FLs]

Table 7.3. Two action formulations for robot arm control.

where P is the symmetric, positive definite matrix defined in that section. The other
control laws above do not necessarily cause the state of the arm to descend on Lg;.,,
from any non-goal state. However, by a simple transformation we can produce a
related control law that does cause descent. Let C be any control law. We define the
Lgm-descending version of C to be:

c(o, @) if applying C causes %Lm(@, @) < -0.1

LDIC](©,0) = and if Ly, (0, @) > 0.1
FL;(0,0) otherwise

In other words, the control law LD[C] checks at each instant of time whether C
causes sufficiently fast descent on Lg,,,. If so, and if the state of the arm is not near
the origin already, then LD[C] controls the arm just as C would. Otherwise, LD[C]
reverts to controlling the arm as FL; would. By construction, LD[C] causes the state
of the arm to descend on Lg,,,.

We propose two action formulations for controlling the arm, as summarized in Ta-
ble 7.3. Both formulations include FL; and so L., is a CLF for both. In formulation

2, all actions cause the state of the arm to descend on Lg.p,.

7.4.1 Experiments
For both action formulations we ran uniform-cost search and DFBnB with A = 0
for A € {0.375,0.5,0.75,1.0,1.5,2.0}. Recall that choosing an action means the arm

is controlled by the corresponding control law for A time. We used h=0 only for
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lack of a better choice. For this domain, a heuristic designed according to Theorem
7.8 is not very helpful, as the rate of decrease in L,,,, for some states and actions is
very large, and the minimal cost incurred from some states and actions is very small.
The heuristic is very flat, yielding little or no useful information.

We ran RFDS with A = 0.5 using three different heuristics: (1) the zero heuristic,
(2) a scaled version of Lg,, and (3) roll-outs based on FL;. We designate these
cases RFDS-Z, RFDS-S, and RFDS-R respectively. For RFDS-S, we did not know
an appropriate scaling factor. Since the state of the arm stays bounded under FL,
%Larm is bounded below zero and cost accumulates at a rate that is bounded above.!
So, for sufficiently large &, using &Ly, as a heuristic ensures that RFDS finds a
solution. We used the method described in Section 7.2.3 to find an appropriate
scaling factor on-line, with an initial scaling factor of & = 1 and an increment of
e = 0.001.

Instead of having a single initial state, we measured performance across a set of
nine initial states with zero velocity and with joint positions of the form [z,y, —y],
where z € {—%71’, —%7‘(’,71’} and y € {—%77,0, %71’} The RFDS runs were allowed a
maximum of 100 iterations to produce a solution, and were terminated if no solution
was produced by that time.

RFDS-Z with action formulation 1 is the only case for which finding solutions is not
guaranteed under the assumption of unbounded computational resources. Uniform-
cost search and DFBnB are guaranteed to produce solutions under formulation 1 by
Theorems 7.6 and 7.7. RFDS-S and RFDS-R are guaranteed to produce solutions
under formulation 1 by Theorem 7.9. All searches find solutions under formulation 2

by Theorem 7.4.

In the proof of Theorem 6.4, we showed that FL; keeps the state of the arm bounded in the
case of stochastic dynamics. The same holds for the deterministic dynamics and for any of the other
controllers discussed here.
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7.4.2 Results

Table 7.4 presents the results of the experiments. For each algorithm and each
action formulation, we report the average solution cost across the nine initial states
and the average search effort, measured in seconds of arm dynamics simulated. For
smaller choices of A, some of the uniform-cost and DFBnB searches were terminated
when they took too long. (We allowed at least two weeks for each set of nine searches,
but we did not have a rigorous criterion for terminating runs early.) Simulating the
arm dynamics is a fairly complex process, and our code was not optimized for speed.
Run-time, and not memory usage, was the limiting factor in all of the searches that
had to be terminated.

Excepting RFDS-Z, even the simplest searches produced better solutions than
FL; alone, for which the average solution cost is 434.9. For every parameterization of
every search algorithm, the solutions found under formulation 1, if any, were better
than the solutions found under formulation 2. As was the case in the pendulum
domain, it appears that restricting the action choices to descend on the Lyapunov
function limits performance.

Between uniform-cost search and DFBnB, the best solutions were found under
formulation 1 at A = 0.75, with an average cost of 266.4. Even at twice the decision
frequency (A = 0.375), the solutions found by uniform-cost search under formulation
2 were not as good. Because time, and not space, was the limiting factor in these
searches, and also because we relied on the zero function as a heuristic, DFBnB offered
no significant advantages over uniform-cost search. The case of uniform-cost search
with action formulation 2 is notable because it succeeds in finding solutions for the
smallest choice of A, and it does so with relatively little search effort. We attribute
this good scaling to the fact that control laws of the form LD[C] act as FL;, and not
as C, whenever C does not descend on L,,,. Because our implementation of uniform-

cost search checks for duplicate siblings and prunes them away, the branching factor
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Action Formulation

Search 1 2
Uniform- A =2.0 333.8 96 333.5 40
cost, A=15 304.3 216 325.3 50
search A=1.0 283.1 1152 303.7 86

A=0.75 |266.4 1.14x10*|290.9 162

A=05 dnc 280.2 994

A =0.375 dnc 277.1 1.04x10*
DFBnB A =20 333.8 358 333.5 444

A=15 304.3 975 325.3 1917

A=1.0 |2831 6219 303.7 3.81x10*

A=0.75 |266.4 4.70x10*|290.9 8.78x10°

A=05 dnc dnc

A =0.375 dnc dnc
RFDS-Z d=1 dnc 348.5 33
A=0.5 d=2 dnc 291.5 89

d=3 dnc 282.3 232

d=4 dnc 280.6 576
RFDS-S d=1 313.5 49 313.7 29
A=05 d=2 310.1 215 313.2 89

d=3 301.2 848 301.6 264

d=4 291.7 2839 300.0 758
RFDS-R d=1 280.9 453 287.4 245
A=0.5 d=2 287.5 1612 298.9 720

d=3 278.6 5188 291.4 2011

d=4 253.7 1.68x10* | 280.6 4751

Table 7.4. Results of search experiments in the robot arm domain: solution cost
and search effort (measure in seconds of arm dynamics simulated) averaged across
the nine initial states.
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of the search is effectively reduced in states where some control laws do not descend
on Lgm. Importantly, this happens for FL, and FL5 when the state of the arm is near
Garm, which is deep in the search tree, at the time when a smaller branching factor is
the most helpful. Our implementation of DFBnB does not check for duplicate siblings,
and one can see that search effort increases much more rapidly under formulation 2.
The search effort under formulation 1 is more moderate for both uniform-cost search
and DFBnB.

None of the RFDS-Z searches under action formulation 1 produced solutions in
the first 100 major iterations. In all cases, we observed that the search procedure got
stuck in a cycle alternating between the FL, and FLj actions, with the arm mostly
outstretched. This “wiggles” the arm up and down, without incurring too much
torque penalty and only a modest position deviation penalty. The other control laws
incur large control torque penalties due to the torque they apply at the first joint.
This makes them appear bad to a shallow search. We verified that with sufficiently
deep search, depth 6 in particular, RFDS-Z does construct a path to Gy, from all
nine initial states.

The best solutions overall were found by RFDS-R under formulation 1, with an
average cost of 253.7. Considerable search effort was involved, approaching the effort
of the largest uniform-cost and DFBnB searches that completed. The shorter REFDS
searches might reasonably be called “real-time”. The longest RFDS searches took
approximately 10 minutes apiece, which is not an appropriate time scale for reactive
control of a robot arm.

In the pendulum domain, we found that a depth one search with roll-outs to
evaluate leaves was very effective, producing optimal or near optimal solutions under
every action set. In the robot arm domain, the story is more complex. Depth one
search with roll-outs was as good, or nearly as good, as depth 2 or depth 3 searches

with roll-outs. Depth 4 search with roll-outs was significantly better, under both
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action formulations. The RFDS-Z and RFDS-S searches seem best at producing
solutions of moderate cost with very little search effort. They outperformed uniform-

cost search, DFBnB, and RFDS-R in that respect.

7.5 Discussion

In this chapter we have demonstrated that state-space search is feasible and po-
tentially useful for infinite-state control problems, if Lyapunov domain knowledge is
available. Lyapunov domain knowledge ensures the existence of optimal solutions
and provides conditions for the completeness of a variety of standard heuristic search
algorithms, including best-first search, uniform-cost search, depth-first branch-and-
bound, and limited look-ahead search. Similar results can be obtained for related
algorithms, such as iterative-deepening A*. We also discussed connections between
Lyapunov functions, admissible heuristics, and roll-outs.

In Sections 7.3 and 7.4, we demonstrated the process of designing finite action
sets for continuous-state, continuous-time control problems so that solution-existence
and completeness criteria are satisfied. In experiments, we made several important
observations. One is that restricting attention to solutions that strictly descend on
a Lyapunov function can limit performance. We return to this issue in subsequent
chapters. We also noted that using roll-outs for heuristic leaf evaluations in limited
look-ahead search resulted in optimal or near-optimal solutions, and sometimes re-
quired significantly less search effort than A* uniform-cost search, and DFBnB. This
was particularly the case for the pendulum swing-up task.

In Section 7.2.2 we claimed that a Lyapunov function may be useful as a heuristic
functions even if it is not admissible. One reason for this is that using a Lyapunov
function as a heuristic provides one approach to anytime heuristic search, in which
one desires to find a solution of some quality quickly and find solutions of increasing

quality as long as search is allowed to continue. One approach would be to perform a
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sequence of best-first searches with different scalar multiples of a Lyapunov function
as the heuristic. Theorem 7.5 would ensure that each search produces a solution. If
the Lyapunov function is scaled to be “large” with respect to the MDP’s cost function,
then a best-first search mostly descends on the Lyapunov function. This produces a
solution quickly, though its cost may be high. If the Lyapunov function is smaller
compared to the MDP’s cost function, then a best-first search is more sensitive to
cost, and one expects a lower-cost solution in return for greater search effort. So, if
one performs a series of best-first searches in which the Lyapunov function used for
the heuristic is scaled down in successive searches, one would expect to see a sequence
of solutions of increasing quality generated in anytime fashion.

We close by noting a complementarity between the admissibility property and
the properties of a heuristic function that make limited look-ahead search complete.
Admissible heuristics are usually monotonic, meaning that the total evaluations, f ,
of states along any path from s, are non-decreasing. Admissible heuristics without
this property can always be modified on-line to create this property [64, 74]. In
contrast, Lemma 7.10 states that the opposite is true under the conditions we used to
establish the completeness of limited look-ahead search. The estimates of the value
of the solution path as it is constructed by a limited look-ahead time search, F, is

non-increasing.
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CHAPTER 8

LYAPUNOV FUNCTIONS FOR REINFORCEMENT
LEARNING AGENTS

In the previous chapter, we took a detailed look at the implications of Lyapunov
domain knowledge for heuristic search approaches to deterministic optimal control. In
this chapter we take a much broader view. We consider stochastic control problems
as well as deterministic ones, and we focus on guarantees that can be established
making little or no assumptions about how the agent chooses actions.

Such guarantees are particularly useful for agents that learn solutions on-line. A
learning agent’s behavior is typically a complex function of the state of the environ-
ment and the history of the agent. It is difficult to predict how a learning agent
will behave in a given situation, even if one knows the exact learning algorithm and
internal representations used by the agent. Making predictions for a class of learning
agents is even harder. Instead, we look at methods for establishing provable safety and
performance guarantees based on Lyapunov domain knowledge and characteristics of
the MDP—guarantees which hold for any agent behavior.

In Chapter 7 the primary theoretical issues we sought to address are the existence
of solutions and the completeness of various state space search algorithms. Properties
such as the reachability of the goal set are important in the present setting too.
However, when learning agents are applied to on-line control tasks, other concerns
arise: Does the agent keep the state of the environment in a safe, acceptable region
of state space? Does the agent bring the state of the environment to the goal quickly

and reliably on every attempt? Does the agent avoid incurring excessive costs during
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learning? Does the agent learn quickly? In Section 8.1 we provide Lyapunov-based
tools for formulating MDPs so that some of these problems can be addressed. In
Sections 8.2 through 8.4, we present Lyapunov-based designs and experiments in the

four problem domains introduced in Chapter 6.

8.1 General Guarantees Based on Lyapunov Functions
Let the MDP under consideration be fixed. Let L : S — R; let s; be the state of
the environment at time ¢ > 0; let 7' C S be a set of “desirable” states; and let 7(¢)

be the first time the state of the environment is in 7" on or after time ¢, that is:

0 ifStET,
T(t) =9 ifspy € Tand s; ¢ T fort <i <t

oo otherwise

Suppose that an agent chooses actions by any means whatsoever (e.g., according to
a fixed policy, according to some learning rule, or simply randomly). One way to
guarantee that the state of the environment enters 7T is if all actions descend on L

outside of T'.

Theorem 8.1 If L is a CLF with target set T and if all actions descend on L, then
forallt > 0, if s, ¢ T then 7(t) —t < [L(sy)/0| and for all i € {t,...,7(t) — 1},
L(s;) < L(sy) — 0(i — 1).

That is, if all actions descend on a CLF, L, then from any state s;, the state of
the environment reaches 7' within [L(s;)/d] time steps, and in doing so it descends
on L by at least ¢ every time step. We omit proof, but note that an argument similar
to the proof of Theorem 5.3 suffices.

If T is a goal set, then this theorem provides a guarantee of goal achievement from

any initial state. If the states in 7" are not terminal, then the state of the environment
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may reach 7" but not stay in 7" forever. However, if the state of the environment leaves
T', the theorem implies that it will surely return eventually. The fact that the state of
the environment descends monotonically on L also yields desirable safety properties.
For example, in many continuous-state control problems level sets of a Lyapunov
function are bounded and lower level sets are “smaller” than higher level sets. So if
the state of the environment descends on L, we know that the state stays bounded
and is contained in “shrinking” subsets of state space en route to 7.

If L is a CLF but not all actions descend, then there is no guarantee that the
state of the environment reaches 7' from any initial state. However, with one or two

additional assumptions, some guarantees are possible.

Theorem 8.2 If L is a CLF with target set T; and 0 < L(s) <U € R for all s ¢ T;
and there exists p1 > 0, po > 0, and 0 > 0 such that with probability at least p; on
every time step the agent chooses an action that with probability at least ps causes the
state of the environment to descend on L by an amount §, then with probability one,
for allt > 0, 7(t) < oco. The probability that 7(t) —t > n for any n > 0 is bounded

above by a function that decays to zero exponentially in n.

This theorem is true for essentially the same reason that Theorem 5.4 is true.
Proof: Fix t > 0 for which s, ¢ T. Under the assumptions of the theorem,
there is probability at least p = pips > 0 on every time step that if the state of the
environment is outside of T', the next state of the environment is in 7" or lower on
L by at least §. Let k = [U/d]. If the state of the environment does not enter 7’
within k£ time steps of ¢, it must be that the state of the environment did not descend
on L during at least one of those k time steps. (Otherwise, L(s;1x) < L(s;) — 0k <
U —6[U/d] <0, which implies s, € T.) The probability that at least one of those
k steps does not descend on L is no more than 1 — p*. The probability that the state
of the environment does not enter 7" in the first 2k time steps after ¢ is no more than

(1 — p*)2. More generally, the probability that the state of the environment does not
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enter 7T in the first jk time steps is no more than (1 — p¥)?. The probability that the
state of the environment never enters T is no more than lim; ,.(1 —p*)? = 0. O

These guarantees are not nearly as strong as those of the previous theorem, yet
they are reassuring. It is a non-trivial assumption that L is bounded above and that
0 descent is possible from any state with at least some probability. In essence, it
means that the state of the environment cannot get arbitrarily “far away” from 7—it
is always within [U/¢] steps. In the examples below, we use various means to ensure
that a Lyapunov function is bounded above on the set of reachable states. Being able
to show this kind of boundedness can be an important factor in deciding what actions
the agent is allowed to take.

In summary, if all actions guarantee descent on a Lyapunov function with target
set T, then the state of the environment is guaranteed to reach 7" in bounded time. If
there is some non-zero probability of descent on a Lyapunov function at every step and
if the Lyapunov function is bounded above, then the state of the environment reaches
T eventually, and the probability of waiting n steps for the state of the environment

to enter T decays exponentially in n.

8.2 Deterministic Pendulum Demonstration

In Section 7.3 we solved the deterministic pendulum swing-up and balance task
using state-space search methods. Here, we take a reinforcement learning approach.
We begin by briefly reviewing the problem definition and the four action formulations
we proposed for controlling the pendulum (see Sections 6.1 and 7.3 for more details.)
We then discuss what sorts of guarantees can be established for reinforcement learning
agents using those problem formulations. In Sections 8.2.2 and 8.2.3 we describe and
present the results of experiments in which reinforcement learning agents learned to

control the pendulum.
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Action Actions Goal
Formulation Set
1 MEA (Umaz), MEA(%umm) G?

2 MEA (Umaz), MEA(%umaz), FUmaz, —Umaz | G2

3 +umawa —Umaz G?)end

4 +Umazs —Umaz, PLS Gl

Table 8.1. Four action formulations for the deterministic pendulum swing-up and
balance problem.

8.2.1 Problem Review and Safety and Performance Guarantees

The basic task is minimum-time control to the set G}, = (6,0) : 11(0,0)| <

0.01}. In Section 7.3 we proposed four action formulations, which are recapitulated
in Table 8.1. The first three formulations rely on an alternate goal set, Gf, =

end

{(6,6) : ME(6,0) = 2}, with the understanding that when that goal set is reached,

1

the pendulum is allowed to swing until its state enters G,

4- The time of the swing
from Gf,end to Gzl,en 4 isincurred as a terminal cost. Formulation 1 has two actions based
on the MEA control law. Both of these descend on CLF Lyeq(6,0) = 2 — ME(6, 6).
Formulation 2 has the two MEA-based actions as well as two constant-torque (£umqz)
actions. These latter two do not always descend on L,e,q. Formulation 3 has just the
FUmqe actions. Formulation 4, which is the only action formulation to use the G,

goal set, has the two constant-torque actions plus a third action based on an LQR

design for a linear approximation to the pendulum dynamics. The third action makes

1

venay Leasible. We know of no CLF for formulations 3 and

hitting the small goal set, G
4.

What can one say about reinforcement learning agents using these different ac-
tion formulations—agents which may behave in a complex, stochastic, non-stationary

manner that depends, potentially, on every time step of the previous experience con-

trolling the pendulum?
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Under the first three formulations, the state of the pendulum is guaranteed to
stay in the set {ME < 2} if it starts there, a simple safety guarantee. No agent
behavior can impart a dangerous amount of energy to the pendulum, and the state

stays bounded at all times. If the state of the pendulum ever reaches G? then

pend>
applying zero torque allows it to continue to Géend and to asymptotically approach
the upright, stationary state (the origin).

All actions in formulation 1 descend on Lyepq, thus Theorem 8.1 applies. An agent
using these actions is guaranteed to bring the state of the pendulum to Gf,end within

bounded time on every trial.

2

Because Lyenq is a CLF for formulation 2, we know that G,

4 1s reachable from

any state with ME < 2. However, there is no guarantee that an agent using those

2

actions causes the state of the pendulum to reach Gz, ;-

For example, the agent might

simply choose the +,,q, action indefinitely, which puts the state of the pendulum on

2

send- s described more fully below,

a periodic trajectory that does not intersect G
the learning approach we take distinguishes between learning trials and testing trials.
During every step of a testing trial, the agent chooses whichever action it estimates
to be best. It does not take any other actions nor does it change its estimates of the
value of the actions. However, during learning trials the agent updates its action-
value estimates and chooses an action at random with some non-zero probability
on every time step. Both of these tend to break the agent out of unproductive,
cyclic behaviors. Further, for an agent operating under formulation 2, the occasional
random action selections mean that there is some positive probability of choosing a
descending action on every time step. This means that the conditions of Theorem 8.2
are satisfied, ensuring that the state of the pendulum is brought to G7,,, on every
learning trial.

Under formulation 3, similar behavior should be expected. Although we have

not proved it, we suspect that from any state with ME < 2, Gﬁend is reachable in
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a bounded number of steps using the 4u,,,, actions. Thus, we expect that during
learning trials, the occasional random action selections are sufficient to guarantee
eventual arrival to the goal set. During testing trials, one cannot guarantee that the
state of the environment reaches the goal set.

The situation is different for agents operating under formulation 4. Because this
action formulation relies on the G}, goal set, the set of non-goal states is unbounded
and a badly-behaving agent could easily drive the state of the pendulum arbitrarily far
from the goal set. For example, if the agent causes the state of the pendulum to have
ME > 2 and 6 > 0, and chooses the +u,,,; action from then on, then the pendulum’s
velocity and energy diverge to 4+oo. There is no reason to think that occasional
random action selections would save the pendulum from such a fate. So, although
we expect G, to be reachable from any pendulum state, one cannot guarantee any

kind of safety or goal-achievement.

8.2.2 Experiments

We performed experiments with reinforcement learning agents using the Sarsa(\)
algorithm (A = 0.9) to update action value estimates which were stored in CMAC
function approximators (see Appendices B and C). This combination has proven
successful in a number of dynamical system control tasks, learning good policies
quickly and stably (see, e.g., Sutton [87] and Santamaria et al. [75]). Each agent
kept separate CMACs for each action, estimating the action’s value as a function of
the two state variables of the pendulum. Each CMAC covered the range of states
-7 <0 < 7mand —4.01 < 0 < 4.01. Each CMAC had 10 layers, and each layer
divided each dimension into 24 bins, for a total of 576 tiles per layer. Offsets were
random. The step size for the k** update of a tile’s weight was 1/v/k. Weights were

initialized to zero.
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Under each action formulation we performed 30 independent learning runs, con-
sisting of 20,000 trials each. Odd numbered trials were learning trials. During learning
trials, the agents chose actions e-greedily with e = 0.1. That is, on each time step,
with probability €, an action was chosen uniformly randomly, and otherwise the action
with lowest estimated cost was chosen, ties being broken randomly. Even numbered
trials were testing trials. In testing trials, agents always chose the action with lowest
estimated cost, ties being broken randomly, and did not update their action value
estimates. The purpose of testing trials was simply to assess the quality of the poli-
cies the agents learned over time. In all trials, the initial state of the pendulum was
(6,0) = (m,0), which is the downward-hanging, zero-velocity state. Choosing an ac-
tion meant that the pendulum was controlled according to the corresponding control

law for A = 1 second. Trials were terminated after 999 time steps (seconds) if the

2

pend depending on the

state of the pendulum did not enter the goal set (G, or G
action formulation) by that time. This gives plenty of time to reach the goal. The
minimum time to goal is approximately 20 time steps, as we saw in Chapter 7. Under
formulation 4, there is no bound on how large the pendulum’s velocity can grow,
which can be awkward for learning purposes. In these experiments we artificially
limited the pendulum’s velocity to the range [—4, 4], holding 0 at the boundary if the

natural dynamics would take 8 out of that range. We simulated the dynamics using

4*_order Runge-Kutta integration with an integration step size of 0.01 seconds.

8.2.3 Results

Figure 8.1 and Table 8.2 summarize the results of the experiments. Figure 8.1
plots learning curves for the agents—the observed trial costs as a function of trial
number—which are good for observing gross, qualitative differences resulting from
the different experimental conditions. Remember that the trial cost is just the time

taken to reach G, or 999 if the goal is not reached during the trial. Each plot

pen
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Figure 8.1. Trial costs as a function of trial number for learning experiments in the
deterministic pendulum domain.
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shows three curves. The middle curve is the mean trial cost, taken by averaging first
across blocks of 10 successive trials and then averaging across runs. The upper curve
represents the maximum trial costs observed across blocks of 10 trials and across runs.
The lower curve represents the minimum trial costs.

All agents learn to control the pendulum well, as shown by the improvements
in the learning and testing trial costs over time. The testing trial graphs indicate
that by about trial 2000, all of the agents had settled (or nearly settled) on their final
solutions, and there is very little variation in performance. The difference between the
minimum and maximum trial cost curves during testing is due not to trial-by-trial
variations in performance, but to the fact that different runs converged to slightly
different policies. There is more variability in the learning trial costs, indicated by
the spread between the minimum and maximum trial cost curves. This is mostly due
to the e-greedy behavior.

Not surprisingly, the agents using action formulation 1 showed the best initial per-
formance, with initial performance decreasing as the reliance on Lyapunov domain
knowledge decreases in action formulations 2, 3, and 4. The Lyapunov domain knowl-
edge allows the agents using action formulation 1 to drive the state of the system to
the goal set, even before there has been any learning and when actions are chosen es-
sentially at random. Lyapunov domain knowledge also improves performance during
learning trials, especially as measured by the maximum trial costs across runs. Under
formulation 1, for example, both actions increase the energy. Even if an agent chose
actions at random, the pendulum would swing upright. By contrast, in formulation

4, one or two bad actions can derail the state of the pendulum from the desired tra-

1

jectory to the small, hard-to-hit goal set G, 4.

The agent then has to recover from
those bad actions, which can take considerable time.
Table 8.2 presents summary statistics. For different subsets of trials, minimum,

mean, and maximum trial costs are reported. The mean trial cost is computed by
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Formulation 1 | Formulation 2 | Formulation 3 | Formulation 4
learn test learn test learn test learn test

First Trial
min 21.38 21.15 | 21.83 2341 |22.05 35.74 | 76.85 58.53
mean 25.50 26.98 | 34.91 35.88 | 70.23 420.8 | 428.7 775.6
stderr +0.79 £1.02 | £3.25 +£3.53 | £13.0 +£152 | £104 128
max 33.00 32.54 | 53.86 63.27 | 181.5 999 999 999
First 10 Trials
min 21.12 21.15 | 20.71 21.54 |21.96 22.19 | 25.37 24.05
mean 25.81 25.75 | 36.24 81.55 | 62.91 268.9 | 264.1 508.7
stderr +0.23 +0.28 | £0.65 £25.5 | £1.69 +£43.3 | £31.7 +44.3
max 34.51 33.37 | 72.82 999 181.5 999 999 999
Last 100 trials
min 20.80 20.92 |19.33 1941 |19.33 19.33 | 18.07 18.47
mean 21.28 21.03 | 21.16 20.08 |21.78 19.92 | 22.35 18.94
stderr +0.04 =+0.04 | £0.07 =+0.13 | £0.12 +0.18 | £0.20 =+0.14
max 28.563 21.33 | 32.98 20.72 | 36.19  20.77 | 92.56 20.08
All trials
min 20.80 20.80 | 19.33 19.33 |19.33 19.33 | 18.07 18.47
mean 21.57 21.33 | 22.11 21.65 | 22.48 22.19 | 24.61 23.11
stderr +0.03 £0.04 | £0.03 =+0.20 | £0.06 +0.34 | £0.12 +0.46
max 35.51 36.13 | 80.46 999 181.46 999 999 999

total
time-outs

0 0 0 175 0 432 8 757

Table 8.2. Summary statistics for learning experiments in the deterministic pendu-
lum domain.
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averaging first across trials and then across runs. The “stderr” row gives the +2/ V30
standard deviations of the mean trial cost across runs. In the min, mean, and max
rows, the best (lowest) figure for learning trials and for testing trials is highlighted in
bold.

As mentioned above, the performance near the start of learning was generally
best with action formulation 1. The difference between formulations 1 and 4 (and to
a lesser extent, formulation 3) is striking. The mean cost of the first learning trial,
for example, was 20 times better under formulation 1 than under formulation 4. For
testing trials, there was a factor of 30 difference. These comparisons would favor
formulation 1 even more if there were not an artificial limit of 999 time steps put on
the trials. A slight exception to the rule is that the best learning trial out of the first
ten came under formulation 2 rather than formulation 1.

Final performance was good for all action formulations. The MEA (t;e,) and
MEA(%umm) control laws alone can swing the pendulum upright, resulting in trajec-

eng- Agents using any

tories taking 24.19 and 37.27 seconds respectively to reach Gllj
of the action formulations learned to do significantly better than that. For reasons
explained in Chapter 7, best final performance is achieved under formulation 4. Inter-
mediate performance results are obtained under formulations 2 and 3. Formulation
1 leads to the worst final performance. Ultimately, the least-constrained agents are
able to swing the pendulum upright most quickly.

During the last 100 trials, the best trajectories under each action formulation
matched the best trajectories found by state-space search. Except in the case of
formulation 2, for which the optimal A* and DFBnB searches did not terminate, we
know those trajectories to be optimal. The average trial cost was slightly higher.
Even after 9,900 learning trials, a few runs continued to show small changes in what
policy was estimated to be best. However, most of the variation in mean test trial

time is due to the fact that different runs settled on slightly different policies. If
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learning continued long enough, all the runs might have converged to the same policy.
However, there is no theoretical reason to think this would happen. The use of CMAC
function approximators to estimate action values and the e-greedy action selection
with constant e violate the assumptions of any known convergence proof.

The last row of the table reports the total number of learning and testing trials
that timed out (i.e., the number of trials during which the state of the pendulum did
not reach the goal before 999 time steps elapsed). The results here perfectly match
the qualitative projections made in Section 8.2.1 based on Theorems 8.1 and 8.2.
The state of the pendulum reached the goal in all formulation 1 trials as well as all
learning trials under formulations 2 and 3. Even the longest formulation 1 trial took
only 36.13 seconds—just twice the cost of the best trial under any action formulation.
During a significant number of formulation 4 trials and formulation 2 and 3 testing
trials, the state of the pendulum was not brought to the goal. As suggested by the
theory at the beginning of this chapter, ensuring descent on a Lyapunov function on
every time step, or at least some probability of descent, ensures that the state of the
pendulum is brought to the goal set. The presence of Lyapunov-based actions or goal

sets in the problem formulation is helpful, but does not guarantee good performance.

8.3 Stochastic Pendulum Demonstration

Next, we turn to the stochastic pendulum swing-up and balance problem that was
introduced in Section 6.2. After reviewing the problem, we introduce three action for-
mulations for controlling the pendulum, which differ from the action formulations we
used for the deterministic swing-up and balance problem. We discuss safety and per-
formance guarantees for the different action formulations and present reinforcement

learning experiments.
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Action Actions
Formulation
1 +umam; 0; — Umaz
2 +umam; + %umama 0; - %umazy — Umazx
3 MEt02[+tmqz|, MEt02[0], MEt02[—tUmaz]

Table 8.3. Three action formulations for the stochastic pendulum swing-up and
balance.

8.3.1 Problem Review, Action Formulations, and Safety and Performance
Guarantees

Recall that the stochastic pendulum dynamics introduced in Section 6.2 include
Gaussian noise driving the position variable. As such, asymptotically stabilizing the
pendulum upright, or even maintaining the state of the pendulum in some set around
the upright position, is impossible. The task is to keep the state of the pendulum
near upright and stationary as much of the time as possible, where “near upright and
stationary” is defined by the set T,, = {(6,6) : |6] < 0.5, |f| < 0.3}. To formalize the
task as an optimal control problem, we suppose that unit cost is incurred per unit
time when the state of the pendulum is not in 7,,, and zero cost is incurred when the
state of the pendulum is in 7,,. There are no goal states. We discount future costs
with a discount rate of v = 0.95, so that expected discounted returns are finite.

In all, we propose three action formulations for the problem, which are summarized
in Table 8.3. The first two action formulations are based on simple, constant-torque
control laws. Formulation 1 has three actions, corresponding to torques of +,,,, and
0. Formulation 2 has five actions, corresponding to torques of £uyqz, i%umaw, and
0.

Formulation 3 is a Lyapunov-based design. Recall that in Section 6.2 we described
a control law called MEto2, which brings the pendulum’s energy toward 2. When
energy is low, it uses the MEA strategy to increase it. When energy is high, MEto2

applies braking torque to reduce it. When the pendulum’s energy is near 2, no torque
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is applied and the pendulum tends to swing upright, its state entering 7,,. The
intuition behind formulation 3 is that MEto2 is always used when the state of the
pendulum is outside of Ty, in order to bring it back into T,,,. The agent must learn
how to keep the state of the pendulum in 7,,. Formulation 3 has three actions,

corresponding to the control laws:

: Flhmag if (9,6) € T,
MEto2[+umqz|(6, 0) = ,

MEt02(6,6) otherwise

. 0 if (0,0) € T,
MEt02[0](6,0) = _ ,
MEto2(f,6) otherwise

. —Upnag if (0,0) € T,,
MEto2[—umqz (6, 0) = ,

MEto2(6,6) otherwise

What can we predict or guarantee about agents using these action formulations?
We have already assumed that the state says bounded ((6,0) € [, 7] x [—4,4]). No
stronger safety guarantees can be provided. For any agent, it is possible to devise
sequences of random disturbances to the position variable that cause the pendulum
state to reach any value in [—7, 7] X [—4, 4]. On the other hand, the same randomness
ensures that for any agent the state of the pendulum enters 7,,, eventually. However,
if an agent using action formulation 1 or 2 learns a bad policy, one may have to wait
a long time for the lucky position disturbances that bring the state of the pendulum
into Tp.

Agents operating under formulation 3 always control the pendulum according to
MEto2 when its state is outside of T,,. Intuitively, then, the state of the pendulum
is drawn towards T, much more strongly. In Theorem 6.2, we showed that if the
state of the pendulum starts outside of T.,,, = {(8,6) : IME(8,8) — 2| < ey}, then
there is some probability of descent on L2 (6, f) = IME(6,6) — 2|. That is, L ona

is a CLF for formulation 3 agents with target set T¢,,,. Further, because the state
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of the pendulum is bounded, Lzend is bounded above and Theorem 8.2 implies that

formulation 3 agents always cause the state of the pendulum to enter 7, UT,,,,
eventually. If the state of the pendulum enters T,,, before T,, then there is some

chance it will stay in 7T, until it reaches T,,. Otherwise, the agent is assured of

ME

returning the state of the pendulum to 7,,, U T,,, eventually, giving another chance

ME
at entering T,,. So, although under all action formulations the state of the pendulum
is guaranteed to reach T, eventually, the Lyapunov design provides a much stronger

heuristic bias towards reaching T, than formulations 1 or 2 do.

8.3.2 Experiments

We performed learning experiments in largely the same manner as we did for the
deterministic pendulum domain. Agents used the Sarsa()) algorithm with A = 0.9
to update action value estimates, which were stored using separate CMAC function
approximators for each action. The CMACs were of the same design described in
Section 8.2.2. For each action formulation we performed 30 independent runs of 2000
trials each, alternating learning trials and testing trials. All trials started with the
initial state (6,0) = (,0), the downward-hanging, zero-velocity state. Since there
are no goal states to signal the end of a trial, we simply ran all trials for 999 seconds
(simulated time). In pilot experiments we found that allowing agents to make control
decisions only once per second made keeping the state of the pendulum in 7, very
difficult. On the other hand, if agents were allowed to make 10 control decisions per
second, the learning problem was very hard. We settled on an intermediate action
duration of A = 0.25 seconds. This means that the 999 second trials consisted
of 3996 action choices (time steps). Action selection was e-greedy with € = 0.1
during learning trials and greedy during testing trials. We simulated the stochastic
differential dynamics of the pendulum using an integration time step of 0.01 seconds

by using 4" order Runge Kutta integration to calculate the deterministic dynamics
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and then adding Gaussian noise to the pendulum’s position with mean zero and
standard deviation 0.1 x +/0.01 = 0.01. (This is a slightly non-standard approach,
though perfectly adequate for our purposes. See, for example, Higham [31] for other

methods.)

8.3.3 Results

Figure 8.2 and Table 8.4 summarize the results of the experiments. Figure 8.2
shows the minimum, mean, and maximum trial costs across runs for each action for-
mulation and for learning and testing trials separately. These curves are not smoothed
across trials. The trial cost is just the amount of time during which the state of the
pendulum is not in 7Ty,, which should be minimized.

Recall from Section 6.2 that using the MEto2 control law alone keeps the state
of the pendulum in T, approximately 49.2% of the time. This would correspond
to an average trial cost of 507. Under all action formulations, the agents learn to
do better than this, with mean trials costs between 200 and 300 during the final
testing trials. Unlike what we saw in the deterministic pendulum domain, the costs
of testing trials continue to vary significantly, even after the learning has mostly
settled on a final policy. This is to be expected in a stochastic problem. Indeed,
if one takes the distance between the min-cost and max-cost curves to indicate the
amount of variability, it appears relatively independent of the action formulation and
independent of whether the trial is a learning trial or a testing trial. This suggests
that the stochasticity of the dynamics is the cause of the variation.

The most obvious difference between the action formulations is the comparatively
good initial performance and rapid learning exhibited by the formulation 3 agents.
Good initial performance was not unexpected, for the reasons discussed in Section
8.3.1. Rapid learning also makes sense, since these agents only needed to learn what

actions to take when the state of the pendulum was near upright. The formulation
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Figure 8.2. Trial costs as a function of trial number for learning experiments in the

stochastic pendulum domain.
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Formulation 1 Formulation 2 Formulation 3
learn test learn test learn test

First Trial
min 966.6  916.1 979.8 9494 | 469.7 227.4
mean 988.3 991.1 991.5 989.1 | 561.8 448.9
stderr +2.7 +5.8 +1.9 +5.2 +16.8 £44.5
max 997 999 999 999 647.9 714.1
First 10 Trials
min 861.7  885.7 925.2 891.6 |287.5 164.2
mean 973.2 987.9 979.9 990.8 | 397.6 305.7
stderr +2.1 +2.6 +1.1 +1.5 +7.0 +14.0

max 999 999 999 999 647.9 714.1
Last 100 trials
min 231.15 120.78 | 237.17 125.26 | 227.59 129.12

mean 349.2  234.5 375.1 2622 | 315.4 222.1
stderr +8.4 +10.2 | £13.6 £15.6 | £5.6 +7.6
max 499.8 421.38 | 814.09 533.85 | 416.84 468.32
All trials
min 229.6 103.8 237.2 121.6 213.6 111.9
mean 392.4  293.3 442.7 360.5 | 317.6 223.9
stderr +8.4 +10.0 | £10.5 #£12.1 | £5.6 +7.4

max 999 999 999 999 647.9 714.1
trials w/
no time 3 592 9 1042 0 0

in T,

Table 8.4. Summary statistics for learning experiments in the stochastic pendulum
domain.

1 and formulation 2 agents needed to learn what actions to take in all parts of the
state space.

Table 8.4 presents summary statistics. For different subsets of trials, minimum,
mean, and maximum trials costs are reported. The mean cost is computed by av-
eraging first across trials and then across runs. The “stderr” row indicates +2//30
standard deviations of the mean trial cost across runs.

Initially, agents using formulation 3 performed best by all measures. By the last
100 trials performance was comparable under all three action formulations. Though

formulation 3 agents still generated most of the best learning and testing perfor-
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mances, a formulation 1 agent was responsible for the lowest-cost learning trial of the
last 100. The final performance was quite close for the agents using formulation 1 and
3. The agents using formulation 2 did not produce results quite as good. The learning
curves of Figure 8.2 indicate that these agents were still improving their policies at
the end of the 1000 learning trials.

The last row of the table reports the number of trials in which the state of the
pendulum was never in 7T,,. A surprisingly large number of formulation 1 and 2
testing trials included no time in 7;,. We observed several of these trials, but there
was no clear, intuitive explanation for their poor performance except that the agents
had not yet learned what actions to take in a large enough part of the state space
and hence could not get the state of the pendulum into 7,,,. In some trials, the state
of the pendulum stayed near the bottom of its range most of the time. In others, the
pendulum swung back and forth with high amplitude, its state repeatedly coming
near T, but not making it in.

Even in the worst formulation 3 trial, the state of the pendulum was in 7,,, more
than one quarter of the time. Once again, we observe that strong, Lyapunov-based
constraints on a learning controller can result in good initial performance and rea-
sonable worst-case performance. The asymptotic performance of agents using the
Lyapunov-based action formulation was no worse than that of the other agents. In
this case, it appears that constraining the agents in this way did not restrict their
ability to optimize for cost. Although a Lyapunov design is, in general, going to be
suboptimal with respect to an arbitrary cost function, it does not have to be so. It
appears that in this problem, controlling the pendulum according to MEto2 when its

state is outside of T, is an optimal or near optimal thing to do.
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8.4 Robot Arm Demonstration

In this section, we apply reinforcement learning to the deterministic and stochastic
robot arm control problems introduced in Section 6.3. Recall that the two problems
differ only in their dynamics, with the stochastic version of the dynamics including
Gaussian disturbances to the joint positions that do not appear in the deterministic
version. In Section 7.4, we described two action formulations, and we used state-
space search to find optimal trajectories for the deterministic problem. We begin by
reviewing the problem and action formulations introduced above. We then discuss
safety and performance guarantees for agents using these action formulations, and

present the results of reinforcement learning experiments.

8.4.1 Problem Review and Safety and Performance Guarantees

The task is to bring the state of the arm to the goal set Gopm = {(0,0) :
1(©, )| < 0.01}, while minimizing the trajectory cost: [/ [|©(t)|> +]7(t) — 7o||?dt,
where ©(t) is the arm’s position as a function of time, 7(¢) is the torque applied at
the joints as a function of time, ¢4 is the time at which the state of the arm enters
Garm, and 7y is the torque needed to hold the state of the arm at the origin. In
Section 7.4 we introduced two sets of control laws for the arm, which we designed
using feedback linearization and linear-quadratic regulation methods (see Table 8.5).
Action formulation 1 includes 5 control laws. The first three of these bring the state
of arm to the origin, in the center of G, but at different rates. The last two con-
trol laws do not accelerate the first joint of the arm, but pull the other two links
into a folded position, allowing the arm to swing more easily around its first joint.

The first control law, FL;, causes the state of the arm to descend on the function
Ly (0,0) =[0'0"|P | . |, where P is a symmetric positive definite matrix. Thus,
©

Lgrm is a CLF for action formulation 1. Action formulation 2 also has five actions,

which are identical to the formulation 1 actions as long as they cause the state of
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Action Actions
Formulation
1 FLi, FLs, FL3, FL4, FL5
2 FL;, LD[FL,], LD[FLs], LD[FLy4|, LD[FLs]

Table 8.5. Two action formulations for robot arm control.

the arm to descend on L,.,,. When a formulation 1 action does not cause the state
of the arm to descend on L., then the corresponding formulation 2 action controls
the arm like the FL; control law instead. In formulation 2, all actions cause the state
of the arm to descend on Lgyy,.

In Section 6.3.3 we showed that, under the stochastic dynamics, the state of the
arm stays bounded under control by FL;. The same argument applies to the case of
deterministic dynamics, and to control by any form of switching among the controllers
defined above. Thus, any agent behavior under either action formulation is safe in
the sense of keeping the state of the arm bounded.

Because the state of the arm stays bounded, L, is bounded above for all reach-
able states. During learning trials under formulation 1, in which a random action
is selected at each time step with probability ¢ > 0, Theorem 8.2 guarantees that
the state of the arm is eventually brought to G, (under deterministic or stochastic
dynamics). This guarantee does not hold for testing trials.

For formulation 2 learning and testing trials, Theorem 8.1 ensures that the state
of the arm is brought to G, in bounded time in the case of deterministic dynamics.
Under the stochastic dynamics, Theorem 8.2 ensures that the state of the arm is

brought to G4, eventually.

8.4.2 Experiments
Recall that in Section 7.4 we reported heuristic search results that were aver-
aged over a set of nine initial configurations of the form © = [z,y,—y| for z €

{-m, —%71', —%W} and y € {—%71’,0, %71’} We do the same here. Learning runs were
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organized into learning suites and testing suites. Each suite included one trial from
each initial state. As in our other learning experiments, action selection was e-greedy
with € = 0.1 during learning trials. Action value estimates were updated using the
Sarsa(A) algorithm with A = 0.9. Action value functions were represented using sep-
arate CMACs for each action. Each covered the range of states: © € [—3.2,3.2]> and
e [—5, 5]%, with 20 layers and 5 divisions per dimension in each layer. Each CMAC
thus had a total of 155,520 tiles. The step size for the k£ update of a tile was 1/\/%
During testing trials, action selection was greedy and action values were not updated.

We performed 30 independent learning runs for both action formulations and
for the deterministic and stochastic versions of the dynamics. Runs consisted of
1000 learning suites and 1000 testing suites of nine trials each. Choosing an action
meant that the arm was controlled by the corresponding control law for A = 1
second. Trials were terminated after 250 time steps (seconds) if the arm had not
reached G, by that time. The deterministic version of the dynamics was simulated
using 4%"-order Runge Kutta integration with an integration time step of 0.1 seconds.
The stochastic dynamics were simulated by computing the deterministic dynamics
using 4"-order Runge Kutta integration with an integration time step of 0.1 seconds
and then adding Gaussian noise to the joint positions with zero mean and standard

deviation 0.2 x 1/0.1.

8.4.3 Results

Figures 8.3 and 8.4 and Tables 8.6 and 8.7 present the results of the experiments.
Figure 8.3 shows learning curves for the experiments with the deterministic version
of the arm dynamics. The minimum, mean, and maximum suite costs across runs
are plotted, where the cost of a suite is just the average cost of the nine trials in
the suite. Learning was rapid, with performance improving to near asymptotic levels

after 50 or 100 learning suites. On average, agents using action formulation 2 per-
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Figure 8.3. Suite costs as a function of suite number for learning experiments in the
deterministic robot arm domain.
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formed better initially than agents using formulation 1. Formulation 1 agents also
had better worst-case performance, as indicated by the maximum-suite-cost curve.
The test performance of formulation 2 agents qualitatively matched expectations,
rapidly improving to near its final level, and exhibiting little variance. Something
unexpected showed up in the testing suites for formulation 1 agents. One of the runs,
run 26, failed to converge to a good policy. Instead, the run flip-flopped between
two policies, one with testing suite cost 308.3 and one testing suite cost 547.6. The
agent switched between these two policies every fifth suite or so. The most notable
feature of the testing suite cost graph is the jagged maximum-suite-cost curve, which
oscillates between 308 and 547 as a result of run 26. That run also affected the mean
performance curve, although the affect was smaller since run 26 accounts for only one
thirtieth part of the mean.

Table 8.6 presents summary statistics for the experiments with the deterministic
version of the dynamics. For different sets of suites, the minimum, mean, and max-
imum suite costs are reported. The mean suite cost is computed by averaging first
across suites and then across runs. The “stderr” row gives +2/1/30 standard devi-
ations of the mean suite cost. As we observed from the graphs, initial performance
was better under formulation 2 than under formulation 1. In the last 100 suites, and
over all suites, the best learning and testing performances came under formulation
1. We know from Section 7.4 that optimal solutions are better under formulation 1
than under formulation 2, so this is not surprising. Somewhat surprisingly, no learn-
ing or testing suites achieved the optimal suite cost, although the best suites were
not far above optimal (283.1 and 303.7 for formulations 1 and 2 respectively). Once
there has been sufficient learning, mean test suite costs are better under formulation
1 than under formulation 2. Mean learning trial performance is comparable, perhaps
slightly favoring formulation 2. The maximum suite costs later in learning are signif-

icantly better under formulation 2. The formulation 1 statistics are hurt in part by
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Formulation 1 Formulation 2
Learning  Testing | Learning Testing
First Suite
min 641.2 526.322 403.3 341.7
mean 1,090.5 1,334.0 531.7 525.5
stderr +69.9 +488.1 +29.7 +39.2
max 1,395.7 7,958.6 671.8 708.9
First 10 Suites
min 342.7 329.0 3294 324.2
mean 737.5 1,094.1 437.0 410.6
stderr +17.9 +346.4 +4.9 +7.5
max 1,583.1 29.097.0 | 671.8 708.9
Last 100 Suites
min 291.5 288.7 306.2 306.4
mean 349.3 298.3 343.1 315.3
stderr +3.8 +5.3 +2.1 +2.0
max 1,007.2 547.6 623.2 326.3
All Suites
min 287.3 286.3 306.2 306.4
mean 361.6 314.4 348.1 321.0
stderr +3.3 +6.7 +1.6 +2.0
max 1,583.1 29.097.0 | 677.2 708.9
Trial Statistics
Longest (sec) | 250 250 11.66 10.98
Costliest 7,866.6  245,254.2 | 1,966.7 1,965.7
Time-outs 3 2287 0 0

Table 8.6. Summary statistics for learning experiments in the deterministic robot
arm domain.
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the anomalous run 26. Learning performance is also hurt by the exploratory actions
taken, which have more capacity to bring the state of the arm away from goal and to
incur high costs than the exploratory actions under formulation 2.

The final section of the table reports statistics concerning individual trials. Some
learning and testing trials under formulation 1 timed out at 250 seconds, whereas no
trials under formulation 2 were even as long as 12 seconds. The lion’s share of the
time-outs under formulation 1, 2234 of the 2287 testing trial time-outs, were due to
run 26. However, none of run 26’s learning trials timed out nor did run 26 produce
the costliest trials. The most expensive trial in run 26 cost 4,213.9. Of the 29 other
formulation 1 runs, 28 included at least one trial more expensive than that, including
six runs with testing trials costing over 245,000. The worst trial under formulation 2
was far better, costing only 1,966.7.

Figure 8.4 displays learning curves under the stochastic arm dynamics. The curves
are qualitatively similar to the curves for the deterministic case. Learning is rapid
under both action formulations; initial and worst-case performance is better under
formulation 2 than under formulation 1. There are two main differences in the results
for the stochastic arm. One is that there was no anomalous “run 26”. The other is
that, because of the stochasticity in the dynamics, a greater amount of noise persists
in the performance curves.

Table 8.7 presents summary statistics for the experiments using the stochastic
dynamics. The comparisons between formulations 1 and 2, indicated by the bold
text, largely match what was seen for the deterministic dynamics. One of the most
significant differences was the much smaller number of time-outs observed under the
stochastic dynamics. This can be attributed to the fact that there was no run that

failed to converge to a good policy.
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Formulation 1 Formulation 2
Learning  Testing | Learning Testing
First Suite
min 766.3 516.7 400.2 374.6
mean 1,165.0 1,976.2 567.9 544.5
stderr +78.8 +1,776.8 | £38.1 +43.7
max 1,564.4 27.661.9 | 767.1 875.6
First 10 Suites
min 357.8 324.0 342.1 345.1
mean 773.4 1,540.9 461.6 428.3
stderr +21.1 +642.4 +8.9 +6.3
max 1,677.7 54,797.3 | 767.1 875.6
Last 100 Suites
min 287.9 279.1 294.8 290.9
mean 370.0 315.3 356.2 328.0
stderr +2.7 +1.6 +2.3 +2.0
max 833.2 430.6 715.6 415.9
All Suites
min 281.6 275.6 287.6 290.5
mean 383.6 335.7 362.0 333.7
stderr +1.2 +7.3 +1.8 +2.0
max 1,677.7 54,797.3 | 923.9 875.6
Trial Statistics
Longest (sec) | 250 250 12.47 12.47
Costliest 8,610.4  245,312.7 | 5,690.2 3,649.4
Time-outs 1 16 0 0

Table 8.7. Summary statistics for learning experiments in the stochastic robot arm
domain.
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8.5 Discussion

In this chapter we demonstrated that Lyapunov domain knowledge and other
control-theoretic techniques can be used to design action formulations for optimal
control problems, providing basic safety and performance guarantees. By formu-
lating an agent’s actions so that descent on a Lyapunov function is guaranteed, or
probabilistically guaranteed, one can: (1) ensure that the state of the environment
reaches a desirable region of state space, such as the goal set; in some cases one can
bound on the time this takes; (2) ensure that the state of the environment stays
bounded at all times, one of the most basic forms of safety; and (3) ensure desirable
asymptotic system behavior.

Importantly, these guarantees are derived primarily from properties of the ac-
tion formulations, making few or no assumptions about how an agent chooses among
those actions. This allows us to provide guarantees for approaches to approximate op-
timal control that otherwise offer no such guarantees. In particular, we have demon-
strated that reinforcement learning agents using established, state-of-the-art algo-
rithms and representations for learning to control dynamical systems benefit greatly
from Lyapunov-based designs. In practice, the empirical benefits include: better ini-
tial performance during learning, better worst-case performance, shorter trial times,
and more rapid learning.

Strict Lyapunov-descent constraints provide good theoretical guarantees, but they
are subject to at least one potential drawback. Restricting an agent to choose actions
that cause the state of the environment to descend on a given Lyapunov function
may limit its ability to minimize cost. In our example problems, the least-constrained
agents performed up to 10 or 15% better than the most-constrained agents. In the
deterministic pendulum domain, agents using the relatively naive and unconstrained
formulation 4 found trajectories taking 18.08 seconds to reach the goal, whereas agents

using the Lyapunov-based formulation 1 did no better than 20.80 seconds. In the
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stochastic pendulum domain, agents were able to do equally well under all action
formulations, ranging from a heavily-constrained Lyapunov-based design to a simple
design with five constant-torque actions. In this problem, the Lyapunov design did
not impede the agent’s ability to minimize costs.

In the robot arm domain, both of the action formulations we considered relied
heavily on control-theoretic techniques. However, one ensured descent on a Lyapunov
function and the other did not. Again, we observed that (most) of the less-constrained
agents eventually learned to perform better than their more-constrained counterparts.
In Chapter 10 we discuss whether or not it is really necessary to accept the possibility
of inferior asymptotic performance in order to achieve theoretical guarantees on safety
and performance, and we discuss how trade-offs between these sometimes-competing

goals might be achieved.
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CHAPTER 9
LEARNING LYAPUNOV FUNCTIONS

In the previous chapters we assumed that Lyapunov domain knowledge was avail-
able, and we demonstrated how such knowledge can be integrated into standard Al
approaches to sequential control to achieve both safety and reliability as well as op-
timal or approximately optimal control. Lyapunov functions are a useful form of
domain knowledge, but such knowledge is not always available. Even assuming that
the environment’s dynamics are known can be unrealistic.

Could an agent itself identify a Lyapunov function based on experience with an
environment? Consider the problem of determining whether a deterministic Markov
decision process descends on a given function L from all s ¢ T for some T C S.
Suppose that the agent can observe trajectories of the process. Supposed there are
an infinite number of states outside of 7. No matter how many times the agent
observes the state of the process descending on L outside of 7', the agent can never
be sure that L is a Lyapunov function. There is always the possibility that from some
as-yet-unobserved s ¢ T, the next state of the environment is neither in 7" nor lower
on L. However, a single observation of the process not descending on L is sufficient
to rule out L as a potential Lyapunov function.

In this chapter, we present an algorithm that takes as input a set of candidate
Lyapunov functions and uses them to dynamically restrict the action choices of an
agent such that, with bounded total “loss”, either: (1) the agent causes the state of its
environment to reach the goal set on an infinite number of trials, or (2) all candidate

Lyapunov functions are ruled out by observing non-descending transitions.
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9.1 The Algorithm

The algorithm, which we call “LL” for Learning Lyapunov functions, is applicable
to deterministic minimum-cost-to-goal MDPs. LL is presented in Figure 9.1. The
algorithm takes as input £, a finite set of candidate Lyapunov functions, and II, a
finite set of deterministic policies. A candidate Lyapunov function is any mapping
from S to R that is positive outside of the goal set, G.

Candidate Lyapunov functions may be hypothesized based on a partial under-
standing of the environment. For example, in an experiment below we assume that
the agent will face a pendulum swing-up task, but that we do not know the length
of the pendulum a priori. We provide the agent with a set of candidate Lyapunov
functions that covers a range of possible pendulum lengths that we anticipate. Can-
didate Lyapunov functions might also be generated based on optimistic assumptions.
For example, an agent navigating in an unknown spatial environment might assume
that decreasing the Euclidean distance between its current location and its desired
location will eventually bring it to its desired location.

Intuitively, the idea of the LL algorithm is that it identifies which policies in II
cause the state of the environment to descend on which candidate Lyapunov functions
in £, if any. In other words, the algorithm learns which policies are safe, and restricts
action choice to that set of policies. If there are multiple safe policies, the algorithm
does not identify which is best from a cost point of view. That can be done by
combining LL with other (e.g., reinforcement learning) approaches. If there are no
safe policies, then the algorithm proves this is the case by eliminating all candidate
Lyapunov function-policy pairs.

In order to do this, actions must be chosen carefully. An agent that chooses actions
in an arbitrary fashion, say randomly, need not ever bring the environment to G' nor
rule out all candidate Lyapunov functions. At the same time, one must recognize the

cost-minimizing goals of the agent, and not focus exclusively on the question of which
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Inputs:
L, a finite set of candidate Lyapunov functions,
I1, be a finite set of deterministic policies,
0, the desired descent constant,

and access to an deterministic environment in some initial state.

Cand « L x II
Activel < L.
repeat
Let s be the current state of the environment.
Choose a € Acts(Cand, ActiveL, s).
Apply a to the environment and observe the next state s'.
if s € G then
Start a new trial.
Set the environment to a new initial state.
ActiveL +— LiveL(Cand)
else
Update Cand.
for all (L, ) € Cand such that 7(s) = a and L(s) — L(s") < 6 do
Remove (L, ) from Cand.
end for
Update Activel.
for all L € ActiveL. such that L(s) — L(s") < do
Remove L from Activel.
end for
if ActiveL =( then
ActiveL « LiveL(Cand)
end if
end if
until Cand =
return “None are Lyapunov functions”

Where:
Acts(Cand, Activel,, s) = {a : for some (L,7) € Cand, L € Activel. and 7(s) = a},

and Livel(Cand) = {L : for some 7, (L, 7) € Cand}.

Figure 9.1. The LL Algorithm.
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candidate Lyapunov functions are valid and which policies are safe. The LL algorithm
does not specify precisely which actions the agent should take. It circumscribes the
agent’s choice just enough to achieve the loss bound mentioned above, while allowing
space for cost minimization.

In addition to the £ and II inputs described above, LL takes a real number, 9,
which is the minimum amount the state of the environment should descend on a
candidate Lyapunov function. The algorithm keeps track of the set Cand, which
is the set of all Lyapunov function-policy pairs that have not been ruled out by
any transitions observed so far. A pair (L,7) is ruled out when the state of the
environment is s, the agent takes action a = 7(s), the next state of the environment
is s’ ¢ G and L(s) — L(s') < 0. A Lyapunov function, L, is ruled out when the pairs
(L, ) have been ruled out for all = € II.

LL also keeps a set of Lyapunov functions, called Activel.,, which contains the set
of Lyapunov functions on which the state of the environment has been descending
since the start of the trial or since the last time Activel. became empty, whichever is
more recent. The restriction that the agent choose actions in Acts(Cand, ActiveL,, s)
is the crux of the algorithm. As long as the agent chooses any action in this set,
the performance guarantees below hold. In Section 9.2 we demonstrate this approach
on a pendulum swing-up problem, using Sarsa(\) to learn which actions are best to
take within the restrictions imposed by LL. The following lemma establishes a key

property of the LL algorithm.

Lemma 9.1 Let maxye, Supggq L(s) =U € R, and consider any time step on which
Activel is reset from Cand (i.e., the start of a trial or when ActiveL becomes empty).
Within [U/J]| time steps either the state of the environment enters G or at least one

(L, ) € Cand is ruled out by observing a non-descending transition.

Proof: Suppose the state of the environment does not enter G in K = [U/§] time

steps. Then ActivelL must become empty again within K time steps. A Lyapunov
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function stays in ActiveL only if the state of the environment descends on it at every
step, and K descents of at least § are not possible on any of the candidate Lyapunov
functions without entering G'. At the start of the time step on which Activel. becomes
empty, it contains at least one L such that (L, 7) € Cand and 7(s) is the action chosen.
Since Activel. becomes empty, it must be that L(s) — L(s') < ¢, thus the pair (L, )
is removed from Cand. OJ

For trajectory 7, let tg(7) be the time at which the state of the environment enters
G, if any, and +oo if the state does not enter G. Let the loss of the trajectory be
I(1) = max(tg(r) — [U/6],0). The loss is the time taken in excess of [U/d], which
is the time-to-goal we could guarantee if we knew a Lyapunov function with upper
bound U and descent constant §. Let {7;} be a potentially-infinite set of trajectories

(trials) generated by the LL algorithm.

Theorem 9.2 Let maxzecsupyei L(s) = U € R. Either LL generates an infinite
number of trials that reach G or the algorithm returns “None are Lyapunov functions”,

and in either case

refry UT) < [U/SI(IL x | = 1) + 1. If LL generates an infinite
number of trials that reach G, then at most |[L x 11| =1 of them last longer than [U/d|

time steps. [J

Proof: For the first claim of the theorem, there are three possibilities—the two
mentioned, and the possibility that the algorithm generates a finite number of trials,
the last one of which has infinite length. However, Lemma 9.1 implies that a trajectory
of infinite length is impossible. Each [U/§] time steps, the agent would rule out at
least one element of Cand and, in finite time, exit the main loop and return “None
are Lyapunov functions”. The total loss bound follows by the same reasoning. The
first Lyapunov function-policy pair is ruled out while incurring no more than 1 loss,
because a loss of 1 comes from a trajectory of length [U/d§] + 1, which is assured of
ruling out one pair. Subsequent pairs are ruled out while incurring between 0 and

[U/§] loss, depending on whether they are ruled out in the same trial or on different
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trials. The final claim holds, again, because any trial lasting longer than [U/d]| time
steps rules out at least one Lyapunov function-policy pair, and if LL generates an
infinite sequence of trials in which the state of the environment reaches G, at most
|£ x II| — 1 pairs can be ruled out. [J

So, an agent using the LL algorithm to constrain action choices can either use the
set of hypothesized Lyapunov functions to ensure reliable performance on all but a
finite number of trials, or can inform its designer that none of the candidate Lyapunov
functions are valid while incurring bounded loss. The loss bounds we establish may
be quite loose, but it is significant to show that any loss bound at all is achievable.
In practice, one might expect that Lyapunov function-policy pairs are ruled out far
more frequently than the algorithm ensures, leading to a rapid focusing of attention
on good candidate Lyapunov functions and policies, and hence ensuring reasonable
agent behavior.

If £ or II are large, keeping track of the set Cand and computing the Acts and
LiveL functions can be onerous. We close this section by presenting a specialization
of the LL algorithm which is useful when the policies in II are constructed in a
particular way (described below). Suppose that A is a set of actions and B maps
each s ¢ G to an element of {1,2,..., M}. In other words, B partitions the non-goal
states into a finite number of bins. If II is the set of all policies that can be described
as associating an action in A to each state-space bin, then LL can be implemented
efficiently, keeping track of Cand implicitly rather than explicitly. We call this version
LL-E, for “efficient”. The algorithm is presented in Figure 9.2. It maintains an array
of truth values, called Okay, indexed by candidate Lyapunov function L, bin b, and
action a, indicating whether or not all observed environment transitions from any
state in bin b, under action a, have descended on L. Using the array, it is easy
to compute which actions are available from any state s. LL-E keeps track of the

LiveL: function explicitly, since recovering that from the Okay array would be time-

142



Inputs: £, a finite set of candidate Lyapunov functions, B, mapping S to
{1,2,..., M}, A, a set of actions, §, the desired descent constant, and access to
an deterministic environment in some initial state.

forall Le £L,be{l,...,M},and a € A do
Okay(L,b,a)=true
end for
LiveL < L
Activel «+ LiveL
repeat
Let s be the current state of the environment.
b« B(s)
Choose a € A such that Okay(L, b,a) = true for some L € ActiveL.
Apply a to the environment and observe the next state s'.
if s € G then
Start a new trial.
Set the state of the environment to a new initial value.
ActivelL <+ Livel
else
Update LiveL and Okay.
for all L € LiveLL do
if L(s)— L(s') <6 then
Okay(L, b, a) < false
end if
if Okay(L,b,a') = false for all o’ € A then
Remove L from LiveL.
end if
end for
Update Activel.
for all L € ActiveL such that L(s) — L(s") < do
Remove L from Activel.
end for
if ActiveL = () then
Activel < LiveL.
end if
end if
until LiveL = ()
return “None are Lyapunov functions”

Figure 9.2. The LL-E Algorithm.
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consuming. Since LL-E is just a special case of LL, it retains all of LL’s theoretical

benefits.

9.2 Pendulum Demonstration
We demonstrate the LL approach on a pendulum swing-up problem, in which we
assume the length of the pendulum is initially unknown. For a pendulum of length [,

the acceleration equation is:

The task we study is minimum-time control to the set G3,,, = {(f, 0) : 10| < 0.1}.
This corresponds to a set of angular positions within approximately 6 degrees of
upright. Note that the goal set does not restrict the velocity of the pendulum. This

is a swing-up task, not a swing-up and balance task.

9.2.1 Lyapunov Functions and Controllers

The mechanical energy of a pendulum with length [ is:
) Lono
ME;(6,6) = I(1 + cosf) + §l 6 .

One strategy for swinging up the pendulum is to increase the pendulum’s energy

continuously until its state enters Gg One can define a generalization of the

end-
MEA control law that works for pendula of any length. However, we found in pilot
experiments that the MEA controller, designed for the case of [ = 1, is adequate
for the task over a wider range of pendulum lengths. MEA is not optimal, as is
shown in the experiments below. Reinforcement learning agents are able to discover
better policies that switch between different control laws. Indeed, for any agent, some

form of on-line learning is important because the optimal strategy for controlling

the pendulum depends on its length, and that is unknown until the agent begins
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Action Actions Restrictions | Relevant
Formulation Theorems
1 FUmaz, —Umaz none none
2 +Umazs —Umaz, MEA none none
3 +Umazs —Umaz, MEA LL-E 9.2

Figure 9.3. Action formulations for controlling a pendulum of unknown length.

observing the pendulum’s response to control inputs. The problem, then, is how to
ensure robust, safe learning when the system dynamics are not completely known,
and thus a Lyapunov function is unavailable.

We propose three action formulations for learning to control the pendulum. They
are summarized in Figure 9.3. Formulation 1 has two actions, corresponding to
constant £, torque control laws. Formulation 2 adds a third action, corresponding
to MEA. For formulations 1 and 2, agents are allowed to choose unrestrictedly from
the actions listed. Formulation 3 has the same actions as formulation 2, but the
agent’s action choices are restricted using the LL-E algorithm. The details of how we

use LL-E are specified in the next section.

9.2.2 Experiments

For each action formulation and each pendulum length, [ € {1.0,1.2,1.4,...,3.0},
we ran 30 independent reinforcement learning runs. Agents used the Sarsa()) al-
gorithm with A = 0.9 to update action value estimates stored in CMAC function
approximators. The CMACs were of the same design as described in the pendulum
learning experiments in the previous chapter (10 layers, 24 bins per dimension). Each
run alternated between learning and testing trials, with a total 2000 trials of each
type in each run. In each trial, the initial state of the pendulum was (6o, 8,) = (,0).
During learning trials, action selection was e-greedy with e=0.1. For formulation 3
agents, that meant e-greedy over the set of actions allowed by LL-E, not over all ac-

tions. During testing trials, action selection was greedy. For agents using formulation
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3, none of the Okay, Livel., and Activel. were updated during a testing trial, as this
would constitute a form of learning. The allowed actions where those for which Okay
was true for some L € Livel.. Trials were terminated if the state of the pendulum did
not reach G3,, within 999 time steps (seconds).

For LL-E we took L to be the set of functions: —ME(-,-), for
l € {1.0,1.25,1.5,...,3.0}. In other words, we hypothesized that the agent should
make the state of the pendulum ascend on the mechanical energy function of a pen-
dulum with length [ € {1.0,1.25,...3.0}. We intentionally choose a set of candidate
Lyapunov functions based on pendulum lengths different from the set of lengths used
in the experiments. Note that, strictly speaking, these candidate Lyapunov functions
do not meet the criteria of Theorem 9.2, which requires that candidates be positive
outside of G. However, since these functions can be bounded above (by zero) and
below for all reachable states, the same theoretical guarantees hold. Viewed another
way, we could simply add a large positive constant to each of the functions, and the
conditions of Theorem 9.2 would be satisfied. Since LL-E only looks at relative values
of states, adding a constant does not change the behavior of the algorithm.

For B we divided the state space region [—4, 4] into 6,400 bins by dividing each

dimension into 80 equal-sized intervals. We took ¢ to be 0.00001.

9.2.3 Results

Because there are so many different pendulum lengths and action formulations
to consider, we present most of the results graphically. We begin by describing the
final performance learned by the agents. Figure 9.4 plots performance during the
last 100 testing trials. For each pendulum length, a cluster of three error bars is
shown, representing the formulation 1, formulation 2, and formulation 3 runs in left-
to-right order. The dark, middle mark on each error bar represents the mean trial

cost (duration), computed by averaging first across trials and then across runs. The
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Figure 9.4. Performance during the last 100 testing trials.

upper and lower extents of the error bars indicate the minimum and maximum trial
costs across the last 100 test trials and across runs.

It is clear that the dominant factor in solution quality is the length of the pen-
dulum, and not the solution method used. The longer the pendulum gets, the more
slowly it accelerates for a given torque input. Because 4, = 0.2222 is the same
for all runs, swing-up times are considerably longer for the longer pendula. At most
lengths, the final mean and minimum solution costs are comparable across the three
action formulations. On average, the formulation 3 agents performed marginally bet-
ter than the other agents at the longest lengths (I > 2.6). The final performance of
the formulation 3 agents also tended to be less variable than that of the other agents.

Figure 9.5 shows the performance during the last 100 learning trials. There was
more variability in performance at all pendulum lengths, due mostly to the random
exploratory actions taken by the agents. There is also a clear pattern at each length

in which mean and maximum trial costs were highest for formulation 1 agents, better
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Figure 9.5. Performance during the last 100 learning trials.

for formulation 2 agents, and best for formulation 3 agents. Again, this is due in
significant part to the random action selection. Because formulation 3 agents had
ruled out many non-descending actions by this point in learning, random actions
from the allowed set were likely to be descending. In formulation 2, the presence of
the MEA action biases agents towards increasing energy, so, again, randomly selected
actions were less likely to be harmful.

Table 9.1 presents the cost of the trajectory produced by MEA for each pendulum
length, along with the cost of the best test trials that occurred under each action
formulation. Although MEA does bring the state of the pendulum to G2, , for all
the lengths we tested, it does not do so in minimum time. Learning agents were able
to find superior solutions at all lengths. In some cases, the improvements were quite
small. In a few, particularly the cases | = 1.0 and [ = 2.4, the learned solutions

were significantly better (18.5% and 10.7% shorter, respectively). Most of the best

solutions came from formulation 2 agents. This is not surprising, since these agents
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Minimum Test Trial Costs
! | MEA | Formulation 1 Formulation 2 Formulation 3
1.0 | 19.39 16.03 15.80 16.26
1.2 ] 20.22 20.96 20.08 20.08
1.4 | 25.37 25.19 25.16 25.16
1.6 | 31.40 30.89 30.85 30.84
1.8 | 37.96 37.04 36.96 37.00
2.0 | 45.43 43.65 43.53 44.31
2.2 | 53.78 50.42 50.38 51.98
2.4 | 63.42 57.27 56.65 56.69
2.6 | 63.61 64.43 63.47 63.15
2.8 | 71.63 71.01 71.12 71.46
3.0 | 80.58 79.66 79.28 80.12

Table 9.1. Best test trials under the three formulations, compared to MEA’s per-
formance.

were able to choose from every action that other agents could, and could do so un-
restrictedly. The set of policies these agents could learn strictly includes the sets of
policies that agents using formulations 1 and 3 could learn.

Figure 9.6 shows the performance during the first ten learning trials. Formulation
2 and 3 agents performed comparably, with formulation 3 agents doing slightly better
for higher [. It is not surprising that the effect of using LL to restrict action choices
was muted early in learning. There were many state space bins, and it took time
to rule out actions. Formulation 1 agents performed significantly worse, with some
trials timing out for [ > 2.6. Figure 9.7 shows performance during the first ten testing
trials. Without learning or exploration to break an agent out of a cycling policy, and
without LL to prune actions, there were time-outs under all action formulations and
at all pendulum lengths. In terms of mean performance, formulation 2 and 3 agents
did better than formulation 1 agents. The advantage that formulation 3 agents had
over formulation 2 agents is more clear than it is in learning trials.

Figure 9.8 shows the total number of time-outs across all learning and testing

trials. For each pendulum length, the three bars represent action formulations 1, 2,
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Figure 9.7. Performance during the first ten testing trials.
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Figure 9.8. Total time-outs by pendulum length and action formulation.

Formulation 1 Formulation 2 Formulation 3
Total time-outs 42,451 29,135 500
Time time spent 1.86x10% 1.83x108 1.21x108
Costliest learning trial 999 309.28 275.17

Table 9.2. Some summary statistics.

and 3 in left-to-right order. From the plot, the benefit of the LL algorithm is strikingly
clear. Over all, formulation 3 trials timed out far less often than the trials produced
by formulations 1 and 2. The relative benefit grows as pendulum length increases and
the problem becomes harder. For most lengths, formulation 2 trials timed out less
than formulation 1 trials did, though this trends seems to be reversing for the longest
pendula. Table 9.2 contains several statistics which further illustrate the benefit of

the LL algorithm and of the presence of the energy-based action, MEA.
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9.3 Discussion

In this chapter we demonstrated that one need not know a Lyapunov function in
advance to be able to use Lyapunov-based methods to constrain and improve agent
behavior. If one can provide a reasonable set of candidate Lyapunov functions, an
agent using the LL algorithm can learn which are valid and use them to guide its
behavior. Loss bounds can be established, ensuring that the learning process is not
overly costly. In simulated pendulum swing-up experiments, in which the length of
the pendulum was unknown to the agent a priori, we demonstrated the value of the
LL algorithm in maintaining reasonable agent behavior during learning.

Another possible approach to ensuring safety when a Lyapunov function or the
system dynamics are unknown in advance is to use control theoretic methods designed
for that purpose. In the pendulum example, for instance, an agent could drive the
pendulum for one time step using +u,,q; torque, and then deduce, from the observed
next state, the length of the pendulum. From then on, the appropriate Lyapunov
function could be used to constrain action choices. This is an example of a system-
identification approach. (Usually, identifying a system is not so easy as it is in this
case, particularly when the dynamics are stochastic.)

Learning Lyapunov functions does have several benefits. First, explicit loss bounds
can be derived. Second, the procedure reports failure if none of the hypothesized
Lyapunov functions are valid. Thus, the agent’s designer gets feedback on whether
sufficient domain knowledge has been provided, or if further domain analysis is in
order. Third, a candidate Lyapunov function can be valid for an environment even if
it is based on a dynamics model that is not entirely correct. More study is warranted
to distinguish the relative strengths of the LL approach and more standard approaches
from control theory, such as system identification or the robust control techniques used

by Kretchmar [44].
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CHAPTER 10
CONCLUSION

Researchers in artificial intelligence have made great strides in imbuing computers
with the ability to solve complex, real-world reasoning and decision problems. From
planning space missions, to assisting the elderly, from playing chess, to acting as
museum tour-guides, the development and fielding of Al systems is just beginning to
blossom. As intelligent agents are increasingly deployed in settings where they must
operate autonomously, with little or no supervision, new research issues come to the
fore. In particular, it becomes highly desirable that agents act safely (not harming
themselves, their environments, or others) and reliably.

In this thesis, we have demonstrated that control-theoretic techniques and domain
knowledge can be useful in addressing these issues. In particular, we showed that safe,
reliable performance can be guaranteed by using control-theoretic domain knowledge
to design, or constrain, the ways in which an agent is allowed to interact with its
environment. So designed, an agent can use existing, standard Al techniques to choose
how to act, and we can rest assured that acceptable behavior will result. Below, we
catalog the specific theoretical and experimental contributions of the thesis, preceded

by the chapter and section numbers where they appear.

5.2 We defined six types of Lyapunov functions, two for Markov processes and four
for Markov decision processes, that are particularly useful for establishing safety

and reliability of Al systems.

7.1 We established sufficient conditions, based on Lyapunov functions, for the ex-

istence of action-sequence solutions (open-loop controls) and of optimal action-
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sequence solutions to deterministic, minimum cost-to-goal Markov decision pro-

cesses.

7.2 We established sufficient conditions for the completeness of best-first search,
uniform-cost search, depth-first branch-and-bound, and real-time search. We
also discussed connections between Lyapunov functions, admissible heuristics,

and roll-outs.

7.3,7.4 We demonstrated the process of designing safe, reliable agents for pendulum
and robot arm control problems, and reported experimental results studying

the safety, quality, and complexity of various heuristic search approaches.

8.1 We established sufficient conditions for safe, reliable behavior for very general

classes of agents acting in stochastic environments.

8.2, 8.3, 8.4 We presented experiments studying the safety, reliability, and quality
of reinforcement learning solutions to deterministic and stochastic pendulum

and robot arm control problems.

9.1 We showed that Lyapunov functions need not be known in advance, but can
be hypothesized by the agent designer and then tested by a learning agent. We
established loss bounds on one algorithm for learning which, if any, of several

hypothesized Lyapunov functions are truly Lyapunov.

9.2 We presented experiments using a pendulum swing-up problem that demon-

strate the empirical benefits of the Learning Lyapunov functions approach.

Our work constitutes a beginning look at how control theory and artificial intelli-
gence techniques can be usefully combined, but many questions remain. We mention
several directions for future work below.

Safe anytime approximate optimal control: One thing demonstrated by the

state-space search experiments in Chapter 7 is that when one varies the duration of
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a control choice, the complexity of finding a solution and the quality of the solution
also vary. One approach to anytime optimal control would be to begin by solving the
problem at a coarse time scale and then re-solve it at successively finer time scales as
long as computational resources remain available. This recalls work on hierarchical
planning, for example, in which planning is done on a high-level, and then the plan is
refined until all the details are determined [74]. One of the challenges of this work is
that a coarse, high-level plan is not always realizable. For example, a high-level travel
plan might call for driving to the airport and then flying to New York, but it may turn
out that one’s car is in the shop. If Lyapunov or other control-theoretic principles
are used to design an agent’s actions, as proposed in this thesis, then a solution
of any temporal resolution can always be executed successfully. Beyond exploring
the potential advantages of such a scheme, relevant research questions include: How
should the initial temporal resolution be chosen, and how should it be refined? Is
it useful to vary temporal resolutions within a single solution attempt? How can
information from temporally coarser solutions be used to inform the solution process
for finer resolutions?

Does ensuring safety and reliability require sacrificing the quality of
control? One of the recurring observations we have made is that constraining an
agent so that safety and reliability are ensured can ultimately limit the performance
that the agent is able to obtain. Is this tradeoff really necessary, or can one get both?
How can different tradeoffs be achieved? Certainly, the methods we proposed for
using Lyapunov functions to constrain agent behavior are simple. In pilot studies for
the thesis, we experimented with stochastic Lyapunov descent constraints; that is,
on each time step, with some probability an agent was constrained to descend on a
Lyapunov function and otherwise the agent was not constrained [66]. We found that
by varying the probability that the agent was constrained, the empirical performance

of the agent varied smoothly between that of a fully-constrained agent and that
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of an unconstrained agent. Other ideas for more sophisticated uses of Lyapunov-
based constraints include constraining the agent only after some time has passed,
and allowing some amount of “uphill” actions in a given trial or in a given period
of time. If this is done properly, safety and reliability properties can be retained,
while affording the agent greater freedom to optimize the quality of control. What
are the relative advantages of these different approaches? Can one design a method
for using Lyapunov domain knowledge that can be guaranteed not to rule out the
optimal policy?

Do Lyapunov ideas apply in more structured domains? Lyapunov meth-
ods are usually applied to lower-level control problems such as robot control and
navigation, stabilization, and tracking. Can Lyapunov methods be applied to the
more structurally-complex tasks often studied in the heuristic search, planning, and,
sometimes, reinforcement learning communities? A suggestive piece of evidence comes
from a recent paper by Hoffmann [58], who studied the “topology” of planning search
spaces with respect to a particular estimate of plan quality based on relaxations of
constraints. He found that for many benchmark planning problems, plan quality is
nearly a Lyapunov function—often no uphill moves, or just a few, are necessary to
arrive at an optimal plan. This suggests that methods based on Lyapunov function
might have important applications in domains quite unlike those to which Lyapunov
methods have traditionally been applied.

Robust/adaptive control problems: In Chapter 9 we presented one Lyapunov-
based approach to dealing with environments with unknown dynamics. In control
theory there are many approaches to this problem, including system identification,
robust control and adaptive control. How can robust or adaptive control techniques
be incorporated into Al agents? What is the relationship between those approaches

and the method we propose?
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Historically, research in control theory and Al has focussed on different sorts of
problems. Control theory has largely been concerned with “low-level” regulation and
tracking problems of the sort that arise in designing mechanical and electrical de-
vices. Al has largely been concerned with “higher-level” problems such as planning,
scheduling, theorem proving, and game-playing. (Research in reinforcement learn-
ing has been somewhat unusual in this regard, with problems of both sorts being
considered.) In the drive to create autonomous agents that can operate successfully
in complex, real-world environments, techniques from both disciplines are relevant.
While many issues are yet to be explored, the approaches described in this thesis pro-
vide principled means for integrating techniques from control theory and Al in ways
that ensure safe, reliable agent behavior and that allow efficient, tractable decision-

making and control.
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APPENDIX A
PROOF OF THEOREM 6.1

We recall the theorem being proved:

Theorem 6.1 For any A > 0, any p > 0, and appropriate €y and €;, there
exists 6 > 0, such that for any initial conditions (0o, 90), if the pendulum is controlled
according to MEA, ¢ e, for A time, then the mechanical energy of the pendulum is
greater by at least § at the end of that time.

Proof: Let A, y, €, and ¢; be fixed, and assume €y < sin™" () —sin™"($). We
show that for any initial conditions, (6y, 90), the increase in the pendulum’s energy

cannot be arbitrarily close to zero. First note that the change in ME is

/t )it > / %|é(t)\,udt

-0 t=0
A .
x / 0(1) dt (A1)
=0
We show that the last integral cannot be arbitrarily small.

First, note that if \90| is sufficiently large, the integral cannot be small because,
with |H\ bounded at all times, 0 cannot get close to zero quickly enough to make
the integral small. Suppose without loss of generality that 6y > 0 or 6, = 0 and
0y > 0, and let §; = —7 + sin"" (Uyaz) — €9 and Oy = —sin~ (Upes) + €9. Consider
Figure A.1. In the range of positions denoted by the solid line, and marked by A,
MEA applies 4,4, control torque, which strictly exceeds the influence of gravity

and accelerates the pendulum in the 46 direction. In the B range of positions, MEA
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Figure A.1l. Regions of positive and negative acceleration.

applies —|—%uma5c OT U, torque, which is outweighed by gravity, and the pendulum
decelerates. Thus, at all times, \0| > @,... for some 0,,;, > 0.

Because we are only concerned with small velocities, § and 6 can change sign at
most a fixed number of times within A time. 6 changes sign at the boundaries of
regions A and B, and 0 can only change sign from positive to negative in the region
B. If 0 changes sign in B, then the pendulum must swing all the way to the other
side before another change in the sign of 6 may occur. So, within A time, only a fixed
number of changes of sign of 0 and 6 are possible. Let us call that number K.

For some t5 = 0 < t; <ty < tx = A, the integral we are trying to bound above

zero, A.1, can be rewritten as:

K—1 thit ]
> [l
k=0 't

|
=t

where, in each summand, 0 and 6 maintain the same sign over the course of the
integral. Let us look at term ¢ and let us assume, without loss of generality, that

0 > 0 and 0 > 0 between ¢; and t;;1. Then:
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Defining A; = (t;11 — t;), we have

K-1 teyr | K-1 1.
DY INCUITED E NS
k=0 =tk k=0

How small can the right hand side be? Suppose we minimize it with respect to the
Ay, subject to the constraint that ), Ay = A. This is the textbook problem for the
method of Lagrange multipliers, and the solution is the solution to the unconstrained

minimization problem:

) 1. )
py T i ;Ak + A (zk: Ay — A) :

Omitting the details of setting derivatives to zero and solving the resulting system of

equations, one finds that the minimum is attained when A; = A/K for all 5. Thus,

which concludes the proof. [
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APPENDIX B
THE SARSA(A\) ALGORITHM

We briefly describe the Sarsa()) algorithm and provide some intuition behind its
operation. A far more thorough discussion can be found in Sutton and Barto [88].

Recall that for finite MDPs with tabular storage of ()-values, the Sarsa algorithm
uses an experience of the form (s,a) — (¢, s',a’) to update its action value estimates
as:

Q(s,a) + (1 —a)Q(s,a) + alc+vQ(s',a")) .

This can also be written as:

Q(s,a) + Q(s,a)+alc+~Q(s',d) — Q(s,a))

= Q(s,a) +ad(s,a,c,8,d),

where the definition of § is obvious. The term ¢ can be viewed as an error. If
c+vQ(s',d') is, say, greater than Q(s,a), then Q(s,a) may be too low and should
be increased. In particular, the change in @ is taken to be a times the difference
between the two terms. We say “may be too low” because the experience is just a
random sample, and even if Q(s,a) is perfectly correct, ¢ + vQ(s',a’) can be higher
or lower than it.

Now, suppose that experience is followed by another one: (s',a’) — (¢,s",a").
Suppose 6(s',a’, ¢, s",a") is negative, indicating that Q(s', a’) may be too high. Work-
ing backwards, one suspects that @Q(s,a) may also be too high, if only because it was

updated based on Q(s',a’), which may be high. Sarsa would decrease Q(s,a’) by «
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times d(s',ad/,c,s",a") and that is all. Sarsa()) additionally decreases Q(s,a) by a
similar amount, but downweighted by A7v. In general, for a trajectory
(s0, g, Co, S1,a1,C1, .. .), on time step ¢ > 1, the Sarsa(A) learning rule is to perform

the following update for all ; € {0,...,t — 1}:

Q(8i7 a’i) — Q(SZ7 ai) + a(/\’)/)t_i_lé(st—la G¢—1,Ct—1, St, at)

In the case that s; € G, so that there is no a;, one uses 6(s; 1,a¢ 1,6 1,8) =
¢t 1 — Q(st_1,a¢1). In the case that state-action values are approximated using
a differentiable function approximator, Q, the updates above can be performed in
gradient fashion. That is, defining 6(s, a, ¢, s',a') = ¢ +vQ(s',d,0) — Q(s, a, §) and

PN

d(s,a,c, ") =c—Q(s,a,0), the updates occurring at time ¢ are:

0+ (M) "6 (spm1, a1, o1y Spoar) i s € G
0+

0+ (M) 16 (841, az1, Ci_1, S¢) if s, € G,

for alli € {0,...,t—1}.
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APPENDIX C
CMAC FUNCTION APPROXIMATORS

CMACs are a popular function approximation architecture among reinforcement
learning researchers for approximating value functions or action-value functions for
continuous-state MDPs [87, 88]. A CMAC covers a hyper-rectangular region of state
space, R C R", with a finite set of layers (a.k.a. tilings or grids). Each layer divides
R into a number of hyper-rectangular subregions, or cells, as depicted in Figure C.1.
Assuming some tie-breaking rule for the boundaries between cells, each possible input
point x € R falls into precisely one cell in each layer. A CMAC associates a “weight”
to each cell. The output of the CMAC for an input z is the sum of the weights for
each of the cells into which z falls.

Proper weights can be learned using gradient-based updating. Note that for a
given input, the derivative of the output with respect to a weight is just one if the
input falls into the cell to which that weight is associated, and zero otherwise. On an
error of E resulting from an input x, the weight w associated to each cell containing the
input is updated according to w +— w +a%E, where « is a step size parameter and N
is the total number of layers. The effect of the CMAC’s structure is to generalize this
error update to surrounding states. After such an update, for example, the CMAC
output for all states in the intersection of the regions covered by the cells containing
x changes by aF. For states that are covered by ¢ of the N cells containing z, the
output of the CMAC changes by a%E . Thus, for states “farther” from z in the sense
of ¢ being smaller, the change in the CMAC’s output is smaller. The CMAC thus

“smooths” its updates over the state space.
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Figure C.1. Depiction of a CMAC.

High-resolution approximations can be achieved in two ways. The cells in each
layer can be small, covering only a small portion of R, or there can be many layers with
larger cells. Generally, the latter is preferred because the CMAC can then generalize
broadly from a few data points, which is useful early in learning, while still being able

to approximate a value or action-value function accurately in the limit.
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