A& Digcrete Event Dynamic Systems: Theory and Applications, 13, 341, 2003
‘ﬁ © 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Errata Preface

A preliminary unedited version of this paper was incorrectly published as part of Volume
13, Numbers 1/2 (April, 2003) in the Special Issue on Learning, Optimization, and
Decision Making, Guest Edited by Xi-Ren Cao. The Publisher offers an apology for
printing an incorrect version of the paper in the special issue and renders this paper as the
true and correct paper.

A& Digcrete Event Dynamic Systems: Theory and Applications, 13, 343-379, 2003
‘v © 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Recent Advances in Hierarchical Reinforcement
Learning

ANDREW G. BARTO barto@cs.umass.edu
Autonomous Learning Laboratory, Department of Computer Science, University of Massachusetts,
Ambherst MA 01003

SRIDHAR MAHADEVAN mahadeva@cs.umass.edu
Autonomous Learning Laboratory, Department of Computer Science, University of Massachusetts,
Ambherst MA 01003

Abstract. Reinforcement learning is bedeviled by the curse of dimensionality: the number of parameters to be
learned grows exponentially with the size of any compact encoding of a state. Recent attempts to combat the curse
of dimensionality have turned to principled ways of exploiting temporal abstraction, where decisions are not
required at each step, but rather invoke the execution of temporally-extended activities which follow their own
policies until termination. This leads naturally to hierarchical control architectures and associated learning
algorithms. We review several approaches to temporal abstraction and hierarchical organization that machine
learning researchers have recently developed. Common to these approaches is a reliance on the theory of semi-
Markov decision processes, which we emphasize in our review. We then discuss extensions of these ideas to
concurrent activities, multiagent coordination, and hierarchical memory for addressing partial observability.
Concluding remarks address open challenges facing the further development of reinforcement learning in a
hierarchical setting.

Keywords: reinforcement learning, Markov decision processes, semi-Markov decision processes, hierarchy,
temporal abstraction

1. Introduction

Reinforcement learning (RL) (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998) is an
active area of machine learning research that is also receiving attention from the fields of
decision theory, operations research, and control engineering. RL algorithms address the
problem of how a behaving agent can learn to approximate an optimal behavioral strategy
while interacting directly with its environment. In control terms, this involves the on-line
approximation of solutions to stochastic optimal control problems, usually under
conditions of incomplete knowledge of the system being controlled. Most RL algorithms
adapt standard methods of stochastic dynamic programming (DP) so that they can be used
on-line for problems with large state spaces. By focusing computational effort along
behavioral trajectories and by using function approximation methods for accumulating
value function information, RL algorithms have produced good results on problems that
pose significant challenges for standard methods (e.g., Crites and Barto, 1998; Tesauro,
1992). However, current RL methods by no means completely circumvent the curse of
dimensionality: the exponential growth of the number of parameters to be learned with the

344 BARTO AND MAHADEVAN

size of any compact encoding of system state. Recent attempts to combat the curse of
dimensionality have turned to principled ways of exploiting temporal abstraction, where
decisions are not required at each step, but rather invoke the execution of temporally-
extended activities which follow their own policies until termination. This leads naturally
to hierarchical control architectures and learning algorithms.

In this article we review several related approaches to temporal abstraction and
hierarchical control that have been developed by machine learning researchers, and we
then discuss several extensions to these ideas and the open challenges facing the further
development of RL in a hierarchical setting. Despite the fact that research in this area
began only recently within the machine learning community, we cannot provide a survey
of all the related literature, which is already quite extensive. We do attempt, however, to
provide enough information so that interested readers can probe the relevant topics more
deeply. Another important goal that we do not attempt is to thoroughly relate machine
learning research on these topics to the extensive literature in systems and control
engineering on hierarchical and multilayer control, hybrid systems, and other closely
related topics. The most obvious parallels with some of these approaches have not escaped
us, but a careful reapprochement is beyond the scope of this article. We largely adhere to
notation and terminology typical of that used in the machine learning community. There is
much to be gained from integrating perspectives from these different groups of
researchers, and we hope that this article will contribute to the required dialog.

After brief introductions to Markov and semi-Markov decision processes, we introduce
the basic ideas of RL, and then we review three approaches to hierarchical RL: the options
formalism of Sutton et al. (1999), the hierarchies of abstract machines (HAMs) approach
of Parr (1998) and Parr and Russell (1998), and the MAXQ framework of Dietterich
(2000). Although these approaches were developed relatively independently, they have
many elements in common. In particular, they all rely on the theory of semi-Markov
decision processes to provide a formal basis. Although we take advantage of these
commonalities in our exposition, a thorough integration of these approaches awaits a
future paper. We also cannot do full justice to these approaches, although we do attempt to
provide enough detail to make the approaches concrete; the reader is directed to the
original papers for detailed treatments. In the final sections, we briefly present extensions
of these ideas that focus on work conducted in our laboratory on concurrent activities,
multiagent coordination, and hierarchical memory for addressing partial observability.
Concluding remarks address open challenges facing the further development of
reinforcement learning in a hierarchical setting.

2. Markov and Semi-Markov Decision Processes

Most RL research is based on the formalism of Markov decision processes (MDPs).
Although RL is by no means restricted to MDPs, this discrete-time, countable (in fact,
usually finite) state and action formalism provides the simplest framework in which to
study basic algorithms and their properties. Here we briefly describe this well-known
framework, with a few twists characteristic of how it is used in RL research; additional
details can be found in many references (e.g., Bertsekas, 1987; Bertsekas and Tsitsiklis,

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 345

1996; Puterman, 1994; Ross, 1983; Sutton and Barto, 1998). A finite MDP models the
following type of problem. At each stage in a sequence of stages, an agent (the controller)
observes a system’s state s, contained in a finite set S, and executes an action (control) a
selected from a finite, non-empty set, A, of admissible actions. The agent receives an
immediate reward having expected value R(s, a), and the state at the next stage is s with
probability P(s'|s,a). The expected immediate rewards, R(s,a), and the state transition
probabilities, P(s'|s,a), 5,5’ €S, ae A, together comprise what RL researchers often call
the one-step model of action a.

A (stationary, stochastic) policy 7 : S x U, ¢ A;—[0,1], with n(s,a) =0 for agA,,
specifies that the agent executes action a € A, with probability n(s, @) whenever it observes
state s. For any policy 7 and s€ S, V™ (s) denotes the expected infinite-horizon discounted
return from s given that the agent uses policy 7. Letting s, and 7, , | denote the state at stage
t and the immediate reward for acting at stage #,' this is defined as:

Vi(s) = E{rt+1 Yo+ VZ'}+3 +--- s, =5, 7},

where 7,0 <y < 1, is a discount factor. V*(s) is the value of s under 7, and is V™ the value
function corresponding to 7.

This is a finite, infinite-horizon, discounted MDP. The objective is to find an optimal
policy, i.e., a policy, n*, that maximizes the value of each state. The unique optimal value
function, V*, is the value function corresponding to any of the optimal policies. Most RL
research addresses discounted MDPs since they comprise the simplest class of MDPs, and
here we restrict attention to discounted problems. However, RL algorithms have also been
developed for average reward MDPs (Mahadevan, 1996; Schwartz, 1993), and some
research has been done on extending aspects of the hierarchical approaches we discuss in
this article to the average reward case (Ghavamzadeh and Mahadevan, 2002).

Playing important roles in many RL algortihms are action-value functions, which assign
values to admissible state-action pairs. Given a policy =, the value of (s,a), ae.oZ,,
denoted Q" (s, a), is the expected infinite-horizon discounted return for executing a in state
s and thereafter following m:

Q7 (s,a) = E{r oy + 910 + 9715 + oo |s, = 5,0, = a,m}. (D)

The optimal action-value function, Q*, assigns to each admissible state-action pair (s, a)
the expected infinite-horizon discounted return for executing a in s and thereafter
following an optimal policy. Action-value functions for other definitions of return are
defined analogously.

DP algorithms exploit the fact that value functions satisfy various Bellman equations,
such as:

Vi(s) = Z n(s,a) |R(s,a) +yZP(s’|s,a)V”(s’) :

346 BARTO AND MAHADEVAN

and

V*(s) = max |R(s,a) + 7y Z,P(s'|s7 a)V*(s") |, (2)

acA;

for all seS. Analogous equations exist for O™ and Q*. For example, the Bellman equation
for Q* is:

Q*(&a) = R(S7 a) + VZ,P(SI|S7 a) aI/I;i); Q*(s’,a’), (3)

for all seS,aeA,.

As an example DP algorithm, consider value iteration, which successively approximates
V* as follows. At each iteration £, it updates an approximation V, of V* by applying the
following operation for each state s:

Vi1(s) = max R(s,a)+yZP(s’|s,a)Vk(s’) : (4)

We call this operation a backup because it updates a state’s value by transferring to it
information about the approximate values of its possible successor states. Applying this
backup operation once to each state is often called a sweep. Starting with an arbitrary
initial function V,, the sequence {V,} produced by repeated sweeps converges to V*. A
similar algorithm exists for successively approximating Q* using the following backup:

Qi 1(s,a) =R(s,a) +7y ZP(S/|S, a) max Q(s',d). (5)

aeAy
s'eS s

Given V*, an optimal policy is any policy that for each s assigns non-zero probability
only to those actions that realize the maximum on the right-hand side of (4). Similarly,
given Q%, an optimal policy is any policy that for each s assigns non-zero probability only
to the actions that maximize Q*(s, -). These maximizing actions are often called greedy
actions, and a policy defined in this way is a (stochastic) greedy policy. Given sufficiently
close approximations of V* and Q* obtained by value iteration, then, optimal policies are
taken to be the corresponding greedy policies. Note that finding greedy actions via Q* does
not require access to the one-step action models (the R(s, a) and P(s'|s, a)) as it does when
only V* is available, where the right-hand side of (4) has to be evaluated. This is one of the
reasons that action-value functions play a significant role in RL.

In an MDP, only the sequential nature of the decision process is relevant, not the amount
of time that passes between decision stages. A generalization of this is the semi-Markov
decision process (SMDP) in which the amount of time between one decision and the next
is a random variable, either real- or integer-valued. In the real-valued case, SMDPs model
continuous-time discrete-event systems (e.g., Mahadevan et al., 1997; Puterman, 1994). In

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 347

a discrete-time SMDP (Howard, 1971) decisions can be made only at (positive) integer
multiples of an underlying time step. In either case, it is usual to treat the system as
remaining in each state for a random waiting time (Howard, 1971), at the end of which an
instantaneous transition occurs to the next state. Due to its relative simplicity, the discrete-
time SMDP formulation underlies most approaches to hierarchical RL, but there are no
significant obstacles to extending these approaches to the continuous-time case.

Let the random variable 7 denote the (positive) waiting time for state s when action a is
executed. The transition probabilities generalize to give the joint probability that a
transition from state s to state s’ occurs after 7 time steps when action a is executed. We
write this joint probability as P(s',t|s,a). The expected immediate rewards, R(s,a),
(which must be bounded) now give the amount of discounted reward expected to
accumulate over the waiting time in s given action a. The Bellman equations for V* and Q*
become

* — T / *(]
V¥(s) = max R(s,a)—FSZ;/P(s,I\s,a)V ()], (6)

for all seS; and

Q'(s,a) = R(s,a) + Y y°P(,1ls,a) max Q*(s',), (7)
e d/EAS/

for all seS and aeA,. DP algorithms correspondingly extend to SMDPs (e.g., Howard,
1971; Puterman, 1994).

3. Reinforcement Learning

DP algorithms have complexity polynomial in the number of states, but they still require
prohibitive amounts of computation for large state sets, such as those that result from
discretizing multi-dimensional continuous spaces or representing state sets consisting of
all possible configurations of a finite set of structural elements (e.g., possible
configurations of a backgammon board; Tesauro, 1992). Many methods have been
proposed for approximating MDP solutions with less effort than required by conventional
DP, but RL methods are novel in their use of Monte Carlo, stochastic approximation, and
function approximation techniques. Specifically, RL algorithms combine some, or all, of
the following features:

1. Avoid the exhaustive sweeps of DP by restricting computation to states on, or in the
neighborhood of, multiple sample trajectories, either real or simulated. Because
computation is guided along sample trajectories, this approach can exploit situations
in which many states have low probabilities of occurring in actual experience.

348 BARTO AND MAHADEVAN

2. Simplify the basic DP backup by sampling. Instead of generating and evaluating all of
a state’s possible immediate successors, estimate a backup’s effect by sampling from
the appropriate distribution.

3. Represent value functions and/or policies more compactly than lookup-table
representations by using function approximation methods, such as linear combina-
tions of basis functions, neural networks, or other methods.

Features 1 and 2 reflect the nature of the approximations usually sought when RL is
used. Instead of policies that are close to optimal uniformly over the entire state space, RL
methods arrive at non-uniform approximations that reflect the behavior of the agent. The
agent’s policy does not need high precision in states that are rarely visited. Feature 3 is the
least understood aspect of RL, but results exist for the linear case (notably Tsitsiklis and
Van Roy, 1997) and numerous examples illustrate how function approximation schemes
that are nonlinear in the adjustable parameters (e.g., multilayer nerual networks) can be
effective for difficult problems (e.g., Crites and Barto, 1998; Mahadevan et al., 1997;
Singh and Bertsekas, 1997; Tesauro, 1992).

Of the many RL algorithms, perhaps the most widely used are Q-learning (Watkins,
1989; Watkins and Dayan, 1992) and Sarsa (Rummery and Niranjan, 1994; Sutton, 1996).
Q-learning is based on the DP backup (5) but with the expected immediate reward and the
expected maximum action-value of the successor state on the right-hand side of (5)
respectively replaced by a sample reward and the maximum action-value for a sample next
state. The most common way to obtain these samples is to generate sample trajectories by
simulation or by observing the actual decision process over time. Suppose the agent
observes a current state s, executes action a, receives immediate reward r, and then
observes a next state s'. The Q-learning algorithm updates the current estimate, O, (s, a), of
Q*(s,a) using the following update:

Qk+1(sa a) = (1 - O{k)Qk(Sva) +oy |+ VCII,IS‘XI Qk(sla a,)) (8)

where «; is a time-varying learning-rate parameter. The values of all the other state-action
pairs remain unchanged at this update. If in the limit the action-values of all admissible
state-action pairs are updated infinitely often, and o, decays with increasing k& while
obeying the usual stochastic approximation conditions, then {Q,} converges to O* with
probability 1 (Jaakkola et al., 1994; Bertsekas and Tsitsiklis, 1996). As long as these
conditions are satisfied, the policy followed by the agent during learning is irrelevant. Of
course, when Q-learning is being used, the agent’s policy does matter since one is usually
interested in the agent’s performance throughout the learning process, not just
asymptotically. It is usual practice to let the agent select actions using a policy that is
greedy with respect to the current estimate of Q*, while also introducing non-greedy
‘‘exploratory actions’’ in an attempt to widely sample state-action pairs.

Sarsa is similar to Q-learning except that the maximum action-value for the next state on
the right-hand side of (8) is replaced by the action-value of the actual next state-action
pair:

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 349

Op11(s,a) = (1 — 0) O (5, @) + oy [r + 90, (s",)],)

where d’ is the action executed in state s’. (Sutton, 1996, called this algorithm Sarsa due to
its dependence on s, a, r, s, and @'. Equation (9) is actually a special case called Sarsa(0).)
Unlike Q-learning, here the agent’s policy does matter. Singh et al. (2000) show that if the
policy has the property that each action is executed infinitely often in every state that is
visited infinitely often, and it is greedy with respect to the current action-value function in
the limit, which Singh et al. (2000) call a GLIE (Greedy in the Limit with Infinite
Exploration) policy, then with appropriately decaying o, the sequence {Q,} generated by
Sarsa converges to Q* with probability 1.

Both the Q-learning and Sarsa learning algorithms also apply to SMDPs, both
continuous- and discrete-time, if one interprets the immediate reward, r, as the return
accumulated during the waiting time in state s and appropriately adjusts the discounting to
reflect the waiting time. For example, in the discrete-time case, if a is executed in state s at
time step ¢ and the transition to s" follows after t time steps, then

Opr1(s,a) = (1 — o) O (s, @) + o |:rt+1 Fora Y T

7 max 05, a/>] , (10)

!
aeAy

where 7, ; is the immediate reward received at time step ¢ + i. The return accumulated
during the waiting time must be bounded, and it can be computed recursively during the
waiting time. Bradtke and Duff (1995) showed how to do this for continuous-time SMDPs,
Parr (1998) proved that it converges under essentially the same conditions required for Q-
learning convergence, and Das et al. (1999) developed the average reward case.

Crites (1996) and Crites and Barto (1998) used SMDP Q-learning in a continuous-time
discrete-event formulation of an elevator dispatching problem, an application that
illustrates two useful features of RL methods for discrete-event systems. First, Q-learning
and Sarsa do not require explicit knowledge of the expected immediate rewards or the
state-transition probilities. Instead, they use samples from the respective distributions,
which can come from a stochastic simulation or from the real world itself. This can be a
significant advantage since in many problems it is often much easier to produce a
simulation than it is to make the expected rewards and transition probabilities explicit. In
Crites’ elevator dispatcher, for example, SMDP Q-learning was applied along trajectories
generated by a simulation of a 10-story, four-elevator system. An explicit SMDP model of
this system would have been difficult to make explicit. This illustrates advantages of so-
called model-free RL algorithms such as Q-learning and Sarsa, meaning that they do not
need access to explicit representations of the expected immediate reward function and the
state-transition probabilities. Importantly, however, RL is not restricted to such model-free
methods (Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996).

RL algorithms that estimate action-values, such as Q-learning and Sarsa, have a second
advantage when applied to discrete-event systems. As mentioned in Section 2, finding
optimal actions via Q* does not require access to the one-step action models (the R(s,a)

350 BARTO AND MAHADEVAN

and P(s'|s,a)) as it does when only V* is available. That is, a one-step ahead search is not
needed to determine optimal actions. In many problems involving discrete-event systems,
such as the elevator dispatching problem, it is not clear how to conduct a one-step ahead
search since the next event can occur at any of an infinite number of times in the future.
The use of action-values eliminates this difficulty.

Finally, we point out that in our brief presentation of RL algorithms we assumed that it
was possible to explicitly store values for every state, or action-values for every state-
action pair. This is obviously not feasible for large-scale problems, and extensions of these
algorithms need to be considered that adjust the parameters of parametric representations
of value functions. It is relatively easy to produce such extensions, although, as we
mentioned above, the theory of their behavior still contains many open questions which
are beyond the scope of this article.

The view of DP-based RL just outlined, which has been assembled by many researchers
over roughly the last ten years, represents our current state of understanding rather than the
intuition underlying the origination of these methods. Indeed, DP-based learning
originated at least as far back as Samuel’s famous checkers player of the 1950s
(Samuel, 1963, 1967), which, however, made no reference to the DP literature existing at
that time. Other early RL research was explicitly motivated by animal behavior and its
neural basis (Minsky, 1954; Klopf, 1972, 1982; Sutton and Barto, 1981). Much of the
current interest is attributable to Werbos (1977, 1987, 1992), Watkins (1989), and
Tesauro’s backgammon-playing system TD-Gammon (Tesauro, 1992, 1994). Additional
information about RL can be found in several references (e.g., Barto et al., 1995; Bertsekas
and Tsitsiklis, 1996; Kaelbling et al., 1996; Sutton and Barto, 1998). Despite the utility of
RL methods in many applications, the amount of time they can take to form acceptable
approximate solutions can still be unacceptable. As a result, RL researchers are
investigating various means for introducing abstraction and hierarchical structure into RL
algorithms. In the following sections we review several of the proposed approaches.

4. Approaches to Hierarchical Reinforcement Learning

Artificial intelligence researchers have addressed the need for large-scale planning and
problem solving by introducing various forms of abstraction into problem solving and
planning systems, e.g., Fikes et al. (1972) and Korf (1985). Abstraction allows a system to
ignore details that are irrelevant for the task at hand. One of the simplest types of
abstraction is the idea of a ‘‘macro-operator,”’ or just a ‘‘macro,’”” which is a sequence of
operators or actions that can be invoked by name as if it were a primitive operator or
action. Macros form the basis of hierarchical specifications of operator or action sequences
because macros can include other macros in their definitions: a macro can ‘‘call’’ other
macros. Also familiar is the idea of a subroutine that can call other subroutines as well as
execute primitive commands. Most of the current research on hierarchical RL focuses on
action hierarchies that follow roughly the same semantics as hierarchies of macros or
subroutines.

From a control perpsective, a macro is an open-loop control policy and, as such, is
inappropriate for most interesting control purposes, especially the control of stochastic

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 351

systems. Hierarchical approaches to RL generalize the macro idea to closed-loop policies,
or more precisely, closed-loop partial policies because they are generally defined for a
subset of the state set. The partial policies must also have well-defined termination
conditions. These partial policies are sometimes called temporally-extended actions,
options (Sutton et al., 1999), skills (Thrun and Schwartz, 1995), behaviors (Brooks, 1986;
Huber and Grupen, 1997), or the more control-theoretic modes (Grudic and Ungar, 2000).
When not discussing a specific formalism, we will use the term activity, as suggested by
Harel (1987).

For MDPs, this extension adds to the sets of admissible actions, A, s€S, sets of
activities, each of which can itself invoke other activities, thus allowing a hierarchical
specification of an overall policy. The original one-step actions, now called the ‘‘primitive
actions,”” may or may not remain admissible (although at least one activity or primitive
action must be admissible for each state). Extensions along these general lines result in
decision processes modeled as SMDPs, where the waiting time in a state now corresponds
to the duration of the selected activity. If 7 is the waiting time in state s upon execution of
activity a, then a takes 7 steps to complete when initiated in s, where the distribution of the
random variable T now depends on the policies and termination conditions of all of the
lower-level activities that comprise a. To the best of our knowledge, the approaches most
closely related to this in the control literature are that of Forestier and Varaiya (1978), as
pointed out by Parr (1998) and which we discuss briefly in Section 4.2, and the recent
“‘time aggregation’’ approach of Cao et al. (2002).

4.1. Options

Sutton et al. (1999) formalize this approach to including activities in RL with their notion
of an option. Starting from a finite MDP, which we call the core MDP, the simplest kind of
option consists of a (stationary, stochastic) policy 7 : S x U;.g A;—[0,1], a termination
condition # : S—[0, 1], and an input set / =S. The option (I, 7, §) is available in state s if
and only if s € /. If the option is executed, then actions are selected according to 7 until the
option terminates stochastically according to f5. For example, if the current state is s, the
next action is a with probability n(s, a), the environment makes a transition to state s',
where the option either terminates with probability (s or else continues, determining the
next action ¢’ with probability 7(s’,a’), and so on. When the option terminates, the agent
can select another option from the set of those available at the termination state (i.e.,
options whose iput sets contain the termination state) or it can select a primitive action.

It is usual to assume that for any state in which an option can continue, it can also be
initiated, that is, {s : f(s) < 1} =I. This implies that an option’s policy only needs to be
defined over its input set /. Note that any action of the core MDP, a primitive action
a€ U, A,, is also an option, called a one-step option, with/ = {s: a€A,} and f(s) =1
for all seS. It is assumed that at least one option, possibly a one-step option, is available
from any state. Sutton et al. (1999) give the example of an option named open-the-
door for a hypothetical robot control system. This option consists of a policy for
reaching, grasping and turning the door knob, a termination condition for recognizing that

352 BARTO AND MAHADEVAN

the door has been opened, and an input set restricting execution of open-the-door to
states in which a door is within reach.

An option of the type just defined is called a Markov option because its policy is
Markov, that is, it sets action probabilities based solely on the current state of the core
MDP. To allow more flexibility, especially with respect to hierarchical architectures, one
must include semi-Markov options whose policies can set action probabilities based on the
entire history of states, actions, and rewards since the option was initiated (Sutton et al.,
1999). Semi-Markov options include options that terminate after a pre-specified number of
time steps, and most importantly, they are needed when policies over options are
considered, i.e., policies f:Sx U,.g O,—[0,1], where O, is the non-empty set of
admissible options for state s (which can include one-step options corresponding to the
admissible primitive actions in A;).

A policy u over options selects option o in state s with probability p(s, 0); o’s policy in
turn selects other options until o terminates. The policy of each of these selected options
selects other options, and so on, until one-step options are selected that correspond to
actions of the core MDP. We see, then, that a policy over options, u, determines a policy of
the core MDP, which Sutton et al. (1999) call the flar (i.e., non-hierarchical) policy
corresponding to u, denoted flat(u). Flat policies corresponding to policies over options
are generally not Markov even if all the options are Markov. The probability of a primitive
action at any time step depends on the current core state plus the policies of all the options
currently involved in the hierarchical specification. This dependence is made more explicit
in the work of Parr (1998) and Dietterich (2000), which we discuss below. Using this
machinery (made precise by Precup, 2000), one can define hierarchical options as triples
(I, u,), where I and f are the same as for Markov options but x is a semi-Markov policy
over options.

Value functions for option policies can be defined in terms of value functions of semi-
Markov flat policies. For a semi-Markov flat policy :

Vn(s) = E{rt+1 + yrt+2 + e + A))TilrtJrﬂC + e |E(7T,S, t)}a

where E(7,s,t) is the event of 7 being initiated at time # in s. Note that this value can
depend on the complete history from ¢ onwards, but not on events earlier than # since « is
semi-Markov. Given this definition for flat policies, V#(s), the value of s for a policy u
over options, is defined to be V/¢(#) (5). Similarly, one can define the option-value function
for u as follows:

QM(S7 0) = E{r[+1 + yrt+2 + U + yT_ lrt+r + e |E(O'LL7S,[)}7

where oyt is the semi-Markov policy that follows o until it terminates after t time steps and
then continues according to f.

Adding any set of semi-Markov options to a core finite MDP yields a well-defined
discrete-time SMDP whose actions are the options and whose rewards are the returns
delivered over the course of an option’s execution. Since the policy of each option is semi-
Markov, the distributions defining the next state (the state at an option’s termination),

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 353

waiting time, and rewards depend only on the option executed and the state in which its
execution was initiated. Thus, all of the theory and algorithms applicable to SMDPs can be
appropriated for decision making with options.

In their effort to treat options as much as possible as if they were conventional single-
step actions, Sutton et al. (1999) introduced the interesting concept of a multi-time model
of an option that generalizes the single-step model consisting of R(s,a) and P(s's, a),
s,s' €S, of a conventional action a. For any option o, let E(o, s,t) denote the event of o
being initiated in state s at time ¢. Then the reward part of the multi-time model of o for any
ses is:

R(s,0) = E{r, y 90+ 497 1 [E(o,5,0)},

where 7+ 7 is the random time at which o terminates. The state-prediction part of the
model of o for s is:

o0

P(s]s,0) = > pls,)y,

=1

for all s’ €S, where p(s’, 1) is the probability that the o terminates in s’ after T steps when
initiated in state s. Though not itself a probability, P(s'|s,0) is a combination of the
probability that s" is the state in which o terminates together with a measure of how
delayed that outcome is in terms of y.

The quantities R(s,0) and P(s'|s,0) respectively generalize the reward and transition
probabilities, R(s,a) and P(s'|s,a), of the usual MDP in such a way that one can write a
generalized form of the Bellman optimality equation. If V¢, denotes the optimal value
function over an option set O, then

Vi(s) = max | R(s,0) + > P(s5,0)V5 (<) (11)

which reduces to the usual Bellman optimality equation (2) if all the options are one-step
options (B(s) = 1, seS). A Bellman equation analogous to (3) can be written for Q}):

0o(s:0) = R(5.0) + 3 P(S15.0) e Q{50 (12)

for all seS and 0€ 0.

The system of equations (11) and (12) can be solved respectively for V{, and O, exactly
or approximately, using methods that generalize the usual DP and RL algorithms (Precup
et al., 1998). For example, the DP backup analogous to (5) for computing option-values is:

Qi1 1(s,0) =R(s,0) + ZP(SI|S, 0) max 0,(s',0"),

s'esS

354 BARTO AND MAHADEVAN

and the corresponding Q-learning update analogous to (8) is:

Op1(8,0) = (1 — 0)Qr(s,0) + o |7 +° max Oi(s',0) | (13)
o

This update is applied upon the termination of o at state s” after executing for 7 time steps,
and r is the return accumulated during o’s execution. This is the specialization of SMDP Q-
learning given by (10) to the SMDP that results from adding options to an MDP. It reduces to
conventional Q-learning when all the options are one-step options. In addition to Precup
(2000) and Sutton et al. (1999), see Precup et al. (1998), Precup and Sutton (1998), and Parr
(1998) for discussion of this formulation and its relation to conventional SMDP theory.

As in the case of conventional MDPs, given V; or Q,, optimal policies over options can
be determined as (stochastic) greedy policies. If each set of admissible options, O, s€ S,
contains one-step options corresponding to all of the primitive actions a € A, of the core
MDP, then it is clear that the optimal policies over options are the same as the optimal
policies for the core MDP (since primitive actions give the most refined degree of control).
On the other hand, if some of the primitive actions are not available as one-step options,
then optimal policies over the set of available options are in general suboptimal policies of
the core MDP.

The theory described above all falls within conventional SMDP theory, which is
specialized by the focus on semi-Markov options. A shortcoming of this is that the internal
structure of an option is not readily exploited. Precup (2000) writes:

SMDP methods apply to options, but only when they are treated as opaque indivisible
units. Once an option has been selected, such methods require that its policy be
followed until the option terminates. More interesting and potentially more powerful
methods are possible by looking inside options and by altering their internal structure.
—Precup (2000, p. 58).

For example, the Q-learning update (13) for options does nothing until an option
terminates (and so does not apply to non-terminating options), and it only applies to one
option at a time. This is the motivation for intra-option learning methods which allow
learning useful information before an option terminates and can be used for multiple
options simultaneously. For example, a variant of Q-learning, called one-step intra-option
Q-learning (Precup, 2000), works as follows. Suppose (primitive) action g, is taken in s,,
and the next state and immediate reward are respectively s, ; and r,, . Then for every
Markov option o = (I, 7, /) whose policy could have selected a, according to the same
distribution (s, -), this update is applied:

Qk+l(st70) = (1 - ak)Qk(st’ 0) + Otk[l‘,+1 + VUk(Sn 0)}5 (14)
where

Uil5,0) = (1 = B(s))Qu(s.0) + Bls) max Oy (5.0,

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 355

which is an estimate of the value of state-option pair (s,0) upon arrival in state s. In the
case of deterministic option policies, for example, this update is applied to all options
whose policies select g, in s, whether that option was executing or not. If all the options in
O are deterministic and Markov, then for every option in O this converges to Qf, with
probability 1, provided the o, decay appropriately and that in the limit every primitive
action is executed infinitely often in every state (Precup, 2000).

Although its utility for hierarchical RL is limited due to its restriction to Markov
options, one-step intra-option Q-learning is one example of a class of methods that take
advantage of the structure of the core MDP. Related methods have been developed for
estimating multi-time models of many options simultaneously by exploiting Bellman-like
equations relating the components R(s,a) and P(s'|s,a) of multi-time models for
successive states. Results also exist on interrupting an option’s execution in favor of an
option more highly valued for the current state, and for adjusting an option’s termination
condition to allow the longest expected execution without sacrificing performance. See
Sutton et al. (1999) and Precup (2000) for details on these and other option-related
algorithms and illustrations of their performance.

The primary motivation for the options framework is to permit one to add temporally-
extended activities to the repertoire of choices available to an RL agent, while at the same
time not precluding planning and learning at the finer grain of the core MDP. The emphasis
is therefore on augmentation rather than simplification of the core MDP. If all the primitive
actions remain in the option set as one-step options, then clearly the space of realizable
policies is unrestricted so that the optimal policies over options are the same as the optimal
policies for the core MDP. But since finding optimal policies in this case takes more
computation via conventional DP than does just solving the core MDP, one is tempted to
ask what one gains from this augmentation of the core MDP. One answer is to be found in
the use of RL methods. For RL, the availability of temporally-extended activities can
dramatically improve the agent’s performance while it is learning, especially in the initial
stages of learning. Invoking multi-step options provides one way to prevent the prolonged
period of ‘‘flailing’’ that one often sees in RL systems. Options also can facilitate transfer
of learning to related tasks. Of course, only some options can facilitate learning in this
way, and a key question is how does a system designer decide on what options to provide.
On the other hand, if the set of options does not include the one-step options corresponding
to all of the primitive actions, then the space of policies over options is a proper subset of
the set of all policies of the core MDP. In this case, though, the resulting SMDP can be
much easier to solve than the core MDP: the options simplify rather than augment. This is
the primary motivation of two other apporaches to abstraction in RL that we consider in
the next two sections.

In the current state-of-the-art, the designer of an RL system typically uses prior
knowledge about the task to add a specific set of options to the set of primitive actions
available to the agent. In some cases, complete option policies can be provided; in other
cases, option policies can be learned using, for example, intra-option learning methods
together with option-specific reward functions that are provided by the designer. Providing
options and their policies a priori is an opportunity to use background knowledge about the
task to try to accelerate learning and/or provide guarantees about system performance
during learning. Perkins and Barto (2001, 2002), for example, consider collections of

356 BARTO AND MAHADEVAN

options each of which descends on a Lyapunov function. Not only is learning accelerated,
but the goal state is reached on every learning trial while the agent learns to reach the goal
more quickly by approximating a minimum-time policy over these options.

When option policies are learned, they usually are policies for efficiently achieving
subgoals, where a subgoal is often a state, or aregion of the state space, such that reaching that
state or region is assumed to facilitate achieving the overall goal of the task. The canonical
example of a useful subgoal is a doorway in a robot navigation scenario: the doorway has to
be passed through to reach any goal outside the room. Given a collection of subgoals, one can
define subgoal-specific reward functions that positively reward the agent for achieving the
subgoal (while possibly penalizing it until the subgoal is achieved). Options are then defined
which terminate upon achieving a subgoal, and their policies can be learned using the
subgoal-specific reward function and standard RL methods. Precup (2000) discusses one way
to do this by introducing subgoal values, and Dietterich (2000), whose approach we discuss in
Section 4.3, proposes a similar scheme using pseudo-reward functions.

A natural question, then, is how are useful subgoals determined? McGovern (2002) and
McGovern and Barto (2001) developed a method for automatically identifying potentially
useful subgoals by detecting regions that the agent visits frequently on successful
trajectories but not on unsuccessful trajectories. An agent using this method selects such
regions that appear early in learning and persist throughout learning, creates options for
achieving them and learns their policies, and at the same time learns a higher-level policy
that invokes these options appropriately to solve the overall task. Experiments with this
method suggest that it can be useful for accelerating learning on single tasks, and that it
can facilitate knowledge transfer as previously-discovered options are reused in related
tasks. This approach builds on previous work in artificial intelligence that addresses
abstraction, particularly that of Iba (1989), who proposed a method for discovering macro-
operators in problem solving. Related ideas have been studied by Digney (1996, 1998).

4.2. Hierarchies of Abstract Machines

Parr (1998) and Parr and Russell (1998) developed an approach to hierarchically
structuring MDP policies called HAMs. Like the options formalism, HAMs exploit the
theory of SMDPs, but the emphasis is on simplifying complex MDPs by restricting the
class of realizable policies rather than expanding the action choices. In this respect, as
pointed out by Parr (1998), it has much in common with the multilayer approach for
controlling large Markov chains described by Forestier and Varaiya (1978) who
considered a two-layer structure in which the lower level controls the plant via one of a
set of pre-defined regulators. The higher level, the supervisor, monitors the behavior of the
plant and intervenes when its state enters a set of boundary states. Intervention takes the
form of switching to a new low-level regulator. This is not unlike many hybrid control
methods (Branicky et al., 1998) except that the low-level process is formalized as a finite
MDP and the supervisor’s task as a finite SMDP. The supervisor’s decisions occur
whenever the plant reaches a boundary state, which effectively ‘‘erases’’ the intervening
states from the supervisor’s decision problem, thereby reducing its complexity (Forestier
and Varaiya, 1978). In the options framework, each option corresponds to a low-level

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 357

regulator, and when the option set does not contain the one-step options corresponding to
all primitive actions, the same simplification results. HAMs extend this idea by allowing
policies to be specified as hierarchies of stochastic finite-state machines.

The idea of the HAM approach is that policies of a core MDP are defined as programs
which execute based on their own states as well as the current states of the core MDP.
Departing somewhat from Parr’s (1998) notation, let M be a finite MDP with state set S and
action sets A, seS. A HAM policy is defined by a collection of stochastic finite-state
machines, {H,}, with state sets S;, stochastic transition functions J;, and input sets all equal
to M’s state set, S. Each machine i also has a stochastic function /; : S—S; that sets the
initial state of M in the manner described below. Each H; has four types of states: action,
call, choice, and stop. An action state generates an action of the core MDP, M, based on the
current state of M and the current state of the currently executing machine, say H;. That is,
at time step ¢, the action a, = n(mi, s,) €A, , where mi is the current state of H, and s, is the
current state of M. A call state suspends execution of the currently executing H; and
initiates execution of another machine, say H;, where j is a function of H;’s state mi. Upon
being called, the state of H; is set to [;(s,). A choice state nondeterministically selects a
next state of H;. Finally, a stop state terminates execution of H; and returns control to the
machine that called it (whose execution commences where it was suspended). Meanwhile,
the core MDP, upon receiving an action, makes a transition to a next state according to its
transition probabilities and generates an immediate reward.” If no action is generated at
step ¢, then M remains in its current state. Parr defines a HAM H to be the initial machine
together with the closure of all machine states in all machines reachable from the possible
initial states of the initial machine. Let us call this state set S;. For convenience, he also
assumes that the initial machine does not have a stop state and that there are no infinite,
probability 1 loops that do not contain action states. This ensures that the core MDP
continues to receive primitive actions.

Figure 1 shows a simple HAM state-transition diagram similar to an example given by

Start

obstacle intersection

Choose

obstacle intersection

Figure 1. State-transition structure of a simple HAM (after Parr and Russell, 1998).

358 BARTO AND MAHADEVAN

Parr and Russell (1998) for control simple simulated mobile robot. This HAM runs until
the robot reaches an intersection. Whenever an obstacle is encountered, a choice state is
entered that allows the robot to decide to back away from the obstacle by calling the
machine back-of f or to try to get around the obstacle by calling the machine fol1low-
wall. Each of these machines has its own state-transition structure, possibly containing
additional choice and call states. When this HAM is selected, it deterministically starts by
calling the follow-wall machine.

The composition of a HAM H and an MDP M, as described above, yields a discrete-time
SMDP denoted H o M. The state set of H o M is S x Sy, and its transitions are determined
by the parallel action of the transition functions of H and M. The only actions of H o M are
the choices allowed in the choice points of H o M, which are the states whose H
components are choice states. These actions change only the HAM component of each
state. This is an SMDP because after a choice is made, the system—the composition of H
and M—runs autonomously until another choice point is reached. All the primitive actions
to M during this period are fully determined by the action states of H. The expected
immediate rewards of H o M are the expected returns accumulated during these periods
between choice points, and they are determined by the immediate rewards of M together
with rewards of zero for the time steps in which M’s state does not change. Thus, one can
think of a HAM as a method for delineating a possibly drastically restricted set of policies
for M. This restriction is determined by the prior knowledge that the HAM’s designer, or
programmer, has about what might be good ways to control M.

The next step, which corresponds to the main observation of Forestier and Varaiya
(1978), is to note that in determining an optimal policy for H o M, the only relevant states
are the choice points; the rest can be ‘‘erased.”” Therefore, there is an SMDP, called
reduce(H o M), that is equivalent to H o M but whose states are just the choice points of
H o M. Optimal policies of reduce(H o M) are the same as the optimal policies of H o M.
Of course, how close these policies will be to optimal policies of M will depend on the
programmer’s knowledge and skill.

How does RL enter into the HAM framework? It is easy to see that SMDP Q-learning
given by (10) can be applied to reduce(H o M) to approximate optimal policies for H o M.
The important strength of an RL method like SMDP Q-learning in this context is that it can
be applied to reduce(H o M) without performing any explicit reduction of H o M.
Trajectories of M under control of HAM H, i.e., trajectories of H o M, are generated, either
through simulation or observed from the real system. The update (10) is applied from
choice point to choice point. In more detail, the learning system maintains a Q-table with
entries Q([s, m], a) for each state, s, of M, each choice state, m, of H, and each action, a,
that can be taken from the corresponding choice point. It also has to store the previous
choice point, [s,., m,], and the action selected at that choice point, a,. Suppose choice point
[s., m,] is encountered at time step 7, and the next choice point, [s., m.], is encountered at
t 4+ 7. Then the SMDP Q-learning update (10) appears as follows:

Qk+1([swmc]7ac) = (1 - ak)Qk([Sc'vmc}?a(f)

+°‘k[”t+l T "‘VT_]

P 7" max Qy([se, mcl, a)).

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 359

Here, the max is taken over all actions available in choice point [s.,m.]. Clearly the
between-choice return, 7, + 7,4, + -+ 7" ', ., can be accumulated iteratively
between the visits to these choice points. If the SMDP Q-learning convergence conditions
are in force (Section 3), then the sequence of action-values functions generated by this
algorithm converges to Q* of reduce(H o M) with probability 1. Consequently, any
sequence of policies that are greedy with respect to these successive action-value functions
converges with probability 1 to an optimal policy.

We know of no large-scale applications of HAMs at the present time, but Parr (1998)
and Parr and Russell (1998) illustrate the advantages that HAMSs can provide in several
simulated robot navigation tasks. Andre and Russell (2001) increased the expressive
power of HAMs by introducing Programmable HAMs (PHAMs), which add interrupts,
aborts, local state variables, and the ability to pass parameters. PHAMs, and other
extenstions of HAMs that may occur in the future, point the way toward methods
theoretically grounded in stochastic optimal control that use expressive programming
languages to provide a knowledge-rich context for RL.

4.3. MAXQ Value Function Decomposition

Dietterich (2000) developed another approach to hierarchical RL called the MAXQ value
function decomposition, which we call simply MAXQ. Like options and HAMs, this
approach also relies on the theory of SMDPs. Unlike options and HAMs, however, the
MAXQ approach does not rely directly on reducing the entire problem to a single SMDP.
Instead, a hiearchy of SMDPs is created whose solutions can be learned simultaneously.
The MAXQ approach starts with a decomposition of a core MDP M into a set of subtasks
{My,M,, ... ,M,}. The subtasks form a hierarchy with M, being the root subtask, which
means that solving M|, solves M. Actions taken in solving M, consist of either executing
primitive actions or policies that solve other subtasks, which can in turn invoke primitive
actions or policies of other subtasks, etc.

The structure of the hierarchy is summarized in a task graph, an example of which is
given in Figure 2 for a Taxi problem that Dietterich used as an illustration. Each episode of
the overall task consists of picking up, transporting, and dropping off a passenger. The
overall problem, corresponding to the root node of the graph, is decomposed into the
subtask Get, which is the subtask of going to the passenger’s location and picking them
up, and the subtask Put, which is the subtask of going to the passenger’s destination and
dropping them off. These subtasks, in turn, are respectively decomposed into the primitive
actions Pickup or Dropoff, which respectively pick up and drop off a passenger, and the
subtask Navigate (t), which consists of navigating to one of the locations indicated by
the parameter ¢. (A subtask parameterized like this is shorthand for multiple copies of the
subtask, one for each value of the parameter.) This subtask Navigate (¢) is decomposed
into the primitive actions that are moves North, South, East, or West. The subtasks
and primitive actions into which a subtask M, is decomposed are called the ‘‘children’’ of
M;. An important aspect of a task graph is that the order in which a subtask’s children are
shown is arbitrary. Which choice the higher level controller makes depends on its policy.

360 BARTO AND MAHADEVAN

Navigate ()

| North] ‘ South | l East | | West]

Figure 2. A task graph for the Taxi problem (after Dietterich, 2000).

The graph just restricts the action choices that can be made at each level. See Dietterich
(2000) for details.

Each subtask, M;, consists of three components. First, it has a subtask policy, =;, that can
select other subtasks from the set of M, ’s children. Here, as with options, primitive actions
are special cases of subtasks. We also assume the subtask policies are deterministic.
Second, each subtask has a termination predicate that partitions the state set, S, of the core
MDP into S;, the set of active states, in which M,’s policy can execute, and T}, the set of
termination states, which when entered causes the policy to terminate. Third, each subtask
M, has a pseudo-reward function that assigns reward values to the states in 7;. The pseudo-
reward function is only used during learning, which we discuss after first describing how
the task graph hierarchy allows value functions to be decomposed.

A subtask is very much like a hierarchical option, (I;, 1;, 5;}, as defined in Section 4.1,
with the addition of a pseudo-reward function. The policy over options, y;, corresponds to
the subtask’s 7;; the termination condition, f;, in this case assigns to states termination
probabilities of only 1 or 0; and the option’s input set /; corresponds to S;. Unlike the
option formalism, however, which treats semi-Markov options, MAXQ explicitly adds a
component to each state that gives the current contents, K, of a pushdown stack containing
the names and parameter values of the hierarchy of calling subtasks, as in subroutine
handling of ordinary programming languages. At any time step, the top of the stack
contains the name of the subtask currently being executed. Thus, while a subtask’s policy
is non-Markov with respect to the state set of the core MDP, it is Markov with respect to
this augmented state set. As a consequence, each subtask policy has to assign actions to
every combination, [s, K], of core state s and stack contents K.

Given a hierarchical decomposition of M into n subtasks as given by a task graph, a
hierarchical policy is defined to be © = {n,...,n,}, where =; is the policy of M,. The
hierarchical value function for 7 gives the value, i.e., the expected return, for each state-
stack pair, [s, K], given that 7 is followed from s when the stack contents are K. This value
is denoted V*([s, K]). The “‘top level’” value of a state s is V”([s, nil]), indicating that the
stack is empty. This is the value of s under the flat policy induced by the hierarchy of
subtask calls starting from the root of the hierarchy. The projected value function of

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 361

hierarchical policy @ on subtask M; gives the expected return of each state s under the
assumption that 7; is executed until it terminates. This projected value is denoted V™ (i, s).
This is the same as the value function of the hierarchical option corresponding to M; as
defined in Section 4.1.

Given a hierarchical decomposition of M and a hierarchical policy, «, each subtask M;
defines a discrete-time SMDP with state set is S;. Its actions are its child subtasks, M ,, and
its transition probabilities, P;(s', t|s, a) (cf. equations (6) and (7)), are well-defined given
the policies of the lower-level subtasks. A key observation, which follows that of Singh
(1992), is that this SMDP’s expected immediate reward, R;(s,a), for executing action
(subtask) a is the projected value of © on subtask M. That is, for all s€S; and all child
subtasks M, of M;, R;(s,a) = V™(a, s). To see why this is true, suppose the core MDP is in
state s when subtask M; selects one of its child subtasks, M, for execution. Expanding
M,’s policy down to primitive actions results in a flat policy that accumulates rewards
according to the core MDP until M, terminates at a state s'€T,. The waiting time for s
when this action is chosen is the execution time of M, ’s policy. The reward accumulated
during this waiting time is V" (a, s). Given this, one can write a Bellman equation for the
SMDP corresponding to subtask M;:

VE(iys) = Vi(mi(s),5) + Y PE(s tls mi(9))y V(i o), (15)

where V7(i,s’) is the expected return for completing subtask M, starting in state s" (cf.
equation (6)).

The action-value function, Q, defined by (1) can be extended to apply to subtasks: for
hierarchical policy 7, Q™ (i, s, a) is the expected return for action a (a primitive action or a
child subtask) being executed in subtask M; and then 7 being followed until M; terminates.
In terms of this subtask action-value function, the observation expressed in (15) takes the
form:

0" (i,s,a) =V™(a,s) + ZP?(S’, t|s,a)y" Q" (i, ', n(s")). (16)

st

Dietterich (2000) calls the second term on the right of this equation the completion
function:

C™(i,s,a) = > _PI(s,tls,a)y" Q" (i, s, n(s)). (17)

This gives expected return for completing subtask M; after subtask M, terminates.
Rewriting (16) using the completion function, we have

0"(i,s,a) =V™(a,s) + C"(i,s,a). (18)

Equations (16) and (17) provide a recursive way to write the value of a state given a

362 BARTO AND MAHADEVAN

hierarchical policy. The result is the MAXQ hierarchical value function decomposition.
Given a hierarchical policy 7 and a state s of the core MDP, suppose the policy of the top-
level subtask, M), selects subtask M, , and that this subtask’s policy selects subtask M,,,,
whose policy in turn selects subtask M, , etc. until finally subtask M, ’s policy selects
a,, a primitive action that is executed in the core MDP. Then the projected value of s for
the root subtask, V”(0,s), which is the value of s in the core MDP, can be written as
follows:

Vn(O,S) = Vn(an’s) + Cn(anflv& an) +oe Cn(alvsv a2) + Cn(O,S,dl), (19)

where V*(a,,s) = >, P(s|s,a,)R(5'|s,a,).

The decomposition (19) is the basis of a learning algorithm that is able to learn
hierarchical policies from sample trajectories. The details of this algorithm are somewhat
complex and beyond the scope of this review, but we describe the basic idea. This
algorithm is a recursively applied form of SMDP Q-learning that takes advantage of the
MAXQ value function decomposition to update estimates of subtask completion
functions. The simplest version of this algorithm applies when the pseudo-reward
functions of all the subtasks are identically zero. The key component of the algorithm is a
function—called MAXQ-0 for this special case—that calls itself recursively to descend
through the hierarchy to finally execute primitive actions. When it returns from each call, it
updates the completion function corresponding to the appropriate subtask, with
discounting determined by the returned count of the number of primitive actions
executed. For details see Dietterich (2000).

If the agent follows a policy that is GLIE (Section 3) and also further constrained to
always break ties in the same order, and the step-size parameter converges to zero
according to the usual stochastic approximation conditions, then the algorithm sketched
above converges with probability 1 to the unique recursively optimal policy for M that is
consistent with the task graph. A recursively optimal policy is a hierarchical policy,
n = {my,...,m,}, such that for each subtask M;,i = 0,..., n,n; is optimal for the SMDP
corresponding to M;, given the policies of M;’s children subtasks. This form of optimal
policy stands in contrast to a hierarchically optimal policy, which is a hierarchical policy
that is optimal among all the policies that can be expressed within the constraints imposed
by the given hierarchical structure.

Examples of policies that are recursively optimal but not hierarchically optimal are easy
to construct. This is because the hierarchical optimality of a subtask generally depends not
only on that subtask’s children, but also on how the subtask participates in higher-level
subtasks. For example, the hierarchically optimal way to travel to a given destination may
depend on what you intend to do after arriving there in addition to properties of the trip
itself. SMDP DP or RL methods applied to HAMs, or to MDPs with options whose
policies are fixed a priori, yield hierarchically optimal policies, and it is relatively easy to
define a learning algorithm for MAXQ hierarchies that also produces hierarchically
optimal policies. Dietterich’s interest in the weaker recursive optimality stems from the
fact that this form of optimality can be determined without considering the context of a
subtask. This facilitates using subtask policies a building blocks for other tasks and has

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 363

implications for state abstraction, although we do not touch on the latter aspect in this
review.

What about the pseudo-reward functions? These functions allow a system designer
within the MAXQ framework to specify subtasks by defining subgoals that they must
achieve but without specifying policies for achieving them. In this respect, they play the
same role as do the auxiliary reward functions that can be used in the options framework
for learning option policies. The MAXQ-0 learning algorithm sketched above can be
extended to an algorithm, called MAXQ-Q, that learns a policy that is recursively optimal
hierarchical with respect to the sum of the original reward function and the pseudo-reward
functions.

We have not been able to do justice to the MAXQ approach and associated algorithms in
this short review. However, we have presented enough to provide a basis for seeing how
SMDP theory again plays a central role in an approach to hierarical RL. Like HAMs,
MAXQ is an excellent example of how concepts from programming languages can be
fruitfully integrated with a stochastic optimal control framework.

5. Recent Advances in Hierarchical RL

Thus far we have surveyed different approaches to hierarchical RL, all of which are based
on the underlying framework of SMDPs. These approaches collectively suffer from some
key limitations: policies are restricted to sequential combinations of activities; agents are
assumed to act alone in the environment; and finally, states are considered to be fully
accessible. In this section, we address these assumptions and describe how the SMDP
framework can be extended to concurrent activities, multiagent domains, and partially
observable states. Unfortunately, space does not permit complete descriptions of these
extensions, but we provide citations to the literature where details can be found.

5.1. Concurrent Activities

Here we summarize recent work by Rohanimanesh and Mahadevan (2001, in press)
towards a general framework for modeling concurrent activities. This framework is
motivated by situations in which a single agent can execute multiple parallel processes, as
well as by the multiagent case in which many agents act in parallel (addressed in Section
5.2). Managing concurrent activities clearly is a central component of our everyday
behavior: in making breakfast, we interleave making toast and coffee with other activities
such as getting milk; in driving, we search for road signs while controlling the wheel,
accelerator and brakes.

Building on the SMDP framework described above, this approach focuses on modeling
concurrent activities, where each component activity is temporally extended. One
immediate question that arises in modeling concurrent activities is that of termination:
unlike the purely sequential case, when multiple activities are executed simultaneously,
concurrently executing activities do not generally terminate at the same time. How does
one define the termination of a set of concurrent activities? Among the termination

364 BARTO AND MAHADEVAN

schemes studied by Rohanimanesh and Mahadevan (2001) are the following two. The
any scheme terminates all other activities when the first activity terminates, whereas the a//
scheme waits until all existing activities terminate before choosing a new concurrent set of
activities. These researchers have also studied other schemes, such as continue, which
replaces the terminated activity with a set of new activities that includes the activities
already executing. For simplicity, we restrict our discussion to the first two schemes.

For concreteness, we describe the concurrent activity model using the options
formalism described in Section 4.1. The treatment here is restricted to options over
discrete-time SMDPs and having deterministic policies, but the main ideas extend readily
to the other variants (HAMs, MAXQ), as well as to continuous-time SMDPs. (See
Ghavamzadeh and Mahadevan, 2001 for a treatment of hierarchical RL for continuous-
time SMDPs.) The sequential option model is generalised to a multi-option, which is a set
of options that can be executed in parallel. Here we discuss the simple case in which the
options comprising a multi-option influence different sets of state variables that do not
interact. (This assumption can be generalized, but for simplicity, we restrict our treatment
here.) For example, turning the radio off and pressing the brake can always be executed in
parallel since they affect different non-interacting state variables.

We now define a multi-option (denoted by o) more precisely. Let o = (I, ,) be an
option as defined in Section 4.1 on a core MDP with state set S <II}S;, where S; is the
range of state variable s;,i =1,...,n. Suppose that while option o is executing, it
influences only a subset of the state variables S, ={s;,5,, .. .,s,}. Assume also that while
o is executing, these variables do not influence, and are not influenced by, any variables not
inS,. A set of options {0,...,0,}, each defined on the same core MDP, is coherent if
S, N S(,j =0,i,j=1,...,n,i#j. This ensures that each option will affect different
components of the state set so that any subset of them can be executed in parallel without
interfering with one another. In other words, while a coherent set of options is executing,
the system admits a parallel decomposition with each component corresponding to the
state variables influenced by one of the options. In the driving example, the turn-
radio-on and brake options comprise a coherent set, but the turn-right and
accelerate options do not since the state variable position is influenced by both. A
multi-option over an MDP M is a coherent set of options over M.

When multi-option o' is executed in state s, several options o; €0 are initiated. Each
option o; will terminate at some random time #, . We can define the termination of a multi-
option based on either of the following events: (1) T, = max; (%,): when all the options
0;€0 terminate according to f;(s), multi-option & is declared terminated, or (2)
T,,, = min;(t,): when any (i.e., the first) of the options terminate, the options that are
still executing at that time are interrupted.

We then have the following result. Given a finite MDP and a collection of multi-options
defined on it, where the underlying options are Markov, the decision process that selects
only among multi-options, and executes each one until its termination according to the T,
or T,,, termination conditions, is a discrete-time SMDP. The proof requires showing that
the state transition probabilities and the rewards corresponding to any concurrent option o
defines an SMDP (Rohanimanesh and Mahadevan, 2001). The significance of this result is
that SMDP Q-learning methods can be extended to learn policies over concurrent options
under this model.

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 365

The extended SMDP Q-learning algorithm for learning policies over multi-options
updates the multi-option value function Q(s,) after each decision epoch in which the
multi-option & is taken in state s and terminates in state s’ (under either termination
condition):

—

Qi 11(5,0) = (1 = 2)Q4(5,0) + o | r 477 max Ou(s',0) |, (20)

/
o GOS/

where 7 denotes the number of time steps between initiation of the multi-option ¢ in state s
and its termination in state s’, and r denotes the cumulative discounted reward over this
period. This learning rule generalizes (13) to multi-options. It is straightforward to also
generalize other learning algorithms, such as the intra-option Q-learning algorithm (14) to
multi-options.

As a simple illustrative example of using this concurrent SMDP Q-learning algorithm,
Rohanimanesh and Mahadevan (2001) considered an environment consisting of four
“‘rooms’’, each of which is divided into a discrete set of cells (Figure 3). Each room
contains two doors, each of which can be ‘‘opened’” by two keys. The agent is given
options for getting to each door from any interior room state, and for opening a locked
door. It has to learn the shortest path to the goal by concurrently combining these options.
The agent can reach the goal more quickly if it learns to parallelize the option for
retrieving the key before it reaches a locked door. However, retrieving the key too early is

Agent . HO water trap

»

[} S -

- 4 stochastic primitive actions

(Up, Down, Left and Right)

- Fail 10% of times, when not passing
the water trap

- Fail 30% of times, when passing
the water trap and holding both keys

- 8 multi-step navigation options
(to each room'’s 2 hallways)
- One single step no-op option

- 3 stochastic primitive actions for keys
(get-key, key-nop and putback-key)

- 2 multi-step key options (pickup-key) for
each key

- Drops the keys 20% of times when passing
through the water trap and holding both keys

* H2

Figure 3. An illustrative problem for concurrent options.

366 BARTO AND MAHADEVAN

Sequential Options ——
Concurrent Options: optimal, T-all --»-- |
Concurrent Options: optimal, T-any - 1
Concurrent Options: continue —»

30 ¢

25 r "e-s B--."-l---n__g__n g.g o8 eoo

20

Median/Trials (steps to goal)

omee o0 o]
e

0 100,000 200,000 300,000 400,000 500,000
Trial

Figure 4. Multi-option comparison. This graph compares a multi-option SMDP Q-learning system (under
different termination schemes) with one that learns sequential policies. Policies over multi-options easily
outperform sequential policies, and termination makes a large difference in of convergence rate and quality of the
learned policy.

counterproductive since it can be dropped with some probability. The process of retrieving
a key is modeled as an SMDP consisting of a linear chain of states to model the waiting
process before the agent is holding the key.

Figure 4 compares the policies learned with strictly sequential options, as described in
Section 4.1, using the Q-learning algorithm (13), with policies over multi-options learned
using the extended Q-learning rule (20). The vertical axis plots the median steps to the goal
in each trial. Note that the sequential solution is the slowest, taking the agent about 50
steps to reach the goal. The termination condition T is faster than the sequential case,
taking about 45 steps to reach the goal. Both of these, however, are significantly slower
than the 7,,,, and T_.,,;;n, policies, which reach the goal in half the time. 7, converges the
slowest, since it terminates multi-options fairly aggressively resulting in more decision
epochs. T,,,.i... Provides the best tradeoff between speed of convergence and optimality of
the learned policy.

The multi-option formalism can be extended to allow cases in which options executing
in parallel modify the same shared variables at the same time. Details of this extension is
beyond the scope of the present article.

5.2. Multiagent Coordination

Concurrency is the basis for modeling coordination among multiple simultaneously
behaving agents. From a theoretical point of view, it matters little if concurrent activities
are being executed by a single agent or by multiple cooperating agents. However, the
multiagent problem usually involves other complexities as well, such as the fact that one
agent cannot usually observe the actions or the states of other agents in the environment.

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 367

We address the issue of hidden state in the next section; here we focus on the problem of
learning a policy across joint states and joint actions.

In general, problems involving multiagent coordination can be modeled by assuming
that states now represent the joint state of n agents, where each agent i may only have
access to a partial view s;. Also, the joint action is represented as (a, . . ., a,,), where again,
each agent may not have knowledge of the other agents’ actions. Typically, the assumption
made in multiagent studies is that the set of joint actions defines an SMDP (or MDP) over
the joint state set. Of course, in most practical problems, the joint state and action sets are
exponential in the number of agents, and the aim is to find a distributed solution that does
not require combinatorial enumeration over joint states and actions.

One general approach to learning task-level coordination is to extend the above
concurrency model to the joint state and action spaces, where each action is a fixed option
with a pre-specified policy. This approach requires very minimal modification of the
approach described in the previous section. In contrast, we now describe an extension of
this approach due to Makar et al. (2001) in which agents learn both coordination skills and
the base-level policies using a multiagent MAXQ-like task graph. However, convergence
to (hierarchically) optimal policies is no longer assured since lower-level subtask policies
are varying at the same time when learning higher-level policies. The ideas can be
extended to other formalisms also, but for the sake of clarity, we focus on the MAXQ value
function decomposition approach described in Section 4.3.

It is necessary to generalize the MAXQ decomposition from its original sequential
single-agent setting to the multiagent coordination problem. Let & = (o, ..., 0,) denote a
multi-option, where o; is the option executed by agent i.* Let s = (sy,...,s,) denote a joint
state. The joint action-value of a multi-option ¢ in a joint state s, and in the context of
doing parent task p, is denoted Q(p, s, 0). The MAXQ decomposition of the Q-function
given by (18) can be extended to joint action-values as follows. The joint completion
function for agent j assigns values C’ (p,s;,0) giving the discounted return for agent j
completing a multi-option in in the context of doing parent task p, when the other agents
are performing multi-options oy, for all ke {1, ..., n}, k # j. The joint multi-option value
Q(p, 5, 0) is now approximated by each agent j (given only its local state s,) as:

Qj(.pa Sja 5) ~ Vj(ﬁjv Sj) + CJ(P: Sja 5)7
where

y max; Q' (p, s, 0;), if parent task p is non-primitive
Vip,s;) = > ¢ P(si | 5;,P)R(s} | s;,p), if pis a primitive action.
J

The first term in the Q(p, s;, 5) expansion above refers to the discounted sum of rewards
received by agent j for doing concurrent action 0} in state s;. The second term ‘*completes’’
the sum by accounting for rewards earned for completing the parent task p after finishing
0;. The completion function is updated from sample values using an SMDP learning rule.
Note that the correct action value is approximated by only considering local state s; and

also by ignoring the effect of concurrent actions 0y, k # j by other agents when agent j is

368 BARTO AND MAHADEVAN

1
Room 3 Nav

Foll Al Find
Room 1 Corridor [T.{ Igm

At Max Node
(O QNode
@ T1: Location of trash 1

T2: Location of trash 2
D: Location of dump

Room 2

T1: Location of one trash can.
T2: Location of another trash can.
Dump: Final destination location for depositing all trash,

Figure 5. A two-robot (A1l and A2) trash collection task. The robots can learn to coordinate much more rapidly
using the task structure than if they attempted to coordinate at the level of primitive movements. On the right is
shown a MAXQ graph, which is MAXQ task graph with two kinds of nodes representing subtasks and the actions
those subtasks can select. Reproduced from Makar et al. (2001) © 2001 ACM, Inc. Reprinted by permission.

performing 0;. In practice, a human designer can configure the task graph to store joint
concurrent action values at the highest level(s) of the hierarchy as needed.

Figure 5 illustrates a robot trash collection task, where the two agents, A1 and A2, will
maximize their performance at the task if they learn to coordinate with each other. Here, we
want to design learning algorithms for cooperative multiagent tasks (Weiss, 1999), where
the agents learn the coordination skills by trial and error. The key idea here is that
coordination skills are learned more efficiently if agents learn to synchronize using a
hierarchical representation of the task structure (Sugawara and Lesser, 1998). In particular,
rather than each robot learning its response to low-level primitive actions of the other robots
(for instance, if A1 goes forward, what should A2 do), they learn high-level coordination
knowledge (what is the utility of A2 picking up trash from 71 if A1 is also picking up from the
same bin, and so on). The proposed approach differs significantly from previous work in
multiagent reinforcement learning (Littman, 1994; Tan, 1993) in using hierarchical task
structure to accelerate learning, and as well in its use of concurrent activities.

To illustrate the use of this decomposition in learning multiagent coordination, for the
two-robot trash collection task, if the joint action-values are restricted to only the highest
level of the task graph under the root, we get the following value function decomposition
for agent Al:

Q'(Root,s;, (NavT1,NavT2))x~ V! ((NavT1),s;) + C!(Root, s;, (NavT1,NavT2)),

which represents the value of agent A1 doing task NavT1 in the context of the overall Root
task, when agent A2 is doing task NavT2. Note that this value is decomposed into the value

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 369

of agent Al doing NavT1 subtask itself and the completion sum of the remainder of the
overall task done by both agents. In this example, the multiagent MAXQ decomposition
embodies the constraint that the value of A1 navigating to trash bin 71 is independent of
whatever A2 is doing.

5.3. Hierarchical Memory

In multiagent environments, agents cannot observe joint states and joint actions, but must
act based on estimates of these hidden variables (the problem of hidden state occurs in
many single-agent tasks as well, such as a robot navigating in an indoor office
environment). One approach is formalized in terms of partially observable Markov
decision processes (POMDPs), where agents learn policies over belief states, i.e.,
probability distributions over the underlying state set (Kaelbling et al., 1998). It can be
shown that belief states satisfy the Markov property and consequently yield a new (and
more complex) MDP over information states. Belief states can be recursively updated
using the transition model, and an observation model O(y | s, a) specifying the likelihood
of observing y if action @ was performed and resulted in state s. However, mapping belief
states to optimal actions is known to be intractable, particularly in the decentralized
multiagent formulation (Bernstein, 2000). Also, learning a perfect model of the underlying
POMDP is a challenging task. An empirically more effective (but theoretically less
powerful) approach is to use finite memory models as linear chains or nonlinear trees over
histories (McCallum, 1996). However, such finite memory structures can be defeated by
long sequences of mostly irrelevant observations and actions that conceal a critical past
observation.

We briefly summarize three multiscale memory models that have been explored
recently by Hernandez and Mahadevan (2001), Theocharous et al. (2001), and Jonsson and
Barto (2001). These models combine temporal abstraction with previous methods for
dealing with hidden state. Hierarchical suffix memory (HSM) (Hernandez and
Mahadevan, 2001) generalizes the suffix tree model (McCallum, 1996), to SMDP-based
temporally-extended activities. Suffix memory constructs state estimators from finite
chains of observation-action-reward triples. In addition to extending suffix models to
temporally-extended activities, HSM also uses multiple layers of temporal abstraction to
form longer-term memories at more abstract levels. Figure 6 illustrates this idea for robot
navigation for the simpler case of a linear chain, although the tree-based model has also
been investigated. An important side-effect is that the agent can look back many steps
back in time while ignoring the exact sequence of low-level observations and actions that
transpired. Tests in a robot navigation domain showed that HSM outperformed ‘flat”’
suffix tree methods, as well as hierarchical methods that used no memory (Hernandez and
Mahadevan, 2001).

POMDPs are theoretically more powerful than finite memory models, but past work on
POMDPs has mostly studied ‘‘flat’’ models for which learning and planning algorithms
scale poorly with model size. Theocharous et al. (2001) developed a hierarchical POMDP
formalism, termed H-POMDPs (Figure 7), by extending the hierarchical hidden Markov
model (HHMM) (Fine et al., 1998) to include rewards and temporally-extended activities.

370 BARTO AND MAHADEVAN

corner T-junction dead end

F ar = = 3 [F A
abstraction level: navigation O D3 o,m ‘003 002 o) D1 ‘ODS O/ 9
N 7 L *
N ‘. ;
43 43 Td2 —d3
abstraction level: traversal O—EO—»O—-Q D—ao—voi W07
\, -/ b * A
abstraction level: primitive of-ﬂ-—O—-. 0-—5-0+0-- . a-- gwm. 0+-

Figure 6. Hierarchical suffix memory state estimator for a robot navigation task. At the abstract (navigation)
level, observations and decisions occur at intersections. At the lower (corridor-traversal) level, observations and
decisions occur within the corridor. At each level, each agent constructs state representations from its past
experience with similar history (shown with shadows). Reproduced from Hernandez and Mahadevan (2001),
© 2001, MIT Press, Inc. Reprinted by permission.

0.25 0.25

Figure 7. Hierarchical POMDP model. This hierarchical POMDP model represents two adjacent corridors in a
robot navigation task. The model has two primitive actions, ‘‘go-left’” indicated with the dotted arrows and *‘go-
right”” indicated with the dashed arrows. This HPOMDP has two (unobservable) abstract states s; and s,, and each
abstract state has two entry and two exit states. The (hidden) product states s, 5, S¢, 59, and s, have associated
observation models. Reproduced from Theocharous (2002), © Georgios Theocharous. Reprinted by permission.

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 371

They also developed a hierarchical eM algorithm for learning the parameters of an H-
POMDP model from sequences of observations and actions. Extensive tests on a robot
navigation domain show learning and planning performance is much improved over flat
POMDP models (Theocharous et al., 2001; Theocharous and Mahadevan, 2002). The
hierarchical eM-based parameter estimation algorithm scales more gracefully to large
models because previously learned sub-models can be reused when learning at higher
levels. In addition, the effect of temporally-extended activities in H-POMDPs (e.g., exit
the corridor) can be modeled at abstract and product-level states, which supports planning
at multiple levels of abstraction.

H-POMDPs have an inherent advantage in allowing belief states to be computed at
different levels of the tree. In addition, there is often less uncertainty at higher levels (e.g.,
a robot is more sure of which corridor it is in than exactly where it is in the corridor). A
number of heuristics for mapping belief states to actions provide good performance in
robot navigation (e.g., the most-likely-state (MLS) heuristic assumes the agent is in the
state corresponding to the ‘‘peak’’ of the belief state distribution) (Koenig and Simmons,
1997; Shatkay and Kaelbling, 1997; Nourbakhsh et al., 1995). Such heuristics work much
better in H-POMDPs because they can be applied at multiple levels, and belief states over
abstract states usually have lower entropy (Figure 8). For a detailed study of the H-
POMDP model, as well as its application to robot navigation, see Theocharous (2002).

Jonsson and Barto (2001) also addressed partial observability by adapting suffix tree
methods to hierarchical RL systems. Their approach focused on automating the process of
constructing activity-specific state representations by applying McCallum’s U-Tree
algorithm (McCallum, 1996) to individual options. The U-Tree algorithm employs the
concept of a suffix tree to automatically construct a state representation starting from one
that makes no distinctions between different observation vectors. Thus, no specification of

Normalized entropies of the abstract and global levels

Global entropy —
Abstract entropy ---»
START

0.8

.
0.6 \,%&‘ |

W
.":-J_ \
=
= % | Ji | [GoAL
b4 X
2 04l 5 4 4
g j"xkl:]_:l ; | -~
= *:'ff‘ |~ /"’\\ ,“Ir, Jy
02+t w'wwl / S g ./ |.1‘ Jy Js
i I.f \ il f h
0 i, Mav's.imm " M"’“

0 10 20 30 40 50 60 70 80 90 100 -
Number of steps

Figure 8. Entropy of a sample robot navigation run. This graph shows a sample robot navigation run whose trace
is on the right, where positional uncertainty (measured by belief state entropy) at the abstract (corridor) level is
less than at the product state level. Spatiotemporal abstraction reduces the uncertainty and requires less frequent
decision-making, allowing the robot to get to goals without inital positional information. Reproduced from
Theocharous and Mahadevan (2002), © 2002 IEEE. Reprinted by permission.

372 BARTO AND MAHADEVAN

state-feature dependencies is necessary prior to learning. With a separate U-Tree assigned
to each option, it is possible to perform state abstraction separately for each option.

The U-Tree algorithm retains a history of transition instances T, = (T,_ |, a,_,1;,S,)
composed of the observation vector, s,, at time step #, the previous action, a, _ |, the reward,
r,, received during the transition into s,, and the previous instance, T, _ ;. A decision tree—
the U-Tree—sorts a new instance T, based on its components and assigns it to a unique leaf
L(T,) of the tree. The distinctions associated with a leaf are determined by the root-to-leaf
path. For each leaf-action pair (L;,a), the algorithm keeps an action-value Q(L;,a)
estimating the future discounted reward associated with being in L; and executing a. These
action-values can be updated in a variety of ways, such as via a DP algorithm if a system
model is available (or can be learned) or RL algorithms such as Q-learning.

The U-Tree algorithm periodically adds new distinctions to the tree in the form of
temporary nodes, called fringe nodes, and performs statistical tests to see whether the
added distinctions increase the predictive power of the U-Tree. The tree is extended with
new distinctions when these are estimated to increase the tree’s predictive power.
Whenever the tree is extended, the action-values of the previous leaf node are passed on to
the new leaf nodes. Each distinction is based on (1) a perceptual dimension, which is either
an observation or a previous action, and (2) a history index, indicating how far back in the
current history the dimension will be examined.

Jonsson and Barto (2001) adapted the U-Tree algorithm for use with options and
hierarchical learning architectures. Given a finite MDP and a set of options whose policies
were not yet defined, they assigned each option a separate U-Tree, which was updated
using the U-Tree algorithm (with some modifications) based on each option’s local history.
What makes the U-Tree algorithm suitable for performing option-specific state abstraction
is that a U-Tree simultaneously defines a state representation and a policy over this
representation. By assigning one U-Tree to each option, the algorithm is able to perform
state abstraction separately for each option while also modifying its policy. It is also
possible to use intra-option learning methods (Section 4.1) so that something about an
option can be learned from the behavior of other options.

This version of the U-Tree algorithm was illustrated using Dietterich’s (2000) Taxi task
that we briefly described in Section 4.3. Results show that starting with no distinctions
being made in the state representation (i.e., all states were represented as a single block),
the algorithm was able to solve this task by introducing distinctions that partitioned the
state-action set into subsets requiring different action-values, at a significant savings over
an approach that initially distinguished between all possible states. Although this example
is merely illustrative, it suggests that automated option-specific state abstraction is an
attractive approach to making hierarchical learning systems more powerful.

6. Topics For Future Research

6.1. Compact Representations

In most interesting real-world tasks, states have significant internal structure. For example,
states are very often represented as vectors of state variables (usually called factored states

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 373

by machine learning researchers’), or even possess richer relational structure (Driessens
and Dzeroski, 2002). Much work in artificial intelligence has focused on exploiting this
structure to develop compact representations of single-step actions (e.g., the Dynamic
Bayes Net representation; Dean and Kanazawa, 1989). A natural question to consider is
how to extend these single-step compact models into compact models of temporally-
extended activities, such as options. The problem is a bit subtle since even if all actions
have limited single-step influence on state variables, this property generally does not hold
over an extended activity. One approach that Rohanimanesh and Mahadevan have been
studying is how to exploit results from approximation of structured stochastic processes
(Boyen and Koller, 1998) to develop structured ways of approximating the next-state
predictions of temporally-extended activities. The key idea is that by clustering the state
variables into disjoint subsets, and keeping track of a next-state distribution for each local
cluster, it is possible to efficiently approximate the underlying next-state distribution for a
temporally-extended activity. Preliminary analysis of this approach appears promising,
and further theoretical and experimental study is under way.

6.2. Learning Task Hierarchies

In the approaches discussed above, the components of the hierarchy, their places in the
hierarchy, and the abstractions that are used are decided upon in advance. A key open
question is how to form task hierarchies automatically, such as those used in the MAXQ
framework. We briefly discussed in Section 4.1 automated methods for identifying useful
subtoals (Digney, 1996, 1998; McGovern, 2001, 2002) which address some aspects of this
problem. Another approach called HEXQ was recently proposed by Hengst (2002). It
exploits a factored state representation and sorts state variables into an ordered list,
beginning with the variable that changes most rapidly. HEXQ builds a task hierarchy,
consisting of one level for each state variable, where each level is the result of partitioning
the states represented by values of this variable into simpler MDPs that are connected to on
another through a set of ‘‘exit’’ states where transitions occur that are unpredictable when
projected onto that level’s state variable. A limitation of HEXQ is that it is limited to
considering each state variable in isolation, an approach that fails for more complex
problems. Further work is required for understanding how to build task hierarchies in such
cases, and how to integrate this approach to related systems approaches such as singular
perturbation methods (Kokotovic et al., 1986; Naidu, 1988).

6.3. Dynamic Abstraction

Systems such as those outlined in this article naturally provide opportunities for using
different state representations depending on the activity that is currently executing. There
is a crucial distinction between static abstractions, which remain fixed throughout all
phases of a sequential decision task, and what we call dynamic abstractions that are
conditional on the execution of particular temporally-extended activities. In other words,
the variables that a dynamic abstraction renders relevant or irrelevant are afforded that

374 BARTO AND MAHADEVAN

status only for a temporally-confined segment of time. For example, during the course of
driving, the steering wheel angle, the gear position, or the radio status may all be relevant,
but become irrelevant during other activities. Dietterich (2000) introduced activity-
specific state abstraction in the MAXQ framework, and Jonsson and Barto (2001) explored
automatic methods for constructing such representation from experience, as described in
Section 5.3. The ability to use dynamic abstraction in RL is one of the key reasons that the
hierarchical RL approaches discussed in this article appear so attractive to machine
learning researchers. This is an area in which future research can have a significant impact.

6.4. Large Applications

Although the proposed ideas for hierarchical RL described above appear promising, to
date there has been insufficient experience in experimentally testing the effectiveness of
these ideas on large applications. Makar et al. (2001) extended the MAXQ approach to
multiagent domains, and applied it to a large multi-vehicle autonomous guided vehicle
(AGYV) routing problem. They demonstrated that the policies learned for this problem were
better than standard heuristics used in industry, such as the ‘‘go to the nearest free
machine’’ heuristic. Stone and Sutton (2001) applied the framework of options to a ‘‘keep
away’’ task in Robot soccer. This task involves a set of players from one team passing the
ball between them and keeping the ball in their possession against the defending
opponents. While these initial studies are promising, much further work is necessary to
establish the effectiveness of hierarchical RL, particularly on large complex continuous
control tasks.

7. Conclusion

Our goal in the article was to review several closely related approaches to temporal
abstraction and hierarchical control that have been developed by machine learning
researchers: the options formalism of Sutton et al. (1999), the hierarchies of abstract
machines (HAMs) approach of Parr and Russell, and Dietterich’s MAXQ framework. We
also discussed extensions of these ideas addressing concurrent activities, multiagent
coordination, and hierarchical memory for partial observability. We did not attempt an
exhaustive review of the machine learning research on these topics, and although many of
them are closely related to similar approaches in systems and control engineering to
hierarchical, hybrid, and multilayer control, we did not attempt to provide a careful
rapprochement between these areas and what machine learning, researchers have been
developing. However, we strongly believe that there is much to be gained—on both
sides—from such a rapproachement, and it is our hope that this article will prove to be
useful in stimulating the needed dialog.

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 375

Acknowledgments

The authors would like to thank Anders Jonsson, Khashayar Rohanimanesh, and
Mohammad Ghavamzadeh for their crtical reading of an early draft of this article. This
research was funded by NSF Knowledge and Distributed Intelligence (KDI) awards ECS-
9980062 to Andrew Barto and ECS-9873531 to Sridhar Mahadevan, and DARPA MARS
grant DABT63-99-1-0014 to Sridhar Mahadevan. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

Notes

1. We follow Sutton and Barto (1998) in denoting the reward for the action at stage ¢ by r, , ; instead of the more
usual r,.

2. Parr (1998) restricts the HAM call graph to be a tree so that call stack contents do not need to be treated as part
of the program state, a point we gloss over in our discussion. This kind of machine hierarchy is an instance of a
Recurisve Transition Network as discussed by Woods (1970).

3. For multiagent problems, we treat a multi-option as a tuple rather than a set since its elements are associated
with specific agents. It is also possible to generalize this so that each o; is itself a multi-option.

References

Andre, D., and Russell, S. J. 2001. Programmable reinforcement learning agents. In Advances in Neural
Information Processing Systems: Proceedings of the 2000 Conference. Cambridge, MA: MIT Press, pp. 1019—
1025.

Barto, A. G., Bradtke, S. J., and Singh, S. P. 1995. Learning to act using real-time dynamic programming.
Artificial Intelligence 72: 81-138.

Bernstein, D., Zilberstein, S., and Immerman, N. 2000. The complexity of decentralized control of markov
decision processes. In C. Boutilier and M. Goldszmidt (eds), Uncertainty in Artificial Intelligence: Proceedings
of the 16th Conference. San Francisco CA: Morgan Kaufmann, pp. 32-37.

Bertsekas, D. P. 1987. Dynamic Programming: Deterministic and Stochastic Models. Englewood Cliffs, NJ:
Prentice-Hall.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic Programming. Belmont, MA: Athena Scientific.

Boyen, X., and Koller, D. 1998. Tractable inference for complex stochastic processes. In G. F. Cooper and S.
Moral (eds.), Proceedings of the Fourteenth Conference on Uncertainty in Al, San Francisco, CA: Morgan
Kaufmann, pp. 33-42.

Bradtke, S. J., and Duff, M. O. 1995. Reinforcement learning methods for continuous-time markov decision
problems. In G. Tesauro, D. S. Touretzky, and T. Leen (eds.), Advances in Neural Information Processing
Systems: Proceedings of the 1994 Conference. Cambridge, MA: MIT Press, pp. 393—400.

Branicky, M. S., Borkar, V. S., and Mitter, S. K. 1998. A unified framework for hybrid control: Model and optimal
control theory. IEEE Transactions on Automatic Control 43: 31-45.

Brooks, R. A. 1986. Achieving artificial intelligence through building robots. Technical Report A.I. Memo 899,
Cambridge, MA: Massachusetts Institute of Technology Artificial Intelligence Laboratory.

Cao, X. R., Ren, Z., Bhatnagar, S., Fu, M., and Marcus, S. 2002. A time aggregation approach to Markov decision
processes. Automatica 38: 929-943.

Crites, R. H. 1996. Large-Scale Dynamic Optimization Using Teams of Reinforcement Learning Agents. Ph.D.
thesis, Amherst, MA: University of Massachusetts.

376 BARTO AND MAHADEVAN

Crites, R. H., and Barto, A. G. 1998. Elevator group control using multiple reinforcement learning agents.
Machine Learning 33: 235-262.

Das, T. K., Gosavi, A., Mahadevan, S., and Marchalleck, N. 1999. Solving semi-Markov decision problems using
average reward reinforcement learning. Management Science 45: 560-574.

Dean, T. L., and Kanazawa, K. 1989. A model for reasoning about persistence and causation. Computational
Intelligence 5: 142-150.

Dietterich, T. G. 2000. Hierarchical reinforcement learning with the maxq value function decomposition. Journal
of Artificial Intelligence Research 13: 227-303.

Digney, B. 1996. Emergent hierarchical control structures: Learning reactive/hierarchical relationships in
reinforcement environments. In P. Meas and M. Mataric (eds.), From Animals to Animats 4: The Fourth
Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press.

Digney, B. 1998. Learning hierarchical control structure from multiple tasks and changing environments. In
From Animals to Animats 5: The Fifth Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT
Press.

Driessens, K., and Dzeroski, S. 2002. Integrating experimentation and guidance in relational reinforcement
learning. In Maching Learning: Proceedings of the Nineteenth International Conference on Machine Learning.
San Francisco, CA: Morgan Kaufmann, pp. 115-122.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. 1972. Learning and executing generalized robot plans. Artificial
Intelligence 3: 251-288.

Fine, S., Singer, Y., and Tishby, N. 1998. The hierarchical hidden Markov model: analysis and applications.
Machine Learning 32(1), July.

Forestier, J.-P., and Varaiya, P. 1978. Multilayer control of large markov chains. /[EEE Transactions on Automatic
Control AC-23: 298-304.

Ghavamzadeh, M., and Mahadevan, S. 2001. Continuous-time hierarchical reinforcement learning. In
Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco, CA: Morgan
Kaufmann, pp. 186-193.

Ghavamzadeh, M., and Mahadevan, S. 2002. Hierarchically optimal average reward reinforcement learning. In C.
Sammut and M. Goldszmidt (eds), Proceedings of the Nineteenth International Conference on Machine
Learning (ILML 2002). San Francisco CA: Morgan Kaufmann, pp. 195-202.

Grudic, G. Z., and Ungar, L. H. 2000. Localizing search in reinforcement learning. In Proceedings of the 18th
National Conference on Artificial Intelligence, (AAAI-00), pp. 590-595.

Harel, D. 1987. Statecharts: A visual formalixm for complex systems. Science of Computer Programming 8: 231—
274.

Hengst, B. 2002. Discovering hierarchy in reinforcement learning with hexq. In Maching Learning: Proceedings
of the Nineteenth International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann, pp.
243-250.

Hernandez, N., and Mahadevan, S. 2001. Hierarchical memory-based reinforcement learning. In Advances in
Neural Information Processing Systems: Proceedings of the 2000 Conference. Cambridge, MA: MIT Press,
pp. 1047-1053.

Howard, R. A. 1971. Dynamic Probabilistic Systems: Semi-Markov and Decision Processes. New York:
Wiley.

Huber, M., and Grupen, R. A. 1997. A feedback control structure for on-line learning tasks. Robotics and
Autonomous Systems 22: 303-315.

Iba, G. A. 1989. A heuristic approach to the discovery of macro-operators. Machine Learning 3: 285-317.

Jaakkola, T., Jordan, M. 1., and Singh, S. P. 1994. On the convergence of stochastic iterative dynamic
programming algorithms. Neural Computation 6: 1185-1201.

Jonsson, A., and Barto, A. G. 2001. Automated state abstraction for options using the U-tree algorithm. In
Advances in Neural Information Processing Systems: Proceedings of the 2000 Conference. Cambridge, MA:
MIT Press, pp. 1054-1060.

Kaelbling, L., Littman, M., and Cassandra, A. 1998. Planning and acting in partially observable stochastic
domains. Artificial Intelligence 101.

Kaelbling, L. P, Littman, M. L., and Moore, A. W. 1996. Reinforcement learning: A survey. Journal of Artificial
Intelligence Research 4: 237-285.

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 377

Klopf, A. H. 1972. Brain function and adaptive systems—a heterostatic theory. Technical Report AFCRL-72-
0164, Bedford, MA: Air Force Cambridge Research Laboratories. A summary appears in Proceedings of the
International Conference on Systems, Man, and Cybernetics, 1974, IEEE Systems, Man, and Cybernetics
Society, Dallas, TX.

Klopf, A. H. 1982. The Hedonistic Neuron: A Theory of Memory, Learning, and Intelligence. Washington, D.C.:
Hemisphere.

Koenig, S., and Simmons, R. 1997. Xavier: A robot navigation architecture based on partially observable markov
decision process models. In D. Kortenkamp, P. Bonasso, and R. Murphy (eds.), Al-based Mobile Robots: Case-
studies of Successful Robot Systems. Cambridge, MA: MIT Press.

Kokotovic, P. V., Khalil, H. K., and O’Reilly, J. 1986. Singular Perturbation Methods in Control: Analysis and
Design. London: Academic Press.

Korf, R. E. 1985. Learning to Solve Problems by Searching for Macro-Operators. Boston, MA: Pitman.

Littman, M. 1994. Markov games as a framework for multi-agent reinforcement learning. In Proceedings of
the Eleventh International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann,
pp. 157-163.

Mahadevan, S. 1996. Average reward reinforcement learning: Foundations, algorithms, and empirical results.
Machine Learning 22: 159-196.

Mahadevan, S., Marchalleck, N., Das, T., and Gosavi, A. 1997. Self-improving factory simulation using
continuous-time average-reward reinforcement learning. In Proceedings of the Fourteenth International
Conference. San Francisco, CA: Morgan Kaufmann, pp. 202-210.

Makar, R., Mahadevan, S., and Ghavamzadeh, M. 2001. Hierarchical multi-agent reinforcement learning. In J. P.
Miiller, E. Andre, S. Sen, and C. Frasson (eds.), Proceedings of the Fifth International Conference on
Autonomous Agents. New York: ACM Press, pp. 246-253.

McCallum, A. K. 1996. Reinforcement Learning with Selective Perceptioin and Hidden State. Ph.D. thesis,
University of Rochester.

McGovern, A. 2002. Autonomous Discovery of Temporal Abstractions from Interaction with An Environment.
Ph.D. thesis, University of Massachusetts.

McGovern, A., and Barto, A. 2001. Automatic discovery of subgoals in reinforcement learning using diverse
density. In Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco, CA:
Morgan Kaufmann, pp. 361-368.

Minsky, M. L. 1954. Theory of Neural-Analog Reinforcement Systems and its Application to the Brain-Model
Problem. Ph.D. thesis, Princeton University.

Naidu, D. S. 1988. Singular Perturbation Methodology in Control Systems. London: Peter Peregrinus Ltd.

Nourbakhsh, I., Powers, R., and Birchfield, S. 1995. Dervish: An office-navigation robot. Al Magazine 16(2): 53—
60.

Parr, R. 1998. Hierarchical Control and Learning for Markov Decision Processes. PhD thesis, Berkeley, CA:
University of California.

Parr, R., and Russell, S. 1998. Reinforcement learning with hierarchies of machines. In Advances in Neural
Information Processing Systems: Proceedings of the 1997 Conference. Cambridge, MA: MIT Press.

Perkins, T. J., and Barto, A. G. 2001. Lyapunov-constrained action sets for reinforcement learning. In C. Brodley
and A. Danyluk (eds.), Proceedings of the Eighteenth International Conference on Machine Learning. San
Francisco, CA: Morgan Kaufmann, pp. 409-416.

Perkins, T. J., and Barto, A. G. 2002. Lyapunov design for safe reinforcement learning. Journal of Machine
Learning Research 3: 803-832.

Precup, D. 2000. Temporal Abstraction in Reinforcement Learning. Ph.D. thesis, Amherst, MA: University of
Massachusetts.

Precup, D., and Sutton, R. S. 1998. Multi-time models for temporally abstract planning. In Advances in Neural
Information Processing Systems: Proceedings of the 1997 Conference. Cambridge MA: MIT Press, pp. 1050—
1056.

Precup, D., Sutton, R. S., and Singh, S. 1998. Theoretical results on reinforcement learning with temporally
abstract options. In Proceedings of the 10th European Conference on Machine Learning, ECML-98. Springer
Verlag, pp. 382-393.

Puterman, M. L. 1994. Markov Decision Problems. Wiley, NY.

378 BARTO AND MAHADEVAN

Rohanimanesh, K., and Mahadevan, S. Learning to take concurrent actions. In Advances in Neural Information
Processing Systems: Proceedings of the 2002 Conference. Cambridge: MIT Press. In press.

Rohanimanesh, K., and Mahadevan, S. Structured approximation of stochastic temporally extended actions. In
preparation.

Rohanimanesh, K., and Mahadevan, S. 2001. Decision-theoretic planning with concurrent temporally extended
actions. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence.

Ross, S. 1983. Introduction to Stochastic Dynamic Programming. New York: Academic Press.

Rummery, G. A., and Niranjan, M. 1994. On-line g-learning using connectionist systems. Technical Report
CUED/F-INFENG/TR 166, Cambridge University Engineering Department.

Samuel, A. L. 1963. Some studies in machine learning using the game of checkers. IBM Journal on Research and
Development 3: 211-229, 1959. Reprinted in E. A. Feigenbaum and J. Feldman (eds.), Computers and Thought.
New York: McGraw-Hill, pp. 71-105.

Samuel, A. L. 1967. Some studies in machine learning using the game of checkers. II—Recent progress. IBM
Journal on Research and Development 11: 601-617.

Schwartz, A. 1993. A reinforcement learning method for maximizing undiscounted rewards. In Proceedings of
the Tenth International Conference on Machine Learning. Morgan Kaufmann, pp. 298-305.

Shatkay, H., and Kaelbling, L. P. 1997. Learning topological maps with weak local odometric information. In
IJCAI (2), 920-929.

Singh, S., and Bertsekas, D. 1997. Reinforcement learning for dynamic channel allocation in cellular telephone
systems. In Advances in Neural Information Processing Systems: Proceedings of the 1996 Conference.
Cambridge, MA: MIT Press, pp. 974-980.

Singh, S., Jaakkola, T., Littman, M. L., and Szepesvari, C. 2000. Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learning 38: 287-308.

Singh, S. P. 1992. Reinforcement learning with a hierarchy of abstract models. In Proceedings of the Tenth
National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press/MIT Press, pp. 202-207.

Singh, S. P. 1992. Scaling reinforcement learning algorithms by learning variable temporal resolution models. In
Proceedings of the Ninth International Machine Learning Conference. San Mateo, CA: Morgan Kaufmann,
pp. 406-415.

Stone, P., and Sutton, R. S. 2001. Scaling reinforcement learning toward RoboCup soccer. In C. Brodley and A.
Danyluk (eds.), Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco,
CA: Morgan Kaufmann, pp. 537-544.

Sugawara, T., and Lesser, V. 1998. Learning to improve coordinated actions in cooperative distributed problem-
solving environments. Machine Learning 33: 129-154.

Sutton, R. S. 1996. Generalization in reinforcement learning: Successful examples using sparse coarse coding. In
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (eds.), Advances in Neural Information Processing
Systems: Proceedings of the 1995 Conference. Cambridge, MA: MIT Press, pp. 1038-1044.

Sutton, R. S., and Barto, A. G. 1981. Toward a modern theory of adaptive networks: Expectation and prediction.
Psychological Review 88: 135-170.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.

Sutton, R. S., Precup, D., and Singh, S. 1999. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence 112: 181-211.

Tan, M. 1993. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the
Tenth International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann, pp. 330—
337.

Tesauro, G. J. 1992. Practical issues in temporal difference learning. Machine Learning 8: 257-2717.

Tesauro, G. J. 1994. TD—gammon, a self-teaching backgammon program, achieves master-level play. Neural
Computation 6(2): 215-219.

Theocharous, G. 2002. Hierarchical Learning and Planning in Partially Observable Markov Decision Processes.
Ph.D. Thesis, Michigan State University.

Theocharous, G., and Mahadevan, S. 2002. Approximate planning with hierarchical partially observable markov
decision processs for robot navigation. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA).

Theocharous, G., Rohanimanesh, K., and Mahadevan, S. 2001. Learning hierarchical partially observable markov

RECENT ADVANCES IN HIERARCHICAL REINFORCEMENT LEARNING 379

decision processs for robot navigation. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA).

Thrun, S. B., and Schwartz, A. 1995. Finding structure in reinforcement learning. In G. Tesauro, D. S. Touretzky,
and T. Leen (eds.), Advances in Neural Information Processing Systems: Proceedings of the 1994 Conference.
Cambridge, MA: MIT Press, pp. 385-392.

Tsitsiklis, J. N., and Van Roy, B. 1997. An analysis of temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control 42: 674—690.

Watkins, C. J. C. H. 1989. Learning from Delayed Rewards. Ph.D. thesis, Cambridge, England: Cambridge
University.

Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning. Machine Learning 8: 279-292.

Weiss, G. 1999. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. Cambridge, MA:
MIT Press.

Werbos, P. J. 1977. Advanced forecasting methods for global crisis warning and models of intelligence. General
Systems Yearbook 22: 25-38.

Werbos, P. J. 1987. Building and understanding adaptive systems: A statistical/numerical approach to factory
automation and brain research. IEEE Transactions on Systems, Man, and Cybernetics 17: 7-20.

Werbos, P. J. 1992. Approximate dynamic programming for real-time control and neural modeling. In D. A.
White and D. A. Sofge (eds.), Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches. New
York: Van Nostrand Reinhold, pp. 493-325.

Woods, W. A. 1970. Transition network grammars for natural language analysis. Communications of the ACM 13:
591-606.

