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ABSTRACT

LEARNING TO EXPLOIT DYNAMICS FOR

ROBOT MOTOR COORDINATION

MAY 2003

MICHAEL T. ROSENSTEIN

B.S., BOSTON UNIVERSITY

M.S., BOSTON UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

Humans exploit dynamics—gravity, inertia, joint coupling, elasticity, and so on—as

a regular part of skillful, coordinated movements. Such movements comprise everyday

activities, like reaching and walking, as well as highly practiced maneuvers as used in

athletics and the performing arts. Robots, especially industrial manipulators, instead use

control schemes that ordinarily cancel the complex, nonlinear dynamics that humans use

to their advantage. Alternative schemes from the machine learning and intelligent control

communities offer a number of potential benefits, such as improved efficiency, online skill

acquisition, and tracking of nonstationary environments. However, the success of such

methods depends a great deal on structure in the form of simplifying assumptions, prior

knowledge, solution constraints and other heuristics that bias learning.
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My premise for this research is that crude kinematic information can supply the initial

knowledge needed for learning complex robot motor skills—especially skills that exploit

dynamics as humans do. This information is readily available from various sources such

as a coach or human instructor, from theoretical analysis of a robot mechanism, or from

conventional techniques for manipulator control. In this dissertation I investigate how each

type of kinematic information can facilitate the learning of efficient “dynamic” skills.

This research is multidisciplinary with contributions along several dimensions. With

regard to biological motor control, I demonstrate that motor synergies, i.e, functional units

that exploit dynamics, evolve when trial-and-error learning is applied to a particular model

of motor skill acquisition. To analyze the effects of velocity on dynamic skills and mo-

tor learning, I derive an extension to the notion of dynamic manipulability that roboticists

use to quantify a robot’s capabilities before specification of a task. And along the ma-

chine learning dimension, I develop a supervised actor-critic architecture for learning a

standard of correctness from a conventional controller while improving upon it through

trial-and-error learning. Examples with both simulated and real manipulators demonstrate

the benefits that this research holds for the development of skillful, coordinated robots.
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CHAPTER 1

INTRODUCTION

Humans frequently exhibit remarkable proficiency at complex motor tasks such as

handwriting, juggling, and machine assembly. One way to characterize our success with

such tasks is that we have a mastery of redundant degrees of freedom (DOF). Even ba-

sic motor skills such as grasping an object require the coordination of many DOF, from

more than a dozen joint motions to hundreds of thousands of muscle fibers, depending

on the level of interest. Mother Nature may supply a means for direct coordination at

some levels—by grouping muscle fibers into motor units and by recruiting motor units in a

principled way during muscle contraction—but at other levels, an individual’s capacity for

learning plays a crucial role. We not only learn to cope with excess DOF, we also learn to

exploit them for efficient solutions.

Humans acquire new motor skills with relative ease, whereas even simple motor tasks,

such as walking and throwing, pose challenges to roboticists and artificial intelligence re-

searchers developing similar skills for robots. When manipulating an object, for instance,

a robotic arm must not only deliver the object to the right place, but must often achieve the

proper orientation while managing contact forces and obstacles. All of this must be done

in the face of uncertainty—uncertainty about the state of the environment as well as un-

certainty about the effects of the robot’s actions on that environment. The typical solution

of path planning and trajectory tracking works well for solving highly structured problems

but not for situations with complex, nonlinear dynamics, with inadequate models, and with

little prior knowledge of a favorable solution.

1



1.1 Research Summary

In the broadest sense, the goal of this research is to develop coordinated machines,

where “coordinated” refers to efficient motor skills comparable to those acquired by hu-

mans. In particular, my goal is to develop the robot analogues of motor “synergies” that

exploit, rather than cancel, the natural dynamics of the musculoskeletal system.

Although a great deal of research exists on biological motor control and the effects

of training, too little is known at this time to provide a clear prescription of how to build

coordinated machines. This leaves us, the robot designers, in a position to select from

many available machine learning and adaptive control techniques and to use general prin-

ciples of motor learning to guide our design strategies. For this work, I demonstrate the

use of iterative optimal control methods while assuming as little as possible with regard

to the availability of a detailed model of the robot dynamics. More specifically, simple

proportional-derivative controllers serve as approximate control knowledge for subsequent

optimization by reinforcement learning (RL) methods.

For robot manipulators—the class of robots considered in this thesis—the intrinsic state

and action spaces are both multi-dimensional and real-valued, the intersegmental dynamics

are complicated and nonlinear, and the kinematic goals are non-unique due to the redundant

degrees of freedom. Such characteristics pose a problem for general learning methods

like RL, although the trade-off is the possibility of finding an otherwise unavailable, yet

worthwhile solution. The suitability of RL for a specific, practical application depends

a great deal on structure such as simplifying assumptions, prior knowledge, and solution

constraints. One goal of my work, then, is to provide the proper structure (in the robot and

the learning algorithm) to make a given motor learning problem tractable without closing

off advantageous solutions.

The contributions of this research can be characterized along several dimensions. Fore-

most is the use of practical learning techniques for controlling difficult systems such as

redundant manipulators. By tackling hard problems with real robots, this work also helps

2



delineate the kind of problems handled successfully by a class of algorithms. In other

words, I demonstrate that certain reinforcement-based methods are suitable for controlling

robotic arms. A further benefit of this line of research is that we gain some insights about

human motor learning. By manipulating the internal workings of a robot’s control sys-

tem, we develop hypotheses about biological control systems along with ways to test those

hypotheses.

In more pragmatic terms, this research offers a framework for acquiring the basic mo-

tor skills of a robot manipulator. One area of application is the use of robots in support

of space exploration. The improvement of a robot’s autonomous capabilities not only en-

ables missions where human intervention is infeasible, but also shortens training time and

reduces fatigue for telerobot operators. More specifically, this research is concerned with

tasks beyond the capabilities of technologies like the current Space Shuttle remote manip-

ulator system (RMS). The Space Shuttle RMS is a remote-controlled robot that operates

at relatively slow speeds, i.e., the movement is largely kinematic and the robot’s controller

compensates for the manipulator dynamics. However, a central part of this thesis is the

exploitation of dynamics, which is useful not only for the purpose of optimizing a per-

formance criterion but also for the purpose of simplifying control inputs from a human

supervisor.

1.2 Bernstein’s Problem

The Russian physiologist Nikolai Bernstein (1896-1966) contributed a great deal to our

present understanding of human movement. His experiments and theories were compre-

hensive, covering such a wide range of issues as cybernetics, motor programs, hierarchical

control, self-organization, dynamics, and learning. Bernstein was dogmatic only in his re-

jection of Pavlovian conditioning as a basis for control and cognition [26, 57]; he embraced

and advanced many competing theories and brought them together under the umbrella of

coordination.

3



In Bernstein’s words, motor coordination is the “organizational control” of the nervous

system over the motor apparatus [21]. An understanding of coordination is not simply a

matter of discovering the mechanisms of control. One must also comprehend the combina-

tion of mechanisms—the “style” of control [66]—used by the nervous system. But due to

the large number of degrees of freedom (joints and muscles) this organizational control is

sometimes “complex and delicate” [21]. Thus, the degrees of freedom problem, now com-

monly called Bernstein’s problem in the human movement literature, refers to the control

of a complex, redundant system as exemplified by the human motor apparatus.

How the nervous system solves Bernstein’s problem for highly skilled movements, such

as those needed by athletes and musicians, as well as for everyday acts, such as reaching

and walking, remains a major thrust of present research on human motor control. At the

forefront of this research effort are proponents of ecological approaches and dynamical

systems theories (cf. Turvey’s “Round 2” of work on Bernstein’s problem [146]). Such ef-

forts emphasize relatively simple physical principles—with low-dimensional dynamics—

and self-organization as a means to coordination, despite Bernstein’s focus on coordination

as a “process” or “problem” to be solved by an active participant: “Motor functions com-

prise a basic group of processes by which the organism not merely reacts to its environment

but even acts on the latter.... Each significant act is a solution (or an attempt at one) of a

specific problem of action. But the problem of action, in other words the effect which the

organism is striving to achieve, is ... the reflection or model of future requirements (some-

how coded in the brain)....” [21, p. 171]. Thus, the task for the nervous system is the design

of a motor problem that, once solved through practice or learning, also solves the degrees

of freedom problem.

Bernstein also offered speculation about the role of trial-and-error learning as a gen-

eral solution to the “motor problem.” In particular, he viewed coordination as a process of

active search rather than purely random, “passive statistical computation of successes and

failures” [21, p. 161]. He recognized that early attempts at a new task may be completely

4



random, not because these attempts represent a naive effort to find an optimal solution, but

rather because they inform the learning system and direct the subsequent search towards

the optimum. Bernstein concluded that this sort of trial-and-error learning alone is insuf-

ficient as an explanation of coordination. He rejected tabula rasa approaches in favor of

theories where learning is biased and constrained by structure derived from an individual’s

experience as well as from innate mechanisms [21, p. 175].

More to the point of this thesis, Bernstein [21, p. 128] also recognized the connection

between human coordination and control of machines:

“If motor co-ordination is a system of mechanisms ensuring the control of the

motor apparatus and permitting its rich and complex flexibility to be utilized to

the full, what can we say at the present time about the means and mechanisms

of this control of motor acts? How may the regularities we now observe [in

higher animals] be employed in the interests of applied cybernetics ... so that

we may more precisely illuminate the gap which still qualitatively divides ...

automata from ... highly developed organisms?”

Despite the relative simplicity of robot manipulators, with very few “muscles” to deal with,

the degrees of freedom problem persists as the basic issue in the design of robot controllers

that exploit dynamics as humans do. This thesis, therefore, is focused on questions about

what mechanisms form the basis of coordination and what principles or “regularities” from

human coordination can be used by robots. And, like Bernstein, the foundation of my

technical approach is the formation of a structured learning problem.

1.3 Overview of Technical Approach

Control of robot manipulators typically involves two separate problems: trajectory

planning and trajectory tracking. The planning problem often deals with a kinematic de-

scription of movement, whereas the tracking problem deals with manipulator dynamics

5



without reference to any specific trajectory. As described in Chapter 2, several advantages

follow from this decomposition, although “coordination” requires the integration of both

kinematics and dynamics. Thus, the approach taken in this thesis combines both planning

and tracking by learning a control policy where movement trajectories are implicit in the

coupled dynamics of the robot, the task, and the controller.

However, the learning framework does not do away with explicit trajectories altogether.

As discussed in Chapter 3, I assume the availability of an initial kinematic path that solves

a relaxed version of the movement problem. In particular, I demonstrate that a three-link

robot can learn to lift heavy payloads when provided with a sequence of two or three in-

termediate configurations. Such sequences represent an initial solution that works with no

payload but requires modification to solve the true task. The key differences between this

framework and the usual trajectory-based methods are at least threefold: First, the initial

kinematic path comes from “learning from demonstration” or from prior knowledge sup-

plied by a coach, rather than from an explicit planning phase. Second, unlike most “demon-

stration” trajectories, the initial solution is relatively crude with few details in terms of both

positions and timing. And third, the kinematic path is meant to be a starting point, not for

tracking or for tuning, but rather for learning a related solution that exploits dynamics.

The initial solution, along with a measure of performance, forms the basis of a motor

learning problem that can be solved by RL methods. The main result of Chapter 3 involves

not the success or failure of a particular learning algorithm, but rather the structure of the

control policies before and after learning. I show that coordinated movement is related

to motor “synergies” that actively couple individual joint motions by way of the robot’s

control system. Moreover, without such coupling the robot becomes considerably impaired

and unable to lift all but the lightest payloads.

One observation made in Chapter 3 is the existence of two qualitatively different solu-

tions to the weightlifting task. These solutions differ in terms of the observed movement

as well as the maximum payload achieved. In Chapter 4, I provide a theoretical analy-
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sis of these solutions and trace their differences back to the velocity-dependent dynamics.

The main result of Chapter 4 is a measure of dynamic manipulability that quantifies a

robot’s ability to accelerate its end-effector in various directions. This velocity-dependent

measure is useful not only for analysis of observed trajectories, but also as a source of

prior knowledge with which to seed a learning problem or trajectory planner. Moreover, a

coarse-grained measure of the velocity-dependent effects can be calculated from manipu-

lator positions alone, i.e., without knowledge of the velocity.

In Chapter 5 I return to the idea of a kinematic initial solution, yet in the context of

a hybrid learning algorithm that combines RL with supervised methods. This algorithm

implements a kind of steepest-descent search with two sources of gradient information, and

one technical challenge is to balance the gradient information supplied by the supervisor

with that of the RL component. As described in Chapter 5, one advantage of this approach

is that prior knowledge can be used to design a controller, i.e., a supervisor, that performs

sub-optimally yet provides performance guarantees while a reinforcement-based module

learns an optimal control policy.

Figure 1.1 summarizes the organization of this thesis. Chapter 2 provides a multidisci-

plinary literature review, followed by the main results in Chapters 3–5. These latter chapters

are largely self-contained with some connections made to the rest of the thesis. Informally,

Chapter 3 is the motor control chapter, Chapter 4 the robotics chapter, and Chapter 5 the

machine learning chapter. However, aspects of each discipline appear throughout the en-

tire text, and the common thread is the notion of “exploiting dynamics” mentioned above.

Chapter 6 makes the connections explicit and describes several possibilities for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

The development of coordinated robots is a multidisciplinary endeavor, with a consider-

able amount of related literature. The goal of this chapter is to acquaint the reader with the

terminology from several disciplines and to provide the necessary framework for describ-

ing the basic research questions, the tasks faced by robot manipulators, and the potential

solution strategies to the “coordination problem.” Consequently, the following review is

somewhat general with additional details deferred to later chapters.

2.1 Human Motor Control

The research literature on human motor control is filled with general theories built-

up from examination of specialized movements. This statement is intended to be both a

criticism of the field and an acknowledgment of the difficult problems faced by this research

community. Human motor control is such a broad topic that progress is best made by

restricting one’s attention to a specific class of movements. The criticism is that existing

theories and hypotheses are often portrayed as competing rather than complementary. One

goal of this research is to bring together several such hypotheses (e.g., motor programs and

equilibrium-point control) as part of a coherent framework for robot motor skill acquisition.

However, like other endeavors in movement science, the scope of results will be limited by

the types of skills studied as part of this research.

2.1.1 Basic Types of Motor Skills

One way to classify motor skills is by the predictability of environmental effects. In

particular, closed skills “can be carried out successfully without reference to the environ-
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ment” [114]. Once the context has been assessed, the actor can execute a movement with-

out additional external information (although internal information, e.g., kinesthesis, may

be necessary). Closed skills typically involve “predictable requirements” [114], and inter-

mittent feedback, e.g., from vision, may be necessary to realign the predictions with reality.

Open skills, on the other hand, are relatively unpredictable and make use of frequent refer-

ence to the environment [114]. They require closed-loop control, whereas closed skills can

be controlled in an open-loop fashion. Open skills can also proceed with or without ad-

vanced information; if enough information is available to support prediction, then the skill

becomes closed from a functional perspective. For example, juggling is an open skill that

becomes closed with practice, once the individual no longer requires frequent information

about object locations.

Another common way to classify motor skills is by the termination of the movement

[125]. At the extremes are discrete movements with a well-defined beginning and end, and

continuous movements which could last for an arbitrary period of time. Examples of the

former include swinging a racket and taking a step; examples of the latter include playing

tennis and running. Somewhere in between are the serial movements such as handwriting,

e.g., [148, 153], which continue for prolonged or indefinite periods of time yet are com-

posed of a recognizable sequence of discrete movements. The examples described in this

thesis deal primarily with closed skills and discrete arm movements, such as transport of

an object from one point to another.

2.1.2 Basic Styles of Motor Control

In the mid 1960s, Richard Pew performed a series of experiments that illustrates the

most basic styles of control which, to some extent, are incorporated in most theories of

motor learning. Pew’s seminal paper [113] describes an experiment where participants

pressed one of two keys to accelerate a point toward one side or the other of an oscilloscope

screen. The task was to regulate the position of the point as close as possible to the center of
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the screen. Early in practice, control was entirely closed-loop, where subjects pressed one

key, waited a relatively long period of time, and then initiated a feedback-based correction.

Later in practice, participants “generated [an oscillatory] sequence of responses at a rate

more rapid than could be controlled had [the subject] organized and executed each response

as a separate unit...” [113]. Pew interpreted this strategy as a form of hierarchical control,

where the oscillatory movement was predominantly open-loop, i.e., without feedback, and

closed-loop corrections were used only at longer time scales (apparently when the average

error exceeded some threshold).

Pew also described a “modulation” strategy used by all participants given a sufficient

number of training sessions [113]. As with the hierarchical strategy, the movement was

oscillatory and the control was open-loop. With the new strategy, however, errors were cor-

rected not through intermittent feedback but rather by a gradual modulation of the duration

one key was depressed relative to the other. Keele [78] interpreted this finding as evidence

for the gradual modification of a motor program, which he defined as “a set of muscle com-

mands that are structured before a movement sequence begins, and that allows the entire

sequence to be carried out uninfluenced by peripheral feedback” [78, p. 387]. This fre-

quently cited definition of motor program has been a source of controversy; specific points

of contention were summarized by Rosenbaum [118] and are stated here as myths.

Myth 1: Motor programs are uninfluenced by peripheral feedback. Keele’s definition

places the emphasis on open-loop control, yet it does not preclude the use of peripheral

feedback. Motor programs allow—rather than require—movement to unfold in the ab-

sence of peripheral feedback. Indeed, Keele also states “... movement control may become

internalized.... There is no evidence, however, that performance is maintained without

kinesthetic feedback” [78, p. 397].

Myth 2: Motor programs are structured like computer programs. Research in the 1960s

was influenced by cybernetic theories [161] that focus on the information processing ca-

pabilities of animals and machines. The computer was a natural metaphor. The use of
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“program” fosters, not so much a myth, but rather an unproductive dichotomy between

those who reject computer metaphors for the brain and those who don’t.

Myth 3: Motor programs directly encode muscle commands. This myth leads to ex-

cessive responsibility on the part of the program to represent fine details in the activation

patterns of numerous alpha motoneurons. In reality, the program may encode abstract

commands that trigger spinal oscillators or set gains in the alpha-gamma feedback loop,

for example. Moreover, as the program executes in an open-loop fashion, the direct muscle

commands could involve closed-loop mechanisms at some lower level of control.

Myth 4: Motor programs require a programmer. Motor programs are often criticized as

executive-based mechanisms for coordination with no explanation of where the executive,

i.e., the programmer, comes from. While there may be some truth to this myth, alterna-

tive theories that emphasize dynamical systems and self-organization suffer from a similar

problem [82], i.e., they fail to explain the origin of the dynamics. For the purposes of mo-

tor coordination, Mother Nature is the ultimate programmer—supplying mechanisms for

learning as well as innate structure that lift a bootstrapping process off the ground.

In Chapter 3, I build on the notion of motor program without subscribing to any par-

ticular approach, such as Adams’ closed-loop theory [2] that emphasizes feedback-based

corrections, or Schmidt’s schema theory [124] that focuses on the open-loop aspects of

control. (These theories are compatible in that they both allow for open-loop and closed-

loop control and they both postulate the use of two memory “states,” one for executing the

movement and one for evaluating the result.) In this dissertation, I take the more general

perspective suggested by Rosenbaum: A motor program is “a functional state that allows

particular movements, or classes of movements, to occur [118, p. 109].” Thus, a motor

program is simply a data structure, or memory, that supports the reproduction and general-

ization of a previously executed movement (cf. Bernstein’s motor “engram” [21]).

While Rosenbaum’s definition may be too broad as the basis for a theory of motor con-

trol, it does shift attention away from specific myths and toward general questions regarding
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the nature of motor programs: How are the program outputs transformed into actions, and

how are the lower levels of control coordinated [66]? How easily are motor programs mod-

ified [78]? How are biomechanical properties represented, and how are interactions with

the environment dealt with and exploited [118]? How are new programs created (“the nov-

elty problem”) and how are existing programs generalized (“the storage problem”) [124]?

This thesis addresses each of these questions to some degree—not by postulating a theory

of human motor control, but rather by developing specific mechanisms for robot motor

control.

2.1.3 Basic Mechanisms of Coordination

Pew’s regulation experiment contributed behavioral evidence for hierarchical organi-

zation as a style of motor control. However, one can also view hierarchical control as a

mechanism1 for coordination, with both theoretical and neurophysiological support (e.g.,

Bernstein [21] and Weiss [158], respectively). Brooks [33] described one possible neural

hierarchy beginning with the (relatively) primitive limbic system, which generates biolog-

ical and emotional needs that are transformed by the association cortex into goal-directed

strategies. These strategies are fleshed out by the projection system (sensorimotor cortex,

cerebellum, basal ganglia, subcortical nuclei) and eventually lead to movement, with miss-

ing details handled at the spinal and musculoskeletal levels of control. As demonstrated

with the robot weightlifting task in Chapter 3, this thesis deals with a similar hierarchical

implementation of goal-directed movement and assumes that basic needs and abstract goals

are already available to a lower-level learning system.

Perhaps the most basic mechanisms for coordination should be attributed to the muscu-

loskeletal system, with stereotyped dynamics from pendulum-like appendages, e.g., [100],

1In this thesis I distinguish “style” from “mechanism” in terms of explanatory detail. A style refers to
a general principle or technique, whereas a mechanism refers to a relatively specific implementation by the
neuromuscular system. For instance, closed-loop control is a style, whereas the gamma feedback loop is a
mechanism.
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and with servo-like behavior from viscoelastic and contractile properties of the muscle tis-

sue, e.g., [149]. While such passive effects may play a key role for some activities (e.g.,

steady walking, jumping) the active participation of a control system is necessary for a

more comprehensive account of coordination.

The most primitive form of active control is the open-loop reflex arc that directly

maps stimulus to response (with possible modulation by supraspinal inputs). Sherring-

ton’s Nobel prize-winning research on the synapse led to a theory of coordination with

such reflexes as the building blocks for prolonged movements [127]. Though Sherring-

ton’s “reflex chaining” hypothesis was subsumed by a more sophisticated taxonomy of

movement primitives—including oscillators and servomechanisms, e.g., [61]—open-loop

reflexes may still serve a crucial role at the extremes of motor proficiency. For instance,

“the tonic neck reflexes appear to bias the musculature for movement in the direction of

gaze,” [55] thereby facilitating hand-eye coordination in infants and optimal force produc-

tion in adults [55, 118].

Computational perspectives on motor coordination make frequent use of vector fields,

oscillators, and other types of movement primitives as a mechanism for more skillful move-

ments, e.g., [104, 123, 163]. The argument in favor of such primitives is straightforward;

interactions between organism and environment are too complex for goal-directed move-

ment to be constructed directly from momentary effector commands. Surprisingly, the

utility of movement primitives for coordination is not without controversy. For instance,

Turvey [146] suggests that movement primitives are insufficient to explain coordination

and may even introduce unwanted complexity into Bernstein’s problem: “Resolutions of

the problem couched in terms of arranging fixed movement elements were dismissed by

Bernstein. Reflexes, for example, were not elements of coordinated actions for Bernstein

but, rather, elementary coordinated actions and, therefore, part of the problem of coordi-

nation rather than contributors to its solution” [146, p. 398]. This interpretation, although

consistent with Bernstein’s dismissal of Pavlov’s conditioned reflex theory of coordina-
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tion, may be incomplete with regard to the acquisition of new motor skills. Movement

primitives—including reflexes—could qualify as what Bernstein called a “co-ordinating

technique...based on past experience accumulated...by the genus” [21, p. 175]. In other

words, innate movement primitives may play a role during learning even if they are unrec-

ognizable in the final, coordinated movement.

In addition to movement primitives and hierarchies, internal models supply another im-

portant mechanism for coordination. Desmurget and Grafton [51] reviewed evidence that

forward models enable closed-loop control when sensory feedback is inaccurate, delayed,

or absent altogether. Such models could be used to extend Adams’ closed-loop theory [2]

to include fast movements without resorting to the open-loop style of control emphasized

by Schmidt’s schema theory [124]. However, Desmurget and Grafton also argue that “the

motor command is not generated exclusively in real time” through error-correction with an

internal feedback model [51]. For instance, anticipatory movements involve a predictive,

feedforward motor command that precedes motion, and so at least a partial specification

of some movements must be generated ahead of time. And while the term “model” often

connotes an explicit representation of physical principles, such as the gravity term of a

manipulator’s equations of motion, one can also view a model as simply a mapping from

motor commands to predicted movements (a forward model) or from desired movements

to the motor commands needed to generate them (an inverse model). Far less is known

about the nature of such mappings in the nervous system than, say, reflexes, although the

use of internal representations has long been recognized as an important mechanism for

motor control, e.g., [21, 65, 74, 78, 150, 164].

Though less of a mechanism and more of a principle, optimization is another aspect of

coordination worth mentioning at this point. Clearly, optimization is necessary for highly

skilled movements as in sports competitions. However, optimization also plays a crucial

role in structuring otherwise ill-defined tasks—such as those involving redundant degrees

of freedom—where optimality is secondary to the goal of completing the task at a sufficient
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level of proficiency. A number of researchers have already made the link between optimiza-

tion and human motor control, e.g., [56, 60, 88, 143], and such efforts beg the following

question: “If optimality is a principle for motor control then what are the neuromuscular

system’s performance criteria?”

Many experimental studies tackle this question with (numerical) optimal control tech-

niques along with a musculoskeletal model and a putative objective function. A good fit

between simulation results and experimentally observed data provides some evidence that

the putative objective function is of biological importance. (However, one has to draw con-

clusions carefully since more than one objective function could yield identical results.) For

instance, Pandy et al. [110] examined several performance objectives for the task of rising

from a chair. Their simulation suggests that individuals minimize some criterion related to

energy prior to seat liftoff, but afterwards they maximize some other criterion related to the

smoothness of the control effort. The authors speculated that the chair acts as a constraint

which breaks the overall task into two sub-tasks with fundamentally different objectives.

While knowledge of the performance criterion may tell us a great deal about the solution

to a particular motor task, the question regarding the choice of a specific criterion may be

less important than the actual use of optimality as a guiding principle. In other words, the

optimization principle drives skill acquisition as long as a reasonable choice is made from

many possible performance objectives.

2.1.4 Stages of Learning

As mentioned in Chapter 1, too little is known about biological motor control to provide

us an obvious direction when designing robots that learn to solve motor tasks on their

own. However, several researchers have offered relevant speculations about the stages of

motor learning. For instance, Fitts and Posner [59] described three stages of skill learning,

beginning with a “cognitive” phase when an adult tries to match early attempts at a new

skill with his or her understanding of the motor task. Learning by demonstration or by
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instruction from a coach is most effective during this phase of skill learning. Afterwards,

performance improves gradually during the second, “associative” phase as the verbal (i.e.,

cognitive) aspects of learning drop out and as subtle adjustments are made in response

to practice [125]. The final, “autonomous” phase is the result of extended practice and

is characterized by even less cognitive influence and by relatively little interference from

other activities and distractions.

This description of adult skill learning corresponds nicely to the progression of robot

motor learning already mentioned in Chapter 1 and further detailed in Chapter 3. Another

descriptive analysis of motor learning—one that comes closer to mechanisms—was offered

by Bernstein in 1940 [21]: When a novice first attempts a new skill, excess degrees of

freedom (DOF) are “frozen” in order to simplify the control problem. Later, these same

DOF are gradually released, in two stages, as performance improves on the simplified

task and mastery of additional DOF becomes a feasible goal. The first stage of release

“corresponds to the lifting of all restrictions, that is, to the incorporation of all possible

degrees of freedom.... The second, highest stage of co-ordinational freedom corresponds to

a degree of co-ordination at which the organism is not only unafraid of reactive phenomena

in a system with many degrees of freedom, but is able to structure its movements so as to

utilize entirely the reactive phenomena which arise” [21, pp. 108].

Human gait supplies a familiar example of Bernstein’s three stages of motor learning.

In particular, Bril and Breniere [30] found that infants utilize a wide base of support (BOS)

during their first few months of walking, but by two years of age the BOS narrows as the

child’s gait becomes more adult-like. Improved lateral control follows from a wide BOS,

and so infants initiate gait by rocking side-to-side with locked knees. The authors draw

a contrast to gait initiation in adults, where control in the sagittal plane requires mastery

of relatively many DOF. By locking their knees, infants freeze degrees of freedom when

they first learn to walk, and later release those DOF as the base of support narrows [30].
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Moreover, by three years of age children also make use of anticipatory shifts in body mass

as a way to exploit dynamics when initiating gait [87].

Similarly, as part of a longitudinal study of infants learning to reach, Berthier et al. [23]

found that infants facilitate initial progress by locking degrees of freedom in the distal

part of the arm while performing a trial-and-error search through a space of possible so-

lutions. Infants also guide this search by limiting the peak movement speed as well as

the number of hand starting locations. As the child becomes more proficient, degrees of

freedom are released and the distal musculature is used to pre-orient the hand for a more ef-

ficient grasp [23]. And after many years of experience, humans further refine their reaching

movements to maximize smoothness while accounting for limb dynamics [147]. The initial

freezing or coupling of redundant degrees of freedom, therefore, may be a suitable starting

place for robot motor learning that eventually leads to movements that exploit, rather than

cancel, the robot’s intrinsic dynamics.

2.2 Robotics

For robot manipulators, the classic solution to a movement problem involves the con-

struction of a kinematic trajectory that avoids obstacles and singularities. One early ap-

proach by Lozano-Perez [93] made use of path planning in configuration space, where

obstacles and safe paths are represented in a more manageable way. The underlying as-

sumption of such methods is that the robot’s intrinsic dynamics are something to compen-

sate for, instead of something to exploit. In other words, typical path planners and trajectory

generators use kinematic models and leave it to the control system to deal with the complex

nonlinear dynamics that arise during the trajectory tracking part of the overall movement

problem [128]. Even for optimized trajectories (e.g., [105, 120]) imprecise dynamic mod-

els often lead to overly conservative acceleration constraints and, therefore, to sub-optimal

movements [46].
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The strength of current control schemes for industrial robots lies in the way they solve

separate planning and tracking sub-problems with little or no interaction between the two

levels of control. Once a suitable trajectory is found, or supplied, the tracking problem can

be solved using control engineering methods with desirable stability guarantees. However,

the cost of this approach is inefficiency and a failure to make full use of a robot’s capa-

bilities. The most successful applications of such robot control methods involve highly

predictable, repetitive tasks that often require specialized setup, thereby reducing the main

advantages, i.e., flexibility and adaptability [29], that robots have over other forms of au-

tomation. Thus, the standard approach to robot control suffers from inadequate “com-

munication” or interaction between the methods that solve the planning and tracking sub-

problems. One goal of this thesis is to demonstrate the use of trial-and-error learning

methods as a way to handle the planning and tracking problems simultaneously.

2.2.1 Manipulator Dynamics

Before moving on to a survey of robot control methods, in this section I first summarize

the main results regarding the dynamics of robot manipulators. My survey is limited to

rigid robots with revolute joints and ideal actuators; see the review by Sage et al. [119] for

a treatment of flexible joints and non-trivial actuator dynamics.

For an open kinematic chain of n links, the equations of motion can be derived using

either of the Euler-Lagrange or iterative Newton-Euler formulations, e.g., [135] or [47],

respectively. The dynamic equation can be expressed as

τ = M(q)q̈ + C(q, q̇) + G(q) + F(q̇) + τ d, (2.1)

where τ is an n × 1 vector of joint torques and q, q̇, and q̈ are n × 1 vectors of joint

positions, velocities, and accelerations, respectively. In Eq. (2.1), M is an n × n mass

matrix that captures the configuration-dependent inertial properties of the robot. The mass

matrix is symmetric and positive definite and, therefore, invertible, except for degenerate
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idealized models of open-chain manipulators. Moreover, both M and M−1 are bounded

from above and below—an important property for establishing stability of some control

methods, e.g., [46].

In Eq. (2.1), the vector of torques represented by C(q, q̇) is quadratic in q̇, with terms of

the form q̇2
i accounting for centrifugal forces and terms of the form q̇iq̇j, i 6= j, accounting

for Coriolis forces. Simple control schemes that ignore such forces typically perform well

only at low velocities, where the quadratic terms are small, whereas more sophisticated

methods often utilize a model to compensate for velocity-dependent forces. The n × 1

vectors G and F represent, respectively, the joint torques due to gravity and friction. Finally,

τ d is an n × 1 vector of disturbance torques that accounts for joint flexibility, parameter

mismatch, actuator nonlinearities, unmodeled friction effects, etc. Typically, assumptions

are made about the bounds on the disturbance torque, although the precise form of τ d is

unknown.

2.2.2 Manipulator Control

Perhaps the most straightforward approach to position control of a robot manipulator

is to use independent servos that work to reduce the Cartesian errors attributed to each

joint. This “conventional” approach [94] or “inverse Jacobian controller” [47] or “resolved

motion-rate control” [160] involves the mapping of errors in Cartesian space, δX, to errors

in joint space, δq:

δq = J−1(q)δX. (2.2)

In Eq. (2.2), δX and δq are actually differentials of the same dimensionality and J is the n×n

Jacobian matrix that relates the instantaneous change in joint position to the configuration-

dependent change in Cartesian position of a point near the tip of the manipulator (usually

the wrist or the end-effector, e.g., gripper, welding torch, paint nozzle). The Jacobian

is well-defined given the robot’s kinematic specification—often expressed using Denavit-
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Hartenberg notation [50]—although the inverse does not exist for singular configurations

such as when the arm is fully extended. As long as the measured δX is small enough,

Eq. (2.2) yields a good approximation of the joint servo error at the start of each control

cycle. Moreover, the servo controller can track arbitrarily long paths if an interpolation

scheme is used to break a relatively coarse-grained path into segments where each δX is

small.

When δX and δq have different dimensionality, the inverse Jacobian is undefined and

Eq. (2.2) is often modified to use the pseudoinverse, J†, instead. As above, assume that q is

an n× 1 vector, but now suppose that X is an m× 1 vector with n 6= m. Then J is an m× n

matrix and the n× m pseudoinverse is defined as

J† =















(JTJ)−1JT, if n < m

JT(JJT)−1, if n > m.

Of particular interest for this thesis is the case for redundant manipulators, i.e., for n > m

when there are more independent joint motions than there are degrees of freedom that

need to be controlled in Cartesian space. For redundant manipulators, the pseudoinverse

gives the best solution in a least-squares sense. That is, δq = J†δX gives the joint-space

differential that minimizes ‖δq‖2. However, J†δX describes just one of an entire family of

joint motions that yields the desired Cartesian motion. More generally,

δq = J†δX + (I− J†J)δΘ, (2.3)

where δΘ is an arbitrary joint differential and (I−J†J)δΘ is a projection into the null space

of J, e.g., [70]. Thus, δΘ can be chosen to achieve a secondary objective without disturbing

the primary objective represented by δX.

Although simple and potentially effective, the inverse Jacobian controller has several

drawbacks. First, the approach is best-suited for trajectory planning in Cartesian space,

21



where interpolation could place the manipulator near a singularity or outside its reachable

workspace, or both. Second, a drawback for controller design is that fixed gains will result

in a dynamic response that varies with arm configuration [47]. Third, and most relevant for

this thesis, is that the approach ignores the manipulator dynamics altogether; fast move-

ments are not only inefficient but also inaccurate or unstable.

Other conventional, though more sophisticated, strategies for controlling rigid manip-

ulators are based on the computed torque or inverse dynamics method, which Kreutz [85]

showed to be a specific form of feedback linearization. The essential idea is that by ex-

amining the structure of Eq. (2.1) one can devise an inner feedback loop that linearizes the

system, i.e., compensates for the coupled, nonlinear manipulator dynamics. The result is

a new system in a canonical linear form which, in turn, can be controlled by an outer loop

designed using standard linear control techniques. In particular, the control for the inner

loop is given by

τ = M(q)u + C(q, q̇) + G(q) + F(q̇),

where u is the output from the outer loop control law. If one ignores the disturbance torque

τ d, then substitution of this inner control law into Eq. (2.1) yields

q̈ = u.

Thus, u can be interpreted as the desired acceleration of the manipulator, i.e, the accel-

eration needed to track a desired trajectory, with possible compensation for position and

velocity errors.

The theoretical assumptions underlying the computed torque method are the invertibil-

ity of mass matrix and the independent control of each joint [85]. In practice, the computed

torque method also assumes that M, C, G, F, and τ d are known. Uncertainty in any of these

quantities requires the use of additional techniques to ensure stability of the overall control
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method. For instance, adaptive control techniques can be used to design an adaptation law

that adjusts the current estimates of M, C, G, and F and that guarantees convergence in the

error dynamics [109]. Robust control techniques, on the other hand, are geared toward the

design of controllers that yield acceptable performance given estimates of the parameter

uncertainty [1]. Both approaches share some similarities, although robust methods typi-

cally make use of a fixed inner control loop that gives a nominal linearization of the robot

dynamics; an outer control loop then deals with robustness [119, 131] as well as trajectory

tracking errors.

Many results on adaptive and robust control of manipulators are of theoretical inter-

est but, at present, are not of practical significance because they fail to address the issue

of performance at a realistic task [35, 119]. As emphasized throughout this thesis, one

general way to improve performance is to exploit the dynamics of the task and the robot.

Passivity approaches are particularly interesting in this regard because they exploit physical

properties in order to reshape a system’s potential energy such that the minimum falls near

the desired equilibrium point [119]. For instance, one can exploit the dissipative nature of

friction to get the beneficial effects of higher servo gains [132]. Unfortunately, passivity

approaches only address the design of stable controllers with favorable convergence prop-

erties; the issue of task performance is still left to a separate trajectory planning algorithm.

For tasks that involve interaction with the environment—beyond pointing and gesturing

tasks—the force imparted by a robot on its environment must be controlled in addition to

its position. Force control is important not only for efficient transport and manipulation of

objects but also for safety purposes related to position control. During a part insertion task,

for instance, sensor error could result in excessive force by a “position-only” controller and,

therefore, damage to the part. As summarized by Zeng and Hemami [167], fundamental

approaches to force control differ primarily in the way force feedback is used to adjust (or

replace) position and velocity feedback. In effect, force control methods either augment
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the position trajectory with desired forces, alter the apparent dynamics of the robot (e.g.,

impedance control [69]) or both.

Although this dissertation deals with some aspects of object manipulation, the class of

motor tasks studied during this project does not involve stationary objects as in applications

such as grinding and part-mating. Thus, explicit use of force control is beyond the scope

of this research. Instead, I “finesse” the force control problem in a manner similar to the

switching and tuning approach used by Narendra and colleagues [42, 107]. Their approach

employs multiple adaptive models, one for each task that the robot may face in terms of end-

effector load or other variable that changes the dynamics without changing the structural

form of the adaptive models. The benefit of this scheme is an improved transient response

for trajectory tracking because the switching controller selects the best candidate model

for subsequent tuning. Similarly, in Chapter 3 I assume that object manipulation can be

treated as a position control problem for a robot with variable inertial properties. In effect,

the set of objects possibly manipulated by the robot induces a set of similar, yet distinct,

coordination problems over which the control system must generalize.

2.2.3 Learning and Control

Unlike the methods reviewed thus far, optimal control theory, e.g., [34, 81], provides

a framework for solving the trajectory planning problem while accounting for manipula-

tor dynamics and task constraints simultaneously. While extremely effective with accurate

models, optimal control methods yield solutions that tend to be brittle in the presence of

disturbances (i.e., unmodeled effects) as well as modeling errors. One possible way to deal

with such brittleness is to incorporate a measure of uncertainty as part of the performance

criterion. (Lin and Brandt [91] showed one way to do this, although their work is in the

context of robust controller design for trajectory tracking problems.) Learning methods

are particularly effective in this regard because the performance criterion need not be ex-

pressed in a concise analytical form; robustness can come from heuristics that downgrade

24



the performance evaluation whenever the learning agent enters an unfavorable situation.

Another advantage of such methods is the ease with which the robustness requirement can

be implemented in a non-uniform way over the system’s range of operation.

Learning control provides another approach to manipulator control that deals with un-

certainty [7, 11, 45, 71]. Such methods take advantage of the repetitive nature of many

robot motor tasks by introducing a betterment process [7] that improves upon the robot’s

performance during the previous repetition. Although the focus of learning control is the

use of a feedforward control law that suppresses repetitive disturbances, feedback remains

a necessary component for both robustness and learning (cf. feedback-error learning [63]).

Unlike optimal control methods that require accurate models, learning control algorithms

require only models that are good enough to derive a meaningful servo error for the update

of the feedforward command [11].

With learning control, motor dexterity is gained not through the use of feedback mecha-

nisms, as with adaptive control, but rather “through the use of a feedforward control action

which is stored in memory and is retrieved as the task is executed” [71]. However, like

the other control methods discussed above, learning control assumes that the motor task

is represented as a prespecified trajectory. The perspective taken in this thesis is that dex-

terity depends upon all three components: feedback control for robustness, feedforward

control for anticipatory action in the absence of useful feedback, and (implicit) trajectories

for coordinated movements that exploit dynamics.

2.3 Machine Learning

Over the past decade, one trend in the control engineering literature has been the in-

creased use of techniques that incorporate aspects of “intelligent” decision-making [106,

117]. These techniques include expert systems, fuzzy logic, genetic algorithms, and arti-

ficial neural networks. Of particular interest for this thesis are the reinforcement learning

(RL) methods studied by the machine learning and operations research communities. Such
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methods are suitable for learning motor skills through ongoing practice when detailed mod-

els are unavailable. Since RL methods solve optimal control problems, they also implicitly

solve Bernstein’s problem using a form of optimization for redundancy resolution. As

stated in Chapter 1, however, the practical success of RL depends a great deal on prior

structure. After a brief introduction to RL, the remainder of this section summarizes re-

search regarding two specific forms of prior structure: hierarchical architectures and hints

from a teacher.

2.3.1 Reinforcement Learning

Modern RL algorithms have their origins in animal learning research, with particular

emphasis on the notion of trial-and-error learning summarized by Thorndike [142, p. 244]:

“Of several responses made to the same situation, those which are accompa-

nied or closely followed by satisfaction to the animal will, other things being

equal, be more firmly connected with the situation, so that, when it recurs, they

will be more likely to recur; [and those associated with discomfort] will be less

likely to occur.”

For a learning agent, such as a robot, the essence of Thorndike’s “Law of Effect” is that the

agent chooses actions (“responses”), uses reward (“satisfaction”) to evaluate their conse-

quences, and associates (“connects”) the best actions with specific states. But because the

consequences of its decisions may not be fully predictable, the agent must choose actions

that balance immediate gain with the possibility of high rewards in the future.

Most algorithms for trial-and-error learning fall near one of two extremes: those that

take advantage of structure in the problem, and those that take advantage of structure in the

solution. RL algorithms such as TD(λ) [137] and Q-learning [157] are particularly well-

suited to take advantage of structure in the problem. Such algorithms use a value function

to capture regularities in the observed rewards and state transitions that implicitly define

the task. In its most basic, mathematical formulation, an RL problem is represented by a
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Markov decision process (MDP), whose solution is an optimal policy that maps states to

actions and that satisfies the Bellman optimality equation:

V*(s) = max
a

∑

s′∈S

Pr(s′|s,a){R(s′) + V*(s′)}, (2.4)

where V*(s) is the value of a state s, R(s′) is the expected immediate reward received in

the next state, s′, and Pr(s′|s,a) is the probability of transitioning to state s′ when action a

is executed from s. Eq. (2.4) is a recursive formula that asserts that the value of any state,

when following an optimal policy, equals the expected total reward when the best action is

chosen from that state. One advantage of RL over more traditional optimal control theory

is that no state transition model is required in advance; the agent, or controller, improves

over time as it interacts with, and gains experience about its environment.

Much research in RL has focused on extensions to this basic formulation, including dis-

counted rewards, e.g., [138], factored MDPs, e.g., [27], semi-Markov decision problems,

e.g., [140], and partially observable MDPs, e.g., [76]. The use of function approxima-

tion is one particularly relevant extension for robotics research. For instance, one could

utilize an artificial neural network—with a finite number of parameters—as a way to ap-

proximate V* over a high-dimensional, continuous state space, such as those involving the

kinematic state of a multi-link robot. In contrast to reinforcement-based methods, where

the learning algorithm receives a simple evaluation of its performance, function approxi-

mation typically involves supervised learning, where parameters are tuned based on more

detailed instruction about the correct action or outcome. (In the motor learning literature,

a similar distinction is made between knowledge of results and knowledge of performance,

e.g., [31, 125].) Sutton [137] and others showed that predictions about expected rewards

can supply the needed feedback for learning with function approximation when no other

instructional data are available. More recently, a number of papers point toward a growing

interest in the use of function approximation for representing the policy in addition to (or

in place of) the value function [5, 13, 19, 37, 80, 83, 139, 162].
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Along with their generalization capabilities, one advantage of function approximation

techniques is the feasibility of incorporating prior, possibly inexact, knowledge. For exam-

ple, Towell and Shavlik [144] constructed an artificial neural network that captured a body

of knowledge expressed in first-order logic. The initial parameter values were then refined

by a supervised learning algorithm, with observed training data as the input. In a similar

fashion, the work presented in Chapter 3 demonstrates the use of function approximation to

represent movement primitives as a form of prior knowledge. These primitives are built in a

manner analogous to the cognitive phase of human motor learning, where instruction plays

a role in shaping the initial solution to a motor task. (See Section 2.1.4.) But rather than

tune the movement primitives through supervised learning, RL provides the mechanism for

mastering redundant degrees of freedom.

One criticism of RL algorithms is that they typically ignore structure in the solution by

treating the policy as a featureless mapping from states to actions. This criticism is partial

motivation for the other extreme of trial-and-error learning, where methods for direct policy

search, e.g., [5, 13, 19, 102], do away with intermediate representations of the policy and

take advantage of constraints placed on the solution. For instance, evolutionary algorithms,

e.g., [102], reinforce regularities in the parameterized policy (the “genetic material”) by

restricting “reproduction” to the fittest members of the population. And direct methods

for function optimization, e.g., [141], make the most of continuity by biasing their search

toward promising regions of parameter space. However, such methods ignore structure in

sequential decision problems by making policy adjustments on a trial-by-trial basis after

long-term rewards are known, rather than on a per-action basis. Ideally, trial-and-error

learning algorithms should take advantage of the strengths of both policy search and value-

based methods, e.g., [13]. Chapters 3 and 5 demonstrate the use of each kind of trial-

and-error learning separately, and in Chapter 6 I discuss the possibility of combining both

methods by using a learned value function to bias a direct search for the optimal policy.
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2.3.2 Hierarchical Architectures

Twenty years ago Peter Greene [66] used the words “patchwork of methods” to charac-

terize the way humans control arm movements as well as the way one should design effec-

tive methods for coordinating redundant degrees of freedom in robotic arms. Although a

“single powerful technique” [66] may be appropriate for some machine learning problems,

in this thesis I pursue the use of a combination of strategies for learning complex motor

skills. For instance, the robot weightlifter in Chapter 3 demonstrates the use of RL at two

different levels of a hierarchical control architecture, where each level is viewed as an op-

portunity to add structure to the learning problem rather than simply as a means for dealing

with computational complexity.

With mobile robots, a “patchwork of methods” is a common design strategy for arti-

ficial intelligence researchers. For instance, Brooks’ subsumption architecture [32] makes

use of multiple “layers of competence” that decompose the control task into classes of

simple behavior modules with different goals and different ways of processing the avail-

able sensor data. Indeed, any modular architecture qualifies as a patchwork as long as the

modules, i.e., the patches, utilize distinctive techniques for control or learning. For con-

trol, another possibility is a three-layer architecture [62] with a deliberative planner at the

highest level, a “sequencer” that executes the current plan, and a collection of reactive con-

trollers (behaviors) at the lowest level. For learning, a bottom-up approach [136] can lead

to complex team strategies from individual skills and primitive behaviors, with each layer

employing the best machine learning algorithm for the subtask. More generally, patchwork

approaches serve as a counterpart to tabula rasa learning, with behavior-based learning as

the dominant paradigm for mobile robots [8].

As mentioned previously, the dominant approach for robot manipulators involves the

use of a model—either constructed, e.g., [4, 47], or learned, e.g., [63, 71, 152]—that

“compensates” for the robot’s nonlinear dynamics and converts the control problem to

one of tracking a desired trajectory with an approximately linear plant. One could view
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the trajectory-tracking approach as hierarchical with a planner at the highest level and two

subordinate control loops, as described in Section 2.2.2. However, such methods are flat

with regard to the desired movement; the control hierarchy hides detail in the calculation

of the torque signal, yet a single sub-system (the planner) is responsible for all the detail in

the position command. The only details filled in by the lower-level sub-systems are those

related to disturbances away from the specified trajectory. This differs from the approach

taken in Chapter 3, where the control hierarchy provides abstraction in the way a coor-

dinated movement unfolds, cf. Greene’s “ballparks” [65], with each level responsible for

some degree of detail in the solution to the movement problem.

Several recent efforts have made progress at formalizing the link between hierarchical

abstraction and RL. For instance, Parr and Russell [111] used a hierarchy of finite state ma-

chines where some states represent choices subject to learning and others denote subroutine

calls to additional machines. Dietterich [52] showed that a tree-like data structure can be

used to decompose a policy into context-independent and context-dependent subroutines

and to represent the corresponding hierarchical value function. And Sutton et al. [140]

introduced options as a “minimal extension” of the MDP framework that allows for tempo-

rally extended actions. (See [17] for a detailed review.) At present, these formal approaches

to hierarchical RL are largely of theoretical interest and applications have been limited pri-

marily to problems with relatively small sets of discrete states and actions. Although the

efficacy of such methods for robot motor learning is a relevant issue for this thesis, I instead

consider algorithms that are more ad hoc with regard to hierarchies, yet general with regard

to the design of motor learning problems.

2.3.3 Hints from a Teacher

In addition to function approximation and hierarchies, one can structure a machine

learning problem through “hints” given by a teacher or supervisor. The intuition behind

this general approach is familiar to RL researchers, who often design learning problems
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with a carefully constructed reward signal meant to encourage the desired agent behavior.

In effect, the designer specifies all of the hints beforehand, although there is growing in-

terest in methods for incorporating teacher hints in an online, incremental fashion. One

natural way to do this is to modify or shape the reward signal, e.g., [53, 97, 108, 159].

Such methods are analogous to the way animal trainers distribute well chosen rewards (or

punishments) to lead the learning agent, i.e., the animal, through a progression of learning

problems, beginning with ones that are relatively easy to solve.

In lieu of an explicit teacher, another way to include supervisory information is to de-

sign controllers that take advantage of prior knowledge. For instance, Randlov et al. [116]

and Perkins and Barto [112] used control-theoretic techniques to design closed-loop feed-

back controllers with desired performance guarantees. Huber and Grupen [72] used a sim-

ilar approach for a quadruped robot that learned to walk by composing relatively primitive

behaviors. Essentially, each of these examples used closed-loop control policies as op-

tions [140] that simplified learning at a higher level of decision making.

A third possibility for combining supervisory information with RL algorithms is to

allow the teacher to suggest actions for the learning agent to choose from. In effect, the

teacher exerts indirect control of the environment by influencing the exploratory behavior

which is characteristic of trial-and-error learning algorithms. Examples of this approach

include ASK FOR HELP [43], RATLE [96], the mentor framework [115], and LBW [159].

These methods all represent the policy implicitly through a learned value function, whereas

the approach described in Chapter 5 makes use of an explicit data structure for the policy

that enables direct learning, i.e., cloning [14], of the teacher’s unknown policy.

In recent years, work related to “teacher hints” has also gained popularity with the intel-

ligent robotics community, though primarily under the rubric of “imitation learning,” e.g.,

[98, 122]. Imitation, now considered a sign of intelligence, was once viewed as merely a

form of replay or simulation of intelligent behavior [36]. Although there exists no widely

accepted definition of imitation, it is nevertheless accepted that imitation comes in many
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different kinds involving varying degrees of intelligence. For instance, Byrne and Rus-

son [36] draw a distinction between “action” and “program” levels of imitation. At the

action level, the observer imitates the “surface form” or idiosyncrasies of behavior, possi-

bly as a component of social interaction. Whereas at the program level, the observer copies

the “organizational structure” of behavior as a means for acquiring new skills. In any case,

the communication of novel behavior appears to be a crucial feature of imitation [36], as

opposed to, say, “emulation” whereby the actions of the demonstrator are used to commu-

nicate goals to the observer rather than the behavior for achieving those goals.

Interestingly, approaches related to imitation learning for robot skill acquisition have

a long history with industrial robots. In particular, before the availability of inexpensive

computers and subsequent robot programming languages, industrial robots were commonly

programmed with handheld teach pendants that were used to guide a manipulator through

a sequence of configurations [47, 49]. Such efforts, which now utilize haptic interfaces in

addition to teach pendants, are more appropriately called “teaching by showing,” “learning

by watching,” “programming by demonstration,” or “learning from demonstration” [10,

12, 86, 101, 121, 130]. In contrast with these terms, “imitation” connotes human-like

intelligence on the part of the observer as well as the demonstrator.

As applied to robot assembly skills, learning by demonstration typically involves no

adaptation or learning per se. Instead, a demonstrated trajectory (of positions, forces, or

both) is digitized and heuristics are used to segment that trajectory into a symbolic descrip-

tion of the desired skill. For instance, Asada and Izumi [10] used human demonstration to

solve an object placement task by building a sequence of “move” and “push” commands

that account for both positions and forces, respectively. More elaborate systems often uti-

lize video-based hardware to acquire the human demonstrator’s movement trajectory. This

allows for a more natural and potentially faster communication of the desired behavior

than is normally possible with teach pendants and their more modern counterparts. For

example, Atkeson and Schaal [12] and Miyamoto et al. [101] used a combination of visual
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input, numerical optimization, and both inverse kinematics and inverse dynamics models

to acquire dynamic motor skills for a seven-DOF manipulator. Learning, although a part

of both projects, was used primarily for system identification purposes and for relatively

minor tuning of a trajectory-based solution to the motor task.

Most examples of robot learning by demonstration use “learning” metaphorically as

a way to describe the role of the demonstration data. Few examples take advantage of

the exploratory behavior of RL methods—perhaps due to the strong theoretical assump-

tions made by more formal approaches, e.g., [115]. One exception comes from Kaiser

and Dillman [77], who used human demonstration data to seed an actor-critic architecture

for learning slow kinematic skills. Similarly, for a pendulum swing-up task Schaal [121]

combined RL with demonstration data and compared the effects of seeding the policy, the

state-transition model, or both. The key difference from this dissertation is that with each

of these examples, the seed data were relatively detailed and RL was used primarily to

overcome the lack of a model. In effect, RL was used to tune a given solution rather than

to discover a new one consistent with the initial data.
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CHAPTER 3

LEARNING AT THE LEVEL OF SYNERGIES

The basic premise of this research is that motor coordination is not simply a by-product

of trial-and-error learning, but rather that coordination emerges when “regularities,” as

Bernstein put it, are part the learning technique. In this chapter, I show that given a suitably

designed class of policies, with biologically motivated structure, a simple search algorithm

is then able to solve an otherwise complicated motor task. Moreover, by manipulating the

class of policies I also show that the best solutions involve “synergies” that cause individual

degrees of freedom to act as a single functional unit.

3.1 The Level of Synergies

As suggested in Chapter 1, the term “coordination” is relatively informal, referring to

a more intuitive concept than “control.” Whereas mechanisms of control are specific to the

available inputs, outputs and communication pathways, coordination instead deals more

with the style and organization of these lower-level mechanisms. In turn, the mechanism

for coordination is attributed to motor synergies that implement “the organization of the

control of the motor apparatus” [21]. Bernstein’s original writings about synergies remain

to be translated into English [68], although an account geared toward a wide audience

appeared in a “lost” book [22] published for the first time in 1996, as an English translation

from the original Russian manuscript.

In his book, Bernstein described several levels involved in the construction of move-

ments, some of which deal with muscle tone, spatial relationships, and goal-directed ac-

tions [22]. Of particular relevance for this thesis is Bernstein’s “level B” or level of
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“muscular-articular links” or, simply, the level of synergies. At the level of synergies in-

dividual degrees of freedom, i.e., muscles and joint motions, are organized into functional

units that solve a motor task as a whole. Synergies are similar to “coordinative structures”

[55, 79, 145] which combine muscles into groups “that are constrained to act as a single

unit” [79]. From a more control theoretic perspective, one can think of synergies as intelli-

gent nonlinear controllers that exploit the dynamics of multi-input, multi-output systems.

More recently, a number of researchers, e.g., [73, 90, 99, 148, 151], used the notion

of synergies to explain observed reproducibility of endpoint motion despite the relative

variability of individual joint movements. Nevertheless, very little is known about how

synergies develop, since they are difficult to tease apart from the dynamics they exploit.

Indeed, statistically conclusive evidence for the existence of synergies in humans is ap-

parently provided by just one series of experiments [90] that examined the load-sharing

patterns of several fingers during a simple isometric task, i.e., a task with trivial (external)

dynamics. Observed variability in force produced by each finger individually was less than

the variability in the total force. In this scenario, the experimenters were able to attribute

the observed results to the neuromuscular system, rather than to some effects of the limb

dynamics.

3.2 Robot Weightlifting

Most theories regarding the mechanisms of human motor coordination rely a great deal

on inferences made from observed external behavior. Studies involving artificial systems

have the advantage of a relative abundance of information from the internal control system.

In the remainder of this chapter I demonstrate how this sort of information can shed light

on the nature of motor synergies. More specifically, I describe several experiments with a

robot motor task based loosely on Olympic weightlifting—an extreme example of a motor

skill that requires an athlete to exploit dynamics such as gravity, inertia, elasticity, and so

on.
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For the robotics version of the weightlifting task, I developed a three-link manipulator

comparable to the acrobot-like examples studied by the machine learning and control engi-

neering communities. For example, Spong [134] showed that for the two-link acrobot with

torque generated only at the second joint, a switch between two controllers is sufficient to

bring the robot from its stable, downward equilibrium to its unstable, upright configuration.

Spong’s “swing-up” controller pumps energy into the system until the robot enters the es-

timated controllability region of a “balance” controller that regulates about the goal. The

robot weightlifting task differs from the acrobot in at least several ways: (1) In contrast

to control engineering solutions, I assume no detailed model of the robot dynamics. (2)

The extra link for the weightlifter introduces additional complexity to the problem. (3) The

weightlifter is underpowered but not underactuated; while underactuated systems may be

harder to control, they have the benefit of a smaller space of possible controls that must be

searched by a learning algorithm. (4) Joint constraints and obstacles for the weightlifter

render the standard “swing-and-balance” solution ineffective.

Figure 3.1 shows a simulation of the robot in several configurations. (Section 3.5.3

describes work with a real robot.) This robot was modeled as a three-link frictionless pen-

dulum with each link having length 1 m and and mass 1 kg. At each joint, torque was

limited to [−50,50] Nm, and at the middle and distal joints the range of motion was con-

fined to [−150,150] degrees. At the proximal joint, movement was also limited to a range

of 300 degrees, to avoid contact with the robot’s simulated support structure. The equations

of motion were generated iteratively using the Newton-Euler method [154] and solved nu-

merically by Euler integration with a step size of 0.001 s. The robot was motionless at

the start, and the goal was defined as a six-dimensional hypercube with velocity limits of

±28.65 deg/s (±0.5 rad/sec) and with position limits of ±5 degrees centered on the goal

configuration. At the end of each trial, i.e., when the robot’s state entered the goal region,

performance was quantified as the total integrated torque magnitude, except on those trials

where the lifter exceeded its range of motion, contacted an obstacle, or failed to reach the
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Figure 3.1. Simulated three-link robotic arm in several configurations with no payload: (a)
start, (b) via point, and (c) goal.

goal within five seconds, in which case the trial was terminated with the maximum cost

of 500 Nm·s. In summary, the task was designed as a minimum-effort optimal control

problem with both torque and kinematic constraints.

3.3 Related Work

Optimal control theory provides a number of techniques for solving dynamic opti-

mization problems such as the weightlifting task. For instance, Wang et al. [155] used a

gradient-based method starting from an initial feasible path to more than triple the recom-

mended payload capacity of a Puma industrial robot. As mentioned previously, however,

such methods usually require precise models (or system identification) and protracted off-

line computation before the robot attempts its first lift. In this work I make no assumptions

about the availability of a detailed model. Instead, I borrow several human motor learning

strategies as a way to design a structured policy that achieves coordination by means of a

small number of simple motor commands.

Others have demonstrated the utility of simple motor commands for achieving control

of relatively complex dynamic systems. For example, Barto et al. [16] used equilibrium-

point controllers, with nonlinear damping, to demonstrate a cerebellar learning model for

control of a simulated arm. Simple “pulse/step” commands were used to set the equilibrium
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points in an open-loop fashion, and their approach differs from more standard theories

in at least two important ways. First, the pulse and step specify just two equilibria, and

complex motion emerges from the dynamics of the arm together with the modeled spinal

reflex mechanisms, rather than from some unspecified source of trajectories. Second, the

nonlinear damping enables rapid initial movement followed by slow drift to the equilibrium

point. Control is geared toward fast movement to an effective endpoint, rather than the

true equilibrium point, but with little or no oscillation. Thus, dynamics are exploited for

the purposes of simplified control, rather than for optimization as with the kind of motor

synergies described throughout this thesis.

Huber and Grupen [72] used a small set of “basis” controllers to learn a variety of walk-

ing gaits for a four-legged robot. These controllers guaranteed convergence to a discrete

set of equilibria, thereby allowing a higher-level reinforcement learning system to treat the

continuous control problem as one discrete in time, state, and action. Their approach is

hierarchical, not only in the sense that low-level controllers are switched by a high-level

learning system, but also in the sense that controllers run concurrently, with subordinate

controllers not allowed to interfere with superordinate ones. One key distinction between

their approach and the framework in this chapter is that the low-level controllers remained

fixed throughout learning, whereas the controllers described herein change by trial-and-

error learning.

For a simulated diver, Crawford [48] also used a hierarchical control system with a

reinforcement learning agent responsible for switching low-level controllers. In particular,

Q-learning [157] was used to set the switch times for an open-loop sequence of “behavioral

synergies” (such as “throw” and “pike”). The simulation used a complex dynamic model

of a human diver, although the lower-level sub-system used inertial compensation to track

prescribed trajectories independently for each joint. These trajectories used bell-shaped

velocity profiles to connect a desired sequence of joint configurations. Thus, from the
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perspective of the learning system the task was kinematic in nature, with the “behavioral

synergies” canceling the dynamics to track the specified trajectory.

To solve a robot stand-up task Morimoto and Doya [103] used reinforcement learning

at two levels of a hierarchical control system. At the upper level, coarse-grained inputs

and outputs were used to specify sub-goal configurations for the lower level, with joint

velocities left unspecified. The robot’s continuous state space acted as input to the lower

level, which optimized the parameter values for a nonlinear controller that included linear

error terms as well. Tabular Q-learning was used at the upper level, whereas the lower level

used a continuous version of temporal-difference learning. The approach is most similar

to the one presented in this chapter, although Morimoto and Doya make no connections to

biological motor control, such as those connections involving synergies and learning from

demonstration.

3.4 Structured Policy Parameterization

My solution begins with a sequence of via points, i.e., intermediate configurations of the

robot along a path to the goal. I regard each via point as the specification for a movement

primitive that converges to the corresponding manipulator configuration. Such primitives

are suggestive of an equilibrium-point style of motor control, e.g., [25, 58], whereby the

endpoint of a movement is programmed and the spring-like properties of coordinated sets

of muscles, i.e., muscle synergies, ensure convergence to that endpoint. The primary ben-

efits of equilibrium-point control are that complex limb dynamics can be ignored and that

higher motor centers need not be involved in the detailed activation patterns of numerous

actuators. The drawback is that to explain complicated skills, especially those involving

fast movements, equilibrium-point approaches give up their simplicity by requiring a vir-

tual trajectory, or sequence of equilibrium points that induce the desired movement but

are not targets for convergence. Equilibrium-point models do enable multiple degrees of

freedom to work together, although these models alone do not account for synergies that
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exploit dynamics in a way that Bernstein described as “mastering redundant degrees of

freedom” [21, p. 127]. In other words, equilibrium-point models organize multiple de-

grees of freedom to reach a goal point, but not necessarily in an efficient way that reduces

a quantity such as time, jerk, or energy.

With the robot weightlifter, one possible implementation of equilibrium-point control

involves the use of a single movement primitive that brings the manipulator to the goal

configuration. Indeed, with no payload and with no obstacle a simple linear feedback con-

troller accomplishes the task, although this solution fails with payloads as small as 0.5 kg.

Instead, I add a second movement primitive for the via point shown in Figure 3.1b. This via

point represents the knowledge that certain configurations avoid the leftmost obstacle and

also reduce the effective moment arm for the proximal joint. I assume that the via point is

obtained through imitation of a successful lift or through instruction from a coach—a hu-

man programmer in this case. The via point is intended to convey crude path information,

with no detailed knowledge of any successful trajectory.

Convergence first to the via point and then to the goal, extends the payload capacity

to about 2 kg, beyond which adaptation is necessary. Rather than turn to relatively com-

plicated virtual trajectories as a way to exploit dynamics, I instead use a small number of

movement primitives that act as the starting point for learning. The result is a hierarchi-

cal motor program that runs three feedback controllers: one for the via point and one for

the goal, both adjustable, followed by another, fixed controller to regulate locally about

the goal. This converts the original closed-loop equilibrium-point solution, with no via

points, to a hierarchical control scheme, i.e., to a “ballpark” open-loop solution [65, 124]

that handles minor errors at a lower, closed-loop level of control.

3.4.1 Implementation

To build the initial motor program, I first construct two proportional-derivative (PD)

controllers, PD1 and PD2:
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PDi : τ (θ, θ̇) = Wi[Kp(θ
*
i − θ)− Kdθ̇], (3.1)

where θ ∈ <3 and θ̇ ∈ <3 are the joint positions and velocities, respectively, and τ ∈ <3

is a vector of joint torques subject to saturation at the ±50 Nm torque limit. In Eq. (3.1)

Wi is a 3x3 gain matrix, θ
*
i ∈ <3 is the target equilibrium point, and Kp = 1000 Nm·rad-1

and Kd = 250 Nm·s·rad-1 are the nominal proportional and derivative gains, respectively.

The target equilibrium points, θ
∗
1 and θ

∗
2, are initialized to the via point and goal configu-

ration, respectively. Both W1 and W2 are initialized to the identity matrix, and so each PD

controller initially acts as three uncoupled, scalar-output servomechanisms (one for each

joint). Although Eq. (3.1) describes a linear controller, saturation of the output represents

a set of nonlinear constraints, possibly inactive, that the learning system can exploit.

Next, the robot executes an “imitation” trial by running to convergence PD1 followed

by PD2. (A threshold test on the position error establishes convergence.) At convergence

the learning system records t*
1 and t*

2—the time elapsed for the corresponding controller

since the start of the trial. Together t*
1 and t*

2 mark the switch times for the open-loop

level of control. In particular, the program runs PD1 from the start of each new trial (time

t = 0) until t = t*
1, then a switch is made to PD2 which runs until t = t*

2, followed by the

third controller, PD3, that runs until the trial terminates. PD3 is a fixed copy of PD2 that

increases the flexibility of the learning system while providing convergence guarantees for

movements close enough to the goal. However, PD3 plays no role during the imitation trial.

The open-loop level of the motor program has two free parameters, the switch times,

that are adjusted by trial-and-error learning (described shortly). Together, PD1 and PD2

have 24 free parameters, six from θ
*
i and 18 from Wi, that are adapted with the same

learning algorithm. As a form of shaping, I increase the payload at a rate of 0.25 kg every

250 trials of learning. And to speed up learning, which is confounded by interactions

between levels, with each new payload the algorithm runs in two phases: a shorter phase
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(50 trials) that adjusts the open-loop timing of the motor program, followed by a longer

phase (200 trials) that adjusts the lower-level PD controllers while holding the t*
i fixed.

3.4.2 Direct Policy Search

Table 3.1 summarizes the simple random search (SRS) algorithm developed for the

robot weightlifting task. The algorithm—a generalization of one described by Luus and

Jaakola [95]—performs random search in a K-dimensional parameter space, centered at a

base point, x. For the motor program described above, K = 2 at the open-loop level of

control and K = 24 at the closed-loop level. Perturbations, ∆x, are normally distributed

with zero mean and standard deviation equal to the search size, σ. Each test point (x +∆x)

is evaluated and the best observed point is kept as the algorithm’s return value. For the

weightlifting task, the EVALUATE subroutine returns the total effort during a trial with

the new parameter settings. Updates to the base point are made by taking a step toward

the most recent test point with probability β or else toward the best observed point with

probability 1 − β. Thus, β provides one means of control over the degree of exploration,

with the extremes of a pure random walk (β = 1) and of movement along a rough estimate

of the gradient (β = 0). Even with β set to zero, considerable exploration is possible for

large values of σ, which decays by a factor γ after each iteration, to the minimum σmin.

The SRS algorithm has several properties that make it a nice choice for trial-and-error

learning. First, SRS is easy to implement for a wide variety of optimization problems. Like

other direct search methods [141], the SRS algorithm needs no derivative information—

an important feature when the cost function is non-differentiable or when the gradient is

difficult to estimate (as with deterministic policies subject to noise). The algorithm also

has some neurobiological support based on observed random synaptic variation [6]. And

compared to “pattern search” algorithms [24], such as the simplex method, SRS makes

rapid progress in high-dimensional spaces where some algorithms first require numerous

exploratory moves to establish a search direction or to build a simplex, for instance.
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Table 3.1. The simple random search (SRS) algorithm.

input
initial point x ∈ <K

step size α ∈ [0,1]
search strategy β ∈ [0,1]
search size σ ≥ 0
search decay factor γ ∈ [0,1]
minimum search size σmin ≥ 0

initialize
xbest ← x
ybest ← EVALUATE(xbest)

repeat
1. ∆x← N(0, σ)
2. y← EVALUATE(x + ∆x)
3. if y < ybest

4. xbest ← x + ∆x
5. ybest ← y

6. x←
{

x + α ·∆x, with prob. β

x + α[xbest − x], with prob. 1− β

7. σ ← max(γσ, σmin)
until convergence or number of iterations too large
return xbest

For the results described shortly, the SRS algorithm step size and search strategy pa-

rameters were set to α = 0.3 and to β = 0, respectively. At the motor program level,

the initial search size was σ = 0.10 with a minimum of σmin = 0.01 and a decay factor

of γ = 0.95. For the PD controllers, the corresponding parameter values were σ = 0.05,

σmin = 0.01, and γ = 0.99.

3.5 Results

With no payload, the robot weightlifter could select from a number of qualitatively

different solutions to reach the goal configuration. For example, the simple equilibrium-

point solution with no obstacle follows a direct path from the start to the goal, whereas

the “imitation” trial takes a longer path through configuration space, first converging to the

via point. Figures 3.2a and 3.2b show, respectively, the configuration space paths for these
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Figure 3.2. Configuration-space trajectories for (a) the simple equilibrium-point solution
with no payload, no learning, and no obstacle, (b) the “imitation” trial with no payload, (c)
the “standard” solution with a 4.5 kg payload, and (d) the “reversal” solution with a 9.25 kg
payload. S, V, and G denote the start, via-point, and goal configurations, respectively.

two solutions which involve no learning. As the payload increases, however, the space

of feasible solutions shrinks and adaptation becomes necessary. Essentially, the via point

represents an attempt to start the learning system at a favorable place.

The “standard” solution after learning (Figure 3.2c) passes near the via point while co-

ordinating the joints to exploit the robot’s intrinsic dynamics. This solution is robust to

sensor noise as well as variability in the via point, although with expected degradation in

performance as noise increases. During one “lucky” trial—with sources of variability at

their maximum—the result of learning was the unexpected “reversal” solution, for which

the robot moves through an entirely different region of configuration space. Depicted in

Figure 3.2(d), this solution can be made a regular occurrence by simply changing the via

point shown previously in Figure 3.1 from −150, −120, and −90 degrees to −315, 135,

and 90 degrees (proximal to distal). Figure 3.3 shows a sequence of representative configu-

rations from both the standard and reversal solutions, with the robot near the corresponding

via point in frame five of each sequence.

3.5.1 Effects of Learning at the Open-Loop Level

Figure 3.4 shows the evolution of the switch times, t*
1 and t*

2, for both the standard

and the reversal solutions and for 25 learning runs with each of two conditions: one with

increasing payload as described above and one with no payload to act as a baseline that
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(a)

(b)

Figure 3.3. Representative examples of (a) the standard solution and (b) the reversal solu-
tion.

accounts for the temporal effects of learning. One result not apparent from the figure is

that the largest effects of adjusting the switch times occur during the first stage of 50 trials

at the very beginning of each learning run. In particular, the system quickly learns that

convergence to the via point is unnecessary and that a more efficient solution, in terms of

effort, can be had by passing near the via point instead.

After the first block of trials the switch times change very little for the reversal solution

and so any observed adaptation in the robot’s behavior is largely attributed to learning

at the closed-loop level of control. For the standard solution, the effects of subsequent

tuning of the switch times is less clear. The observed increase in both t*
1 and t*

2 seems

to reflect the overall increase in the movement execution time. The increased movement

time, in turn, is related to the increasing payload and to the relative inefficiency of the

standard solution compared to the reversal solution. In particular, with the reversal solution

the robot generates large velocities at the beginning of the movement and then exploits

momentum to a great degree, whereas the standard solution is more of a “brute force”

strategy causing the robot to “struggle” and to slow down as the payload increases toward
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Figure 3.4. Effects of payload and learning on the switch times for (a) the standard solution
and (b) the reversal solution. Pairs of solid markers denote statistically significant differ-
ences at the corresponding trial number, using a t test with p < 0.01. Error bars indicate
the standard error of the mean.

the failure point, usually between 4 and 5 kg. A more rigorous analysis, one in terms of

dynamic manipulability, is presented in the next chapter.
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Figure 3.5. Representative gain matrices for the first PD controller and the cluster hierarchy
derived from gain matrices for both PD controllers after 2000 trials of learning. Node labels
indicate the number of the learning run as well as the solution type: “S” for the standard
solution and “R” for the reversal solution.

3.5.2 Effects of Learning at the Closed-Loop Level

At the closed-loop level, most of the adjustments made by the learning algorithm in-

volve the parameters of the gain matrices, and Figure 3.5 shows several representative

matrices after 2000 trials of learning. Parameter values were somewhat consistent, with

measured standard deviations of about 0.3 for each paramerer. However, there was suf-

ficient variability to prevent general statements about how specific values influence the

observed movement of the robot, although one exception comes from learning run “S25”

shown in the figure. This learning run was the only observed example where the control

system generated an initial swing backward at the proximal joint. For every other example
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represented in the figure, the initial torque at the proximal joint was negative, whereas for

learning run S25, the initial torque was positive due to the smaller values in the first two

entries of the first row of matrix W1.

Perhaps more informative than the matrices themselves is the cluster hierarchy also

shown in Figure 3.5. Each leaf node represents a vector of 18 ordered parameters con-

structed from the two corresponding matrices, with nine parameters each. The hierarchy

was generated by an agglomerative clustering algorithm with Euclidean distance in the as-

sociated 18-dimensional parameter space as the metric for building the clusters. Although

some variability exists across all learning runs, there is greater consistency for each solution

strategy. More specifically, all of the leaf nodes from the reversal solution cluster together

in the same sub-tree of the hierarchy, and most of the leaf nodes from the standard solution

do the same. Interestingly, run S25 described above is one of the three outliers, again due

to the entries in the first row of matrix W1.

As suggested above, each PD controller initially behaves as three independent servo-

mechanisms—one for each joint—but the learning algorithm transforms them into the robot

analogue of a synergy that accounts for intersegmental effects. This happens through the

effects of learning on the gain matrices, which have off-diagonal entries that enable active

coupling of the individual joints. By changing these entries from their initial values of zero,

the learning system essentially causes each joint to become “aware” of the servo errors of

its neighbors. To examine the formation of synergies, I quantify active joint coupling as

C(PD1, PD2, . . . , PDM) = 1− 1
M

M
∑

i=1

D(Wi),

where D—the diagonal dominance of an individual gain matrix, W—is defined as

D(W) =

∑

j |wjj|
∑

j,k |wjk|
,

with M = 2 for all results presented below.
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Figure 3.6 shows the change in C throughout learning—starting with no coupling, i.e.,

with both W1 and W2 diagonal for the initial trial, and increasing to about 0.5 where half

the “mass” in the gain matrices falls along the main diagonals. (Not shown in Figure 3.6b

is convergence to the 0.5 level after about 7000 trials.) With no payload, the increase in

coupling mirrors the drop in effort,1 and with all but the lightest payloads, the results show

a statistically significant increase in coupling over the no-payload condition.

The results in Figure 3.6 demonstrate that active coordination by the control system

appears to play an important role for the weightlifting task. However, additional evidence

is needed to make a more definitive statement. To begin with, one should always expect

the coupling to increase from zero simply because the learning system is not expected to

keep the off-diagonal entries of the gain matrices fixed at their initial values (all zero).

Thus, the more relevant issue is whether the observed increase in coupling is greater than

expected. The no-payload condition provides a useful baseline in this regard, but these

results take on greater significance after examining the average total “mass” of the gain

matrices, quantified as

1
M

M
∑

i=1

∑

j,k

|wi
jk|,

where wi
jk denotes an entry of the ith matrix. In particular, Figure 3.7 shows a modest

increase in total mass as learning proceeds, from the initial value of 3 (ones along the

diagonal) to less than 5.0 after 5000 trials. Even if one assumes that adjustments of the

gain matrices occur randomly—with all of the extra mass falling in the off-diagonal entries,

on average—then the observed increase in mass is still insufficient to explain all of the

observed increase in coupling. In short, the learning system takes advantage of the structure

afforded by the gain matrices.

1With increasing payload, the effort drops early in the learning process but then increases along with the
overall difficulty of the task.
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Figure 3.6. Effects of payload and learning on coupling and effort for (a) the standard
solution and (b) the reversal solution. Pairs of solid markers denote statistically significant
differences (p < 0.01) at the corresponding trial number.

The most compelling evidence that active joint coupling carries functional significance

for the robot weightlifter comes from a series of experimental manipulations. For one ex-

treme condition the gain matrices were held fixed at their initial values, i.e., at identity,

effectively eliminating them from the control system. At the other extreme all entries re-

50



3.0

3.5

4.0

4.5

5.0

5.5

0 1000 2000 3000 4000 5000
Trials

G
ai
n 
M
at
rix
 “M
as
s”

increasing payload 
no payload

 N=25 runs (b)

3.0

3.5

4.0

4.5

5.0

5.5

0 1000 2000 3000 4000 5000
Trials

G
ai
n 
M
at
rix
 “M
as
s”

increasing payload 
no payload

 N=25 runs (a)

Figure 3.7. Effects of payload and learning on gain matrix “mass” for (a) the standard
solution and (b) the reversal solution. Pairs of solid markers denote statistically significant
differences (p < 0.01) at the corresponding trial number.

mained free parameters for the learning system to adjust as described above. Respectively,

these conditions are denoted “Identity” and “Free” in Figures 3.8 and 3.9 below. In be-

tween these extremes are several conditions where the entries of the gain matrices are free

parameters, but with the added constraint that the coupling never exceed a specified value.
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Whenever the SRS algorithm selects a test point that violates this constraint, the learn-

ing system draws additional normally distributed samples until an admissible test point is

found.

Figure 3.8 shows the effects of coupling on the maximum payload lifted successfully at

the end of each learning run. One prominent feature in the figure is the statistically signifi-

cant advantage that the reversal solution holds over the standard solution. This qualitative

result is supported as well by Figure 3.9, which shows the effects of coupling on the effort

used to lift a 2 kg payload. However, one caveat is that for both conditions where coupling

is eliminated, the robot performs worse with the reversal solution than with the standard

solution.

Figures 3.8 and 3.9 actually show results from experimental manipulation of the via

points as well as the coupling. In particular, the figures show the effects of coupling for

two sets of conditions: one where the via points are free parameters for the learning system,

and one where the via points are held fixed at their initial values. There are no statistically

significant differences between these sets of conditions; all of the observed differences are

due to manipulation of the coupling. Moreover, for both solution strategies these differ-

ences show that without active joint coupling the robot is considerably impaired in terms

of both efficiency and success at the primary task of lifting a heavy payload. With regard

to maximum payload, for instance, the coupling enables more than 75% improvement for

the standard solution and more than ten-fold improvement for the reversal solution.

3.5.3 Case Study With a Real Robot

As a “proof of concept” I designed a low-cost robot to demonstrate the successful appli-

cation of the SRS algorithm with real hardware. Figure 3.10 shows a close-up of the robot

near its via point for the standard solution. The joints were actuated by small servomotors,

with position commands sent by a host computer at a rate of 10 Hz. Factory-supplied con-

trol circuits performed an unknown, nonlinear mapping from position command to motor
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Figure 3.8. Effects of coupling and via points on maximum payload for (a) the standard
solution and (b) the reversal solution. The coupling condition refers to the makeup of the
gain matrix throughout learning, with numerical labels indicating the maximum allowed
coupling.

current, with velocity-dependent adjustments made by additional circuitry that sensed each

motor’s back-EMF. Control of the robot was complicated by these and other unmodeled ef-

fects such as backlash and friction in the motor gearboxes, sensor noise from the feedback
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Figure 3.9. Effects of coupling and via points on effort with a 2 kg payload for (a) the stan-
dard solution and (b) the reversal solution. The coupling condition refers to the makeup
of the gain matrix throughout learning, with numerical labels indicating the maximum al-
lowed coupling. Data apparently missing from the plots correspond to conditions where
the robot was unsuccessful for every attempt at the 2 kg level.

potentiometers, and variability in the robot’s configuration at the start of each trial. Neither

torque nor current feedback was available to quantify the robot’s effort, and so the task was

modified to use a minimum-time performance criterion.
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Figure 3.10. Real robot weightlifter near the via point for the standard solution.

Figure 3.11 shows the robot during representative trials using the standard and reversal

solutions. Through learning, the real robot approximately doubled its payload capacity,

and much like the simulated robot, that capacity was about 50% more for the reversal

solution, both before and after learning. For the examples in the figure, active joint coupling

increased from zero to about 0.3 after 300 trials.

Extensive experiments that confirm the benefits of joint coupling were infeasible with

this robot, although Figure 3.12 illustrates one way that learning improved performance.

The leftmost panel shows that without learning, the payload caused the robot to bend down-

ward, away from the via point configuration shown previously in Figure 3.10. In turn, this

caused the robot to follow an inefficient path horizontally (panel b) before proceeding to the

goal. With learning and the same payload, however, the robot achieved a more favorable

configuration prior to the first switch time (panel c). For the remainder of the movement the

payload followed a nearly straight path toward the goal as illustrated by the configuration

in the rightmost panel. For this particular demonstration, the observed improvements were
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Figure 3.11. Representative examples of (a) the standard solution and (b) the reversal
solution for the real robot.

Figure 3.12. Effects of learning for the standard solution during movement toward the via
point, (a) and (c), and toward the goal, (b) and (d).

due in part to adjustments of the second component of the via point, i.e., the target angle

for the middle joint, although adaptation of the gain matrix appeared to play a larger role.

3.6 Discussion

As suggested in Chapter 1, the research described to this point is largely about motor

coordination. However, one machine learning result worth mentioning is that a simple

algorithm was able to solve a complicated task—once given the requisite structure in the

control policy. More generally, the use of domain knowledge shifts some of the burden

when solving a problem onto the designer, or coach, and away from the learning system.

General-purpose learning algorithms are certainly desirable although for some types of
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problems, such as those involving robot manipulators, strong biases are needed to make

machine learning practical. This was especially true for the robot described in the preceding

section, since each trial was costly in terms of both experiment time and needed repairs.

The approach I demonstrated in this chapter involved the use of a small number of PD

controllers for the design of biases that are general for a class of problems, yet easily

tailored to the task at hand.

As mentioned in Section 3.4, one criticism of equilibrium-point styles of motor control

is the need for virtual trajectories to explain complicated multi-joint movements. Van In-

gen Schenau et al. [150] also argued that equilibrium-point models are kinematic in nature

and, therefore, ill-suited for tasks that exploit dynamics or require control of contact forces.

In a similar fashion, Turvey [146] argued not against equilibrium-point models per se, but

rather against the chaining of movement primitives as a means for achieving coordination.

Although I agree with these criticisms, primitive actions and equilibrium-point control nev-

ertheless play a key role in this thesis. In particular, the movement primitives associated

with the via points and the goal configuration supply the hierarchical motor program with

an initial kinematic solution that the learning algorithm then transforms into one that ex-

ploits dynamics. For the robot weightlifter the observed movement is fluid and whole, with

the switch from one PD controller to the next unrecognizable after sufficient learning.

The experimental results for the robot weightlifting task also show that the dominant

factor for success is not the timing at the open-loop level, the detailed arrangement of

the via points, nor the overall gain of the PD controllers. Instead, the results point to the

active joint coupling afforded by the gain matrix as the primary means for coordination. In

particular, the observed increase in coupling causes the robot’s control system to act as a

single functional unit, which I interpret as the formation of a motor synergy.

One way to characterize synergies is that they solve Bernstein’s problem by specifying

the form of coupling needed to reduce the number of effective degrees of freedom. For

instance, locking a joint specifies a rigid coupling between two linkages. A more sophis-
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ticated synergy might involve a linear relationship between joint motions, as demonstrated

by McDonald et al. [99] for dart throwing, by Van Emmerik [148] for drawing movements,

and by Vereijken et al. [151] for a slalom-like ski task. These studies all concluded that,

with practice, participants release degrees of freedom and decouple individual joints, as

reflected by a decrease in cross-correlations of the various joint motions. The results in

Section 3.5.2 apparently contradict these studies. However, the observed increase in cou-

pling by the gain matrices does not imply any particular relationship among the external

joint motions—due to the dynamic effects of the manipulator as well is the internal control

system.

The main contribution of this chapter was a particular model of motor skill acquisi-

tion that allowed us to witness the formation of synergies that exploit dynamics. More-

over, these synergies evolved in a way contrary to the state of the art for industrial robots,

whereby feedback linearization is used to design a control system that decouples each joint

from the others. The observed increase in coupling demonstrated a progression from in-

dependent PD controllers to a “smart” nonlinear controller with substantial communica-

tion among components. In conclusion, these observations point me toward the following

hypothesis for human coordination: Practice, i.e., learning, transforms a simple, perhaps

latent synergy into one that is more sophisticated with tighter coupling from the internal

control system, despite any observed decoupling of the kinematic variables.
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CHAPTER 4

VELOCITY-DEPENDENT DYNAMIC MANIPULABILITY

The previous chapter demonstrated statistically significant differences between the two

basic solutions to the robot weightlifting task. These solutions differ not only in terms of

efficiency and maximum payload achieved but also in the form of the movement, i.e., each

solution visits a separate region of the robot’s configuration space. In this chapter I provide

a theoretical analysis which shows that the robot has different capabilities in these regions.

This result, in turn, suggests a general strategy for choosing via points for certain tasks,

like weightlifting, that require a robot to exploit its velocity-dependent dynamics.

4.1 Manipulability as a Measure of Robot Performance

Any suitable measure that summarizes the capabilities of a manipulator may provide

useful information for both the design of multi-purpose robots and for the subsequent

planning or learning of efficient movements. Yoshikawa [166] suggested one such mea-

sure based on the volume of the manipulability ellipsoid, as derived from a manipulator’s

kinematic properties, i.e., the Jacobian. Similarly, Chiu [41] viewed a manipulator as a

“mechanical transformer” and used the Jacobian to describe the duality between velocity

and force transmission capabilities. Chiu also defined the compatibility index as a basis

for computing postures that optimize a robot’s performance at a particular task [41]. One

canonical example is a planar manipulator with revolute joints and the arm fully “extended”

to the edge of its work space. In such configurations, the robot has lost the (instantaneous)

ability to move its end-effector inward. The dual, however, is that the manipulator can
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withstand any inward force applied at its end-effector, up to the limits of the load-bearing

structures at each joint.

A number of variations of this work dealt with dynamics in addition to the kinematic

characteristics of a robot. For instance, Asada [9] described the generalized inertia ellip-

soid (GIE) that characterizes the effective inertia of a manipulator with reference to forces

applied at the end-effector. In other words, the GIE describes how the end-effector will

move due to an external load, rather than due to its own actuators. In contrast, Yoshikawa

later proposed the dynamic manipulability measure [165] which quantifies acceleration

capabilities by incorporating the manipulator mass matrix in addition to the Jacobian. Sub-

sequently, Chiacchio and colleagues demonstrated that gravity induces a translation of the

dynamic manipulability ellipsoid [40] and also that a weighted Jacobian—one that accounts

for inertia and torque limits—provides a better match between such ellipsoids and the cor-

responding acceleration polytopes [39]. (Details follow shortly.)

Despite considerable progress with regard to measures of dynamic manipulability, rel-

atively little attention has been paid to the effects of velocity-dependent dynamics, i.e.,

Coriolis and centrifugal forces. One exception is the acceleration radius [64] which spec-

ifies a lower bound on the isotropic acceleration capabilities of the end-effector from any

admissible state. Another exception is the motion isotropy hypersurface [28] that general-

izes the acceleration radius by handling the qualitative mismatch between translational and

rotational coordinates, cf. [54].

The drawback of such analyses, however, is their emphasis on isotropic capabilities

and worst-case performance. A manipulator may be highly efficient at accelerating its

end-effector along some trajectories, even when its isotropic capabilities are diminished or

lost altogether. As shown in Section 4.3.3, this scenario is precisely the one observed for

the robot weightlifting task of Chapter 3. The goal of this chapter is to provide further

insight about the role that velocity plays for manipulability. In particular, I demonstrate
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that internal motion of a redundant manipulator as well as movement of its end-effector

can have a complex, non-negligible effect on a robot’s acceleration performance.

4.2 Dynamic Manipulability

As described in Chapter 2, the equation of motion for an open-chain manipulator with

n rigid links and with no friction can be expressed as

τ = M(q)q̈ + C(q, q̇) + G(q), (4.1)

where τ is an n × 1 vector of joint actuator torques and q, q̇, and q̈ are n × 1 vectors of

generalized joint positions, velocities, and accelerations, respectively. In Eq. (4.1), M(q)

is the n× n mass matrix that captures the configuration-dependent inertial properties of the

robot, C(q, q̇) accounts for Coriolis and centrifugal forces, and G(q), represents the vector

of joint torques due to gravity.

Let x = [x1 x2 · · · xm]T denote the m-dimensional task vector associated with the tip

of the manipulator. In this thesis I consider only translational accelerations of the end-

effector, not rotational accelerations, and so x is the Cartesian position of the end-effector

with m ≤ 3. The mapping of positions from joint space to task space is nonlinear, and the

m × n Jacobian matrix J represents the first-order term in a Taylor expansion of this map-

ping. Thus the Jacobian also describes the configuration-dependent relationship between

velocities in the two coordinate systems:

ẋ = J(q)q̇. (4.2)

Differentiating Eq. (4.2) with respect to time yields the corresponding relationship for ac-

celerations:

ẍ = J(q)q̈ + J̇(q, q̇)q̇. (4.3)
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4.2.1 Ellipsoid Derivation

Since the manipulator mass matrix is positive definite and, therefore, invertible, one

can solve Eq. (4.1) for q̈ and substitute the result into Eq. (4.3). Dropping the explicit

dependencies on q and q̇, the result is the following expression in terms of actuator torques

rather than joint accelerations:

ẍ = JM−1(τ − C−G) + J̇q̇ (4.4)

= JM−1
τ + ẍvel + ẍgrav, (4.5)

where

ẍvel = −JM−1C + J̇q̇ (4.6)

and

ẍgrav = −JM−1G. (4.7)

As in [39], if we assume symmetric torque limits such that

−τ limit
i ≤ τi ≤ +τ limit

i , i = 1, . . . , n,

then the normalized actuator torques, τ̃ , can be written as

τ̃ = L−1
τ ,

where L = diag(τ limit
1 , . . . , τ limit

n ). The set of admissible torques can then be represented as

a unit hypercube defined by 2n inequalities written in the following compact form [39]:

‖τ̃‖∞ ≤ 1.
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Substituting Lτ̃ for τ in Eq. (4.5) yields

ẍ = JM−1Lτ̃ + ẍvel + ẍgrav (4.8)

= JM−1Lτ̃ + ẍbias, (4.9)

where ẍbias = ẍvel + ẍgrav is a bias term that represents the end-effector acceleration when

the joint actuators are quiescent, i.e., when τ̃ = 0.

Eq. (4.9) maps the n-dimensional hypercube defined by ‖τ̃‖∞ ≤ 1 to a polytope of

dimension m that delimits the set of feasible end-effector accelerations. Alternatively,

Eq. (4.9) can be used to map the n-dimensional sphere defined by

τ̃
T
τ̃ ≤ 1 (4.10)

to an m-dimensional ellipsoid. This dynamic manipulability ellipsoid is derived by solving

Eq. (4.9) for τ̃ and by substituting the result into Eq. (4.10):

[(JM−1L)−1(ẍ− ẍbias)]
T[(JM−1L)−1(ẍ− ẍbias)] ≤ 1 (4.11)

(ẍ− ẍbias)
T(L−1MJ−1)T(L−1MJ−1)(ẍ− ẍbias) ≤ 1 (4.12)

(ẍ− ẍbias)
T(J−1)TMT(L−1)TL−1MJ−1(ẍ− ẍbias) ≤ 1. (4.13)

Since M and L are both symmetric, the previous result simplifies to

(ẍ− ẍbias)
T(J−TML−2MJ−1)(ẍ− ẍbias) ≤ 1. (4.14)

The matrix J−TML−2MJ−1 from Eq. (4.14) determines the shape of the dynamic ma-

nipulability ellipsoid. Each eigenvector, vi, of this matrix specifies one of the ellipsoid’s

principal axes, the length of which is given by 1/
√

wi, where wi is the corresponding eigen-

value. The shape of the “kinematic” manipulability ellipsoid, on the other hand, is de-

termined by J−TJ−1, with no correction for the manipulator’s inertia and actuator torque

limits.
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Computation of the actual ellipsoid requires a suitable inverse for the Jacobian, which,

in general, is not square. Following the recommendation by Chiacchio [39], I utilize the

weighted pseudoinverse of the Jacobian:

J†
Q = Q−1JT(JQ−1JT)−1,

where Q = ML−2M is a weight matrix that accounts for both inertia and torque limits. In

summary, the shape of the “weighted” dynamic manipulability ellipsoid is determined by

the eigenvectors and eigenvalues of

N = J†T

Q QJ†
Q.

See [39] for further details.

4.2.2 Velocity Effects

Chiacchio et al. [40] demonstrated previously that ẍgrav has the effect of translating

the center of the dynamic manipulability ellipsoid away from the origin where ẍ = 0.

Even small translations can have a dramatic effect on the achievable accelerations in some

directions, especially when ẍgrav is aligned approximately with the ellipsoid’s minor axis.

Eqs. (4.8)-(4.14) show that the velocity dependent terms from Eq. (4.6) have a similar effect

on dynamic manipulability. Moreover, the overall displacement given by ẍbias is sometimes

dominated by ẍvel as demonstrated in the following section.

Returning for the moment to Eq. (4.1), one can show that C(q, q̇) is bounded by a

quadratic in q̇ such that

‖C(q, q̇)‖ ≤ c(q)‖q̇‖2,

where c(q) is a known scalar function specified by the manipulator’s inertial properties and

‖·‖ is any appropriate norm [89]. Moreover, if the joints are all revolute, then c(q) becomes
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a constant independent of configuration [89]. And since M−1 is bounded [46], one can

derive similar relationships for both terms in Eq. (4.6) and, therefore, for ẍvel as well:

‖ẍvel(q, q̇)‖ ≤ β(q)‖q̇‖2, (4.15)

where β(q) is another known scalar function of q.

Eq. (4.15) provides further intuition about the effects of velocity on manipulability.

Nominally, the acceleration bias is quadratic in the joint velocity. However, Eq. (4.15)

represents an upper bound and provides no indication for which states ‖ẍvel‖ is small even

when ‖q̇‖2 is relatively large. Eq. (4.15) also fails to capture the orientation of ẍvel which

can change dramatically over a short period of time. Theoretical limitations such as these

motivate the use of case studies to gain further insight about the role that velocity plays for

manipulability.

4.3 Case Studies

The examples studied in this section all utilize the planar three-link manipulator de-

scribed by Chiacchio [39]. Each link is modeled as a rigid rod with uniform density and

with inertial parameters set as follows:

link length (m) mass (kg)

1 1.0 4.0

2 0.8 2.0

3 0.5 0.6

Eq. (4.1) summarizes the dynamics of this manipulator, with gravity acting downward and

with actuator torques normalized by L = diag(100, 30, 4) Nm.
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4.3.1 Increasing Velocity

The first case study replicates one by Chiacchio [39] with the addition of a velocity

component. In particular, consider the configuration

q =

[

+π

2 −π

2 −π

2

]T

shown in Figure 4.1, but with joint velocities q̇1 = q̇2 = q̇3 = ω, for ω increasing from 0 to

4 rad · s−1. For the case ω = 1 rad · s−1 we have

M =













4.494 0.711 −0.100

0.711 0.861 0.050

−0.100 0.050 0.050













,

C =

[

4.440 −0.680 −0.480

]T

,

G =

[

12.569 12.570 0.000

]T

,

J =







−0.500 0.500 0.500

0.800 0.800 0.000






,

and

J̇q̇ =

[

−3.200 3.500

]T

.

Then from Eqs. (4.6) and (4.7) we have

ẍvel =

[

1.072 3.697

]T
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Figure 4.1. Acceleration polytope and dynamic manipulability ellipsoids for a three-link,
planar manipulator with q = [+π

2
−π

2
−π

2 ]T and q̇ = [1 1 1]T.

and

ẍgrav =

[

0.000 −12.400

]T

.

Thus for ω = 1, ‖ẍgrav‖ is more than three times greater than ‖ẍvel‖. In this case, the over-

all translation given by ẍbias is attributed primarily to the gravity component, as exhibited

by a small offset between the ellipsoids in Figure 4.1. In the figure, the polytope (light

gray) and corresponding ellipsoid (white cutout) depict the manipulator’s true acceleration

capabilities with corrections for both gravity and velocity, i.e., with ẍbias = ẍvel + ẍgrav. Su-

perimposed is the dynamic manipulability ellipsoid (dark gray) with correction for gravity

only, i.e., with ẍbias = ẍgrav. Small circles denote the position of the end-effector (black),

the centroid of the polytope (white), and the center of the gravity-corrected ellipsoid (gray).

Despite the greater influence of the gravity bias in Figure 4.1, Figure 4.2 shows that ẍvel

grows quadratically in ‖q̇‖ as expected. (Empirically, Eq. (4.15) holds with equality for

β = 1.28.) In this particular example, the inner product of ẍvel and ẍgrav is negative, and so

ẍvel cancels part the offset due to gravity. Shown in Figure 4.2 are the acceleration radius

67



0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

Aa

A
a

A
cc

el
er

at
io

n 
(m

 • 
s–2

)

˙̇x vel

˙̇xgrav

r*

q̇ (rad • s–1)

Figure 4.2. Acceleration versus joint velocity magnitude with q̇1 = q̇2 = q̇3 = ω.

(gray curve) and the magnitude of the acceleration offsets due to gravity and velocity (light

and heavy curves, respectively). The small arrow marks the value of ‖q̇‖ that corresponds

to ω = 1 as in Figure 4.1. For ‖q̇‖ < 3, the effect is improved isotropic capabilities,

as indicated by the increased acceleration radius, r*.1 When velocity grows beyond about

‖q̇‖ = 3, however, r* decreases toward zero, since ẍvel grows large enough to dominate

ẍgrav and eventually the polytope no longer encompasses the end-effector.

4.3.2 Exploiting Redundancy

It is well known that redundancy can complicate a control problem but, at the same

time, can expand the capabilities of a robot, e.g., for singularity avoidance. One approach

for dealing with redundancy is to use heuristic strategies derived from theoretical consid-

erations. For instance, Chiacchio [38] suggested that for minimum-time control, one could

exploit redundancy to align more closely the surface of the acceleration ellipsoid with the

tangent to the task space path. The next example demonstrates that redundancy can also be

1As defined in [64], the acceleration radius represents the size of the largest sphere which is centered on
the end-effector and fits within every acceleration polytope over the entire operating range of the manipulator.
In this chapter, I relax the latter requirement and plot r* separately for each state.
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moving
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(a)

(b)

(c)

(d)

q = 1.118 −1.290 −2.418[ ]T  rad q = 2.021 −2.296 −0.099[ ]T  rad

Figure 4.3. Acceleration polytope and dynamic manipulability ellipsoids for extreme pos-
tures that maintain the end-effector position at (0.8, 0.5).

used to reconfigure a robot such that internal motion of the manipulator, with no “external”

motion of the end-effector, improves the acceleration capabilities along some prespecified

direction.

Consider the manipulator shown previously in Figure 4.1, and suppose we wish to re-

configure this robot to maximize the achievable leftward acceleration of the end-effector.

In this scenario we also require that the end-effector position remain constant until the re-

configuration is (nearly) complete. One possible solution is to search for the best static

posture, with the gravity-corrected acceleration polytope as a means for evaluation. Fig-

ure 4.3a shows the outcome of this search, and the small offset between ellipsoids in Fig-

ure 4.3b illustrates that velocity (for movement as described shortly) has little effect at the

resulting configuration.
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Figure 4.4. Maximum leftward acceleration achievable at each position of joint 1.

However, if we repeat the search while evaluating the polytope corrected for velocity

as well as gravity, then the outcome is an entirely different posture with more than twofold

improvement in maximum achievable leftward acceleration (depicted by a horizontal line

from the end-effector to the leftmost point on the polytope). Shown in Figure 4.3d, this

result was generated for the case where joint 1 moves at a constant speed of 1 rad · s−1

and the remaining joints move in accordance with the inverse kinematics solution given q1.

Thus, when the manipulator is stationary, the configuration in panel (a) is preferred to that

in panel (c). This contrasts with a moving robot, for which the configuration in panel (d) is

preferred to the one in panel (b).

As summarized in Figure 4.4, for this example ẍvel makes little difference in the maxi-

mum leftward acceleration until the manipulator approaches the configuration

q =

[

2.02 −2.34 0.00

]T

,

where the two distal-most links become aligned. Shown are the two conditions where the

manipulator is either stationary (gray curve) or moving (black curve). Small arrows mark
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1.45s 1.80stime = 0.05s 0.40s 1.10s0.94s0.92s0.90s0.75s 2.15s

Figure 4.5. Acceleration polytope while raising a 6.5 kg payload to the unstable equilib-
rium.

the values of q1 that correspond to the configurations shown Figure 4.3. Notice that local

extrema occur whenever the active torque constraint changes at a polytope vertex.

4.3.3 Raising A Payload

The third case study demonstrates the benefits of passing through a singularity when

raising a heavy payload. From the previous example we saw that when two links become

nearly aligned, motion can lead to large displacements of the acceleration polytope and,

therefore, to large discrepancies between analyses that assume the robot is either stationary

or not. Large displacements of the polytope can be critical, perhaps catastrophic, to the

task at hand. Nevertheless, the example in Figure 4.3d illustrates the potential benefits of

large values for ẍvel. However, that example is unrealistic because the analysis assumed

that Cartesian position remains fixed, even when the polytope is displaced enough that

translation of the end-effector is unavoidable. This section makes no such assumption and,

instead, shows an analysis of a trajectory that emerges from a dynamic simulation of the

robot. Figure 4.5 illustrates one such trajectory for the weightlifting task of Chapter 3.

In the figure, the acceleration attained at each time step is depicted as a vector from the

end-effector to a point within the acceleration polytope (gray). Perhaps the most prominent

feature of Figure 4.5 is the relatively small size of the polytope. (Close-ups are shown in the

lower panels.) As expected, the heavy payload has an adverse effect on those capabilities
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attributed to the size and shape of the polytope. However, the payload does not necessarily

impair the robot’s ability to generate a wide range of accelerations at the required moments.

This is evidenced by the varied orientation and magnitude of the vectors in the figure.

Of particular interest from this example is motion leading to the singularity near time

t = 0.92 s (frame five of Figure 4.5). Near the beginning of the movement, at t = 0.05 s,

all three joint actuators operate at their torque limits and the corresponding end-effector

acceleration lies at a vertex of the polytope. Close to time t = 0.40 s the robot, with low

velocity, achieves a posture that facilitates the next phase of the movement. In particular,

at t = 0.75 s the manipulator begins a downward acceleration toward the singularity, and

by t = 0.92 s, a large vertical acceleration “kicks” the payload upward.

As suggested by Figure 4.6a, the upward kick is due almost entirely to the large value

of ẍvel induced by motion near the singular configuration. The plot shows the accelera-

tion radius (gray curve, barely visible) and the magnitude of the acceleration offsets due

to gravity and velocity (light and heavy curves, respectively). The lower plot, Figure 4.6b,

shows the potential, kinetic, and total energy during the movement (light, heavy, and gray

curves, respectively). Thus, the singularity appears to offer an efficient means for “focus-

ing” kinetic energy to produce movement in a particular direction. The robot then achieves

a “folded” configuration, and with a shorter effective moment arm against gravity, the ma-

nipulator then appears well suited to generate potential energy. After about t = 1.5 s, the

remainder of the movement deals primarily with the coordinated transfer of kinetic energy

to potential energy, rather than the production of additional energy for the system.

4.4 Posture-Dependent Estimates of the Velocity Bias

The previous example illustrates that the acceleration polytope is helpful for a poste-

riori analysis of an emergent trajectory. However, the present challenge is to incorporate

velocity-dependent effects as part of a priori analysis of manipulability. Can one still use

the acceleration polytope (or ellipsoid) to determine favorable postures with which to bias
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Figure 4.6. Acceleration (a) and energy (b) versus time for the trajectory illustrated in
Figure 4.5.

a trajectory planner or learning algorithm? The results to this point suggest that this goal

is a difficult undertaking, especially for manipulators that move at high speed. It turns out,

however, that one can use Eq. (4.6) to compute an estimate of the velocity bias for a given

posture, with no prior knowledge of the actual velocity.

In Eq. (4.6), ẍvel depends on velocity explicitly through the term J̇q̇ and also implic-

itly through the dependence of both C and J̇ on q̇. Thus, to compute the true value of

ẍvel one actually needs the value of q̇, but in lieu of this prior information one can simply

choose q̇ randomly according to a distribution consistent with whatever information may

be available. Figure 4.7 shows the result of applying Eq. (4.6) for 2500 values of q̇ cho-
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(a) (b) (c)

q̇ =1.75  rad • s–1 q̇ =3.00  rad • s–1 q̇ =7.00  rad • s–1

Figure 4.7. Distribution of ẍvel for randomly chosen values of q̇.

sen to have constant magnitude yet random orientation. Each cloud of points depicts the

distribution of ẍvel for the posture shown previously in Figure 4.1. As with the example

in Section 4.3.1, the figure also shows the gravity corrected ellipsoid (dark gray) and the

acceleration polytope for the case where all three joints move at the same speed.

When ‖q̇‖ is small as in Figure 4.7(a), the velocity bias is also small as expected, and

the corresponding cloud of points is barely visible. However, panels (b) and (c) show that

as velocity grows the distribution of ẍvel also grows, yet remains oriented in a direction

roughly opposite that of the gravity bias, ẍgrav . This generalizes the qualitative results of

Figure 4.2 to situations where the joints may not be moving at the same speed. That is,

for increasing magnitude of q̇, the isotropic capabilities of the manipulator first improve

for some intermediate values and then diminish until lost altogether when the polytope

becomes displaced far enough from the end-effector.

These empirical results demonstrate how one can improve upon the information pro-

vided by usual measures of manipulability, which evaluate postures irrespective of move-

ment. However, the approach taken in this section does not preclude the use of approximate

knowledge regarding velocity. For example, if the proximal joint is known to be moving

slowly, then the randomly distributed values of q̇ can be filtered to discard those values

where |q̇1| is large. Figure 4.8 shows the situation where the (actual or desired) direction

of end-effector movement is prespecified; each cloud of points is filtered to include only

those values of ẍvel for which the orientation of ẋ = Jq̇ is within 15 degrees of the arrows
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Figure 4.8. Distribution of ẍvel for ‖q̇‖ = 7 and q̇ filtered by the direction of end-effector
movement.

shown in each panel.2 Panel (b), for instance, shows a pair of directions of end-effector

movement where the velocity bias is small, despite the large magnitude of q̇. Similarly,

panel (e) shows a pair of directions where ẍvel is large, though not universally so.

Even with prior knowledge of velocity, the value of ẍvel may prove to be of limited use

for planning the details of an efficient trajectory. More specifically, the velocity bias serves

2The velocity bias is quadratic in the joint velocity, and so for arbitrary q̇ the corresponding value of ẍvel

is the same as that for −q̇. Thus, each “double” arrow in Figure 4.8 is associated with two separate, yet
identical distributions of the velocity bias.
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(a) (b)

Figure 4.9. Orientation of ẍvel for representative postures from (a) the standard and (b) the
reversal solution to the weightlifting task.

as an additional performance criterion that complicates an already difficult search proce-

dure based on conventional measures of manipulability. Nevertheless, the results may be

extremely beneficial for choosing among qualitatively distinct solutions to a particular task.

This kind of “task redundancy” differs from the usual notion of manipulator redundancy,

where measures of manipulability are used to optimize movement in the null space of some

primary objective, cf. Eq. (2.3). For the weightlifting task of Chapter 3, task redundancy

refers to the choice between the “standard” and “reversal” solutions, each of which is also

redundant in the usual sense. Figure 4.9 shows representative postures from both solutions,

along with arrows that depict the orientation of ẍvel.3 For the reversal solution, the velocity

bias is directed to facilitate raising of the payload. Regardless of the singularity analysis in

Section 4.3.3, the reversal solution therefore appears best suited for the weightlifting task.

3The three-link pendulum is a degenerate case such that for randomly chosen joint velocities, ẍvel is
distributed along a straight line as shown in the figure.

76



4.5 Discussion

Measures of manipulability are intended as a description of a robot’s capabilities—

before specification of a task. Implicit in such measures is the assumption that the robot is

either motionless (cf. dynamic manipulability measure [166]) or else moving slowly (cf.

acceleration radius [64]). Although the analysis of stationary manipulators is “fundamen-

tal” [166] for a deeper understanding of the relationship between manipulability ellipsoids

and performance, the examples in this chapter demonstrate that motion has a complex,

non-negligible effect on dynamic manipulability.

With the weightlifting example in Figure 4.5, for instance, we saw that displacement of

the acceleration polytope plays a more instrumental role than the polytope size or shape.

This example was a somewhat extreme demonstration that, with some tasks, it may be

desirable for the robot’s capabilities to be momentarily skewed one way or another. The

relationship between control signal and ellipsoid (or polytope) is complex as well. Though

not obvious from Figure 4.5, some actuator commands appear to drive the robot toward a

desired posture, whereas others seem to reposition the polytope in anticipation of future

needs. I interpret these subtle complexities, not as an inability on the part of the robot, but

rather as an impediment for the design of a suitable control system. For this reason (and

others) I speculate that intelligent control and machine learning techniques will become

more prevalent for manipulator control.

Despite the difficulties with the design of coordinated movement, the example in Sec-

tion 4.3.3 provides evidence that singular configurations may be useful in this regard.

Wang et al. [156] also observed the benefits of singular configurations. Their work ex-

tended the payload capacity of a Puma industrial robot by formulating an optimal control

problem and by solving the corresponding nonlinear optimization problem. Singular con-

figurations were explicitly part of neither the problem nor the solution technique, yet the

best trajectories routinely passed through singularities. Wang et al. offered the following

explanation [156]: Singular configurations are beneficial because the robot structure sup-
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ports heavy loads, thereby freeing the actuators to contribute increased torque for some

other aspect of the task.

This interpretation is consistent with “kinematic” manipulability based on the Jaco-

bian alone, i.e., the enhanced static force transmission near singularities. The results in

this chapter, however, suggest that dynamic effects are important as well. In particular, I

demonstrated that large displacements of the acceleration polytope occur for motion near

singular configurations. These results, like other work on dynamic manipulability, describe

the capabilities of the robot and its actuators, whereas the static force ellipsoid describes

the mapping between end-effector force and net joint torque—with no explicit role for the

actuators.

With regard to robot skill acquisition, this chapter provides theoretical underpinnings

for the selection of via points to test in the learning framework of Chapter 3. In particular,

for high-speed movements one can use the empirical approach described in Section 4.4 to

find those candidate via points most compatible with the task. And for the weightlifter, this

work also provides the basis for explaining the observed advantage of the reversal solution

over the standard solution.
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CHAPTER 5

SUPERVISED ACTOR-CRITIC REINFORCEMENT LEARNING

For robot manipulators, the standard solution to a movement problem involves, not

machine learning, but rather the construction of a kinematic trajectory that becomes the

input to a tracking controller. This approach often comes with associated performance

guarantees, although at the price of inefficient movements that fail to exploit dynamics. The

goal of this chapter is to get the best of both worlds by combining standard techniques for

manipulator control with a system that learns to exploit dynamics. In particular, I describe

a supervised actor-critic architecture, whereby a feedback controller acts as a supervisor

that provides another source of information, in addition to the critic, with which to improve

the actor’s policy.

5.1 Combining Supervised Learning with Reinforcement Learning

Reinforcement learning (RL) and supervised learning are often portrayed as distinct

methods of learning from experience. RL methods are often applied to problems involv-

ing sequential dynamics and optimization of a scalar performance objective, with online

exploration of the effects of actions. Supervised learning methods, on the other hand, are

frequently used for problems involving static input-output mappings and minimization of a

vector error signal, with no explicit dependence on how training examples are gathered. As

discussed by Jordan and Rumelhart [75] RL and supervised learning differ not so much in

the algorithms employed but rather in the nature of the problems solved. The distinguish-

ing feature is whether feedback from the environment serves as an evaluation signal or as
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an error signal, and the focus of this chapter is problems where both kinds of feedback are

available to a learning system at the same time.

As an example, consider a young child learning to throw a ball. For this motor task,

as well as many others, there is no substitute for ongoing practice. The child repeatedly

throws a ball under varying conditions and with variation in the executed motor commands.

Bernstein [21] called this kind of trial-and-error learning “repetition without repetition.”

The outcome of each movement, such as the visual confirmation of whether the ball reached

a nearby parent, acts as an evaluation signal that provides the child with feedback about the

quality of performance—but with no specific information about what corrections should

be made. In addition, the parent may interject error information in the form of verbal

instruction or explicit demonstration of what went wrong with each preceding throw. In

reality, the feedback may be much more subtle than this. For instance, the final position

of the ball reveals some directional information, such as too far to the left or the right;

a learned forward model [75] can then be used to make this corrective information more

specific to the child’s sensorimotor apparatus. Similarly, the tone of the parent’s voice may

provide evaluative praise simultaneously with the verbal error information. In any case, the

two kinds of feedback play interrelated, though complementary roles [15]: The evaluation

signal drives skill optimization, whereas the error signal provides a standard of correctness

that helps ensure a certain level of performance, either on a trial-by-trial basis or for the

learning process as a whole.

To overcome some of the difficulties with RL alone, a number of researchers have

proposed the use of supervisory information that effectively transforms a learning prob-

lem into one which is easier to solve. Common examples involve shaping [53, 97, 108],

learning from demonstration [77, 92, 121, 133], or the use of carefully designed con-

trollers [72, 84, 112]. Approaches that explicitly model the role of a supervisor include

ASK FOR HELP [43], RATLE [96], and the mentor framework [115]. In each case, the

goal of learning is an optimal policy, i.e., a mapping from states to actions that optimizes
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some performance criterion. Despite the many successful implementations, none of these

approaches combines both kinds of feedback as described shortly. Either supervised learn-

ing precedes RL during a separate training phase, or else the supervisory information is

used to modify a value function rather than a policy directly. Those methods based on

Q-learning [157], for instance, build a value function that ranks the actions available in a

given state. The corresponding policy is then represented implicitly, usually as the action

with the best ranking for each state.

The approach taken in this chapter involves an actor-critic architecture for RL [18].

Actor-critic architectures differ from other value-based methods in that separate data struc-

tures are used for the control policy (the “actor”) and the value function (the “critic”). One

advantage of the actor-critic framework is that action selection requires minimal compu-

tation [138]. Actions are computed directly from the actor, whereas methods that lack

a separate data structure for the policy typically require a repeated search for the action

with the best value, and this search can become computationally prohibitive, especially for

real-valued actions as in the examples of Section 5.3.

Another important advantage of the actor-critic framework is that the policy can be

modified directly by standard supervised learning methods. In other words, the actor can

change its behavior based on state-action training pairs provided by a supervisor, without

the need to calculate the values of those training data. The critic (or some other compa-

rable mechanism) is still required for optimization, whereas the supervisor helps the actor

achieve a level of proficiency whenever the critic has a poor estimate of the value function.

In the next section I describe a supervised actor-critic architecture where the supervisor

supplies not only error information for the actor, but also actions for the environment.

5.2 Supervised Actor-Critic Architecture

Figure 5.1 shows a schematic of the usual actor-critic architecture [138] augmented

by three major pathways for incorporating supervisor information. Along the “shaping”
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Figure 5.1. Actor-critic architecture and several pathways for incorporating supervisor
information.

pathway, the supervisor supplies an additional source of evaluative feedback, or reward,

that essentially simplifies the task faced by the learning system. For instance, the critic

may receive favorable evaluations for behavior which is only approximately correct given

the original task. As the actor gains proficiency, the supervisor then gradually withdraws

the additional feedback to shape the learned policy toward optimality for the true task. With

“nominal control” the supervisor sends control signals (actions) directly to the controlled

system (the environment). For example, the supervisor may override bad commands from

the actor as a way to ensure safety and to guarantee a minimum standard of performance.

And along the “exploration” pathway, the supervisor provides the actor with hints about

which actions may or may not be promising for the current situation, thereby altering the

exploratory nature of the actor’s trial-and-error learning. The focus of this section is on

the latter two pathways and, in particular, on the use of supervised learning which offers a

powerful counterpart to RL methods.

The combination of supervised learning with actor-critic RL was first suggested by

Clouse and Utgoff [44] and independently by Benbrahim and Franklin [20]. Their ap-

proach has received almost no attention, yet the more general problem of how to com-

bine a teacher with RL methods has become quite popular. In their work, Benbrahim and

82



state
composite

action

reward

TD error

action

action

supervisory error
+

−

Supervisor

Environment

Critic

Gain
Scheduler

Composite Actor

Σ
Actor
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Franklin [20] used pre-trained controllers, called “guardians,” to provide safety and perfor-

mance constraints for a biped robot. Joint position commands were sent to the robot by a

central pattern generator, but those commands were modified by the guardians whenever a

constraint was violated. Superimposed with the joint position commands were exploratory

actions generated according to Gullapalli’s SRV algorithm [67]. In effect, the central pat-

tern generator learned not only from exploration, but from the guardians as well.

Figure 5.2 shows my version of the supervised actor-critic architecture, which differs

from previous work in a key way described in Section 5.2.2. Taken together, the actor, the

supervisor and the gain scheduler1 form a “composite” actor that sends a composite action

to the environment. The environment responds to this action with a transition from the

current state, s, to the next state, s′. The environment also provides an evaluation called the

immediate reward, r. The job of the critic is to observe states and rewards and to build a

value function, Vπ(s), that accounts for both immediate and future rewards received under

the composite policy, π. This value function is defined recursively as

Vπ(s) =
∑

s′∈S

Pr(s′|s,a){R(s′) + γVπ(s′)},

1“Gain scheduling” refers to the construction of a global nonlinear controller by interpolation, or schedul-
ing, of local linear controllers [126]. In this thesis I use the term in a broader sense to mean the blending of
two or more sources of control actions.
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where R(s′) is the expected value of r, γ ∈ [0, 1] is a factor that discounts the value of the

next state, and Pr(s′|s,a) is the probability of transitioning to state s′ after executing action

a = π(s). Here the focus is on deterministic policies, although this work also generalizes to

the stochastic case where π represents a distribution for choosing actions probabilistically.

For RL problems, the expected rewards and the state-transition probabilities are typi-

cally unknown, and learning must proceed from samples, i.e., from observed rewards and

state transitions. Temporal-difference (TD) methods [137] are commonly used to update—

on a per action basis—the state-value estimates, V(s), by an amount proportional to the TD

error, defined as

δ = r + γV(s′)− V(s).

Whenever the TD error is positive, the state of affairs is better than expected and so one

increases the estimated value of state s. Similarly, when δ < 0, the action chosen accord-

ing to π resulted in a situation worse than expected and so one decreases V(s). In short,

TD methods improve past estimates of the value function by using future—typically more

accurate—estimates of Vπ.

5.2.1 The Gain Scheduler

For deterministic policies and real-valued actions, the gain scheduler computes the

composite action, a, as simply a weighted sum of the actions given by the component

policies. In particular,

a← kaE + (1− k)aS,

where aE is the actor’s exploratory action and aS is the supervisor’s action, as given by

policies πE and πS, respectively. (The supervisor’s actions are observable but its policy is

unknown.) Denoted by aA is the actor’s greedy action determined by the corresponding
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policy, πA. Typically, πE is a copy of πA modified to include an additive random variable

with zero mean. Thus, each exploratory action is simply a noisy copy of the corresponding

greedy action, although there is certainly the possibility of more sophisticated exploration

strategies.

The parameter k ∈ [0, 1] interpolates between πE and πS, and therefore k determines

the level of control, or autonomy, on the part of the actor.2 In general, the value of k varies

with state, although I drop the explicit dependence on s to simplify notation. The parameter

k also plays an important role in modifying the actor’s policy, as described in more detail

below. I assume that πA is given by a function approximator with the parameter vector w,

and after each state transition, those parameters are updated according to a rule of the form

w← w + k∆wRL + (1− k)∆wSL, (5.1)

where ∆wRL and ∆wSL are the individual updates based on RL and supervised learning,

respectively. Thus, k also interpolates between two styles of learning.

The use of k—a single state-dependent parameter that trades off between two sources of

action and learning—allows for a wide range of interactions between actor and supervisor.

If the actor has control of the gain scheduler, for instance, then the actor can set the value of

k near 0 whenever it needs help from its supervisor, cf. ASK FOR HELP [43]. Similarly, if

the supervisor has control of the gain scheduler, then the supervisor can set k = 0 whenever

it loses confidence in the autonomous behavior of the actor, cf. RATLE [96]. The gain

scheduler may even be under control of a third party. For example, a linear feedback

controller can play the role of supervisor, and then a human operator can adjust the value

of k as a way to switch between actor and supervisor, perhaps at a longer time scale than

that of the primitive actions.

2For the stochastic case, k gives the probability that the gain scheduler chooses the actor’s exploratory
action rather than the supervisor’s action.
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5.2.2 The Actor Update Equation

To make the reinforcement-based adjustment to the parameters of πA the actor computes

∆wRL ← αδ(aE − aA)∇wπA(s), (5.2)

where α is a step-size parameter. Eq. (5.2) is similar to the update used by the REIN-

FORCE class of algorithms [162], although here I utilize the gradient of the deterministic

policy πA rather than that of the stochastic exploration policy πE. When the TD error is

positive, this update will push the greedy policy evaluated at s closer to aE, i.e., closer to

the exploratory action which led to a state with estimated value better than expected. Sim-

ilarly, when δ < 0, the update will push πA(s) away from aE and in subsequent visits to

state s the corresponding exploratory policy will select this unfavorable action with reduced

probability.

To compute the supervised learning update, ∆wSL, the actor seeks to minimize in each

observed state the supervisory error

E =
1

2
[πS(s)− πA(s)]2.

Locally, this is accomplished by following a steepest descent heuristic, i.e., by making an

adjustment proportional to the negative gradient of the error with respect to w:

∆wSL ← −α∇wE(s).

Expanding the previous equation with the chain rule and substituting the observed actions

gives the usual kind of gradient descent learning rule:

∆wSL ← α(aS − aA)∇wπA(s). (5.3)
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Finally, by substituting Eqs. (5.2) and (5.3) into Eq. (5.1) one obtains the desired actor

update equation:

w← w + α[kδ(aE − aA) + (1− k)(aS − aA)]∇wπA(s), (5.4)

Eq. (5.4) summarizes a steepest descent algorithm where k trades off between two sources

of gradient information:3 one from a performance surface based on the evaluation signal

and one from a quadratic error surface based on the supervisory error. Table 5.1 gives a

complete algorithm.

As mentioned above, the architecture shown in Figure 5.2 is similar to one suggested

previously by Benbrahim and Franklin [20] and by Clouse and Utgoff [44]. However,

the approach in this chapter is novel in the following way. In the figure, I show a direct

connection from the supervisor to the actor, whereas the supervisor in both [20] and [44]

influences the actor indirectly through its effects on the environment as well as the TD error.

Using the notation herein the corresponding update equation for these other approaches,

e.g., [20, Eq. (1)], essentially becomes

w← w + α[kδ(aE − aA) + (1− k)δ(aS − aA)]∇wπA(s) (5.5)

= w + αδ[kaE + (1− k)aS − aA]∇wπA(s). (5.6)

The key attribute of Eq. (5.5) is that the TD error modulates the supervisory error, aS −

aA. This may be a desirable feature if one “trusts” the critic more than the supervisor, in

which case one should view the supervisor as an additional source of exploration. However,

Eq. (5.5) may cause the steepest descent algorithm to ascend the associated error surface,

especially early in the learning process when the critic has a poor estimate of the true value

3In practice an additional parameter may be needed to scale the TD error. This is equivalent to using two
step-size parameters, one for each source of gradient information.
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Table 5.1. The supervised actor-critic learning algorithm for deterministic policies and
real-valued actions.

input
critic value function, V (s),  parameterized by θ
actor policy, π A (s),  parameterized by w
exploration size, σ
actor step size, α,  and critic step size, β
discount factor, γ ∈ [0,1]
eligibility trace decay factor, λ

initialize θ,w arbitrarily
repeat for each trial

e ← 0 (clear the eligibility traces)
s ← initial state of trial
repeat for each step of trial

aA ← action given by π A (s)
aE ← aA + N(0,σ )
aS ← action given by supervisor’s unknown policy, π S (s)
k ← interpolation parameter from gain scheduler
a ← kaE + (1− k)aS

e ← γλe + ∇θV (s)
take action a,  observe reward, r,  and next state, ′s
δ ← r + γV ( ′s ) −V (s)
θ ← θ + βδe

w ← w + α kδ(aE − aA ) + (1− k)(aS − aA )[ ]∇wπ A (s)

s ← ′s
until s is terminal

function. Moreover, when δ is small, the actor loses the ability to learn from its supervisor,

whereas in Eq. (5.4) this ability depends primarily on the interpolation parameter, k.

5.3 Examples

This section presents several examples that illustrate a gradual shift from full control

of the environment by the supervisor to autonomous control by the actor. In each case, the

supervisor enables the composite actor in Figure 5.2 to solve the task on the very first trial

and on every trial, while it improves, whereas the task is virtually impossible to solve with

RL alone.
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For each example I used the learning algorithm in Table 5.1 with step-size parameters

of α = 0.1 for the actor and β = 0.3 for the critic. To update the critic’s value function,

I used the TD(λ) algorithm [137] with λ = 0.7. Both actor and critic were implemented

by a tile coding scheme, i.e., CMAC [3], with a total of 25 tilings, or layers, per CMAC.

One advantage of tile coding schemes is that each tile acts as a binary feature, and so

the algorithm in Table 5.1 was easily modified to take advantage of replacing eligibility

traces [129].

5.3.1 Ship Steering Task

For pedagogical purposes and also to facilitate future comparison with other methods, I

chose a standard problem from the optimal control literature where the task is to steer a ship

to a goal in minimum time [34]. The ship moves at a constant speed of C = 0.01 km · s−1,

and the real-valued state and action are given, respectively, by the ship’s two-dimensional

position and scalar heading. For this problem, the supervisor is a hand-crafted controller

that always steers directly toward the origin (0, 0). Under full supervision, this strategy

ensures that the ship will reach the goal eventually—but not in minimum time due to a

water current that complicates the task. More specifically, the equations of motion are

ẋ = C (cos φ− y), ẏ = C sin φ, (5.7)

where φ is the ship’s heading. Notice that the water current acts along the horizontal di-

rection, x, yet depends solely on the vertical position, y. The start location is x0 = 3.66,

y0 = −1.86, and the goal region has a of radius 0.1 km centered at the origin. A convenient

feature of this test problem is that one can solve for the optimal policy analytically [34],

and the dark curve in Figure 5.3 shows the corresponding optimal path. Under the optimal

policy the minimum time to goal is 536.6 s while the supervisor’s time to goal is 1111 s.

Eq. (5.7) was integrated numerically using Euler’s method with a step size of 1 s. Con-

trol decisions by the gain scheduler were made every 25 s, at which time the ship changed
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Figure 5.3. Ship steering task simulator after 1000 learning trials. The grayscale region
indicates the level of autonomy, from k = 0 (white) to k = 1 (black).

heading instantaneously. Exploratory actions, aE, were Gaussian distributed with a stan-

dard deviation of 10 degrees and a mean equal to the greedy action, aA. The CMAC tiles

were uniform with a width of 0.5 km along each input dimension. The actor CMAC was ini-

tialized to steer the ship leftward while the critic CMAC was initialized to V(s) = −1000,

for all s. Rewards were −1 per time step, and the discount factor was γ = 1, i.e., no

discounting.

To make the interaction between supervisor and actor dependent on state, the interpo-

lation parameter, k, was set according to a state-visitation histogram, also implemented as

a CMAC with 25 uniform tilings. At the end of each trial, the weights from the “visited”

histogram tiles were incremented by a value of 0.0008, for a total increment of 0.02 over

the 25 layers. During each step of the simulation, the value of k was set to the CMAC

output for the current state, with values cut off at a maximum of k = 1, i.e., at full auton-

omy. Thus, the gain scheduler made a gradual shift from full supervision to full autonomy

as the actor and critic acquired enough control knowledge to reach the goal reliably. A

decay factor of 0.999 was also used to downgrade the weight of each CMAC tile; in effect,

autonomy “leaked away” from infrequently visited regions of state space.
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Figure 5.4. Effects of learning for the ship steering task and 10 runs of 2500 trials each:
(a) time to goal, and (b) cumulative time to goal evaluated after every 100 trials of learning.
For the supervised learning seed trials the initial position of the ship was chosen randomly
from the region 0 ≤ x ≤ 6, −2 ≤ y ≤ 2.

Figure 5.4 shows the effects of learning for each of three cases. One case corresponds

to the supervised actor-critic algorithm in Table 5.1, with the parameter values described

above. The other cases are from a two-phase learning process where either 500 or 1000
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trials of supervised learning were used to seed the actor’s policy as well as the critic’s value

function, followed by RL alone, cf. [77, 92, 121, 133]. That is, k = 0 for the first 500 or

1000 trials, and k = 1 thereafter. Each case shows rapid improvement during the first 100

trials of RL, followed by slower convergence toward optimality. In panel (a) the two-phase

process appears to give much improved performance—if one is willing to pay the price

associated with an initial learning phase that gives no immediate improvement. Indeed, if

we examine cumulative reward instead, as in panel (b), the roles become reversed with the

two-phase process performing worse, at least for the short-term. With 500 seed trials, the

two-phase process closes the gap with continued learning and eventually outperforms the

supervised actor-critic approach after 3200 trials. However, with fewer than 500 seed trials

of supervised learning, the actor is able to reach the goal either unreliably (300 and 400

trials) or else not at all (100 and 200 trials).

5.3.2 Manipulator Control

My second example demonstrates that the style of control and learning used for the ship

steering task is also suitable for learning to exploit the dynamics of a simulated robotic arm.

The arm was modeled as a two-link pendulum with each link having length 0.5 m and mass

2.5 kg, and the equations of motion [47] were integrated numerically using Euler’s method

with a step size of 0.001 s. Actions from both actor and supervisor were generated every

0.75 s and were represented as two-dimensional velocity vectors with joint speed limits of

±0.5 rad/sec. The task was to move with minimum effort from the initial configuration at

q =

[

−90 0

]T

degrees

to the goal configuration at

q =

[

135 90

]T

degrees.
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Like the weightlifting example of Chapter 3, effort was quantified as the total integrated

torque magnitude.

Similar to the ship steering task, the supervisor for this example is a hand-crafted con-

troller that moves the arm at maximum speed directly toward the goal in configuration

space. Therefore, actions from the supervisor always lie on a unit square centered at the

origin, whereas the actor is free to choose from the entire set of admissible actions. In

effect, the supervisor’s policy is to follow a straight-line path to the goal—which is time-

optimal given the velocity constraints. Due to the dynamics of the robot, however, straight-

line paths are not necessarily optimal with respect to other performance objectives, such as

minimum energy.

A lower-level control system was responsible for transforming commanded velocities

into motor torques for each joint. This occurred with a control interval of 0.001 s and

in several stages: First, the commanded velocity was adjusted to account for acceleration

constraints that eliminate abrupt changes in velocity, especially at the beginning and end

of movement. The adjusted velocity, along with the current position, was then used to

compute the desired position at the end of the next control interval. Third, a proportional-

derivative controller converted this target position into joint torques, but with a target veloc-

ity of zero rather than the commanded velocity. And finally, a simplified model of the arm

was used to adjust the feedback-based torque to include a feedforward term that compen-

sates for gravity. This scheme is intended to match the way some industrial manipulators

are controlled once given a higher-level movement command, e.g., velocity as used here.

Gravity compensation guarantees stability of the lower-level controller [47], and the target

velocity of zero helps ensure that the arm will stop safely given a communications failure

with the higher level.

The above control scheme also holds an advantage for learning. Essentially, the ma-

nipulator behaves in accordance with a tracking controller—only the desired trajectory is

revealed gradually with each control decision from the higher level. At this level, the ma-
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nipulator behaves like an overdamped, approximately first-order system, and so policies

need not account for the full state of the robot. That is, for both actor and supervisor it

suffices to use reduced policies that map from positions to velocity commands, rather than

policies that map from positions and velocities to acceleration commands. As is common

with tracking controllers, this abstraction appears to do away with the dynamics exploited

throughout this dissertation research. However, by designing an optimal control problem, I

allow the dynamics to influence the learning system by way of the performance objective,

i.e., through the reward function.

For the RL version of this optimal control problem, rewards were the negative effort

accumulated over each 0.75 s decision interval, and the discount parameter was set to γ =

1. As with the ship steering task, exploratory actions, aE, were Gaussian distributed with

a mean equal to the greedy action, except that aE was clipped at the joint speed limits.

The standard deviation of the exploratory actions was initially 1.0 rad/sec, but this value

decayed exponentially toward zero by a factor of 0.999 after each trial. CMAC tiles were

uniform with a width of 25 degrees along each input dimension; the actor CMAC was

initialized to zero whereas the critic CMAC was initialized to −300. Like the previous

example, a third CMAC was used to implement a state-visitation histogram that stored the

value of the interpolation parameter, k. As above, the histogram increment was 0.02 over

the 25 layers and the decay factor was 0.999.

Figure 5.5(a) shows the configuration of the robot every 0.75 s along a straight-line path

to the goal. The proximal joint has more distance to cover and therefore moves at maxi-

mum speed, while the distal joint moves at a proportionately slower speed. The total effort

for this fully supervised policy is 258 Nm·s. Figures 5.5(b) and 5.5(c) show examples of

improved performance after 5000 trials of learning, with a final cost of 229 and 228 Nm·s,

respectively. In each of the left-hand diagrams, the corresponding “spokes” from the prox-

imal link fall in roughly the same position, and so the observed improvements are due to
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Figure 5.5. Two-link arm simulator after (a) no learning and (b,c) 5000 learning trials.
Configuration-space paths after learning are shown in white, and the grayscale region indi-
cates the level of autonomy, from k = 0 (white) to k = 1 (black).

the way the distal joint modulates its movement around the straight-line path, as shown in

the right-hand diagrams.

Figure 5.6 shows the effects of learning averaged over 25 runs. The value of the optimal

policy for this task is unknown, although the best observed solution has a cost of 216 Nm·s.
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Figure 5.6. Effects of learning for the two-link arm over 25 runs of 5000 trials each.

Most improvement happens within 400 trials and the remainder of learning shows a drop in

variability as the exploration policy “decays” toward the greedy policy. One difficulty with

this example is the existence of many locally optimal solutions to the task. This causes the

learning system to wander among solutions, with convergence to one of them only when

forced to do so by the reduced exploration.

5.3.3 Case Study With a Real Robot

To demonstrate that the methods in this chapter are suitable for real robots, I replicated

the previous example with a seven degree-of-freedom whole arm manipulator (WAM; Bar-

rett Technology Inc., Cambridge, MA). Figure 5.7 shows a sequence of several postures as

the WAM moves from the start configuration (far left frame) to the goal configuration (far

right frame). As with the previous example the task was formulated as a minimum-effort

optimal control problem—utilizing a stable tracking controller and a supervisor that gen-

erates straight-line trajectories to the goal in configuration space. The joint speed limits

for this example were increased to ±0.75 rad/sec rather than ±0.5 rad/sec as used above.
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Figure 5.7. Representative configurations of the WAM after learning.

The learning algorithm was virtually identical to the one in the previous example, although

several parameter values were modified to encourage reasonable improvement with very

few learning trials. For instance, the histogram increment was increased from 0.02 to 0.10,

thereby facilitating a faster transition to autonomous behavior. Also, the level of explo-

ration did not decay, but rather remained constant, and aE was Gaussian distributed with a

standard deviation of 0.25 rad/sec.

Figure 5.8 shows the effects of learning averaged over 5 runs. Performance worsens

during the first 10 to 20 trials due to the initialization of the actor’s policy. More specifi-

cally, at the start of learning the actor’s policy maps all inputs to the zero velocity vector,

and so the actor cannot move the robot until it has learned how to do so from its supervisor.

The drawback of this initialization scheme—along with a fast transition to autonomous

behavior—is that early in the learning process the supervisor’s commands become dimin-

ished when blended with the actor’s near-zero commands. The effect is slower movement

of the manipulator and prolonged effort while raising the arm against gravity. However,

after 60 trials of learning the supervised actor-critic architecture shows statistically signifi-

cant improvement (p < 0.01) over the supervisor alone. After 120 trials, the overall effect

of learning is approximately 20% reduced effort despite an increased average movement

time from 4.16 s to 4.34 s (statistically significant with p < 0.05).
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Figure 5.8. Effects of learning for the WAM over 5 runs of 120 trials each.

5.4 Discussion

As mentioned at the beginning of this chapter, one goal of this research is to exploit

dynamics without throwing away the kind of information used by conventional approaches

to manipulator control. The supervised actor-critic architecture provides a way to meet this

goal. In particular, one can design a stable tracking controller that operates at a low level in

addition to a heuristic controller at a higher level that moves the robot directly to a desired

configuration. Meanwhile, the actor can improve performance by learning a policy, i.e., a

family of implicit trajectories, that exploits dynamics.

The examples in Section 5.3 demonstrate a gradual shift from full supervision to full

autonomy—blending two sources of actions and learning feedback. Much like the exam-

ples by Clouse [43] and by Maclin and Shavlik [96], this shift happens in a state-dependent

way with the actor seeking help from the supervisor in unfamiliar territory. Unlike these

other approaches, the actor also clones the supervisor’s policy very quickly over the visited

states. This style of learning is similar to methods that seed an RL system with training

data, e.g., [121, 133], although with the supervised actor-critic architecture, the interpola-

tion parameter allows the seeding to happen in an incremental fashion at the same time as
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trial-and-error learning. Informally, the effect is that the actor knows what the supervisor

knows, but only on a need-to-know basis.

One drawback of these methods for control of real robots is the time needed for training.

By most standards in the RL literature, the supervised actor-critic architecture requires

relatively few trials, at least for the examples presented above. However, some robot control

problems may permit extremely few learning trials, say 10 or 20. Clearly, in such cases

we should not expect optimality; instead we should strive for methods that provide gains

commensurate with the training time. In any case, we might tolerate slow optimization if

we can deploy a learning robot with provable guarantees on the worst-case performance.

Recent work by Kretchmar et al. [84] and by Perkins and Barto [112] demonstrates initial

progress in this regard.

Despite the challenges when we combine supervised learning with an actor-critic ar-

chitecture, we still reap benefits from both paradigms. From actor-critic architectures we

gain the ability to discover behavior that optimizes performance. From supervised learn-

ing we gain a flexible way to incorporate domain knowledge. In particular, the internal

representations used by the actor can be very different from those used by the supervisor.

The actor, for example, can be an artificial neural network, while the supervisor can be a

conventional feedback controller, expert knowledge encoded as logical propositions, or a

human supplying actions that depend on an entirely different perception of the environ-

ment’s state. Moreover, the supervisor can convey intentions and solution strategies to the

actor, and so this work is similar in spirit to work on imitation learning, e.g., [98, 122].

And presumably the supervisor has a certain proficiency at a given task, which the actor

exploits for improved performance throughout learning.
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CHAPTER 6

CONCLUSIONS

The problem of the rider has begun to

overshadow the problem of the horse.

— N.A. Bernstein, 1961

Bernstein argued in favor of motor coordination as a separate discipline, no less impor-

tant than those disciplines geared toward the underlying elements of coordination. While

the past 50 years have seen considerable change in the way scientists investigate biologi-

cal motor coordination, only recently have roboticists begun to view coordination and skill

acquisition as a problem on par with mechanism design, path planning, and lower-level

feedback control. As shown throughout this dissertation, one approach to robot coordi-

nation is a combination of techniques that take advantage of strategies from biology and

machine learning, without necessarily giving up the benefits of methods from mechanics

and control theory.

6.1 Summary

As described in Chapter 2, control of robot manipulators typically involves trajectory

planning followed by trajectory tracking. Implicit in this approach is the use of a control

scheme that cancels the robot’s intrinsic dynamics and that effectively decouples each joint

from the others. Efficient movements that exploit dynamics are still possible within this

framework, although accurate models are needed as well as more sophisticated planners

that deal with dynamics and optimization.
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6.1.1 Main Results

The alternative approach taken in Chapter 3 was to use a few key principles about

biological motor control as strategies for designing a class of structured policies. With

the right structure, a simple policy-search algorithm was then able to solve an otherwise

complicated robot motor task. Moreover, this approach was effective with simulated and

real robots alike.

One key ingredient of these structured policies was a gain matrix that enables individ-

ual joints to become coupled through the control system. Whereas most control engineer-

ing methods seek to diagonalize such gain matrices—so that separate controllers can be

designed for each degree of freedom independently of the others—the SRS algorithm of

Chapter 3 instead made use of the coupling afforded by the gain matrix. The results of

learning were motor synergies that exploit dynamics while coordinating individual degrees

of freedom to act as a single functional unit.

The emphasis of Chapter 4 was a theoretical analysis of how velocity-dependent dy-

namics affect a manipulator’s performance. In particular, the velocity bias derived in Sec-

tion 4.2.1 was essential for explaining the benefits of singular configurations as well as the

advantages of the reversal solution to the weightlifting task. The analytical results also

pointed toward an empirical approach for estimating the velocity bias but, surprisingly,

without prior knowledge of velocity. In turn, this provides a means for seeding a path plan-

ner or learning algorithm with information needed to choose among qualitatively different

solutions to a movement problem.

In Chapter 5, a more conventional control engineering perspective was used to design

heuristic controllers guaranteed to bring a dynamic system to a goal. The supervised actor-

critic architecture was then used to blend these controllers with reinforcement learning (RL)

on a per action basis. Essentially, the actor relied first on supervised learning to rapidly gain

a nominal level of performance, and then on RL to optimize that performance, albeit more
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gradually. The framework allows one to incorporate domain knowledge very easily and to

ensure success on every trial for tasks that are virtually impossible to solve with RL alone.

6.1.2 Putting It All Together

One common thread running through this dissertation is the notion of exploiting dy-

namics, whereby a control system takes advantage of reactive forces due to gravity, inertia

and so on. The ability of the neuromuscular system to exploit dynamics is part of what

separates coordination in higher animals from mere control of movement. The broad goal

of this research is to imbue robots with this same ability.

In Chapter 3, this was accomplished with a biologically motivated control system along

with trial-and-error learning by the SRS algorithm. Skill acquisition was driven by the

optimization principle, and for the weightlifting task minimum effort was secondary to

the true objective of raising a heavy payload. The best solutions passed through a singu-

lar configuration, and the results of Chapter 4 explain why singularities can be something

to exploit, rather than something to avoid as is common with path planning approaches.

And in Chapter 5, trial-and-error learning was used again to exploit manipulator dynam-

ics, although this time with minimum effort as the primary objective. Skill acquisition

was accomplished through supervised learning, whereas “mastery” of redundant degrees

of freedom was accomplished through RL.

Another theme of this dissertation is that coordination is the outcome of a progression

of learning problems. Initial solutions are relatively unrefined and inefficient, yet they set

the stage for ongoing practice and optimization. As discussed in Chapter 2, for instance,

excess degrees of freedom can be frozen during the early stages of skill acquisition and later

released in a proximal-to-distal fashion as performance improves on the simplified task.

Chapters 3 and 5 both involved a similar progression, although with alternative mechanisms

for dealing with excess degrees of freedom at the start of learning.
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Perhaps more to the core of this dissertation is a third common thread regarding the

use of prior knowledge for a class of machine learning problems. The benefits of prior

knowledge are widely appreciated, and so the more germane questions are what kinds of

knowledge are useful for robot motor tasks and how do we make that knowledge part of a

machine learning system? These questions were answered in Chapter 3 with crude kine-

matic information supplied by a coach and with subsequent encoding of that information

as via points for a hierarchical control architecture. The theoretical work of Chapter 4

showed that the velocity bias offers a useful metric for evaluating the suitability of specific

via points, even without prior knowledge of velocity. And in Chapter 5, controllers that

were easily designed, yet sub-optimal, supplied the prior knowledge and supervised learn-

ing made that knowledge available to an RL system as needed in an online, incremental

fashion.

6.2 Future Work

In Chapter 3 we saw that just one or two via points was enough to enable learning

of a complicated motor skill. Then the analysis in Chapter 4 explained what we already

observed empirically, i.e., the reversal solution to the weightlifting task is better than the

standard solution. One bit of work for the future is to use the velocity bias to predict ahead

of time which one of several candidate via points is best for a novel task. Other extensions

of Chapter 4 are at least twofold: First, derive the velocity bias for both rotational and

translational acceleration of the end-effector, rather than just translational acceleration as

in Section 4.2. Second, replace the empirical approach of Section 4.4 with an analytical

characterization of how the velocity bias changes with posture. The desideratum is an

analogue of the manipulability ellipsoid—one that describes the way arbitrary joint-space

velocities are mapped to displacements of the ellipsoid.

Another line of future work involves the framework presented in Chapter 3. One hy-

pothesis left untested is that a small number of via points, followed by trial-and-error learn-
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ing, is an approach to robot coordination which is suitable for a much larger class of motor

problems than simply weightlifting. More generally, a standard motion planning algorithm

could supply a small number of via points along a collision-free path, and then learning

could be used to transform this kinematic solution into one that exploits dynamics. Other

opportunities include imitation learning as the means for identifying via points.

A different, perhaps more interesting extension of this framework is in the direction

of biology. For example, one possibility is to replace the linear proportional-derivative

controllers of Section 3.4 with a biologically plausible model of equilibrium-point control,

such as Feldman’s λ model [58]. Additional modifications, e.g., feedback delay, may even-

tually lead to a neurobiological model of skill acquisition. Another possibility is to abstract

away from neurons and use the framework of Chapter 3 as a behavioral model of human

skill acquisition, at least for certain movements. Handwriting is a candidate skill that could

be explained by a relatively small number of via points that capture the surface form of

writing, and by practice, i.e., learning, as the means to graceful and efficient strokes.

For the supervised actor-critic architecture of Chapter 5, one worthwhile extension is to

specify those conditions which lead to provably stable learning. As a starting point, a prov-

ably stable controller—like the ones used in Section 5.3—can act as supervisor throughout

learning. But for stability of the supervisor and actor together, constraints must be placed

on exploration and on the transfer from full supervision to full autonomy.

From a machine learning perspective, perhaps the most promising line of future work

is a hybrid learning algorithm that combines direct policy search with supervised learning

and value-based RL. One possibility that could speed up learning is to use a value function

to modify the distribution of samples drawn by the SRS algorithm. Supervised learning

with a hand-crafted controller could improve the SRS algorithm in this same way. In-

deed, a supervisor that deals with safety constraints could be of great benefit for the robot

weightlifter, which experienced numerous failures throughout learning, especially with the

heaviest payloads.
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Another possibility for hybrid learning is to use direct policy search as a bias for value-

based RL. For instance, policy search could provide a means for structuring the choice

of exploratory actions—beyond the usual random choice and in a way more compatible

with a given learning problem. By combining various styles of machine learning, one

could achieve faster and more reliable performance than possible with any single method,

thereby making intelligent control a practical alternative to more conventional methods.

6.3 Concluding Remarks

Robots are a remarkable example of human ingenuity. They work tirelessly on assem-

bly lines, they enter hazardous environments without hesitation, and they perform feats of

strength and control beyond anything dreamed up by Mother Nature. But current applica-

tions only scratch the surface of the potential benefits that robots hold for society. Although

our capacity to design dexterous machines as grown considerably since the 1960s when the

first industrial robots appeared, our ability to control them in a coordinated fashion is an-

other matter.

In this dissertation I approached the problem of robot motor coordination from several

different perspectives, and one particular emphasis was the connection with biological mo-

tor control. I demonstrated that biology has something practical to offer robotics, and I also

touched briefly on the reverse, i.e., how robots can help us study biology. But perhaps a

more forward looking view of this research is that it provides a foundation for coordinated

human-robot interaction. Exploiting dynamics can help in this endeavor as well, but not

just by making the robot faster, smoother, and more energy efficient. Dynamics are also

something to take advantage of when designing the user interface for teleoperators and for

assistive technology such as prosthetic limbs. The ultimate goal is a magical robotic device

by today’s standards—one that responds to human gestures and neuromuscular commands

as if able to read its operator’s mind, perhaps literally someday.
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