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1.1 INTRODUCTION

The modern study of approximate dynamic programming (DP) combines ideas from
several research traditions. Among these is the field of Artificial Intelligence, whose
earliest period focussed on creating artificial learning systems. Today, Machine
Learning is an active branch of Artificial Intelligence (although it includes researchers
from many other disciplines as well) devoted to continuing the development of
artificial learning systems. Some of the problems studied in Machine Learning
concern stochastic sequential decision processes, and some approaches to solving
them are based on DP. These problems and algorithms fall under the general heading
of reinforcement learning. In this chapter, we discuss stochastic sequential decision
processes from the perspective of Machine Learning, focussing on reinforcement
learning and its relationship to the more commmonly studied supervised learning
problems.
Machine Learning is the study ofmethods for constructing and improving software

systems by analyzing examples of their behavior rather than by directly program-
ming them. Machine Learning methods are appropriate in application settings where
people are unable to provide precise specifications for desired program behavior, but
where examples of desired behavior are available, or where it is possible to assign a
measure of goodness to examples of behavior. Such situations include optical char-
acter recognition, handwriting recognition, speech recognition, automated steering
of automobiles, and robot control and navigation. A key property of tasks in which
examples of desired behavior are available is that people can perform them quite
easily, but people cannot articulate exactly how they perform them. Hence, people
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can provide input-output examples, but they cannot provide precise specifications or
algorithms. Other tasks have the property that people do not know how to perform
them (or a few people can perform them only with great difficulty), but people are
able to evaluate attempts to perform them, that is, to score behavior according to
some performance criterion. Situations like this include playing master-level chess
and controlling the nation-wide power grid in an efficient and fail-safe manner.
Machine Learning methods are also appropriate for situations where the task is

changing with time or across different users, so that a programmer cannot anticipate
exactly how the program should behave. For example, Machine Learning methods
have been applied to assess credit-card risk, to filter news articles, to refine infor-
mation retrieval queries, and to predict user browsing behavior in computer-based
information systems such as the world-wide web.
Another area of application for Machine Learning algorithms is to the problem

of finding interesting patterns in databases, sometimes called data mining. Many
corporations gather information about the purchases of customers, the claims filed
by medical providers, the insurance claims filed by drivers, the maintenance records
of aircraft, and so forth. Machine Learning algorithms (and also, many traditional
methods from statistics) can find important patterns in these data that can be applied
to improve marketing, detect fraud, and predict future problems.
We begin by describing tasks in which examples of desired behavior are available.

1.2 SUPERVISED LEARNING

In supervised learning, the learner is given training examples of the form (xi, yi),
where each input value xi is usually an n-dimensional vector and each output value yi

is a scalar (either a discrete-valued quantity or a real-valued quantity). It is assumed
that the input values are drawn from some fixed probability distribution D(x) and
then the output values yi are assigned to them. The output values may be assigned by
a fixed function f , so that yi = f(xi), or they may be assigned stochastically by first
computing f(xi) and then probabilistically perturbing this value with some random
noise. This later, stochastic view is appropriate when the output values are assigned
by a noisy process (e.g., a human judge who makes occasional errors). In either case,
the goal is to correctly predict the output values of new data points x drawn from the
same distribution D(x).
For example, in optical character recognition, each input value xi might be a

256-bit vector giving the pixel values of an 8× 8 input image, and each output value
yi might be one of the 95 printable ascii characters. When, as in this case, the output
values are discrete, f is called a classifier and the discrete output values are called
classes.
Alternatively, in credit card risk assessment, each input might be a vector of

properties describing the age, income, and credit history of an applicant, and the
output might be a real value predicting the expected profit (or loss) of giving a credit
card to the applicant. In cases where the output is continuous, f is called a predictor.



SUPERVISED LEARNING iii

A supervised learning algorithm takes a set of training examples as input and
produces a classifier or predictor as output. The set of training examples provides
two kinds of information. First, it tells the learning algorithm the observed output
values yi for various input values xi. Second, it gives some information about the
probability distributionD(x). For example, in optical character recognition for ascii
characters, the training data provides information about the distribution of images
of ascii characters. Non-ascii characters, such as greek or hebrew letters, would not
appear in the training data.
The best possible classifier/predictor for data point x would be the true function

f(x) that was used to assign the output value y to x. However, the learning algorithm
only produces a “hypothesis” h(x). The difference between y and h(x) is measured
by a loss function, L(y, h(x)). For discrete classification, the loss function is usually
the 0/1 loss: L(y, h(x)) is 0 if y = h(x) and 1 otherwise. For continuous prediction,
the loss function is usually the squared error: L(y, h(x)) = (y − h(x))2. The goal
of supervised learning is to choose the hypothesis h that minimizes the expected
loss:

∑
x D(x)L(y, h(x)). Hence, data points x that have high probability are more

important for supervised learning than data points that have low or zero probability.
A good way to estimate the expected loss of a hypothesis h is to compute the

average loss on the training data set: 1/N
∑N

i=1 L(yi, h(xi)), whereN is the number
of training examples. Supervised learning algorithms typically work by considering
a space of hypotheses,H, that is chosen by the designer in the hopes that it contains a
good approximation to the unknown function f . The algorithms searchH (implicitly
or explicitly) for the hypothesis h that minimizes the average loss on the training set.
However, if the training examples contain noise or if the training set is unrepre-

sentative (particularly if it is small), then an h with zero expected loss on the training
examples may still perform poorly on new examples. This is called the problem of
overfitting, and it arises when h becomes overly complex and ad hoc as the learning
algorithm tries to achieve perfect performance on the training set. To avoid overfit-
ting, learning algorithms must seek a tradeoff between the simplicity of h (simpler
hypotheses are less likely to be ad hoc) and accuracy on the training examples. A
standard approach is to define a complexity measure for each hypothesis h and to
search for the h that minimizes the sum of this complexity measure and the expected
loss measured on the training data.
Learning algorithms have been developed for many function classesH including

linear threshold functions (linear discriminant analysis, the naı̈ve Bayes algorithm,
the LMS algorithm, and theWinnow algorithm; see Duda, et al., 2001), decision trees
(the CART and C4.5 algorithms; see Mitchell, 1997; Breiman, et al., 1984; Quinlan,
1993), feed-forward neural networks (the backpropagation algorithm; see Bishop,
1996), and various families of stochastic models (the EM algorithm; see McLachlan
& Krishnan, 1997).
Theoretical analysis of supervised learning problems and learning algorithms is

conducted by researchers in the area of computational learning theory (see Kearns &
Vazirani, 1994). One of the primary goals of research in this area is to characterize
which function classes H have polynomial-time learning algorithms. Among the
key results is a theorem showing that the number of training examples required to
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accurately learn a function f in a function classH grows linearly in a parameter known
as the Vapnik-Chervonenkis dimension (VC-dimension) of H. The VC-dimension
of most commonly-used function classes has been computed. Another key result is a
set of proofs showing that certain function classes (including small boolean formulas
and deterministic finite-state automata) cannot be learned in polynomial time by any
algorithm. These results are based on showing that algorithms that could learn such
function classes could also break several well-known crytographic schemes which
are believed to be unbreakable in polynomial time.

1.3 REINFORCEMENT LEARNING

Reinforcement learning comes into play when examples of desired behavior are not
available but where it is possible to score examples of behavior according to some
performance criterion. Consider a simple scenario. Mobile phone users sometimes
resort to the following procedure to obtain good reception in a new locale where
coverage is poor. We move around with the phone while monitoring its signal
strength indicator or by repeating “Do you hear me now?” and carefully listening to
the reply. We keep doing this until we either find a place with an adequate signal or
until we find the best place we can under the circumstances, at which point we either
try to complete the call or give up. Here, the information we receive is not directly
telling us where we should go to obtain good reception. Nor is each reading telling us
in which direction we should move next. Each reading simply allows us to evaluate
the goodness of our current situation. We have to move around—explore—in order
to decide where we should go. We are not given examples of correct behavior.
We can formalize this simple reinforcement learning problem as one of optimizing

an unknown reward function R. Given a location x in the world, R(x) is the reward
(e.g., phone signal strength) that can be obtained at that location. The goal of
reinforcement learning is to determine the location x∗ that gives the maximum reward
R(x∗). A reinforcement learning system is not given R, nor is it given any training
examples. Instead, it has the ability to take actions (i.e., choose values of x) and
observe the resulting reward R(x). The reward may be deterministic or stochastic.
We can see that there are two key differences from supervised learning. First,

there is no fixed distribution D(x) from which the data points x are drawn. Instead,
the learner is in charge of choosing values of x. Second, the goal is not to predict
the output values y for data points x, but instead to find a single value x∗ that gives
maximum reward. Hence, instead of minimizing expected loss over the entire space
of x values (weighted according to D(x)), the goal is to maximize the reward at a
single location x∗. If the rewardR(x) is stochastic, the goal is to maximize expected
reward, but the expectation is taken with respect to the randomness inR at the single
point x∗, and not with respect to some probability distributionD(x).
We can formalize this simple form of reinforcement learning in terms of minimiz-

ing a loss function. The loss at a point x is the regret we have for choosing x instead
of x∗: L(x) = R(x∗) − R(x). This is the difference between the reward we could
have received at x∗ and the reward we actually received. However, this formulation
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is rarely used, because there is no way for the learner to measure the loss without
knowing x∗—and once x∗ is known, there is no need to measure the loss!
Given that this simple form of reinforcement learning can be viewed as optimizing

a function, where does learning come in? The answer is long-term memory. Con-
tinuing the mobile phone example, after finding a place of good reception suppose
we want to make another call from the same general area. We go directly back to
that same place, completely bypassing the exploratory search (or we may not bother
at all in the case when we were unsuccessful earlier). In fact, over time, we can
build up a library of suitable spots in frequently visited locales where we go first
when we want to make calls, and from which we possibly continue exploring. In a
supervised version of this task, on the other hand, we would be directly told where
the reception is best for a set of example locales. Reinforcement learning combines
search and long-term memory. Search results are stored in such a way that search
effort decreases—and possibly disappears—with continued experience.
Reinforcement learning has been elaborated in so many different ways that this

core freature of combining search with long-term memory is sometimes obscured.
This is especially true with respect to extensions of reinforcement learning that apply
to sequential decision problems. In what follows, we first discuss in more detail
several aspects of reinforcement learning and then specialize our comments to its
application to sequential decision problems.

1.3.1 Why Call It Reinforcement Learning?

The term reinforcement comes from studies of animal learning in experimental psy-
chology, where it refers to the occurrence of an event, in the proper relation to a
response, that tends to increase the probability that the response will occur again
in the same situation. The simplest reinforcement learning algorithms make use of
the commonsense idea that if an action is followed by a satisfactory state of affairs,
or an improvement in the state of affairs, then the tendency to produce that action
is strengthened, i.e., reinforced. This is the principle articulated by Thorndike in
his famous “Law of Effect” (Thorndike, 1911). Instead of the term reinforcement
learning, however, psychologists use the terms instrumental conditioning, or operant
conditioning, to refer to experimental situations in which what an animal actually
does is a critical factor in determining the occurrence of subsequent events. These
situations are said to include response contingencies, in contrast to Pavlovian, or
classical, conditioning situations in which the animal’s responses do not influence
subsequent events, at least not those controlled by the experimenter. There are very
many accounts of instrumental and classical conditioning in the literature, and the
details of animal behavior in these experiments are surprisingly complex. See, for
example, Hergenhahn & Olson, 2001. The basic principles of learning via rein-
forcement have had an influence on engineering for many decades (e.g., Mendel &
McClaren, 1970) and on Artificial Intelligence since its very earliest days (Minsky,
1954, 1961; Samuel 1959; Turing, 1950). It was in these early studies of artificial
learning systems that the term reinforcement learning seems to have originated. Sut-
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ton and Barto (1998) provide an account of the history of reinforcement learning in
Artificial Intelligence.
But the connection between reinforcement learning as developed in engineering

and Artificial Intelligence and the actual details of animal learning behavior is far
from straightforward. In prefacing an account of research attempting to capture
more of the details of animal behavior in a computational model, Dayan (2002)
stated that “Reinforcement learning bears a tortuous relationship with historical and
contemporary ideas in classical and instrumental conditioning.” This is certainly true,
as those interested in constructing artificial learning systems are motivated more by
computational possibilies than by a desire to emulate the details of animal learning.
This is evident in the view of reinforcement learning as a combination of search and
long-term memory discussed above, which is a an abstract computational view that
does not attempt to do justice to all the subleties of real animal learning.
For our mobile phone example, the principle of learning by reinforcement is

involved in several different ways depending on what grain size of behavior we
consider. We could think of a move in a particular direction as a unit of behavior,
being reinforced when reception improved, in which case we would tend to continue
to move in the same direction. Another view, one that includes long-term memory,
is that the tendency to make a call from a particular place is reinforced when a call
from that place is successful, thus leading us to increase the probability that we will
make a call from that place in the future. Here we see the reinforcement process
manifested as the storing in long-term memory of the results of a successful search.
Note that the principle of learning via reinforcement does not imply that only gradual
or incremental changes in behavior are produced. It is possible for complete learning
to occur on a single trial, although gradual changes in behavior make more sense
when the contingencies are stochastic.

1.3.2 Behavioral Variety

Because it does not directly receive training examples or directional information, a
reinforcement learning system has to actively try alternatives, process the resulting
evaluations, and use some kind of selection mechanism to guide behavior toward the
better alternatives. Many different terms have been used to describe this basic kind
of process, which of course is also at the base of evolutionary processes: selectional
(as opposed to instructional, which refers to processes like supervised learning),
generate-and-test, variation and selection, blind variation and selection, and trial-
and-error. These last two terms deserve discussion since there is some confusion
about them. To many, blind variation and trial-and-error connote totally random, i.e.,
uniformly distributed, behavior patterns. But this is not what those who have used
these terms have meant (e.g., Dawkins, 1985). Blind variation refers to the need
to sometimes take actions whose consequences cannot be foreseen, that is, which
represent true leaps beyond the current knowledge base. This does not mean that
these actions must be randomly chosen. They can be based on a large amount of
accumulated knowledge, but they cannot have consequences that can be accurately
deduced from the current knowledge base. Note that even a deterministic action
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selection process can satisfy this requirement. Similarly, trial-and-error learning has
the same meaning. Trials do not have to be random.
As a result of the need for behavioral variety, reinforcement learning involves a

conflict between exploitation and exploration. In deciding which action to take, the
agent has to balance two conflicting objectives: it has to exploit what it has already
learned in order to perform at a high level, and it has to behave in new ways—
explore—to learn more. Because these needs ordinarily conflict, reinforcement
learning systems have to somehow balance them. In control engineering, this is
known as the conflict between control and identification, or the problem of dual
control (Feldbaum, 1965). This conflict is not present in supervised learning tasks
unless the learner can influence which training examples it processes, a setting that
is known as active learning.
At the root of this conflict is that in a reinforcement learning task a search must be

conducted for something that cannot be recognized based on its intrinsic properties.
For example, the property of being the better of two alternatives depends on both
alternatives—it is a relative property—and a search algorithm has to examine both
alternatives to decide which is the better. It is logically necessary to examine the
inferior alternative. In contrast, the objectives of other types of searches depend on
intrinsic properties of the members of the search space. For example, in searching for
the name “Adam Smith” in a telephone directory, one can recognize the target name
when one sees it because being, or not being, the target name is an intrinsic property
of individual names. When a name is found that satisfies the solution property, the
search stops. In a search task involving intrinsic properties, such as a supervised
learning task, it is conceivable that the search can be declared accomplished after
examining a single element in the search space. If the search is based on relative
properties, however, this is never possible. Note that since we are speaking about the
logical properties of search processes, the distinction between searching defined by
relative and intrinsic properties is somewhat different than the distinction between
satisficing and optimizing (Simon, 1947), which refers to more practical issues in
creating a stopping criterion.

1.3.3 Converting Reinforcement Learning to Supervised Learning

Having discussed key differences between reinforcement learning and supervised
learning, the question arises as towhether these differences are fundamental ormerely
superficial differences that can be eliminated with suitable problem reformulation.
In other wards, are there ways of reducing one type of problem to the other? The
first thing to note is that it is possible to convert any supervised learning task into a
reinforcement learning task: the loss function of the supervised task can be used as to
define a reward function, with smaller losses mapping to larger rewards. (Although it
is not clear why one would want to do this because it converts the supervised problem
into a more difficult reinforcement learning problem.) But is it possible to do this the
other way around: to convert a reinforcement learning task into a supervised learning
task?
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In general, there is no way to do this. The key difficulty is that whereas in
supervised learning, the goal is to reconstruct the unknown function f that assigns
output values y to data points x, in reinforcement learning, the goal is to find the
input x∗ that gives the maximum reward R(x∗).
Nonetheless, is there a way that we could apply ideas from supervised learning

to perform reinforcement learning? Suppose, for example, that we are given a set
of training examples of the form (xi, R(xi)), where the xi are points and the R(xi)
are the corresponding observed rewards. In supervised learning, we would attempt
to find a function h that approximates R well. If h were a perfect approximation of
R, then we could find x∗ by applying standard optimization algorithms to h. But
notice that h could be a very poor approximation to R and still be very helpful for
finding x∗. Indeed, h could be any function such that the maximum value of h is
obtained at x∗. This means, for example, that we do not want to use the expected
loss at each training point xi as the goal of learning. Instead, we seek a function
h whose maxima are good approximations of R’s maxima. There are a variety of
ways of formulating this problem as an optimization problem that can be solved. For
example, we can require h be a good approximation of R but that it also satisfy the
following constraint: for any two training examples (x1, R(x1)) and (x2, R(x2)),
if R(x1) > R(x2) then h(x1) must be greater than h(x2). Techniques of this kind
are an area of active research (Dietterich & Wang, 2003). However, note that these
optimization problems are not equivalent to supervised learning problems.

1.4 SEQUENTIAL DECISION TASKS

The reinforcement learning tasks most relevant to approximate DP are sequential
decision tasks. It is not an exaggeration to say that the application of reinforcement
learning algorithms to these tasks accounts for nearly all of the current interest
in reinforcement learning by Machine Learning researchers. In these problems, a
computer program must make a sequence of decisions, where each decision changes
the state of the program’s environment and is followed by a numerical reward. The
performance function is a measure of the total amount of reward received over a
(possilby infinite) sequence of decisions. The case most commonly studied has the
property that each immediate reward is zero until the end of the sequence, when
it evaluates a final outcome. Imagine a computer playing the game of chess. The
computer makes a long sequence of moves before it finds out whether it wins or loses
the game. Similarly, in robot navigation, the robot must choose a sequence of actions
in order to get from a starting location to some desired goal. We could train computers
to play chess or control robots by telling them which move to make at each step. But
this is difficult, tedious, and time-consuming. Furthermore, wemay not know enough
about the task to be able to give correct training information. It would be much nicer
if computers could learn these tasks from only the final outcome—the win or loss in
chess, the success or failure in robot navigation. Reinforcement learning algorithms
are designed for this kind of learning from delayed reward.
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Reinforcement learning researchers havewidely adopted the framework ofMarkov
decision processes (MDPs) to study sequential reinforcement learning. MDPs are
discrete-time stochastic optimal control problems with a well-developed theory (see,
e.g., Bertsekas, 1987). A full specification of an MDP includes the probabilistic
details of how state transitions and rewards are influenced by a set of actions. The
objective is to compute an optimal policy, i.e., a function from states to actions that
maximizes the expected performance from each state, where a number of different
performance measures are typically used. Given a full specification of an MDP with
a finite number of states and actions, an optimal policy can be found using any of
several stochastic DP algorithms, although their computational complexity makes
them impractical for large-scale problems.
Reinforcement learning for sequential decision tasks consists of a collection of

methods for approximating optimal policies of MDPs, usually under conditions in
which a full specification of theMDP is unavailable. A typical reinforcement learning
system learns a task by repeatedly performing it—that is, it makes moves in chess or
issues control commands to a robot. Before each move, the algorithm can examine
the current state, s of the environment (i.e., the current board position in a chess game
or the current sensor inputs from the robot together with any other relevant robot-
internal information) and then choose and execute an action a (i.e., a chess move
or a robot command). The action causes the environment to change to a new state
s′. After each state transition, the learning system receives a reward, R(s, a, s′). In
chess, the reward is zero until the end of the game, where it is 1 (win), 0 (draw), or−1
(loss). In robot navigation, there is typically a large positive reward for reaching the
goal position and a small negative reward for each step. There may also be negative
rewards for using energy, taking time, or bumping into walls or other obstacles.
There are many alternative approaches to approximating optimal policies. The

most direct approach is to directly learn a policy. In this approach, a space of possible
policies is defined, usually be defining a parameterized family of policy functions
that are continuously differentiable with respect to the parameters. Given a particular
policy (corresponding to a particular parameter setting), there are algorithms that can
estimate the gradient of the expected performance (i.e., the expected total reward, the
expected discounted total reward, or the expected reward per step) of the policy with
respect to its parameters by performing online trial executions of the policy (e.g.,
Baxter & Bartlett, 2001; Baxter et al., 2001).
A somewhat less direct approach is to learn a value function, V , which assigns

a real number V (s) to each state s indicating how valuable it is for the system to
be in that state. A closely-related method learns an action-value function, Q, where
Q(s, a) tells how valuable it is to do action a in state s. In either case, the value is an
estimate of the total amount of reward that will accumulate over the future starting
in the specfied state. (The counterpart of a value function in a cost-minimizing
formulation is sometimes called the “cost-to-go” function.) Once the system has
learned a good approximation of the value function, it can execute an improved
policy by choosing actions that have higher values or lead to states that have higher
values. For example, given the action-value function Q, the policy for state s can
be computed as the action a that maximizes Q(s, a). As this process continues,
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one expects the policy to improve toward optimality in an approximation of the
policy improvement DP procedure. Reinforcement learning algorithms that learn
value functions often update their policies before the value functions of their current
policies have been fully learned. This allows them to decide on actions quickly
enough to meet time constraints.
The most indirect approach to approximating an optimal policy is to learn a

model of the MDP itself through a system identification procedure. For DPs this in-
volves learning the reward functionR(s, a, s′) and the transition probability function
P (s′|s, a) (i.e., the probability that the environment will move to state s′ when action
a is executed in state s). These two functions can be learned by interacting with
the environment and using a system identification procedure. Each time the learner
observes state s, performs action a, receives reward r and moves to the resulting state
s′, it obtains training examples for P (s′|s, a) andR(s, a, s′). These examples can be
given to supervised learning algorithms to learn P and R. Once these two functions
have been learned with sufficient accuracy, DP algorithms can be applied to compute
the optimal value function and optimal policy. Methods that learn a model are known
as “model-based” methods. They typically require the fewest number of exploratory
interactions with the environment, but they also typically do not scale well to very
large problems.
These three approaches are not mutually exclusive. There are policy-search

methods that learn partial models to help compute gradients (Wang & Dietterich,
2003) and value function methods that learn partial models and perform incremental
DP (Barto et al., 1995; Moore & Atkeson, 1993).
The algorithms that may scale best are model-free algorithms for estimating value

functions, such as the Temporal Difference algorithm (Sutton, 1988, 1996). Inter-
estingly, the temporal difference family of algorithms can be viewed as supervised
learning algorithms in which the training examples consist of (s, V̂ (s)) pairs, where
s is a state and V̂ (s) is an approximation of the value of state s. They are not true
supervised learning algorithms, because the V̂ (s) values are not provided by a teacher
but instead are computed from the estimated values of future states. For this reason,
they are sometimes called “bootstrapping”methods. The other reason that these algo-
rithms are not true supervised learning algorithms is that the probability distribution
over the states s is not a fixed distributionD(s). Instead, the distribution depends on
the current value function V̂ and the current policy for choosing exploratory actions.
Despite these differences, many algorithms from supervised learning can be applied
to these temporal difference algorithms (Bradtke & Barto, 1996; Dietterich &Wang,
2002; Lagoudakis & Parr, 2003).
Reinforcement learning methods that use value functions are closely related to

DP algorithms, which successively approximate optimal value functions and optimal
policies for both deterministic and stochastic problems. Details are readily available
elsewhere (see, e.g., Sutton & Barto, 1998). Most reinforcement learning algorithms
that estimate value functions share a few key features:

1. Because conventional DP algorithms require multiple exhaustive “sweeps”
of the environment state set (or a discretized approximation of it), they are
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not practical for problems with very large finite state sets or high-dimensional
continuous state spaces. Instead of requiring exhaustive sweeps, reinforcement
learning algorithms operate on states as they occur in actual or simulated
experiences in controlling the process. It is appropriate to view them asMonte
Carlo DP algorithms.

2. Whereas conventional DP algorithms require a complete and accurate model
of the process to be controlled, many reinforcement learning algorithms do
not require such a model. Instead of computing the required quantities (such
as state values) from a model, they estimate these quantities from experience.
However, as described above, reinforcement learningmethods can learnmodels
in order to improve their efficiency.

3. Conventional DP algorithms use lookup-table storage of values for all states,
which is impractical for large problems. Reinforcement learning algorithms
often use more compact storage schemes in the form of parameterized function
representations whose parameters are adjusted through adaptations of various
function approximation methods.

1.4.1 Reinforcement Learning and other Approximate DP Methods

While there is not a sharp distinction between reinforcement learning algorithms
and other methods for approximating solutions to MDPs, several features tend to
be associated with reinforcement learning. The most conspicuous one is that com-
putation in reinforcement learning takes place during interaction between an active
decision maker and its environment. The computational process occurs while the
decision maker is engaged in making decisions as opposed to being an off-line batch
process. Artificial Intelligence researchers say that the decision maker is “situated”
in its environment. This feature arises from an underlying interest in learning, as
we see it accomplished by ourselves and other animals, and not merely in general
computational methods. Often this interaction is only virtual, as a simulated learning
agent interacts with a simulated environment, but even in this case, the processes of
using and acquiring knowledge are not separated into two distinct phases.
As a result of this emphasis, the objective of a reinforcement learning algorithm

is not necessarily to approximate an optimal policy, at least not uniformly across the
state space, as in conventional approaches toMDPs. It is more accurate to think of the
objective from the active agent’s point of view: it is to obtain asmuch reward over time
as possible. Since an agent usually visits states non-uniformly while it is behaving,
the approximation error is weighted by the agent’s state-visitation distribution, a
so-called on-policy distribution (Sutton & Barto, 1998). This is possible due to the
situated nature of the reinforcement learning process. In some problems it confers
significant advantages over conventional DP algorithms because large portions of the
state space can be largely irrelevant for situated behavior.
A second feature that tends to be associated with reinforcement learning is the lack

of complete knowledge of theMDP in question. The process of computing an optimal
policy, or an approximately-optimal policy, given complete knowledge of an MDP’s
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state transition and reward probabilities is considered to be more of a planning prob-
lem than a learning problem. However, there are many applications of reinforcement
learning that make use of so-called generative models. These are simulation models
of the MDP. Given a chosen state s and action a, a generative model can produce a
next state s′ sampled according to the probability transition function P (s′|s, a) and
an immediate reward generated according to R(s, a, s′). Some generative models
permit the learner to jump around from one state to another arbitrarily, while other
generative models can only simulate continuous trajectories through the state space.
In principle, a generative model contains the same information as knowing P and
R, but this information is not available in an explicit form and therefore cannot be
used directly for DP. Instead, the generative model is applied to simulate the inter-
action of the learner with the environment, and reinforcement learning algorithms
are applied to approximate an optimal policy. The advantage of generative models
from an engineering perspective is that it is often much easier to design and imple-
ment a generative model of an application problem than it is to construct an explicit
representation of P and R. In addition, learning from a generative model (e.g., of a
robot aircraft) can be faster, safer, and cheaper than learning by interacting with the
real MDP (e.g., a real robot). Using generative models in approximating solutions to
MDPs is closely associated with reinforcement learning even though learning from
on-line experience in the real world remains a goal of many reinforcement learning
researchers.

1.5 SUPERVISED LEARNING FOR SEQUENTIAL DECISION TASKS

For the same reasons that non-sequential reinforcement learning cannot be reduced
to supervised learning, sequential reinforcement learning can also not be reduced to
supervised learning. First, the information provided by the environment (the next
state and the reward) does not specify the correct action to perform. Second, the
goal is to perform the optimal action in those states that are visited by the optimal
policy. But this distribution of states is not a fixed distribution D(s), but instead
depends on the actions chosen by the learner. However, there is an additional reason
why reinforcement learning in sequential decision tasks is different from supervised
learning: In sequential decision tasks, the agent must suffer the consequences of its
own mistakes.
Consider the problem of learning to steer a car down a highway. We can view this

as a supervised learning problem in which an expert human teacher drives the car
down the highway and the learner is given training examples of the form (s, a), where
s is the current position of the car on the road (e.g., its position relative to the edges of
the lane) and a is the steering action chosen by the teacher. We could now view this
as a supervised learning problem where the goal is to learn the function a = f(s).
This approach has been termed “behavioral cloning” (Sammut??), because we wish
to “clone” the behavior of a human expert.
Note that the distribution of states D(s) contains only those states (i.e., those

positions of the car) that are visited by a good human driver. If the function f can be
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learned completely and correctly and the car is started in a good state s, then there
is no problem. But supervised learning is never perfect. Let h be the hypothesis
output by the supervised learner, and let s1 be a state where h(s1) #= f(s1). In
this state, the learner will make a mistake, and the car will enter a new state s2

chosen according to P (s2|s1, h(s1)). For example, s1 might be a state where the
right wheels of the car are on the edge of the highway, and state s2 might be a state
where the right wheels are off the road. Now this state was never observed during
training (because the human teacher would never make this mistake, soD(s2) = 0).
Consequently, the learner does not know how to act, and the car could easily leave
the road completely and crash. The point is that even if h is 99.99% correct on the
distributionD(s), even a single state s1 where h is wrong could lead to arbitrarily bad
outcomes. Reinforcement learning cannot be solved by supervised learning, even
with a perfect teacher. It is interesting to note that the ALVINN project (Pomerleau,
1991) attempted to address exactly this problem by applying domain knowledge to
generate synthetic training examples for a wide range of states including states where
the car was far off the road.
Because reinforcement learning occurs online through interacting with the envi-

ronment, the learner is forced to learn from its own mistakes. If the car leaves the
road and crashes, the learner receives a large negative reward, and it learns to avoid
those actions. Indeed, a reinforcement learning system can learn to avoid states that
could potentially lead to dangerous states. Hence, the learner can learn to avoid states
where the wheels get close to the edges of the lane, because those states are “risky.”
In this way, a reinforcement learning system can learn a policy that is better than
the best human expert. This was observed in the TD-gammon system, where human
experts changed the way they play certain backgammon positions after studying the
policy learned by reinforcement learning (Tesauro, 1992, 1994, 1995).

1.6 CONCLUDING REMARKS

In this article, we have attempted to define supervised learning and reinforcement
learning and clarify the relationship between these two learning problems. We have
stressed the differences between these two problems, because this has often been a
source of confusion. Nonetheless, there are many similarities. Both reinforcement
learning and supervised learning are statistical processes inwhich a general function is
learned from samples. In supervised learning, the function is a classifier or predictor;
in reinforcement learning, the function is a value function or a policy.
A consequence of the statistical nature of reinforcement learning and supervised

learning is that both approaches face a tradeoff between the amount of data and
the complexity of the function that can be learned. If the space of functions being
considered is too large, the data will be overfit, and both supervised and reinforcement
learning will perform poorly. This is manifested by high error rates in supervised
learning. In reinforcement learning, it is manifested by slow learning, because much
more exploration is needed to gather enough data to eliminate overfitting.
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Another similarity between reinforcement learning and supervised learning algo-
rithms is that they both often make use of gradient search. However, in supervised
learning, the gradient can be computed separately for each training example, whereas
in reinforcement learning, the gradient depends on the relative rewards of two or
more actions.
We note that the view we present of the key features distinguishing reinforcement

learning fromother related subjects leaves room for credible alternatives. Researchers
do not thoroughly agree on these issues, and it is not clear that striving for definitive
definitions serves a useful purpose. Modern problem formulations and algorithms
can significantly blur some of these distinctions, or even render them irrelevant.
Nevertheless, we hope that our discussion can serve as a useful guide to the core
ideas behind reinforcement learning and their relationship to the fundamental ideas
of supervised learning.
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