Using Relative Novelty to Identify Useful Temporal Abstractions in
Reinforcement Learning

ézgiir Simsgek
Andrew G. Barto

0ZGURQCS.UMASS.EDU
BARTOQCS.UMASS.EDU

Department of Computer Science, University of Massachusetts, Amherst, MA 01003-9264

Abstract

We present a new method for automatically
creating useful temporal abstractions in re-
inforcement learning. We argue that states
that allow the agent to transition to a differ-
ent region of the state space are useful sub-
goals, and propose a method for identifying
them using the concept of relative nowvelty.
When such a state is identified, a temporally-
extended activity (e.g., an option) is gener-
ated that takes the agent efficiently to this
state. We illustrate the utility of the method
in a number of tasks.

1. Introduction

Several formalisms have recently been developed by
reinforcement learning (RL) researchers that address
planning, acting, and learning at multiple levels of
temporal abstraction. These include Hierarchies of
Abstract Machines (Parr & Russell, 1998; Parr,
1998), MAXQ value function decomposition (Diet-
terich, 2000), and the options framework (Sutton
et al., 1999; Precup, 2000). These formalisms pave
the way toward dramatically improved capabilities of
autonomous agents, but to fully realize their benefits,
an agent needs to be able to create useful temporal ab-
stractions automatically instead of relying on a system
designer to provide them.

A number of methods have been suggested for address-
ing this need. Hengst (2002) proposed constructing
a hierarchy of abstractions in problems with factored
state spaces. His method orders state variables with
respect to their frequency of change and adds a layer of
hierarchy for each state variable, where each layer han-
dles a smaller Markov Decision Process (MDP) than

Appearing in Proceedings of the 21°* International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
by the authors.

the previous layer. Thrun and Schwartz (1995), Pick-
ett and Barto (2002) generate temporal abstractions
by finding commonly occurring subpolicies in solutions
to a set of tasks. Digney (1998), McGovern and Barto
(2001), Menache et al. (2002) take yet a different
approach: They identify subgoal states and generate
temporally-extended activities that take the agent to
these states. Digney’s subgoals are states that are vis-
ited frequently or that have a high reward gradient.
McGovern and Barto’s method identifies as subgoals
those regions of the state space that the agent visits
frequently on successful trajectories but not on unsuc-
cessful ones. Menache et al. define subgoals as the
border states of strongly connected areas of the MDP
transition graph and find them using a max-flow /min-
cut algorithm.

The algorithm we propose also identifies subgoals in
the state space and creates temporally-extended activ-
ities that take the agent efficiently to these subgoals.
Our subgoals are states that allow the agent to tran-
sition to a part of the state space that is otherwise
unavailable or difficult to reach from its current re-
gion. We call them access states. Some examples are
a doorway between two rooms, an elevator which pro-
vides quick access to all floors, and an airport which
provides access to various cities through air travel.

While subgoals of this type are abundant in naviga-
tional tasks, they are by no means restricted to them.
For instance, most sequential tasks require that work
on a subtask be completed before the next task can
begin, in which case the completion of a subtask pro-
vides access to the next subtask. A different example
is building a tool, if the tool makes possible a new set
of activities for the agent.

These subgoals are useful in two ways. First, they
allow more efficient exploration of the state space, by
providing more direct access to those regions that the
agent does not tend to go to easily (cf. McGovern
& Barto, 2001; Menache et al., 2002). Second, they

allow transfer of knowledge between tasks that are in
the same domain but have different reward functions—
getting to the doorway is useful regardless of what the
agent needs to do in the other room.

In identifying these subgoals we use their defining
property—that they allow the agent to transition to a
different region in the state space. We detect this tran-
sition using the concept of relative novelty, a measure
of how much short-term novelty a state introduces to
the agent. When the algorithm identifies a subgoal,
it creates a temporally-extended activity (e.g., an op-
tion) that takes the agent efficiently to this state. We
call our algorithm the relative novelty algorithm (RN)
after its method of defining subgoals.

An important property of RN is that it does not make
use of the reward function of the overall problem. This
has two implications. First, it can be used in a purely
exploratory mode, where no overall RL algorithm is
executing, or it can be used with any particular RL
algorithm. Second, it is not necessary to complete a
task in order to create temporal abstractions. For ex-
ample, if the task is to learn a policy for hitting a goal
region in minimum time, abstractions can be created
before the goal region is hit for the first time. This,
we believe, is a critical property for facilitating RL in
large complex tasks.

In the following sections we describe the particulars of
our algorithm and argue for its utility by presenting
and discussing empirical results on several examples.

2. The Relative Novelty Algorithm

RN is based on our intuition that access states will be
more likely than other states to introduce short-term
novelty, i.e., to mediate a transition to a region not
visited recently. In the following sections, we describe
how RN captures this intuition. We first define novelty
and relative novelty, then explain how RN identifies
subgoals and generates temporally-extended activities
that takes the agent to these subgoals. Throughout
our discussion, we will refer to access states as targets,
and to other states as non-targets.

2.1. Novelty

Various concepts of novelty play many roles in both
cognitive and computational science. The notion of
novelty we use is purposefully very simple, but we do
have in mind extensions that benefit from richer for-
malisms than the discrete state problems that we ad-
dress here.

Our definition of novelty relates it to how frequently a

state is visited since a designated start time. We define
the novelty of a discrete state s to be equal to \/Lnj’
where ng is the number of times it has been visited.
The novelty of a set .S of states is \/%’ where 7ig is the
mean number of times states in S have been visited.
With this definition, the novelty of a state equals 1
when it is first visited, decays with each succeeding
visit, and approaches 0 in the limit.

As mentioned above, we are interested in a short-term
measure of novelty. One possible approach is to decay
the agent’s experience using eligibility traces (Sutton
& Barto, 1998). We chose instead to reset visitation
frequencies periodically—this is simpler, particularly
for episodic tasks in which the end of an episode is a
natural point to reset frequencies.

2.2. Relative Novelty

We define the relative novelty of a state in a transi-
tion sequence to be the ratio of the novelty of states
that followed it (including itself) to the novelty of the
states that preceded it. The number of forward and
backward transitions to take into account in comput-
ing this score is a parameter of the algorithm; we call
it the nowvelty lag (I,). A state will typically have a
different relative novelty score each time it is visited.

Our intuition suggests that the distribution of relative
novelty scores of targets will be different than that
of non-targets. More specifically, we expect targets
to have higher scores more frequently. We tested this
hypothesis in a simple domain, the two-room gridworld
shown in figure 2a. The actions were the usual north,
south, east, west. We ignored the goal state and
had the agent perform a 1000-step random walk 1000
times, starting each at a random grid location.

This domain has a single target state that fits our
definition of a subgoal—the doorway between the two
rooms. Figure 1 shows the distribution of relative nov-
elty scores for the doorway and for other states, using
a novelty lag of 7. The figure reveals that the dis-
tributions are indeed different for this domain. Both
distributions peak around a relative novelty score of 1,
indicating approximately equal novelty scores preced-
ing and following a state, but the target distribution
has a heavier tail.

We should note here that putting all non-targets into
one bin is a simplification. We expect states that are
close to the target to behave more like the target, and
in general we expect two given states to differ in their
distribution of relative novelty scores.

Our repeated experiments with different novelty lags

0.121

o o o

o o o o

B (=) [=
T T T T

Proportion of Observed Scores

o

o

™)
T

15 2 25 3 35 4
Relative Novelty Score

I
Figure 1. Distribution of relative novelty scores for target

and non-target states in the two-room gridworld of Figure
2a.

and room sizes showed a similar discrepancy in rela-
tive novelty scores of the doorway and other states.
This discrepancy is the basis of our subgoal discovery
method, which we discuss in the next section.

2.3. Subgoal Discovery

We formulate the subgoal discovery task for an on-
line RL agent as a classification problem. With each
transition, the agent observes a new relative novelty
score for some state s and wishes to classify s as target
(T) or non-target (N), based on not only the current
score, but all scores observed so far for s.

If class-conditional relative novelty distributions are
known, this classification task is straightforward us-
ing Bayesian decision theory (Duda et al., 2001). As-
signing an appropriate cost to two possible types of
error—classifying a target as non-target (miss) or a
non-target as target (false alarm)—and minimizing to-
tal cost gives rise to the following decision rule:

Label state as target if

P{(S1,..,sn)|T})\fa P{N}
P{(s1,-,84)|N} > Amiss P{T} 1)

where (s1,..,8,) are the relative novelty scores ob-
served for the state, P{i} is the prior probability of
a state of type i, Afq is the cost assigned to a false
alarm, and \,,;ss is the cost assigned to a miss.

We further simplify this rule by converting the con-
tinuous relative novelty score to a binary feature z,
where = equals 1 if score is greater than a threshold
(which we call the relative novelty threshold and de-
note by tgrn) and 0 otherwise. This is motivated by

our observation that the distributions differ mainly in
their tail, which suggests that the appropriate choice
of a threshold would capture enough information to
construct a good classifier. Assuming independent ob-
servations of relative novelty for a given state, this
allows us to rewrite inequality 1 as follows:

P —p)"™ Aja PN}
(1 —g)"™™ = Apiss P{T}
where p = P{z = 1|T'}, ¢ = P{z = 1|N}, n; is the

number of observations with £ = 1, and n is the total
number of observations.

(2)

And finally, using simple algebra, we obtain the fol-
lowing decision rule:

Label state as target if

_ Afa N
nl > lniTg 1 ln(A'miss : f’(—’r))) (3)
n " ped=9 " n jpd-q)

q(1—p) q(1-p)

This rule is a simple threshold on the proportion of
observations where z = 1, or equivalently, on the pro-
portion of relative novelty scores that are above tgy.
The first term on the right is a constant that depends
only on class-conditional probabilities of the obser-
vations. The second term includes another constant
(which depends on class-conditional probabilities, the
priors, and the relative cost of each type of error) and
a variable (the number of observations); it is inversely
related to the number of observations, thus the in-
fluence of the second term decreases with increasing
sample size.

There remains an important issue to address: The
class-conditional relative novelty distributions are typ-
ically not known. One approach we propose here is
to estimate them using agent’s experience in a small
part of the actual task, if it is representative of the
whole task and if the subgoals in this region are known.
If this is not possible, we propose gathering labeled
data using a corpus of environments where the subgoal
states are known. We suggest that these environments
vary in their size, connectivity structure, and num-
ber of access states. This can be done only once, and
the resulting estimates and parameter settings may be
used for RL tasks for which the first approach is infea-
sible.

Once the class-conditional relative novelty distribu-
tions are estimated, the next task is to determine the
value of tgy—each setting of this parameter will yield
a different classifier. A classical approach to this task is
to guide this decision using a receiver operating charac-
teristic (ROC) curve (Duda et al., 2001), which could

be constructed using the data obtained to estimate the
relative novelty distributions.

The class-conditional relative novelty distributions
and the value of tgn will determine the values of p and
g. All that remains before the classifier is ready for use
is determining the value of /\:\n‘: - %, for which we
can only provide some guidelines: 1) The prior proba-
bility of a target should be much smaller than that of a
non-target, and 2) A false positive should have a much
higher cost than a miss—subgoals that are chosen ar-
bitrarily do considerable harm by leading the agent to
these states until the agent learns that they are not
valuable.

In summary, we propose the following procedure for
identifying subgoals:

1. (Off-line) Estimate the class-conditional relative
novelty distributions using agent’s experience, if
possible, in a small part of the actual task, and
otherwise in a corpus of environments. Deter-
mine the value of tgy using a ROC curve analy-
sis. Compute p, g given the class-conditional rel-

ative novelty distributions and tgy. Determine
Afa . P{N}
T P{T}

Amiss

2. (On-line) Evaluate decision rule 3 periodically,
possibly with each new state transition, consid-
ering all of the relative novelty scores observed
for a given state.

There are some details to this relatively simple pro-
cedure. First, it is essential to periodically reset visi-
tation counts. This is important because the type of
novelty we seek is defined relative to the agent’s recent
experience—it is irrelevant whether a state is novel
to the agent overall. In an episodic task, a natural
way to reset visitation counts is to do it at the begin-
ning of each episode. But it can also be done after
a certain number of transitions, which may be benefi-
cial if the episodes are long, or if they vary greatly in
length. Second, when computing visitation frequen-
cies, self-transitions (i.e., transitions from a state to
itself) should be ignored; otherwise the assumption of
independent observations would be severely violated,
as two consecutive scores for the same state will be
highly correlated. And finally, there is a time lag be-
tween the actual state visitation and the relative nov-
elty computations because of the novelty lag.

2.4. Generating Temporal Abstractions

In defining temporal abstractions, we adapt the op-
tions framework (Precup, 2000; Sutton et al., 1999).

A (Markov) option is a temporally-extended action,
specified by a triple (I, ,3), where I denotes the op-
tion’s initiation set, i.e., the set of states in which the
option can be invoked, n denotes the policy followed
when the option is executing, and 8 : I — [0,1] de-
notes the option’s termination condition, with §(s)
giving the probability that the option terminates in
state s € I.

When a new subgoal is identified, RN generates an
option whose policy efficiently takes the agent to this
subgoal from any state in the option’s initiation set.

The option’s initiation set consists of those states that
were visited shortly before the subgoal state registered
a relative novelty score higher than tgpy. How many
past transitions to include in this set is determined by
a parameter, the option lag (I,).

Following McGovern and Barto (2001), McGovern
(2002), Menache et al. (2002), the option’s policy is
specified through an RL process employing action re-
play (Lin, 1992) and a reward function specific to the
subgoal for which the option was created (correspond-
ing to what Dietterich, 2000, called a pseudo reward
function). The reward function that RN uses causes
a policy to be learned that makes the agent reach the
subgoal state in as few time steps as possible while re-
maining in the option’s initiation set. This is achieved
by giving a large positive reward for reaching the sub-
goal, a large negative reward for exiting the initiation
set, and a small negative reward for every transition.

And finally, the option’s termination condition spec-
ifies that the option terminates with probability 1 if
the agent reaches the subgoal, or if the agent leaves
the initiation set; otherwise, it terminates with prob-
ability 0.

3. Experimental Results

We first present results in two simple gridworld do-
mains. These domains are helpful in illustrating the
behavior of the algorithm in easily visualized form. We
then show results in a more complex task—the taxi
task introduced by Dietterich (2000).

The off-line part of the algorithm was conducted only
once, using the data obtained from the random walk
in the two-room gridworld discussed earlier in Sec-
tion 2.2. Using an ROC curve analysis, tgn was set
to 2, which lead to a p value of 0.0712 and a ¢ value
of 0.0056. Other parameter settings were as follows:
ol =100, 27 = 100, I, = 7, [, = 10. No limit
was set on the number of options that could be gen-
erated; and no filter was employed to exclude certain

states from being identified as subgoals. In all of our
experiments, the agent used Q-learning with e-greedy
exploration with € = 0.1. The learning rate (a) was
kept constant at 0.05; initial Q-values were 0.

3.1. Two-Room Gridworld

Our first example is the two-room gridworld in figure
2a. As noted above, this domain was used to estimate
the class-conditional relative novelty distributions by
having the agent perform repeated random walks. We
realize that presenting the performance of the RN algo-
rithm in this domain is akin to building and evaluating
a classifier on the same data set; but we believe that
it is important to include it here, as performance on
this task shows how well the algorithm can do given al-
most perfect estimates of the class-conditional relative
novelty distributions.

The agent started each episode on a random square
in the west room; the goal was the grid square on
the Southeast corner of the grid. The four primitive
actions—north, south, east, west—moved the agent
in the intended direction with probability 0.9, and in
a uniform random direction with probability 0.1. If
the direction of movement was blocked, the agent re-
mained in the same location. The agent received a
reward of 1 at the goal state, and a reward of 0 at all
other states. The discount factor was 0.9.

Figure 2b shows a visual representation of the location
and frequency of the subgoals identified in 30 runs.
The color of a square in this figure corresponds to the
number of times it was identified as a subgoal, with
lighter colors indicating larger numbers. The state
that was identified as a subgoal most frequently was
the doorway—in 25 of the 30 runs. Mean number of
subgoals identified per run was 1.6; 96% of the sub-
goals were within two steps of the doorway.

Figure 2c shows the mean number of steps taken to
reach the goal state, with and without RN. The fig-
ure reveals that RN identified useful subgoals and
showed a marked improvement in performance within
10 episodes.

3.2. Six-Room Gridworld

Our second example is the gridworld environment in
Figure 3a, which was used by Menache et al. (2002) to
demonstrate the utility of their Q-Cut algorithm. The
grid dynamics were the same as before. Start and goal
states were as shown in the figure. The target states in
this domain are the six doorways between the rooms.
Figures 3b and 3c show the results of 30 runs. Mean
number of subgoals identified per run was 15.3; of the

subgoals identified, 30% were target states and 24%
were states one transition away from the targets. As
in the previous example, the options generated drasti-
cally improved the agent’s performance.

3.3. Taxi Task

The taxi task has been a popular illustrative problem
for RL algorithms since its introduction by Dietterich
(2000). The task is to pick-up and deliver a passenger
to her destination on a 5 x 5 grid depicted in Figure
4a. There are four possible source and destination lo-
cations for the passenger: the grid squares marked by
R, G, B, Y. The source and destination are randomly
and independently chosen in each episode. The ini-
tial location of the taxi is one of the 25 grid squares,
picked uniformly random. At each grid location, the
taxi has a total of six primitive actions: north, east,
south, west, pick-up, put-down. The navigation ac-
tions succeed in moving the taxi in the intended direc-
tion with probability 0.80; with probability 0.20, the
action takes the taxi to the right or left of the intended
direction. If the direction of movement is blocked, the
taxi remains in the same location. The action pick-up
places the passenger in the taxi if the taxi is at the
same grid location as the passenger; otherwise it has
no effect. Similarly, put-down delivers the passenger
if the passenger is inside the taxi and the taxi is at
the destination; otherwise it has no effect. Reward is
—1 for each action, an additional +20 for passenger
delivery, and an additional —10 for an unsuccessful
pick-up or put-down action.

This domain has 500 states: 25 grid locations x 5 pas-
senger locations (including in-taxi) x 4 destinations.
The sequential nature of the task gives rise to access
states that denote completion of a subtask: going to
the passenger location, and picking up the passenger—
two other subtasks, going to the destination and drop-
ping off the customer, also give rise to meaningful sub-
goals but these are too close to the end of an episode
for computing relative novelty (because of the nov-
elty lag). There are also navigational access states
in this domain—grid squares (2,3) and (3,3)—as the
walls limit navigation quite a bit. Both types of ac-
cess states are repeated for a number of values of other
state variables (e.g., grid square (3,3) is an access state
when destination is R, G, B, or Y); as a consequence,
there are a total of 72 access states; 32 of these com-
plete a subtask, 40 of them are navigational.

We evaluated the performance of RN in 100 runs. Fig-
ure 4b shows a visual representation of the grid loca-
tion of the subgoals, ignoring the other two state vari-
ables. Mean number of subgoals identified per run was

(a) (b)

2500

2000

Steps to Goal
N
o
o
o
T

1000

500

Q-Learning
— RN

0 10 20 30 40 50 60 70 80
Episodes

()

Figure 2. (a) Two-Room gridworld environment, (b) Subgoals identified, (¢) Mean steps to goal.

(a) (b)

9000+

8000

Steps to Goal

Q-Learning
— RN

. . |
0 20 40 60 80 100 120 140

Episodes
(c)

Figure 3. (a) Six-Room gridworld environment, (b) Subgoals identified, (c) Mean steps to goal.

25.8. Of these, 78% were subtask subgoals that corre-
spond to getting to the passenger location and picking
up the passenger. Another 14% were states that are
one transition away from these. Navigational bottle-
necks accounted for 4% of the subgoals. Altogether,
these add up to 96% of the subgoals identified. Mean
number of steps to complete the task is shown in Fig-
ure 4c, which reveals a dramatic improvement in mean
performance when RN was used.

4. Discussion

This work is closely related to a number of meth-
ods proposed earlier in the literature, most notably
to Menache et al. (2002), Hengst (2002), McGovern
(2002), and McGovern and Barto (2001), all of which
identify subgoal states and define temporally-extended
activities that take the agent efficiently to these states.
In assessing the relative merits of our method, it would
be useful to empirically compare the algorithms in a

wide variety of domains; we leave this for future work,
but provide a qualitative comparison here.

Menache et al. (2002) define their subgoals to be the
border states of strongly connected regions of the MDP
transition graph. In essense, our access states are an
alternative description of these, and we may say that
Q-Cut and RN seek to identify the same states as sub-
goals. The difference between the algorithms is how
they search for them. Q-Cut takes a global approach,
and identifies as subgoals those states that perform
a minimum cut of the state transition graph, view-
ing the transition graph as a whole and recursively
partitioning it into smaller pieces. Our method, in
contrast, takes a local approach. It examines only the
most recent experiences of the agent, and approximates
finding a minimum cut of the corresponding transition
graph (though never building the graph). We use a lo-
cal search procedure because an access state is defined
locally, with reference to two neighboring regions, in-

N W b~ O

=

[N
N
w
£
(]

yT Y B

(a) (b)

Steps to Goal

0 500 1000 1500
Episodes

()

Figure 4. (a) The taxi domain, (b) Subgoals identified (showing only the grid location variable), (c) Mean steps to goal.

dependently of the rest of the transition graph. An
access state may or may not be part of a global cut—
getting out of one’s house is an access state, but is
not necessarily part of a global cut in the context of
one’s entire state space. Because of this fundamen-
tal difference in their search mechanisms, Q-Cut and
RN are expected to differ in the subgoals they identify,
although they search for the same type of subgoals.

Q-Cut and RN also differ in the computational cost
of their subgoal discovery methods. The minimum cut
procedure employed by Q-Cut has a time complexity of
O(n?), where n is the number of states, while the sub-
goal discovery method of RN has a time complexity of
O(1)—RN examines only the most recent experiences
of the agent, so the computational cost does not grow
with the number of states.

The region exits of Hengst (2002) are also related
to our access states, in that some domains have
states that satisfy both definitions.! One example is
the subtask-completion subgoals in the taxi task dis-
cussed earlier—these were identified more efficiently
by HEXQ than by RN, though in this domain RN also
identified useful navigational subgoals which HEXQ
does not search for—but in most tasks, region exists
and access states will not be identical.

The main difference between our subgoals and those
of McGovern (2002) and McGovern and Barto (2001)
is the role of the reward function. The methods of
McGovern et al. require that their subgoals occur fre-
quently on successful trajectories, but not on unsuc-
cessful ones. We do not pay attention to the reward
function, arguing that access states are useful regard-
less of their relation to the actual goal of the agent.
For instance, this would certainly be true in an envi-
ronment where the goal state is not stationary. In that

!Region exits are state-action pairs, but we refer to the
state component in this discussion.

case, by using the access states it has already identified
in the environment, an agent would be able to acceler-
ate learning in the new task, even if the solution path
of the new task is completely different than that of the
old one.

RN is also related to E3 (Kearns & Singh, 1998) and
R-MAX (Brafman & Tennenholtz, 2002) algorithms,
in that all three algorithms influence, implicitly or ex-
plicitly, the exploration behaviour of the agent. E3 and
R-MAX do this by guiding the agent’s action choices
based on how well an individual state is known, while
RN does it by providing opportunities for the agent to
exit its current region.

The algorithm introduced here is a simple implemen-
tation of the general idea of using a measure of short-
term novelty to identify states that may form useful
target states for a collection of temporally-extented
activities. The intuition is that if the ease of reaching
such states is improved, the agent’s access to unex-
plored regions of the state space will improve, thus
leading to more efficient exploration. A key aspect of
the algorithm is that the process of identifying sub-
goals is not dependent on the reward function of the
overall task. Indeed, there may be no such reward
function. This implies that the method can facilitate
transfer among multiple tasks with disparate reward
functions and that it can provide potentially useful
abstract actions before any particular task has been
solved (in cases where “solving a task” has a well-
defined meaning). This property is essential if an auto-
matic abstraction method is to be useful in extending
the utility of RL to complex real-world tasks.

A weakness of the algorithm is the empirical and
heuristic setting of its parameters. This is far from
ideal, and an important direction for future research is
to allow the agent to adaptively set these parameters.
More importantly, in domains that lack the symmetric

structure of the tasks we used as examples here, there
may be large differences in the distributions of relative
novelty scores in different parts of state space—for ex-
ample if the effective dimensionality is different in dif-
ferent regions—which will require that the algorithm
be sensitive to these differences to be effective. In its
current form, the algorithm is not able to handle these
differences. A related question we have not addressed
here is the sensitivity of the algorithm to the settings
of the parameters.

Refining the definition of relative novelty for high-
dimensional or continuous state spaces is another im-
portant direction for future research. The definition we
use here is for discrete-state problems only and there-
fore has limited applicability.

Given the simple problems we have experimented on
and the questions we leave unanswered, we can not
claim that our method will scale to more complex
tasks—future research is needed to determine whether
the method will be generally effective—but we can con-
clude from the results we have presented here that our
approach has the potential for facilitating learning on
more challenging tasks.

Finally, we comment that various concepts of novelty
are closely linked to motivation and reward in animals
(e.g., Kakade & Dayan, 2001). The use of novelty
measures to drive the automatic creation of hierarchi-
cal behavior architectures may provide useful compu-
tational interpretations of novelty-related animal be-
havior.

Acknowledgments

We would like to thank Daniel Bernstein, Mohammad
Ghavamzadeh, Sridhar Mahadevan, Balaraman Ravin-
dran, Michael Rosenstein, and three anonymous review-
ers for their useful comments and suggestions. This work
was supported by the National Science Foundation under
Grant No.ECS-0218123 to Andrew G. Barto and Sridhar
Mahadevan. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

References

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX - A
general polynomial time algorithm for near-optimal re-
inforcement learning. Journal of Machine Learning Re-
search.

Dietterich, T. G. (2000). Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition. Jour-
nal of Artificial Intelligence Research, 13, 227-303.

Digney, B. (1998). Learning hierarchical control structure
for multiple tasks and changing environments. From An-

imals to Animats 5: The Fifth Conference on the Simu-
lation of Adaptive Behaviour. The MIT Press.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern
classification. New York: Wiley.

Hengst, B. (2002). Discovering hierarchy in reinforcement
learning with HEXQ. Proceedings of the Nineteenth In-
ternational Conference on Machine Learning (pp. 243—
250). Morgan Kaufmann.

Kakade, S., & Dayan, P. (2001). Dopamine bonuses. Ad-
vances in Neural Information Processing Systems (pp.
131-137). MIT Press.

Kearns, M., & Singh, S. (1998). Near-optimal reinforce-
ment learning in polynomial time. Proceedings of the
Fifteenth International Conference on Machine Learn-
ing (pp. 260-268). Morgan Kaufmann.

Lin, L. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine
Learning, 8, 293-321.

McGovern, A. (2002). Autonomous discovery of tempo-
ral abstractions from interaction with an environment.
Doctoral dissertation, University of Massachusetts,
Ambherst.

McGovern, A., & Barto, A. G. (2001). Automatic discovery
of subgoals in reinforcement learning using diverse den-
sity. Proceedings of the Fighteenth International Con-
ference on Machine Learning (pp. 361-368). Morgan
Kaufmann.

Menache, 1., Mannor, S., & Shimkin, N. (2002). Q-Cut -
Dynamic discovery of sub-goals in reinforcement learn-
ing. Proceedings of the Thirteenth European Conference
on Machine Learning (pp. 295-306). Springer.

Parr, B. R. (1998). Hierarchical control and learning for
markov decision processes. Doctoral dissertation, Com-
puter Science Division, University of California, Berke-
ley.

Parr, R., & Russell, S. (1998). Reinforcement learning with
hierarchies of machines. Advances in Neural Information
Processing Systems (pp. 1043-1049). MIT Press.

Pickett, M., & Barto, A. G. (2002). PolicyBlocks: An
algorithm for creating useful macro-actions in reinforce-
ment learning. Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning (pp. 506-513).
Morgan Kaufmann.

Precup, D. (2000). Temporal abstraction in reinforce-
ment learning. Doctoral dissertation, University of Mas-
sachusetts Amherst.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing: An introduction. Cambridge, MA: MIT Press.

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Be-
tween MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial
Intelligence, 112, 181-211.

Thrun, S., & Schwartz, A. (1995). Finding structure in
reinforcement learning. Advances in Neural Information
Processing Systems (pp. 385-392). MIT Press.

