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Abstract

We present a new method for automatically creating use-
ful temporally-extended actions in reinforcement learn-
ing. Our method identifies states that lie between two
densely-connected regions of the state space and generates
temporally-extended actions (e.g., options) that take the agent
efficiently to these states. We search for these states using
graph partitioning methods on local views of the transition
graph. This local perspective is a key property of our algo-
rithms that differentiates it from most of the earlier work in
this area, and one that allows it to scale to problems with large
state spaces.

Introduction
Reinforcement learning (RL) researchers have recently de-
veloped several formalisms that address planning, acting,
and learning at multiple levels of temporal abstraction.
These include Hierarchies of Abstract Machines (Parr &
Russell 1998; Parr 1998), MAXQ value function decompo-
sition (Dietterich 2000), and the options framework (Sutton,
Precup, & Singh 1999; Precup 2000). (See Barto & Ma-
hadevan, 2003, for a recent review.) These formalisms pave
the way toward dramatically improved capabilities of au-
tonomous agents, but to fully realize their benefits, an agent
needs to be able to create useful temporal abstractions auto-
matically instead of relying on a system designer to provide
them.

A number of methods have been suggested for address-
ing this need. One approach is to search for commonly
occurring subpolicies in solutions to a set of tasks and
to define temporally-extended actions with corresponding
policies (Thrun & Schwartz 1995; Pickett & Barto 2002).
Another approach is to identify subgoal states—states that
are useful to reach—and generate temporally-extended ac-
tions that take the agent efficiently to these states. Sub-
goals considered useful include states that are visited fre-
quently or that have a high reward gradient (Digney 1998),
states that are visited frequently on successful trajectories
but not on unsuccessful ones (McGovern & Barto 2001), and
states that lie between densely-connected regions of the state
space (Menache, Mannor, & Shimkin 2002; Şimşek & Barto
2004; Mannor et al. 2004).
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In this paper, we propose a new method for temporal ab-
straction in RL based on identifying subgoal states. Our
subgoals are those states that lie between two densely-
connected regions of the state space, for example a doorway
between two rooms. Şimşek & Barto (2004) call such states
access states; we adopt their terminology here.

The utility of access states has been argued previously
in the literature (McGovern & Barto 2001; Menache, Man-
nor, & Shimkin 2002; Şimşek & Barto 2004; Mannor et al.
2004). Their main appeal is allowing more efficient explo-
ration of the state space by leading the agent to regions that
it would not go to frequently when performing a random
walk, which characterizes the initial stage of many RL al-
gorithms. Furthermore, because these subgoals are defined
independently of the reward function, they are useful in solv-
ing not only the current task but also a variety of other tasks
that share the same state transition matrix but differ in their
reward structure—getting to the doorway is a useful thing
to do regardless of what the agent needs to do in the other
room.

The main distinction between this work and methods pro-
posed earlier in the literature is in how the search for access
states is conducted. We perform this search by periodically
constructing and examining a local view of the MDP transi-
tion graph, i.e., one that reflects only the most recent expe-
riences of the agent. We accept as subgoals those states that
are consistently part of the cut identified when a graph par-
titioning algorithm is applied to this view of the transition
graph.

Our method is similar to QCut (Menache, Mannor, &
Shimkin 2002) in that both use graph-theoretic methods to
find cuts of the transition graph and use them to identify sub-
goals of interest. QCut, however, takes a global view of the
transition graph, using the entirety of the agent’s experience
to construct the graph. This distinction between the two al-
gorithms, while subtle, gives rise to two fundamentally dif-
ferent algorithms.

We use a local view of the transition graph because the ac-
cess states—states that lie between two densely-connected
regions of the state space—are defined in reference to what
surrounds them rather than their global position in the tran-
sition graph. An access state may or may not be part of a
global cut of the whole graph. For example, leaving one’s
house is an access state, but within the context of one’s en-



tire state space, it probably will not be part of a global cut.
The local perspective we have is shared with RN (Şimşek

& Barto 2004), an algorithm that never constructs the tran-
sition graph, but works with only the most recent part of the
transition history in identifying the same type of subgoals.
We provide a more detailed discussion of similarities and
differences among QCut, RN, and our method in the discus-
sion section.

We call our algorithm LCut, emphasizing its local view of
the transition graph. In the following sections we describe
LCut in detail, evaluate its performance in two domains, and
conclude with a discussion of our results, related work, and
future directions.

Description of the Algorithm
Our algorithm consists of periodically performing the fol-
lowing steps, which will be explained in detail in the fol-
lowing sections.

1. Construct a graph that corresponds to the agent’s most re-
cent state transitions.

2. Apply a graph partitioning algorithm to identify a cut that
partitions this graph into two densely-connected blocks
that have relatively few edges between them.

3. If any state that is part of the identified cut meets the sub-
goal evaluation criteria, identify it as a subgoal.

4. For each new subgoal state, create a temporally-extended
action that takes the agent efficiently to this state.

Building a Partial Transition Graph
LCut periodically constructs a partial transition graph using
the recent transition history. This graph is weighted and di-
rected, and is constructed in a straightforward manner given
a transition sequence: Vertices in the graph correspond to the
states in the transition sequence; edges correspond to transi-
tions between these states; edge weights equal to the number
of corresponding transitions that take place in the transition
sequence. As noted earlier, the use of only a recent part of
the transition history is an essential part of our algorithm.
The length of the transition sequence to be used in building
this graph is a parameter of the algorithm (h).

Finding a Cut
After constructing a partial transition graph, LCut seeks
to find a cut through this graph that partitions it into two
densely-connected blocks that have relatively few edges be-
tween them. Below we describe the cut evaluation criteria
and the spectral clustering technique used to find a good cut.

Cut Evaluation Criterion The ideal cut would partition
the states into two blocks in which the transition probability
within blocks is high and the transition probability across
blocks is low. There is a well known cut evaluation metric
that provides this property: Normalized Cut (NCut) (Shi &
Malik 2000).

The original NCut measure was intended for undirected
graphs; we modify it to include directed edges. For a graph
partitioned into blocks X and Y, let eij be the weight on the

edge from vertex i to vertex j, cut(X, Y) be the sum of the
weights on edges that originate in X and end in Y, and vol(X)
be the sum of weights of all edges that originate in X. We
define NCut as follows:

NCut =
cut(A,B)

vol(A)
+

cut(B,A)

vol(B)
(1)

Our choice of NCut is motivated by a relatively recent
finding by Meila & Shi (2001) that relates NCut to the prob-
ability of crossing the cut during a random walk on an undi-
rected graph. More precisely, for an undirected graph, each
term in Equation 1 corresponds to the probability of cross-
ing the cut in one step in a random walk that starts from
the corresponding block, if the start state within the block
is selected with respect to the stationary distribution of the
graph’s Markov Chain.

These results do not generally apply to directed graphs,
but the special structure of the graph we are working with—
it represents frequency of state transitions in a Markov
chain—allows us to derive a similar property. For our graph,
this first term in Equation 1 equals the following:

cut(A,B)

vol(A)
=

∑
i∈A,j∈B tij
∑

i∈A tij
. (2)

where tij is the total number of sampled transitions from
state i to state j. In other words, this first term is an estimate
of the probability that the agent transitions to block B in one
step given that it starts in block A.

A similar argument can be made for the second term in
Equation 1. The NCut value gives equal weight to both
blocks, regardless of their size. As a consequence, NCut
gives us the sum of probabilities of crossing the cut from
each block. This property of NCut makes it particularly
well suited for our problem—partitioning the graph such
that transitioning between blocks has a low probability and
transitioning within blocks has a high probability.

We note here that there are two alternative cut metrics that
are commonly used in graph partitioning: MinCut (Ahuja,
Magnati, & Orlin 1993) and RatioCut (Hagen & Kahng
1992). MinCut is the sum of edge weights that form the
cut, while RatioCut is defined as follows for an undirected
graph:

RatioCut = cut(A,B)/|A| + cut(B,A)/|B|. (3)

Neither of these two metrics provides as compelling a rea-
son as NCut to be used as our evaluation metric. MinCut, in
particular, creates a bias towards cuts that separate a small
number of nodes from the rest of the graph—for example a
single corner state in a gridworld—and is clearly inferior to
the other two metrics.

Finding a Partition That Minimizes NCut Finding a
partition of a graph that minimizes NCut is NP-hard (Shi
& Malik 2000). LCut finds an approximate solution using
a spectral clustering algorithm, as described in Shi & Ma-
lik (2000), which has a running time of O(N 3), where N is
the number of vertices in the graph.



Subgoal Evaluation Criteria
At this point, we would like to remind the reader that LCut
operates on an approximation of the transition graph which
reflects only the most recent transitions of the agent. This
implies that the same region of the state space will gener-
ate a different transition graph each time the agent visits
it. As a consequence, the first rule that comes to mind in
evaluating subgoals—if the cut quality is good, accept as
subgoals all vertices that participate in the cut—will not be
effective. It will accept those states that truly lie between
densely-connected regions, but also those that appear to do
so in the latest sample.

We will need to deal with noise and the tool at our dis-
posal is repeated sampling. Let targets be those states that
actually lie between densely-connected regions, and hits be
those states that are part of a cut returned by the partition-
ing algorithm. Because targets will be more likely to be hits
than non-targets, over repeated samples, a target will be a hit
relatively more often than non-targets.

In fact, assuming independent, identically-distributed
sampling of a partial transition graph, the number of hits
follows a Binomial distribution, with a success probability
that is higher for targets than for non-targets, and what we
face is a classification task that aims to distinguish targets
from non-targets. This is a simple classification task (Duda,
Hart, & Stork 2001) that has the following optimal decision
rule:

Label state as target if

nt

n
>

ln 1−q
1−p

ln p(1−q)
q(1−p)

+
1

n

ln(
λfa

λmiss
· p(N)

p(T ) )

ln p(1−q)
q(1−p)

(4)

where nt is the number of times the state was part of a cut
returned by the partitioning algorithm, n is the number of
times this state was part of the input graph to the partitioning
algorithm, p is the probability that a target will be part of a
cut, q is the probability that a non-target will be part of a
cut, λfa is the cost of a false alarm, λmiss is the cost of a
miss, p(N) is the prior probability of a target, and p(T ) is
the prior probability of a non-target.

This decision rule is a simple threshold on the proportion
of visitations in which the state was part of a cut returned
by the partitioning algorithm. The first term on the right is
a constant that depends only on class-conditional probabil-
ities. The second term depends in addition on the number
of observations, the priors, and the relative cost of each type
of error. Since this term is inversely related to the number
of times the state is visited, its influence decreases with in-
creasing number of visits to the state.

While we can not use Rule 4 directly—we do not know
the values of many of the quantities in this equation—we
use it to motivate the following algorithm: Accept a state
as subgoal only if it has been part of the transition graph
some threshold number of times (tv) and if the proportion of
times it was part the resulting cut in these graphs is greater
than some threshold value (tp).

Another consequence of the way we construct the transi-
tion graph is missing edges. This may occasionally result

in one of the terms in Equation 1 to be zero, giving the cor-
responding block a perfect score, only because none of the
edges that go from this block to the other one are observed.
This will lead to substantially lower than actual estimates of
the cut quality and is not desirable. To avoid this, we use the
Laplace correction in computing each term in Equation 1,
adding one to the number of edges within the block and to
the number of edges going out to the other block.

Generating Temporally-Extended Actions
In defining temporally-extended actions, we adapt the op-
tions framework (Precup 2000; Sutton, Precup, & Singh
1999). A (Markov) option is a temporally-extended action,
specified by a triple 〈I, π, β〉, where I denotes the option’s
initiation set, i.e., the set of states in which the option can
be invoked, π denotes the policy followed when the option
is executing, and β : I → [0, 1] denotes the option’s ter-
mination condition, with β(s) giving the probability that the
option terminates in state s ∈ I .

When a new subgoal is identified, LCut generates an op-
tion whose policy efficiently takes the agent to this subgoal
from any state in the option’s initiation set. The option’s
initiation set is determined using those transition sequences
that returned the subgoal state as part of a cut; it consists of
those states that were visited shortly before the subgoal in
these sequences and that ended up in the same partition as
the subgoal. How many past transitions to include in this set
is determined by a parameter, the option lag (lo).

The option’s policy is specified through an RL process
employing action replay (Lin 1992) and a reward function
specific to the subgoal for which the option was created (cor-
responding to what Dietterich, 2000, called a pseudo reward
function). The reward function that LCut uses causes a pol-
icy to be learned that makes the agent reach the subgoal state
in as few time steps as possible while remaining in the op-
tion’s initiation set. This is achieved by giving a large posi-
tive reward for reaching the subgoal, a large negative reward
for exiting the initiation set, and a small negative reward for
every transition.

And finally, the option’s termination condition specifies
that the option terminates with probability 1 if the agent
reaches the subgoal, or if the agent leaves the initiation set;
otherwise, it terminates with probability 0.

Algorithmic Complexity of the Subgoal
Identification Method
The time complexity of LCut is O(h3), where h is the length
of the transition sequence used to construct the transition
graphs. The running time does not grow with the size of
the state space because the algorithm always works with a
bounded set of states, regardless of the size of the actual state
space. This is a key property of the algorithm that allows it
to scale to larger domains.

Experimental Results
The first question we would like to answer is whether the
algorithm is able to identify states that lie between densely-
connected regions as intended. To answer this question,



G

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

Episodes

S
te

ps
 to

 G
oa

l

Q−Learning
LCut

(a) (b) (c)

Figure 1: (a) Two-Room gridworld environment, (b) Subgoals identified, (c) Mean steps to goal.

we present performance results in two domains, a two-room
gridworld and the taxi task introduced by Dietterich (2000).

In our experiments, the agent used Q-learning with ε-
greedy exploration with ε = 0.1. The learning rate (α) was
kept constant at 0.05; initial Q-values were 0. The parame-
ters of the algorithm was set as follows: tc = 0.05, tp = 0.5,
tv = 5 for the two-room gridworld task, tv = 10 for the taxi
task. These settings were based on our intuition and simple
trial and error; we are currently investigating various meth-
ods of setting these parameters automatically. No limit was
set on the number of options that could be generated; and
no filter was employed to exclude certain states from being
identified as subgoals.

Two-Room Gridworld

This domain is shown in figure 1a. The agent started each
episode on a random square in the west room; the goal was
the grid square on the southeast corner of the grid. The
four primitive actions, north, south, east, and west,
moved the agent in the intended direction with probabil-
ity 0.9, and in a uniform random direction with probability
0.1. If the direction of movement was blocked, the agent re-
mained in the same location. The agent received a reward of
1 at the goal state, and a reward of 0 at all other states. The
discount factor was 0.9.

Figure 1b shows a visual representation of the location
and frequency of the subgoals identified by the algorithm in
30 runs. The color of a square in this figure corresponds
to the number of times it was identified as a subgoal, with
lighter colors indicating larger frequencies. The state that
was identified as a subgoal most frequently was the doorway,
in 26 of the 30 runs. A total of 47 subgoals were identified
(1.6 subgoals per run on average), 46 of which were within
one step of the doorway.

Figure 1c shows the mean number of steps taken to reach
the goal state. LCut was able to identify useful subgoals and
show a marked improvement in performance compared to
plain Q-learning within 5 episodes.

Taxi Task
In the taxi domain the task is to pick-up and deliver a pas-
senger to her destination on a 5 × 5 grid depicted in Figure
2a. There are four possible source and destination locations:
the grid squares marked with R, G, B, Y. The source and
destination are randomly and independently chosen in each
episode. The initial location of the taxi is one of the 25 grid
squares, picked uniformly random. At each grid location,
the taxi has a total of six primitive actions: north, east,
south, west, pick-up, and put-down. The navigation
actions succeed in moving the taxi in the intended direction
with probability 0.80; with probability 0.20, the action takes
the taxi to the right or left of the intended direction. If the di-
rection of movement is blocked, the taxi remains in the same
location. The action pick-up places the passenger in the
taxi if the taxi is at the same grid location as the passenger;
otherwise it has no effect. Similarly, put-down delivers
the passenger if the passenger is inside the taxi and the taxi
is at the destination; otherwise it has no effect. Reward is
-1 for each action, an additional +20 for passenger deliv-
ery, and an additional -10 for an unsuccessful pick-up or
put-down action. Successful delivery of the passenger to
the destination marks the end of an episode.

This domain has 500 states: 25 grid locations, 5 passenger
locations (including in-taxi), and 4 destinations. There are
two types of states in this domain that conform to our defini-
tion of a subgoal. The first is a consequence of the sequential
nature of the task. In order to succeed, the taxi needs to go
to the passenger location, pick up the passenger, go to the
destination, and drop off the customer, in sequence. The
completion of any of these subtasks is a subgoal we would
like to identify. The second type of subgoal is navigational.
Even though the grid is very small, the walls in the domain
limit navigation quite a bit, and grid squares (2,3) and (3,3)
act as navigational bottlenecks.

The performance of the algorithm was evaluated over 100
runs. Figure 2b shows a visual representation of the grid
location of the subgoals, ignoring the other two state vari-
ables. The mean number of subgoals identified per run was
10.9. All of these corresponded to driving to the passenger
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Figure 2: (a) The taxi domain, (b) Subgoals identified (showing only the grid location variables), (c) Mean steps to goal.

location.
Mean number of steps to complete the task is shown in

Figure 2c. The figure reveals an early improvement in per-
formance in comparison to Q-learning, but this improvement
does not continue. We are unable to explain why this is the
case.

Discussion
In both experimental tasks, LCut successfully identified tar-
get states as subgoals. These initial results suggest that the
algorithm succeeds at finding cuts of the actual transition
graph even though it works with incomplete samples. These
results are promising, but further study of the algorithm is
needed to conclude its general effectiveness. One important
research direction is to have the agent adaptively set the al-
gorithm parameters that we set here heuristically.

LCut is closely related to a number of algorithms pro-
posed in the literature, most notably to QCut (Menache,
Mannor, & Shimkin 2002) and RN (Şimşek & Barto 2004).
All three algorithms search for the same type of subgoals—
states that lie between two densely-connected regions of the
state space—but differ in how they search for such states.
QCut constructs the MDP transition graph and applies a
min-cut/max-flow algorithm to identify a minimum cut of
the graph. The main distinction between QCut and LCut is
the scope of the transition graph they construct. QCut con-
structs the entire transition graph of the underlying MDP,
reflecting the entirety of the agent’s experience, and finds
cuts through this global graph. In contrast, LCut constructs
a local view of the graph and perform cuts on this small re-
gion. This difference between the algorithms has two impli-
cations. First, they are expected to identify different states as
subgoals because a local cut may or may not be a global cut
of the entire transition graph. We expect that LCut will be
more successful at identifying access states—access states
are part of local cuts but not necessarily of global ones.
And second, the running time of LCut’s subgoal discov-
ery method does not grow with the size of the state space,
while QCut’s subgoal discovery method has time complex-

ity O(N3), where N is the number of nodes in the graph.
As a side, we would like to note here that the spectral

clustering algorithm used here may also be incorporated into
QCut. QCut perform cuts using a min-cut/max-flow algo-
rithm, but evaluates the quality of the cuts using a different
metric, RatioCut, because of the drawbacks of the MinCut
metric discussed earlier. Incorporating spectral clustering al-
gorithms into QCut would allow the cuts to be created using
the actual evaluation metric (RatioCut) and would stop the
need for specifying a source and a sink for the min cut/max
flow algorithm.

RN and LCut are similar in that they both conduct their
search using only the most recent part of the transition his-
tory. RN never constructs a transition graph, but uses a
heuristic that uses a measure of relative novelty to identify
subgoal states. An advantage RN has over LCut is its algo-
rithmic simplicity—the running time of its subgoal discov-
ery method has a time complexity of O(1). We may think
of RN as using a simple heuristic to approximate what LCut
is doing. Assessing the relative strengths and weaknesses of
these two algorithms is an important research direction.
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