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Abstract— Motivation is a key factor in human learning. We
learn best when we are highly motivated to learn. Psychologists
distinguish between extrinsically-motivated behavior, which
is behavior undertaken to achieve some externally supplied
reward, such as a prize, a high grade, or a high-paying job,
and intrinsically-motivated behavior, which is behavior done
for its own sake. Is there an analogous distinction for machine
learning systems? Can we say of a machine learning system
that it is motivated to learn, and if so, can it be meaningful
to distinguish between extrinsic and intrinsic motivation? In
this paper, we argue that the answer to both questions is
“yes,” and we describe some computational experiments that
explore these ideas within the framework of computational
reinforcement learning. In particular, we describe an approach
by which artificial agents can learn hierarchies of reusable
skills through a computational analog of intrinsic motivation.

I. INTRODUCTION

The concept of motivation refers to the forces that ener-
gize an organism to act and that direct its activity. Psycholo-
gists distinguish between extrinsic motivation, which means
being moved to do something because of some specific
rewarding outcome, and intrinsic motivation, which refers
to being moved to do something because it is inherently
enjoyable. Intrinsic motivation leads organisms to engage
in exploration, play, and other behavior driven by curiosity
in the absence of explicit reward. In this paper we con-
sider what it means to make an artificial learning system,
specifically an artificial reinforcement learning (RL) system,
intrinsically motivated.

The idea of designing forms of intrinsic motivation into
artificial learning systems is not new, having appeared,
for example, in Lenat’s AM system [11] and within the
framework of computational RL in work by Schmidhuber
[15] and others. Space does not permit a thorough acknowl-
edge of all the relevant previous research. Our efforts on
this topic began recently when we realized that some new
developments in computational RL could be used to make
intrinsically-motivated behavior a key factor in producing
more capable RL systems. This approach, introduced by
Barto et al. [1] and Singh et al. [17], combines intrinsic
motivation with the notion of an “option” as defined by
Sutton et al. [20]. In this paper, we describe this approach
and present an alternative to the algorithm given in refs. [1]
and [17].

ozgur@cs.umass.edu

II. BACKGROUND
A. RL and Motivation

The psychologist’s concept of motivation is not usually
associated with machine learning, but there are parallels
between the motivated behavior of animals and the behavior
of an RL system as it “tries” to maximize reward. This
is strengthened by the striking correspondence between
important components of RL algorithms and the activity of
dopamine neurons [16], which play an important, though
incompletely understood, role in animal motivational sys-
tems. While a wide gulf still separates animal motivational
systems and computational RL algorithms [4], a good case
can be made that the gradient of an RL system’s value
function (which is basically the same as the temporal
difference, or TD, error [18]) acts very much like “incentive
salience” in directing behavior [12]. If we said that an RL
system’s behavior is motivated by the gradient of its evalu-
ation function, we would be consistent with contemporary
theories of animal motivation.

Part of what an RL system learns, at least one that
uses a value function, is to make sure its value function
provides accurate estimates of expected future rewards.
Consequently, tying down the entire behavioral and learning
processes is a reward function: a real-valued function of
the decision problem’s states and actions. It is given as
part of definition of the learning problem that the system is
faced with solving. The RL system’s objective is established
by the given reward function, without which the learning
problem to be solved would not have a coherent definition.
This would argue that an RL system is clearly extrinsically
motivated because it works to achieve externally supplied
rewards.

Is it meaningful for an RL system to define its own
internal rewards? This is a fairly common question because
the RL framework is often criticized for requiring a hand-
crafted reward function, which is often difficult to provide
for many problems of interest. To understand our affirmative
answer to this question, it is necessary to do a little
deconstruction of the RL framework.

B. Internal and External Environments

According to the “standard” RL framework [19], the
agent-environment interaction is envisioned as the interac-
tion between a controller (the agent) and a controlled system
(the environment), with a specialized reward signal coming
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from the environment to the agent that provides at each mo-
ment of time a scalar reward value. The component of the
environment providing the reward signal is usually called
the “critic” (Fig. 1A). The agent learns how to increase the
total amount of reward it receives over time from the critic.
With appropriate mathematical assumptions, the problem
faced by the learning agent is that of approximating an
optimal policy for a Markov decision process (MDP).

Sutton and Barto [19] point out that the scheme in Fig. 1A
is very abstract, and that one should not identify this agent
with an entire animal or robot. An animal’s reward signals
are determined by processes within its brain that monitor
not only external events through exteroceptive systems but
also the animal’s internal state, which includes informa-
tion pertaining to critical system variables (e.g., blood-
sugar level, core temperature, etc.) as well as memories
and accumulated knowledge. The critic is in an animal’s
head. Fig. 1B makes this more explicit by factoring the
environment of Fig. 1A into an external environment and an
internal environment, the latter of which contains the critic
responsible for generating primary reward. Notice that this
scheme still includes cases in which reward can be thought
of as an external stimulus (e.g., a pat on the head or a
word of praise). These are stimuli transduced by the internal
environment so as to generate appropriate reward signals.

Because Fig. 1B is a refinement of Fig. 1A (that is, it
is the result of adding structure rather than changing it),
the standard RL framework already encompasses intrinsic
reward. In fact, according to this model, all reward is
intrinsic.

C. Problem-Independent Rewards and Competence

If we accept Fig. 1B and the view that all rewards are in-
trinsically generated, then what do we mean by intrinsically-
motivated RL? Our view is that the key distinction is
between problem-specific and problem-independent reward
functions. We define extrinsic reward to be the result of
a problem-specific reward function. By designing such a
function, we can “motivate” an RL system to learn how to
solve a particular problem, such as how to play backgam-
mon, how to dispatch elevators, etc. Intrinsic reward, on

the other hand, is reward generated by a reward function—
an intrinsic reward function—designed to facilitate learning
a wide class of problems instead of a particular one.
Intrinsic rewards can motivate efficient exploration, efficient
model building, efficient hypothesis formation and testing,
and other behaviors that are generally useful for acquiring
knowledge needed to solve a range of specific problems.
Indeed, the very act of learning itself might be intrinsically
rewarding, as suggested by a number of researchers (e.g.,

[10]).

Whenever intrinsic and extrinsic reward functions are
simultaneously in force it is important to consider how they
interact. Intrinsic rewards can disrupt learning to extrinsic
rewards because they effectively re-define the problem that
the learning agent is trying to solve. An agent may pursue its
intrinsic goals at the expense of achieving its extrinsically
defined goals One way to address this problem is to make
sure that intrinsic rewards are transient so that the problem
eventually reverts to the extrinsically specified one. A
related approach is to separate learning into a developmental
phase during which only intrinsic rewards are generated,
and a mature phase during which only extrinsic rewards
are generated. While a strict separation is neither realistic
nor necessary, it provides a simple framework in which to
study intrinsic reward systems.

We are guided by White’s classic paper [21] where it
is argued that intrinsically-motivated behavior is essential
for an organism to gain the competence necessary for
autonomy. A system that is competent in this sense has a
broad set of reusable skills for controlling its environment.
The activity through which these broad skills are learned
is motivated by an intrinsic reward system that favors
the development of broad competence rather than being
directed to more specific externally-directed goals. These
skills act as the “building blocks” out of which an agent
can form solutions to specific problems that arise over its
lifetime. Instead of facing each new challenge by trying
to create a solution out of low-level primitives, it can
focus on combining and adjusting higher-level skills, greatly
increasing the efficiency of learning to solve new problems.



ITI. SKILLS

What do we mean by a skill? Recent RL research pro-
vides a concrete answer to this question, together with a set
of algorithms capable of improving skills with experience.
To combat the complexity of learning in difficult domains,
RL researchers have developed ways of exploiting “tem-
poral abstraction,” where decisions are not required at each
step, but rather where each decision invokes the execution of
a temporally-extended activity that follows its own closed-
loop policy until termination. Substantial theory exists on
how to plan and learn when temporally-extended skills are
added to the set of actions available to an agent. Since a skill
can invoke other skills as components, hierarchical control
architectures and learning algorithms naturally emerge from
this conception of a skill. Specifically, our approach builds
on the theory of options [20], and below we use the terms
skill and option interchangeably.

A. Options

A brief account of the option framework follows, which
starts with a finite MDP. At each stage in a sequence of
stages, an agent observes a system’s state, s, contained in
a finite set, S, and executes an action, a, selected from
a finite, non-empty set, 4s, of admissible actions. The
agent receives an immediate reward having expected value
R(s,a), and the state at the next stage is s’ with probability
P(s'|s,a). The expected immediate rewards, R(s,a), and
the state transition probabilities, P(s'|s,a), s,s' € S, a €
As, together comprise the one-step model of action a. A
(stationary, stochastic) policy 7 : SxUgesAs — [0, 1], with
m(s,a) = 0 for a ¢ A, specifies that the agent executes
action a € A, with probability 7 (s, a) whenever it observes
state s. The objective is to find a policy that maximizes the
expected return from each state, where return is a function
of future rewards and can be defined in a number of different
ways [3].

Starting from a finite MDP, which we call the core
MDP, the simplest kind of option o consists of a policy
w0 SX Uses As — [0,1], a termination condition
3° : S — [0,1], and an input set Z° C S. The option
o= (Z°,7°, 3°) is available in state s if and only if s € Z°.
If the option is executed, then actions are selected according
to 7 until the option terminates stochastically according to
(3°. For example, if the current state is s, the next action
is a with probability 7°(s,a), the environment makes a
transition to state s’, where the option either terminates
with probability 5°(s’) or else continues, determining the
next action a’ with probability 7°(s’,a’), and so on. When
the option terminates, the agent can select another option
from the set of those available at the termination state.
Note that any action of the core MDP, a primitive action
a € UgesAs, is also an option, called a one-step option,
withZ ={s:a € A;} and 3(s) =1 forall s € S.

A policy 1 over options selects option o in state s with
probability p(s,0); o’s policy in turn selects other options
until o terminates. The policy of each of these selected

options selects other options, and so on, until one-step
options are selected that correspond to actions of the core
MDP. Adding any set of options to a core finite MDP yields
a well-defined discrete-time semi-Markov decision process
whose actions are the options and whose rewards are the
returns delivered over the course of an option’s execution.

One can define value functions corresponding to options
in a manner analogous to how they are defined for simple
MDPs. For example, the option-value function correspond-
ing to u is defined as follows:

Q" (s,0) = E{ris1+yrepat -+ gt [E(op, s, 1)},

where &£(op, s,t) is the event of o being initiated at time
t in s and being followed until it terminates after 7 time
steps, at which point control continues according to .

A multi-time model of an option, which we call an option
model, generalizes the one-step model of a primitive action.
For any option o, let £(0, s,t) denote the event of o being
initiated in state s at time ¢. Then the reward part of the
option model of o for any s € S is:

R(s,0) = E{reg1 +97ep2 + - +97 'reis|E(0,5,0)},

where t + 7 is the random time at which o terminates. The
state-prediction part of the model of o for s is:

P(/]s,0) = 3 pls, ),
T=1

for all s € S, where p(s’,7) is the probability that o
terminates in s’ after 7 steps when initiated in s. Though
not itself a probability, P(s'|s,0) is a combination of the
probability that s’ is the state in which o terminates together
with a measure of how delayed that outcome is in terms of
.
The quantities R(s,0) and P(s’|s,0) respectively gen-
eralize the reward and transition probabilities, R(s, a) and
P(s'|s,a), of the usual MDP in such a way that it is possible
to write a generalized form of the Bellman optimality equa-
tion and extend RL methods to options. In the work reported
here we use intra-option learning methods, which allow
the policies of many options to be updated simultaneously
during an agent’s interaction with the environment. If an
option could have produced a primitive action in a given
state, its policy can be updated on the basis of the observed
consequences even though it was not directing the agent’s
behavior at the time. Related methods have been developed
for learning option models of many options simultaneously
by exploiting Bellman-like equations relating the compo-
nents of option models for successive states [20].

B. Intrinsic Rewards and Options

The connection between intrinsic motivation and options,
first presented in refs. [1] and [17], is the idea of creating
an option upon the occurrence of an intrinsically-rewarding
event, where what constitutes an intrinsically-rewarding
event can be defined in numerous ways to be described



shortly. Many researchers have recognized the desirability
of automatically creating options (e.g., refs. [6], [8], [13]).
In these approaches, some means is devised for identifying
states that may usefully serve as “subgoals” for a given
task. An option is created whose policy, when it is fully
learned, will control the environment to a subgoal state in an
efficient manner, usually in minimum time, from any state
in the option’s input set, which may itself be learned. The
option’s termination condition is set to be the achievement
of a subgoal state, and its policy is learned via a “pseudo
reward function” [5] which rewards the achievement of the
subgoal and provides a small penalty to all other transitions.
This is a pseudo reward function because it is distinct from
the reward function that defines the agents overall task, and
it does not directly influence the behavior of the agent. It
is used only to support the learning of the option’s policy,

Intrinsic motivation enters into this picture in two ways.
First, psychological studies of intrinsic motivation provide
numerous guidelines as to what should constitute problem-
independent intrinsically-rewarding events. Berlyne [2]
probably had the most to say on these issues, suggesting
that the factors underlying intrinsic motivational effects
involve novelty, surprise, incongruity, and complexity. He
also hypothesized that moderate levels of novelty have
the highest hedonic value because the rewarding effect
of novelty is overtaken by an aversive effect as novelty
increases. This is consistent with many other views holding
that situations intermediate between complete familiarity
(boredom) and complete unfamiliarity (confusion) have the
most hedonic value. Another hypothesis about what we find
satisfying in exploration and manipulation is that we enjoy
“being a cause” [7], which is a major component of Piaget’s
theory of child development [14]. In this paper, we use only
the degree of surprise of salient stimuli as intrinsic reward,
but this is merely a starting point.

The second way intrinsic motivation adds to earlier
option-creation ideas is that, unlike pseudo rewards, in-
trinsic rewards influences agent behavior. The agent should
change its behavior in such as way that it focuses explo-
ration in order to quickly refine its skill in bringing about
the intrinsically-rewarding event. This is what motivation
means: the agent has to “want” to bring about the event
in question, and this has to be manifested in its behavior.
Pseudo reward functions do not do this. A corollary to
this is that intrinsic reward should diminish with continued
repetition of the activity that generates it, i.e., the agent
should eventually get bored and move on to create and learn
another option.

IV. EXAMPLE

We briefly describe an example implementation of some
of these ideas in a simple artificial “playroom” domain. See
refs. [1], [17] for details. In the playroom (a 5x5 grid),
are a number of objects: a light switch, a ball, a bell, two
movable blocks that are also buttons for turning music on
and off, as well as a toy monkey that can make sounds.

The agent has an eye, a hand, and a visual marker. At any
time step, the agent has a collection of actions available to
it, such as: move eye to hand, move eye to marker, move
eye one step north, south, east or west, etc. In addition, if
both the eye and and hand are on some object, then natural
operations suggested by the object become available, e.g.,
if both the hand and the eye are on the light switch then
the action of pushing the light switch becomes available.
The objects in the playroom all have potentially interesting
characteristics. The bell rings once and moves to a random
adjacent square if the ball is kicked into it. The light switch
controls the lighting in the room. The color of any of the
blocks in the room is only visible if the light is on, otherwise
they appear similarly gray. The blue block if pressed turns
music on, while the red block if pressed turns music off.
The toy monkey makes frightened sounds if simultaneously
the room is dark and the music is on and the bell is rung.

These objects were designed to have varying degrees of
difficulty to engage. For example, to get the monkey to
cry out requires the agent to do the following sequence of
actions: 1) get its eye to the light switch, 2) move hand to
eye, 3) push the light switch to turn the light on, 4) find
the blue block with its eye, 5) move the hand to the eye,
6) press the blue block to turn music on, 7) find the light
switch with its eye, 8) move hand to eye, 9) press light
switch to turn light off, 10) find the bell with its eye, 11)
move the marker to the eye, 12) find the ball with its eye,
13) move its hand to the ball, and 14) kick the ball to make
the bell ring. If the agent has already learned how to turn
the light on and off, how to turn music on, and how to make
the bell ring, then those learned skills would be of obvious
use in simplifying this process of engaging the toy monkey.

For this simple example, the agent has a built-in notion
of salience of stimuli. In particular, changes in light and
sound intensity are considered salient by the playroom
agent. The agent behaves by choosing actions according
to a value function [19]. The agent starts by exploring its
environment randomly. Each first encounter with a salient
event initiates the learning of an option and an option model
with that salient event as its goal. For example, the first
time the agent happens to turn the light on, it initiates
the data-structures necessary for learning and storing the
light-on option, including the initiation set, the policy, the
termination probabilities, as well as for storing the light-on
option model. As the agent moves around the world, all the
options and their models are simultaneously updated using
intra-option learning algorithms.

We experimented with two methods for providing in-
trinsic reward to the agent: rewarding errors in prediction
of salient events and rewarding certain changes in option
models. The first method was suggested by the novelty
response of dopamine neurons [9] and proposed in refs. [1]
and [17]. The intrinsic reward for each salient event is
proportional to the error in the agent’s prediction of that
salient event according to the current option model cor-
responding to that event. The intrinsic reward is used to
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update the value function the agent is using to determine
its behavior in the playroom. As a result, when the agent
encounters an unpredicted salient event a few times, its
updated value function drives it to repeatedly attempt to
achieve that salient event. There are two interesting side
effects of this: 1) as the agent repeatedly tries to achieve
the salient event, learning improves both its policy for doing
so and its option model that predicts the salient event,
and 2) as its option policy and option model improve, the
intrinsic reward diminishes and the agent gets “bored” with
the associated salient event and moves on. Occasionally, the
agent encounters the salient event in a state that it has not
visited before, and it generates intrinsic reward again (it is
“surprised”).

We looked at a playroom task in which extrinsic reward
was available only if the agent succeeded in making the
monkey cry out. We compared the performance of three
agents. One agent learned using only the primitive actions,
another learned a skill hierarchy using pseudo rewards but
not intrinsic reward, and the third agent learned a skill
hierarchy and also generated intrinsic reward. Our results
(which space does not permit us to present) clearly show
the great advantage of the skill hierarchy, but the addition
of intrinsic reward did not improve performance. In fact,
weighting intrinsic reward heavily compared to extrinsic
reward actually hampered learning. Further analysis re-
vealed two shortcomings of the algorithm. First, the intrinsic
reward is too persistent, meaning that the agent attaches a
high value to certain actions long after the intrinsic reward
for those actions has disappeared. And second, the intrinsic
reward does not propagate well, tending to remain restricted
to the immediate vicinity of the salient event that gave rise
to it.

In the second method, the agent receives intrinsic reward
for certain types of changes in its option models. Let
P.(s'|s,0) be the model of any option o at step t; let G° be
the set of states at which the goal of o is achieved; and let
77 be the initiation set of o. Then, r,f, the intrinsic reward

at step ¢, is the following:

= Z Z Py(s'|s,0) — P;_1(s'|s, 0) (1)
Yo Vs'€G®
VseZ?
where the outer sum is taken over all the agent’s options.

The intuition behind this is that the policy for an option
should take the agent to the option’s goal region (for
example, to a state where the light is on) as quickly as
possible. In other words, P(s’|s,0) should be as large as
possible for s’ in the goal region. Recall that P(s'|s,0)
is a sum of discounted probabilities. The largest value it
can take is 1, which models an option that reliably takes
the agent to state s’ in one step from state s; the more
reliable the option is in terminating at s’ and the fewer the
number of transitions it takes to achieve this, the closer its
value will be to 1. The intrinsic reward of Eq. 1 rewards
changes in P(s'|s, 0) toward this ideal. As a result, actions
that allow the agent to improve its option policies will be
rewarded. Not only will the agent show a preference for
such actions, it will seek them out, exploring those regions
of the environment where it expects to learn how to improve
its subgoal-seeking behavior.

We present preliminary results in a simplified version of
the playroom domain in which there is extrinsic reward for
making the monkey cry out and there is only one salient
event: turn music on. The agent learns the single skill for
turning on the music. Fig. 2A shows the number of extrinsic
rewards obtained over an extended time period, comparing
the performance of three agents. One agent (P) learns using
only the primitive actions, another agent (P+S) learns a
skill hierarchy but does not generate intrinsic reward, and
the third agent learns a skill hierarchy and also generates
intrinsic reward (P+S+IR). Multiple curves are shown for
P+S+IR, each for a different value of the algorithm’s key
parameter, 7, which determines the relative weight of the
intrinsic reward compared to the extrinsic reward. The larger
the value of 7, the larger the relative weight placed upon
intrinsic reward. The figure, which shows mean values



over 50 repetitions of the experiment, clearly shows the
advantage of the skill hierarchy over the use of just primitive
actions. The intrinsic reward, however, is not effective,
improving performance only incrementally. For the values
of 7 with which we experimented, performance decreased
with increasing 7.

Fig. 2B shows results using intrinsic reward defined
by Eq. 1. The intrinsic reward function had a positive
influence in the early stages of learning, but later provided
a distraction for the agent, as the agent continued to be
rewarded for both changes in the option model and for
making the monkey cry out. Repeated experiments with a
range of values for 7 gave qualitatively similar results; the
figure shows performance with 7 = 5.

V. CONCLUSION

These experimental results—only very briefly presented
due to space limitations—support previous research in
showing that the construction of temporally-extended skills
formulated as options can confer clear advantages over
learning solely with primitive actions. On the other hand,
these results also show that defining an effective form of
intrinsic reward is not as straightforward as we had at first
thought. Intrinsic reward can reduce the speed of learning
by making the agent persist in behavior directed toward a
salient event long after that behavior has been well learned.
This kind of “obsessive-compulsive” behavior hinders the
attainment of extrinsic goals (though we are not ready to
propose this as a theory of OCD!). In addition, intrinsic
reward does not propagate well, tending to remain restricted
to the immediate vicinity of the salient event that gave
rise to it. There are many possibilities for addressing these
problems.

A wider view, however, suggests that it is not adequate
to assess the impact of intrinsically-motivated learning
in terms of its effect on learning a specific extrinsically
motivated task. The view we have put forward for the
benefits of intrinsically-motivated behavior is that it serves
to build a repertoire of skills that can be useful across many
future extrinsically-motivated tasks. One might expect, and
our personal experience indeed tends to bear this out, that
intrinsically-motivated behavior will take a toll in terms of
immediate solutions to specific extrinsic tasks. This is the
exploration-exploitation dilemma at a somewhat larger scale
than we are used to thinking about in RL.

Finally, we emphasize that our definition of intrinsic
reward in terms of a pre-defined set of salient events is
only one of the simplest possibilities. Many additional
definitions are suggested by the psychological literature,
previous computational research on intrinsic motivation,
as well as research on the neuroscience of brain reward
systems. We expect that there is a wide assortment of
situations, defined in terms of both an agent’s external and
internal environments, that will form the basis for richer
forms of intrinsic reward.
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