
Proto-Value Functions: Developmental Reinforcement Learning

Sridhar Mahadevan mahadeva@cs.umass.edu

Department of Computer Science, University of Massachusetts, Amherst, MA 01003

Abstract

This paper presents a novel framework called
proto-reinforcement learning (PRL), based
on a mathematical model of a proto-value
function: these are task-independent basis
functions that form the building blocks of
all value functions on a given state space
manifold. Proto-value functions are learned
not from rewards, but instead from analyz-
ing the topology of the state space. Formally,
proto-value functions are Fourier eigenfunc-
tions of the Laplace-Beltrami diffusion oper-
ator on the state space manifold. Proto-value
functions facilitate structural decomposition
of large state spaces, and form geodesically
smooth orthonormal basis functions for ap-
proximating any value function. The theoret-
ical basis for proto-value functions combines
insights from spectral graph theory, harmonic
analysis, and Riemannian manifolds. Proto-
value functions enable a novel generation of
algorithms called representation policy itera-
tion, unifying the learning of representation
and behavior.

1. Introduction

Reinforcement learning (RL) (Sutton & Barto, 1998)
is based on the premise that value functions provide
the fundamental basis for intelligent action. However,
past work in this paradigm makes two assumptions:
value functions are tied to task-specific rewards; also,
the architecture for value function approximation is
specified by a human designer, and not customized to
the agent’s experience of an environment. This pa-
per addresses these shortcomings by proposing a novel
framework called proto-reinforcement learning, based
on the concept of a proto-value function. These are
task-independent global basis functions that collec-

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

tively span the space of all possible value functions
on a given state space. Because they are global basis
functions, they can serve as a surrogate value function
since agents can act on the basis of linear combinations
of proto-value functions. Proto-RL agents can con-
sequently learn to act without task-specific rewards.
Proto-value functions also unify three problems that
face “infant” RL agents: geometric structure discovery
(Menache et al., 2002; Simsek et al., 2005), represen-
tation learning, and finally, actual value function ap-
proximation incorporating geodesic smoothing. Proto-
value functions incorporate geometric constraints in-
trinsic to the environment: states close in Euclidean
distance may be far apart on the manifold (e.g, two
states on opposite sides of a wall).

Early stages of policy learning often result in ex-
ploratory random walk behavior which generates a
large sample of transitions. Proto-RL agents convert
these samples into learned representations that reflect
the agent’s experience and an environment’s large-
scale geometry. Mathematically, the proposed frame-
work uses a coordinate-free approach, where represen-
tations emerge from an abstract harmonic analysis of
the topology of the underlying state space. Value func-
tions are viewed as elements of the Hilbert space of
smooth functions on a Riemannian manifold (Rosen-
berg, 1997). Hodge theory shows that the Hilbert
space of smooth functions on a Riemannian mani-
fold has a discrete spectrum captured by the eigen-
functions of the Laplacian, a self-adjoint operator on
differentiable functions on the manifold. In the dis-
crete setting, spectral analysis of the self-adjoint graph
Laplacian operator provides an orthonormal set of ba-
sis functions for approximating any function on the
graph (Chung, 1997). The graph Laplacian is an in-
stance of a broader class of diffusion operators (Coif-
man & Maggioni, 2005). Proto-RL can be viewed as
an off-policy method for representation learning: re-
gardless of the exploration policy followed in learning
the state space topology, representations emerge from
a harmonic analysis of a random walk diffusion process
on the state space.

Proto-Value Functions: Developmental Reinforcement Learning

2. Proto-Value Functions

A Markov decision process (MDP) M =
〈S, A, P a

ss′ , Ra
ss′〉 is defined by a set of states S,

a set of actions A, a transition model P a
ss′ specifying

the distribution over future states s′ when an action
a is performed in state s, and a corresponding reward
model Ra

ss′ specifying a scalar cost or reward (Puter-
man, 1994). Abstractly, a value function is a mapping
S → R or equivalently a vector ∈ R|S|. Given a
policy π : S → A mapping states to actions, its cor-
responding value function V π specifies the expected
long-term discounted sum of rewards received by the
agent in any given state s when actions are chosen
using the policy. Any optimal policy π∗ defines the
same unique optimal value function V ∗ which satisfies
the nonlinear constraints

V
∗

(s) = max
a

∑

s′

P a
ss′ (Ra

ss′ + γV ∗(s′))

Classical techniques, such as value iteration and policy
iteration (Puterman, 1994), represent value functions
using an Euclidean coordinate-centered orthonormal
basis (φ1, . . . , φ|S|) for the space R|S|, where φi =

[0 . . . 1 . . . 0] has a 1 only in the ith position. While
many methods for approximating the value func-
tion have been studied (Bertsekas & Tsitsiklis, 1996),
proto-RL takes a fundamentally different coordinate-
free approach to value function approximation based
on Hilbert space theory. The notion of operator comes
from Hilbert space theory, and forms the basis for the
coordinate-free viewpoint. An operator is a mapping
on the space of functions on the manifold (or graph).
Value functions are decomposed into a linear sum of
learned global basis functions constructed by spec-
tral analysis of the graph Laplacian (Chung, 1997), a
self-adjoint operator on the space of functions on the
graph, related closely to the random walk operator.
That is, a value function V π is decomposed as

V π = α1V
G
1 + . . . + αnV G

n

where each V G
i is a proto-value function defined over

the state space. The basic idea is that instead of
learning a task-specific value function (e.g, V π), proto-
RL agents learn the suite of proto-value functions V G

i

which form the building blocks of all value functions
on the specific graph G that represents the state space.

How are proto-value functions constructed? For sim-
plicity, assume the underlying state space is repre-
sented as an undirected graph G = (S, E). The combi-
natorial Laplacian L is defined as the operator T −A,
where T is the diagonal matrix whose entries are row
sums of the adjacency matrix A. The combinatorial

Laplacian L acts on any given function f : S → R,
mapping vertices of the graph (or states) to real num-
bers.

Lf(x) =
∑

y∼x

(f(x) − f(y))

for all y adjacent to x. Consider a chain graph G con-
sisting of a set of vertices linked in a path of length N .
Given any function f on the chain graph, the combi-
natorial Laplacian can be viewed as a discrete analog
of the well-known Laplace partial differential equation

Lf(vi) = (f(vi) − f(vi−1)) + (f(vi) − f(vi+1))

= (f(vi) − f(vi−1)) − (f(vi+1) − f(vi))

= ∇f(vi, vi−1) −∇f(vi+1, f(vi))

= ∆f(vi)

Functions that solve the equation ∆f = 0 are called
harmonic functions (Axler et al., 2001). For example,
on the plane R2, the “saddle” function x2 − y2 is har-
monic. Eigenfunctions of ∆ are functions f such that
∆f = λf , where λ is an eigenvalue of ∆. If the domain
is the unit circle S1, the trigonometric functions sin(θ)
and cos(θ) form eigenfunctions, which leads to Fourier
analysis.

Solving the Laplace operator on a graph means find-
ing the eigenvalues and eigenfunctions of the equation
Lf = λf , where L is the combinatorial Laplacian com-
puted on the graph, f is an eigenfunction, and λ is
the associated eigenvalue. Later, a more sophisticated
notion called the normalized Laplacian will be intro-
duced, which is a symmetric self-adjoint operator that
is similar to the non-symmetric random walk operator
T−1A on a graph. The Laplacian will also be general-
ized to the Laplace-Beltrami operator on Riemannian
manifolds. To summarize, proto-value functions are
abstract Fourier basis functions that represent an or-
thonormal basis set for approximating any value func-
tion. Unlike trigonometric Fourier basis functions,
proto-value functions or Laplacian eigenfunctions are
learned from the graph topology. Consequently, they
capture large-scale geodesic constraints, and exam-
ples of proto-value functions showing this property are
shown below.

3. Examples of Proto-Value Functions

This section illustrates proto-value functions, showing
their effectiveness in approximating a given value func-
tion. For simplicity, this section assumes agents have
explored a given environment and constructed a com-
plete undirected graph representing the accessibility
relation between adjacent states through single-step
(reversible) actions. In the next section, a complete

Proto-Value Functions: Developmental Reinforcement Learning

21

G

20

Total = 1260 states

Figure 1. The proto-value functions shown are the low-
order eigenfunctions of the combinatorial Laplace opera-
tor computed on the complete undirected graph represent-
ing the three room deterministic grid world environment
shown. The numbers indicate the size of each room. The
horizontal axes in the plots represent the length and width
of the multiroom environment.

RL system is presented where graphs are learned from
exploration, and then converted into basis representa-
tions that are finally used in approximating the un-
known optimal value function. Note that topological
learning does not require estimating probabilistic tran-
sition dynamics of actions, since representations are
learned in an off-policy manner by spectral analysis
of a random walk diffusion operator (the combinato-
rial or normalized Laplacian). Figure 1 shows proto-
value functions automatically constructed from a com-
plete undirected graph of a three room deterministic
grid world. These basis functions capture the intrinsic
geodesic smoothness constraints that value functions
on this environment must also abide by: this syn-
chrony is what makes them effective basis functions.

3.1. Least-Squares Approximation using

Proto-Value Functions

How can proto-value functions be used to approximate
a given value function? Let the basis set of proto-

value functions be given by ΦG = {V G
1 , . . . , V G

k },
where each eigenfunction V G

i is defined over all
states in the neighborhood graph G on which the
combinatorial Laplacian was computed (i.e, V G

i =
(V G

i (1), . . . , V G
i (|S|))). Assume that the target value

function V̂ π = (V̂ π(s1), . . . , V̂
π(sm))T is only known

on a subset of states Sm
G = {s1, . . . , sm}, where

Sm
G ⊆ S. Define the Gram matrix KG = (ΦG

m)T ΦG
m,

where ΦG
m is the component wise projection of the

basis proto-value functions onto the states in Sm
G ,

and KG(i, j) =
∑

k V G
i (k)V G

j (k). The coefficients
that minimize the least-squares error is found by solv-
ing the equation α = K−1

G (ΦG
M)T V̂ π, where α =

(α1, . . . , α|SG|) is the vector of coefficients that min-
imizes the least-squares error. A more sophisticated
nonlinear least-squares approach is possible, where the
best approximation is computed from the k proto-
value functions with the largest (absolute) coefficients.
The results below were obtained using linear least-
squares.

Figure 2. Proto-value functions excel at approximating
value functions since they are customized to the geome-
try of the state space . In this figure, the value function
is a vector of dimension = R1260, and is approximated by
a low-dimensional R10 least-squares approximation using
only 10 proto-value basis functions.

Figure 2 shows the results of linear least-squares for
the three-room environment. The agent is only given
a goal reward of R = 10 for reaching the absorbing
goal state marked G in Figure 1. The discount factor
γ = 0.99. Although value functions for the three-room
environment are high dimensional objects in R1260,
a reasonable likeness of the optimal value function is
achieved using 10 proto-value functions.

Proto-Value Functions: Developmental Reinforcement Learning

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Least Squares Approximation using Proto−Value Functions

Number of eigenfunctions

M
ea

n
sq

ua
re

d
er

ro
r

Value function approximation using proto−value functions

Figure 3. Mean-squared error in approximating the opti-
mal value function for a three-room environment for vary-
ing number of basis proto-value functions.

Figure 3 plots the error in approximating the value
function as the number of basis proto-value func-
tions is increased. With 20 basis functions, the high-
dimensional value function vector is fairly accurately
reconstructed. To simulate value function approxima-
tion under more challenging conditions based on par-
tial noisy samples, we generated a set of noisy samples,
and compared the approximated function with the op-
timal value function. Figure 4 shows the results for a
two-room grid world of 80 states, where noisy samples
were filled in for about 17% of the states (each noisy
sample was scaled by a Gaussian noise term whose
mean was 1 and variance 0.1). As Figure 4 shows,
the distinct character of the optimal value function is
captured even with very few noisy samples.

Figure 4. Proto-value function approximation (bottom
plot) using 5 basis functions from a noisy partial (18%)
set of samples from the optimal value function (top plot),
simulating an early stage in the process of policy learning.

Finally, Figure 5 shows that proto-value functions im-
prove on a handcoded orthogonal basis representa-

tion studied in (Koller & Parr, 2000; Lagoudakis &
Parr, 2003). In this scheme, a state s is mapped to
φ(s) = [1 s . . . si]T where i � |S|. The figure compares
the least mean square error with respect to the opti-
mal (correct) value function for both the handcoded
polynomial encoding and the automatically generated
proto-value functions for a square grid world of size
20 × 20. There is a dramatic reduction in error using
the learned Laplacian proto-value functions compared
to the handcoded polynomial approximator. Notice
how the error using polynomial approximation gets
worse at higher degrees – the same behavior manifests
itself below in control learning experiments.

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350
MEAN−SQUARED ERROR OF LAPLACIAN vs. POLYNOMIAL STATE ENCODING

NUMBER OF BASIS FUNCTIONS

M
E

A
N

−
S

Q
U

A
R

E
D

 E
R

R
O

R

LAPLACIAN
POLYNOMIAL

Figure 5. Mean squared error in value function approxima-
tion for a square 20×20 grid world using proto-value func-
tions (bottom curve) versus handcoded polynomial basis
functions (top curve).

4. Control Learning with Proto-RL:

Representation Policy Iteration

So far, proto-RL was shown to be useful in approxi-
mating a given value function. We now turn to the
general RL problem where agents have to learn the
optimal policy by continually constructing approxi-
mations of an unknown optimal value function from
samples of rewards. This section introduces a novel
class of proto-RL algorithms called representation pol-
icy iteration (RPI). These methods extend the scope of
Howard’s classic policy iteration method (Puterman,
1994) and RL variants such as least-squares policy it-
eration (Lagoudakis & Parr, 2003) to learn the under-
lying representation for value function approximation.
Our description of RPI will use LSPI as the underly-
ing control learner, although other RL techniques such
as Q-learning or SARSA could be used instead. LSPI
approximates the true action-value function Qπ(s, a)
for a policy π using a set of handcoded basis functions

Proto-Value Functions: Developmental Reinforcement Learning

φ(s, a).

Q̂π(s, a; w) =
k

∑

j=1

φj(s, a)wj

where the wj are weights or parameters that can be
determined using a least-squares method. Let Qπ be
a real (column) vector ∈ R|S|×|A|. The column vector
φ(s, a) is a real vector of size k where each entry corre-
sponds to the basis function φj(s, a) evaluated at the
state action pair (s, a). The approximate action-value
function can be written as Q̂π = Φwπ , where wπ is a
real column vector of length k and Φ is a real matrix
with |S|×|A| rows and k columns. Each row of Φ spec-
ifies all the basis functions for a particular state action
pair (s, a), and each column represents the value of
a particular basis function over all state action pairs.
LSPI solves a fixed-point approximation TπQπ ≈ Qπ,
where Tπ is the Bellman backup operator. This yields
the following solution for the coefficients:

wπ =
(

ΦT (Φ − γPΠπΦ)
)−1

ΦT R

LSPI uses the LSTDQ (least-squares TD Q-learning)
method as a subroutine for learning the state-action
value function Q̂π. The LSTDQ method solves the
system of linear equations Awπ = b where

A = ΦT ∆µ (Φ − γPΠπ)

µ is a probability distribution over S ×A that defines
the projection of the true action value function onto
the subspace spanned by the handcoded basis func-
tions, and b = ΦT ∆µR. Since A and b are unknown
when learning, they are approximated from samples
using the update equations

Ãt+1 = Ãt + φ(st, at) (φ(st, at) − γφ(s′t, π(s′t)))
T

b̃t+1 = b̃t + φ(st, at)rt

where (st, at, rt, s
′
t) is the tth sample of experience from

a trajectory generated by the agent (using some ran-
dom or guided policy). LSTDQ computes the Ã ma-
trix and b̃ column vector, and then returns the coef-
ficients w̃π. The overall LSPI method uses a policy
iteration procedure, starting with a policy π defined
by an initial weight vector w, and then repeatedly in-
voking LSTDQ to find the updated weights w′, and
terminating when the difference ‖w − w′‖ ≤ ε. With
this brief overview of LSPI, we introduce the Represen-
tation Policy Iteration framework, which interleaves
representation learning and policy learning (see Fig-
ure 6). Steps 1 and 3b automatically build customized
basis functions given a set of transitions.

We illustrate the performance of RPI on the classic
chain example from (Koller & Parr, 2000; Lagoudakis

Representation Policy Iteration(D0 , γ, k, ε, π0):

// D: Source of samples (s, a, r, s’)
// γ: Discount factor
// ε: Stopping criterion
// πo: Initial policy specified as a weight w0.
// k: number of (unknown) basis functions

1. Use the initial source of samples D0 to construct
the basis functions φ0

1, . . . , φ
0

k as follows:

(a) Use the source of samples Do to learn an undi-
rected neighborhood graph G that encodes the
underlying state (action) space topology.

(b) Compute the lowest-order k eigenfunctions
ψ1, . . . , ψk of the (combinatorial or normal-
ized) Laplacian on the graph G. The basis
functions φ0

i for encoding state action pairs are
produced by concatenating the state encoding
|A| times (see text for more explanation).

2. π′ ← π0. // w← w0

3. repeat

(a) πt ← π′. // w ← w′

(b) Optional: compute a new set of basis func-
tions φt by generating a new sample Dt by
executing πt and repeating step 1.

(c) π′ ← LSTDQ(D, k, φt, γ, π)

(d) t← t+ 1

4. until π ∼ π′ // ‖w − w′‖ ≤ ε

Figure 6. Representation Policy Iteration is a family of
proto-reinforcement learning algorithms that learn repre-
sentations and policies. Here, Least-Squares Policy Itera-
tion is used to learn policies.

& Parr, 2003). The chain MDP, originally studied in
(Koller & Parr, 2000), is a sequential open (or closed)
chain of varying number of states, where there are two
actions for moving left or right along the chain. The re-
ward structure can vary, such as rewarding the agent
for visiting the middle states, or the end states. In-
stead of using a fixed state action encoding, our ap-
proach automatically derives a customized encoding
that reflects the topology of the chain. Figure 7 shows
the basis functions that are created for an open and
closed chain. Given a fixed k, the encoding φ(s) of a
state s is the vector comprised of the values of the kth

lowest-order eigenfunctions on state k. The encoding
φ(s, a) for a set of discrete actions a ∈ A simply repeats
the state encoding |A| times multiplying each entry
with the indicator function I(a = ai) (other schemes
are of course possible).

Figure 8 shows the results of running the Repre-
sentation Policy Iteration (RPI) algorithm on a 50

Proto-Value Functions: Developmental Reinforcement Learning

50

1 2 3

4

5

67

closed
chain

open
chain

1 2 3

4

5

67

50

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50
−0.2

0

0.2

0 50

0.1414

Figure 7. The first 12 orthonormal basis eigenfunctions for
a 50 state open and closed chain MDP produced from a
sample of 10, 000 transitions by learning the underlying
graph and computing its combinatorial graph Laplacian.

node chain graph, using the display format from
(Lagoudakis & Parr, 2003). Here, being in states 10
and 41 earns the agent rewards of +1 and there is no
reward otherwise. The optimal policy is to go right
in states 1 through 9 and 26 through 41 and left in
states 11 through 25 and 42 through 50. The number
of samples initially collected was set at 10, 000. The
discount factor was set at γ = 0.8. By increasing the
number of desired basis functions, it is possible to get
very accurate approximation.

Table 1 compares the performance of RPI with LSPI
using two handcoded basis functions studied previ-
ously with LSPI, polynomial encoding and radial-basis
functions (RBF) on the 50 node chain MDP. Each row
reflects the performance of either RPI using learned
basis functions or LSPI with a handcoded basis func-
tion (values in parentheses indicate the number of ba-
sis functions used for each architecture). Each result is
the average of five experiments on a sample of 10, 000
transitions. The two numbers reported are steps to
convergence and the error in the learned policy (L1

error with respect to the optimal policy). The re-
sults show the automatically learned Laplacian basis
functions in RPI provide a more stable performance at
both the low end (5 basis functions) and at the higher
end with k = 25 basis functions. As the number of
basis functions are increased, RPI takes longer to con-
verge, but learns a more accurate policy. LSPI with
RBF is unstable at the low end, converging to a very
poor policy for 6 basis functions. LSPI with a 5 de-
gree polynomial approximator works reasonably well,
but its performance noticeably degrades at higher de-
grees, converging to a very poor policy in one step for
k = 15 and k = 25.

Figure 9 shows the value function learned using RPI

Figure 8. Representation Policy Iteration on a 50 node
chain graph, for k = 5 basis functions (top four plots) and
k = 20 (bottom nine plots). Each group of plots shows the
value function for each iteration (numbered row wise for
each group) over the 50 states. The solid curve is the ap-
proximation and the dotted curve specifies the exact func-
tion.

for a 100 state grid world domain. The actions (four
compass directions) succeed with probability 0.9, and
leave the agent’s state unchanged otherwise. For this
experiment, 5 proto-value functions were computed
from the combinatorial Laplacian of an undirected
graph, which was constructed from an experience sam-
ple of 18167 steps. The discount factor was set at 0.8.
The agent was rewarded 100 for reaching the goal state
(diagonal opposite corner in plot).

5. Theoretical Background

The theoretical basis for proto-value functions is given
in this section. The Laplace-Beltrami operator is in-
troduced in the general setting of Riemannian mani-
folds (Rosenberg, 1997), which motivates the discrete
setting of spectral graph theory (Chung, 1997). For-
mally, a manifold M is a locally Euclidean set, with
a homeomorphism (a bijective or one-to-one and onto
mapping) from any open set containing an element
p ∈ M to the n-dimensional Euclidean space Rn.
In smooth manifolds, the homeomorphism becomes
a diffeomorphism, or a continuous bijective mapping
with a continuous inverse mapping, to the Euclidean

Proto-Value Functions: Developmental Reinforcement Learning

Method #Trials Error

RPI (5) 4.2 -3.8
RPI (15) 7.2 -3
RPI (25) 9.4 -2

RBPF LSPI (6) 3.8 -20.8
RBPF LSPI (14) 4.4 -2.8
RBPF LSPI (26) 6.4 -2.8
Poly LSPI (5) 4.2 -4
Poly LSPI (15) 1 -34.4
Poly LSPI (25) 1 -36

Table 1. This table compares the performance of RPI using
proto-value functions with LSPI using handcoded polyno-
mial and radial basis functions on a 50 state chain graph
problem. See text for explanation.

Figure 9. Value function learned after 10 iterations using
Representation Policy Iteration on a 100 state gridworld
MDP using 5 learned basis functions.

space Rn. Riemannian manifolds are smooth man-
ifolds where the Riemann metric defines the notion
of length. Given any element p ∈ M, the tangent
space Tp(M) is an n-dimensional vector space that
is isomorphic to Rn. A Riemannian manifold is a
smooth manifold M with a family of smoothly vary-
ing positive definite inner products gp, p ∈ M where
gp : Tp(M) × Tp(M) → R. For the Euclidean space
Rn, the tangent space Tp(M) is clearly isomorphic to
Rn itself. One example of a Riemannian inner product
on Rn is simply g(x, y) = 〈x, y〉Rn =

∑

i xiyi, which
remains the same over the entire space.

Hodge’s theorem states that any smooth function on
a compact manifold has a discrete spectrum mirrored
by the eigenfunctions of ∆, the Laplace-Beltrami self-
adjoint operator. The eigenfunctions of ∆ are func-
tions f such that ∆f = λf , where λ is an eigenvalue
of ∆. The smoothness functional for an arbitrary real-
valued function on the manifold f : M → R is given
by

S(f) ≡
∫

M

‖∇f‖2dµ =

∫

M

f∆fdµ =< ∆f, f >L2(M)

where L2(M) is the space of smooth functions on M,

and ∇f is the gradient vector field of f . For a Rieman-
nian manifold (M, g), where the Riemannian metric g
is used to define distances on manifolds, the Laplace-
Beltrami operator is given as

∆ =
1√

det g

∑

ij

∂i

(

√

det g gij∂j

)

where g is the Riemannian metric, det g is the measure
of volume on the manifold, and ∂i denotes differentia-
tion with respect to the ith coordinate function.

Theorem 1 (Hodge (Rosenberg, 1997)): Let (M, g)
be a compact connected oriented Riemannian mani-
fold. There exists an orthonormal basis for all smooth
(square-integrable) functions L2(M, g) consisting of
eigenfunctions of the Laplacian. All the eigenvalues
are positive, except that zero is an eigenvalue with mul-
tiplicity 1.

Hodge’s theorem shows that a smooth function f ∈
L2(M) can be expressed as f(x) =

∑∞
i=0 aiei(x),

where ei are the eigenfunctions of ∆, i.e. ∆ei = λiei.
The smoothness S(ei) =< ∆ei, ei >L2(M)= λi.

We now turn to the discrete case. Consider an undi-
rected graph G = (V, E) without self-loops, where dv

denote the degree of vertex v. As before, define T to
be the diagonal matrix where T (v, v) = dv. The oper-
ator T−1A, where A is the adjacency matrix, induces
a random walk on the graph. The random walk oper-
ator is not symmetric, but it is related to a symmetric
operator called the normalized Laplacian L, defined as
L = T− 1

2 LT− 1

2 , where L is the combinatorial Lapla-
cian. Note that L = I−T−1

2 AT− 1

2 , which implies that
T−1A = T−1

2 (I − L)T
1

2 . In other words, the random
walk operator T−1A is similar to I − L in that both
have the same eigenvalues, but the eigenfunctions of
the random walk operator are the eigenfunctions of
I − L scaled by T− 1

2 . A detailed comparison of the
normalized and combinatorial Laplacian is beyond the
scope of this paper, but both operators have been im-
plemented. The Cheeger constant hG of a graph G is
defined as

hG(S) = min
S

|E(S, S̃)|
min(vol S, vol S̃)

Here, S is a subset of vertices, S̃ is the complement of
S, and E(S, S̃) denotes the set of all edges (u, v) such
that u ∈ S and v ∈ S̃. The volume of a subset S is
defined as vol S =

∑

x∈S dX . The sign of the basis
functions can be used to decompose state spaces (see
the first proto-value function in Figure 1). Define the
edge set ∂S = {(u, v) ∈ E(G) : u ∈ S and v /∈ S}.
The relation between ∂S and the Cheeger constant is

Proto-Value Functions: Developmental Reinforcement Learning

given by |∂S| ≥ hG vol S. The Cheeger constant is
intimately linked to the spectrum of the normalized
Laplacian operator, which explains why proto-value
functions capture large-scale intrinsic geometry.

Theorem 2 (Chung, 1997): Define λ1 to be the first
(non-zero) eigenvalue of the normalized Laplacian L
on a graph G. Let hG denote the Cheeger constant of
G. Then, we have 2hG ≥ λ1.

6. Future Extensions

Figure 10. Diffusion wavelets are a compact multi-level
representation of the Laplace-Beltrami diffusion operator.
Shown here are diffusion wavelet basis functions at two
levels of the hierarchy in a two-room grid world.

The Laplace-Beltrami operator is an instance of a
broad class of diffusion operators which can be com-
pactly represented using diffusion wavelets (Coifman
& Maggioni, 2005) (see Figure 10). Diffusion wavelets
enable fast computation of the Green’s function or the
inverse Laplacian in O(N log2 N) time, where N is the
size of the graph. A detailed investigation of diffusion
wavelets for value function approximation is underway
(Mahadevan & Maggioni, 2005). To enable learning
representations from samples of the complete graph,
Nystrom approximations can be used, which reduce
the complexity from O(N3) to O(m2N) where m � N
is the number of samples (Fowlkes et al., 2004). Other
randomized low-rank matrix approximations are be-
ing investigated as well (Frieze et al., 1998). Another
direction for scaling proto-RL is to model the state
space at multiple levels of abstraction, where higher

level graphs represent adjacency using temporally ex-
tended actions. Several applications of proto-RL, in-
cluding high dimensional robot motion configuration
planning, are ongoing.

Acknowledgments

This research was supported in part by the National
Science Foundation under grant ECS-0218125. I thank
Mauro Maggioni of the Department of Mathematics at
Yale University for his feedback.

References

Axler, S., Bourdon, P., & Ramey, W. (2001). Harmonic
function theory. Springer.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic
programming. Belmont, Massachusetts: Athena Scien-
tific.

Chung, F. (1997). Spectral Graph Theory. American Math-
ematical Society.

Coifman, R., & Maggioni, M. (2005). Diffusion wavelets.
Applied Computational Harmonic Analysis.

Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004).
Spectral grouping using the Nystrom method. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 26, 1373–1396.

Frieze, A., Kannan, R., & Vempala, S. (1998). Fast Monte-
Carlo algorithms for finding low-rank approximations.
Proceedings of the IEEE Symposium on Foundations of
Computer Science (pp. 370–378).

Koller, D., & Parr, R. (2000). Policy iteration for factored
MDPs. Proceedings of the 16th Conference on Uncer-
tainty in AI.

Lagoudakis, M., & Parr, R. (2003). Least-squares pol-
icy iteration. Journal of Machine Learning Research, 4,
1107–1149.

Mahadevan, S., & Maggioni, M. (2005). Value function ap-
proximation using diffusion wavelets and laplacian eigen-
functions. To be submitted.

Menache, I., Mannor, S., & Shimkin, N. (2002). Q-cut: Dy-
namic discovery of sub-goals in reinforcement learning.
ECML.

Puterman, M. L. (1994). Markov decision processes. New
York, USA: Wiley Interscience.

Rosenberg, S. (1997). The Laplacian on a Riemannian
Manifold. Cambridge University Press.

Simsek, O., Wolfe, A., & Barto, A. (2005). Local graph par-
titioning as a basis for generating temporally extended
actions in reinforcement learning. International Confer-
ence on Machine Learning.

Sutton, R., & Barto, A. G. (1998). An introduction to
reinforcement learning. MIT Press.

