
Representation Policy Iteration

Sridhar Mahadevan

Department of Computer Science
University of Massachusetts

140 Governor’s Drive
Amherst, MA 01003

mahadeva@cs.umass.edu

Abstract

This paper addresses a fundamental issue
central to approximation methods for solv-
ing large Markov decision processes (MDPs):
how to automatically learn the underlying
representation for value function approxima-
tion? A novel theoretically rigorous frame-
work is proposed that automatically gen-
erates geometrically customized orthonormal
sets of basis functions, which can be used
with any approximate MDP solver like least-
squares policy iteration (LSPI). The key in-
novation is a coordinate-free representation of
value functions, using the theory of smooth
functions on a Riemannian manifold. Hodge
theory yields a constructive method for gen-
erating basis functions for approximating
value functions based on the eigenfunctions
of the self-adjoint (Laplace-Beltrami) opera-
tor on manifolds. In effect, this approach per-
forms a global Fourier analysis on the state
space graph to approximate value functions,
where the basis functions reflect the large-
scale topology of the underlying state space.
A new class of algorithms called Represen-
tation Policy Iteration (RPI) are presented
that automatically learn both basis functions
and approximately optimal policies. Illustra-
tive experiments compare the performance of
RPI with that of LSPI using two handcoded
basis functions (RBF and polynomial state
encodings).

1 Introduction

This paper presents a unified framework for learning
representation and behavior, integrating policy learn-
ing using the framework of Markov decision processes
[16] with automated representation discovery using ab-

stract harmonic analysis to build geometrically cus-
tomized basis functions on graphs [4]. The resulting
combined approach enables agents to learn represen-
tations that reflect both their past experience and the
inherent large-scale geometry of the environment, as
well as learn policies by using these customized ba-
sis functions to approximate value functions. The key
innovation is a coordinate-free representation of value
functions, using the Hilbert space of smooth functions
on a Riemannian manifold. This approach allows ap-
plying powerful mathematical tools for basis function
generation by exploiting the properties of the self-
adjoint Laplace operator on Riemannian manifolds.
The Laplace (or Laplace-Beltrami) operator ∆ is a
positive-semidefinite self-adjoint operator on differen-
tiable functions. Hodge theory shows that the Hilbert
space of smooth functions has a discrete spectrum on
compact manifolds, captured by the eigenfunctions of
the Laplacian [17]. The Laplacian operator acts on
smooth functions on a manifold (e.g,. a graph) in a
way analogous to the Bellman operator on value func-
tions: both enforce geodesic smoothing.

Markov decision processes (MDPs) are a well-studied
model of acting under uncertainty studied in decision-
theoretic planning [3] and reinforcement learning [19].
A finite MDP M = 〈S,A, P a

ss′ , Ra
ss′〉 is specified by a

set of states S, a set of actions A, a transition model
P a

ss′ specifying the distribution over future states s′

when an action a is performed in state s, and a cor-
responding reward model Ra

ss′ specifying a scalar cost
or reward. Methods for solving MDPs have been stud-
ied for almost 50 years: exact methods such as value
iteration and policy iteration represent value functions
using a table [16]; approximate methods like least-
squares policy iteration (LSPI) and linear program-
ming methods project the exact value function onto
a subspace spanned by a set of handcoded basis func-
tions [6, 7, 8]. The proposed approach can be viewed as
automatically generating subspaces for projecting the
value function using the framework of harmonic anal-
ysis [1]. The framework for representation discovery is



based on spectral analysis of a self-adjoint symmetric
random walk operator on graphs [4]. The proposed ap-
proach fundamentally differs from past work on basis
function generation, for example tuning a pre-defined
set of functions [13] or generating tabular basis func-
tions for a linear programming based value function
approximator using a greedy algorithm, based on the
error in approximating a particular value function [15].

2 Overview of the Approach

The framework combines Samuel’s value function
paradigm with Amarel’s representation learning
paradigm [11]. The framework also provides a new for-
mulation of task-independent RL, where agents learn
global basis functions or proto-value functions [10]. In
this paper, we present the framework as an enhance-
ment of policy iteration, namely representation policy
iteration (RPI), since it enables learning both poli-
cies and the underlying representations. The proposed
framework uses spectral graph theory [4] to build basis
representations for smooth (value) functions on graphs
induced by Markov decision processes. Any policy in
an MDP can be viewed as a Markov chain partitioning
states into transient and recurrent states. The con-
struction of basis functions is based on analyzing a
symmetric operator (the graph Laplacian) which can
be viewed as a reversible random walk on the state
space. It is important to note that the set of ba-
sis functions learned from a reversible random walk
is still useful in approximating value functions for any
policy. Thus, the process of learning basis functions
by spectral analysis of reversible random walks is an
off-policy representation learning method, in the sense
that the actual MDP dynamics under a specific policy
may induce a non-reversible random walk. Reversible
random walks greatly simplify spectral analysis since
such random walks are similar to a symmetric operator
on the state space.

For any graph G, the “tabular” representation is the
orthonormal set of basis functions φ(i) = [0 . . . i . . . 0],
one for each vertex (state) in the graph. Besides be-
ing inefficient, this representation does not exploit the
topology of the specific graph. Intuitively, a repre-
sentation should reflect the (irregular) topology of the
state space under consideration. This problem also af-
flicts more efficient approximations, such as the poly-
nomial basis functions where φ(s) = [1 s . . . sk] for
some fixed k [8]. While this encoding is sparse, it is
numerically unstable for large graphs, dependent on
the ordering of vertices, and once again, insensitive to
the underlying state space geometry. Our approach
addresses these shortcomings by building basis func-
tions on graphs using harmonic analysis of the graph
topology. First, we briefly review linear approximation

methods for solving MDPs, in particular LSPI. LSPI
and other linear approximation methods approximate
the true action-value function Qπ(s, a) for a policy π
using a set of handcoded basis functions φ(s, a) that
can be viewed as doing dimensionality reduction: the
true action value function Qπ(s, a) is a vector in a high
dimensional space R|S|×|A|, and using the basis func-
tions amounts to reducing the dimension to Rk where
k � |S| × |A|. The approximated action value is thus

Q̂π(s, a;w) =

k
∑

j=1

φj(s, a)wj

where the wj are weights or parameters that can be
determined using a least-squares method. Let Qπ be
a real (column) vector ∈ R|S|×|A|. The column vector
φ(s, a) is a real vector of size k where each entry corre-
sponds to the basis function φj(s, a) evaluated at the
state action pair (s, a). The approximate action-value
function can be written as Q̂π = Φwπ , where wπ is a
real column vector of length k and Φ is a real matrix
with |S|×|A| rows and k columns. Each row of Φ spec-
ifies all the basis functions for a particular state action
pair (s, a), and each column represents the value of
a particular basis function over all state action pairs.
LSPI uses a least-squares fixed-point approximation
TπQ

π ≈ Qπ, where Tπ is the Bellman backup opera-
tor. This latter approach yields the following solution
for the coefficients:

wπ =
(

ΦT (Φ − γPΠπΦ)
)−1

ΦTR

where R is the reward vector (over all state action
pairs), P is the transition matrix, and Ππ is a stochas-
tic matrix of size |S| × |S||A| where Ππ(s, (s, a)) =
π(a; s). LSPI uses the LSTDQ (least-squares TD
Q-learning) method as a subroutine for learning the
state-action value function Q̂π. The LSTDQ method
solves the system of linear equations Awπ = b where

A = ΦT ∆µ (Φ − γPΠπ)

Also, µ is a probability distribution over S × A that
defines the projection of the true action value func-
tion onto the subspace spanned by the handcoded ba-
sis functions, and b = ΦT ∆µR. Since A and b are
unknown when learning, they are approximated from
samples using the update equations

Ãt+1 = Ãt + φ(st, at) (φ(st, at) − γφ(s′t, π(s′t)))
T

b̃t+1 = b̃t + φ(st, at)rt

where (st, at, rt, s
′
t) is the tth sample of experience from

a trajectory generated by the agent (using some ran-
dom or guided policy), and Ã0 and b̃0 are set to 0.



LSTDQ computes the Ã matrix and b̃ column vector,
and then returns the coefficients w̃π by solving the sys-
tem Ãwπ = b̃. The overall LSPI method uses a policy
iteration procedure, starting with a policy π defined
by an initial weight vector w, and then repeatedly in-
voking LSTDQ to find the updated weights w′, and
terminating when the difference ‖w − w′‖ ≤ ε.

3 Representation Policy Iteration

With this brief overview of the framework and linear
least-squares approximation methods such as LSPI, we
can now introduce the Representation Policy Iteration
framework, which interleaves representation learning
and policy learning. For ease of exposition, we present
the complete algorithm in Figure 1 in the context of
LSPI and illustrate its behavior, before providing a de-
tailed overview of the underlying theory. Also, much
of this introductory paper will focus on explaining the
theory of how representations can be learned by har-
monic analysis of a given set of sample transitions. It is
clear that if representations can be successfully learned
from an experience sample, then representation learn-
ing can easily be interleaved with policy learning by
generating a new sample of transitions from executing
the current policy. A detailed algorithmic analysis of
fully interleaved policy and representation learning is
beyond the scope of this introductory paper.

Steps 1 and 3b automatically build customized basis
functions given an experience sample, where the basis
functions reflect large-scale geometry of the approxi-
mated manifold, and provide a theoretically guaran-
teed orthonormal set for approximating any smooth
function on the approximated manifold.

3.1 Abstract Harmonic Analysis

Temporarily setting aside the theory underlying RPI
(see the sections below), we illustrate its performance
on the classic chain example from [7, 8]. The chain
MDP, originally studied in [7], is a sequential open
chain of varying number of states, where there are
two actions for moving left or right along the chain.
The reward structure can vary, such as rewarding the
agent for visiting the middle states, or the end states.
Instead of using a fixed state action encoding, our ap-
proach automatically derives a customized encoding
that reflects the topology of the chain. This can be
viewed as doing an abstract harmonic analysis [1] of
the graph encoding the topology. This process can be
applied to any MDP: Figure 2 shows the basis func-
tions that are created for an open and closed chain,
and Figure 6 illustrates some of the basis functions
from abstract harmonic analysis on a five-room grid

Representation Policy Iteration(D0 , γ, k, ε, π0):

// D: Source of samples (s, a, r, s’)
// γ: Discount factor
// ε: Stopping criterion
// πo: Initial policy specified as a weight vector w0.
// k: number of (unknown) basis functions

1. Use the initial source of samples D0 to construct
the basis functions φ0

1, . . . , φ
0

k as follows:

(a) Build an approximation of the underlying
manifoldM, e.g. using an undirected or di-
rected neighborhood graph G that encodes
the underlying state (action) space topology.

(b) Compute the lowest-order k eigenfunctions
ψ1, . . . , ψk of the (combinatorial or normal-
ized) graph Laplacian operator on the graph
G. Obtain the basis functions φ0

i from
the eigenfunctions ψi by repeating the state
encoding |A| times, and multiplying each
eigenfunction ψi by the indicator function
I(ai = a).

2. π′ ← π0. // w← w0

3. repeat

(a) πt ← π′. // w ← w′

(b) Optional: compute a new set of basis func-
tions φt by generating a new sample Dt by
executing πt and repeating step 1.

(c) π′ ← LSTDQ(D, k, φt, γ, π)

(d) t← t+ 1

4. until π ∼ π′ // ‖w − w′‖ ≤ ε

Figure 1: Representation Policy Iteration interleaves
representation and policy learning.

world.

Abstract harmonic analysis [1] generalizes fixed or-
thonormal basis sets such as polynomial encodings. If
we orthonormalize the monomials φ(s) = [1 s . . . si]T

over [−1, 1], we obtain a basis set of polynomials
for C2[−1, 1], the set of all continuous functions over
[−1, 1], namely the well-known Legendre polynomials,

whose first three items are p0(t) = 1√
2
, p1(t) =

√
6

2 t,

and p2(t) =
√

10
4 (3t2 − 1). If a weighted space is cho-

sen, where w(t) = 1√
(1−t2)

, this process yields the

Chebyshev polynomials. Finally, if the underlying set
is discrete, where T = {t1, . . . , tm} and ti = i, then
the resulting orthonormal set of polynomials spans the
space l2(m). In RPI, the orthonormal set of eigenfunc-
tions is built from modeling the underlying manifold.
The eigenfunctions of the Laplace-Beltrami operator
on a graph not only reflect the large-scale difference
in the topology of the open or closed chain, they also



can approximate any real-valued smooth function on
the vertices of this graph. In the limit, Hodge theory
(see below) guarantees that the approximation will be
exact.
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Figure 2: Laplacian eigenfunctions for a 50 state open
and closed chain MDP produced from a random walk
of 10000 steps by learning the underlying graph and
computing its combinatorial graph Laplacian.

Figure 3 and Figure 4 shows the results of running
the Representation Policy Iteration (RPI) algorithm
on a 50 node chain graph, using the display format
from [8]. Here, being in states 10 and 41 earns the
agent rewards of +1 and there is no reward otherwise.
The optimal policy is to go right in states 1 through
9 and 26 through 41 and left in states 11 through 25
and 42 through 50. The number of samples initially
collected was set at 10, 000. The discount factor was
set at γ = 0.8. By increasing the number of desired
basis functions, it is possible to get very accurate ap-
proximation, although as Figure 4 shows, even a crude
approximation using 5 basis functions is sufficient to
learn a close to optimal policy. Using 20 basis func-
tions, the learned policy is exact. A detailed compar-
ison with handcoded polynomial and RBF encoding
techniques studied earlier with LSPI is given in Sec-
tion 6.

4 Spectral Graph Theory

We provide a brief theoretical overview of spectral
graph theory and Riemannian manifolds. While these
subfields have been applied to semi-supervised learning
[2], clustering [14], and image segmentation [18], their
use for representation learning and value function ap-
proximation in MDPs and RL is novel, which unlike su-
pervised learning or classification requires approximat-
ing arbitrary real-valued functions. The graph Lapla-
cian [4] can be used to construct a set of orthonormal
basis functions φG

1 (s), . . . , φG
k (s) that in the limit are

Figure 3: Representation Policy Iteration on a 50 node
chain graph, for k = 5 basis functions (top four pan-
els) and k = 20 (bottom nine panels). Each group
of plots shows the state value function for each iter-
ation (in row major order) over the 50 states, where
the solid curve is the approximation and the dotted
lines specify the exact function. Notice how the value
function approximation gets much better at k = 20, as
Hodge theory guarantees asymptotic convergence. Al-
though the approximation is relatively poor at k = 5,
the policy learned turns out to be close to optimal.

guaranteed to exactly capture any smooth real-valued
function on G. The graph Laplacian is a special case of
the Laplacian on a Riemannian manifold, and this re-
sult generalizes to all connected oriented Riemannian
manifolds [17]. But, let us first focus on the simple
case of (connected) undirected graphs. Let dv denote
the degree of vertex v. The random walk operator on a
graph is given by D−1A, where D is the diagonal ma-
trix whose entries are given by the vertex degrees, or
row sums of the adjacency matrix A. The random walk
operator is not symmetric, but it is closely related to
a symmetric graph Laplacian operator as follows. The
combinatorial Laplacian L is defined as D − A, and
acts on a function f as

Lf(x) =
∑

y∼x

(f(x) − f(y))

where y ∼ x means y is adjacent to x. It is easy
to show that the combinatorial Laplacian is essen-
tially the discrete case of the well-known Laplacian
partial differential equation on a graph. The nor-



Figure 4: The policies learned at each iteration us-
ing Representation Policy Iteration on a 50 node chain
graph, for 5 basis functions (top four panels), and 20
basis functions (bottom nine panels) in row major or-
der. Even using 5 basis functions results in a close to
optimal policy. The light (blue) color denotes the left
action and the dark (red) denotes going right. The top
half of each plot is exact, and the bottom is approxi-
mate.

malized Laplacian L of the graph G is defined as
D− 1

2 (D −A)D− 1

2 or in more detail

L(u, v) =







1 if u = v and dv 6= 0
− 1√

dudv

if u and v are adjacent

0 otherwise

It can be shown that L is a symmetric self-adjoint
operator, and its spectrum (eigenvalues) lie in the in-
terval (0, 2). If G is a constant degree k graph, then
it follows that L = I − 1

k
A, where A is the adja-

cency matrix of G. For a general graph G, L =
D− 1

2LD− 1

2 = I −D− 1

2AD− 1

2 . Note that this implies
that D−1A = D− 1

2 (I−L)D
1

2 . In other words, the ran-
dom walk operator D−1A is similar to I − L in that
both have the same eigenvalues, but the eigenfunctions
of the random walk operator are the eigenfunctions of
I − L scaled by D− 1

2 . The Laplacian L is an oper-
ator on the space of functions defined on the graph
g : V → R, where V is the vertex set of G, and u ∼ v
means u and v are neighbors:

Lg(u) =
1√
du

∑

v:u∼v

(

g(u)√
du

− g(v)√
dv

)

(1)

The Rayleigh quotient provides a variational charac-
terization of eigenvalues using projections of an ar-

bitrary function g : V → R onto the subspace Lg.
The quotient gives the eigenvalues and the functions
satisfying orthonormality are the eigenfunctions (here
〈f, g〉 =

∑

u f(u)g(u) denotes the inner product on
graph G):

〈g,Lg〉
〈g, g〉 =

〈g,D− 1

2LD− 1

2 g〉
〈g, g〉 =

∑

u∼v(f(u) − f(v))2
∑

u f
2(u)du

where f ≡ D− 1

2 g. The first eigenvalue is λ0 = 0,
and is associated with the constant function f(u) = 1,
which means the first eigenfunction go(u) =

√
D 1.

The first eigenfunction (associated with eigenvalue 0)
of the combinatorial Laplacian is the constant function
1. The second eigenfunction is the infimum over all
functions g : V → R that are perpendicular to go(u),
which gives us a formula to compute the first non-zero
eigenvalue λ1, namely

λ1 = inf
f⊥

√
T1

∑

u∼v(f(u) − f(v))2
∑

u f
2(u)du

The Rayleigh quotient for higher-order basis functions
is similar: each function is perpendicular to the sub-
space spanned by previous functions. A further prop-
erty of Laplacian eigenfunctions is that they transpar-
ently reflect the nonlinear geometry of state spaces
(see experiments below). To formally explain this, we
briefly review spectral geometry. The Cheeger con-
stant hG of a graph G is defined as

hG(S) = min
S

|E(S, S̃)|
min(vol S, vol S̃)

Here, S is a subset of vertices, S̃ is the complement
of S, and E(S, S̃) denotes the set of all edges (u, v)
such that u ∈ S and v ∈ S̃. The volume of a sub-
set S is defined as vol S =

∑

x∈S dX . Consider the
problem of finding a subset S of states such that the
edge boundary ∂S contains as few edges as possible,
where ∂S = {(u, v) ∈ E(G) : u ∈ S and v /∈ S}. The
relation between ∂S and the Cheeger constant is given
by |∂S| ≥ hG vol S In the two-room grid world task
illustrated below in Figure 5, the Cheeger constant is
minimized by setting S to be the states in the first
room, since this will minimize the numerator E(S, S̃)
and maximize the denominator min(vol S, vol S̃). A
remarkable identity connects the Cheeger constant
with the spectrum of the Laplace-Beltrami operator.
This theorem underlies the reason why the eigen-
functions associated with the second eigenvalue λ1 of
the Laplace-Beltrami operator captures the geometric
structure of environments, as illustrated in the exper-
iments below.

Theorem 1 [4]: Define λ1 to be the first (non-zero)
eigenvalue of the Laplace-Beltrami operator L on a



graph G. Let hG denote the Cheeger constant of G.
Then, we have 2hG ≥ λ1.

5 Hodge Theory

In this section we briefly discuss how the graph Lapla-
cian can be generalized to the setting of Riemannian
manifolds [17]. Manifolds are locally Euclidean sets,
defining a bijection (one-to-one, onto mapping) from
an open set containing any element p ∈ M to the n-
dimensional Euclidean space. Smooth manifolds in ad-
dition require that the homeomorphism mapping any
point p to its coordinates (ρ1(p), . . . , ρn(p)) be a differ-
entiable function with a differentiable inverse. Given
two coordinate functions ρ(p) and ξ(p), which are indi-
vidually called charts, the induced mapping ψ : ρ◦ξ−1 :
Rn → Rn must have continuous partial derivatives of
all orders. Riemannian manifolds are smooth mani-
folds where the Riemann metric defines the notion of
length. Given any element p ∈ M, the tangent space
Tp(M) is an n-dimensional vector space that is isomor-
phic to Rn. More formally, a Riemannian manifold is
a smooth manifold M with a family of smoothly vary-
ing positive definite inner products gp, p ∈ M where
gp : Tp(M) × Tp(M) → R. For the Euclidean space
Rn, the tangent space Tp(M) is clearly isomorphic to
Rn itself. Consequently, the Riemannian inner prod-
uct is simply g(x, y) = 〈x, y〉Rn =

∑

i xiyi, which re-
mains the same over the entire space.

Hodge’s theorem states that any smooth function on
a compact manifold has a discrete spectrum [17]. We
are interested in those functions f that are eigenfunc-
tions of ∆, the Laplace-Beltrami operator. On the
manifold Rn, the Laplace-Beltrami operator is sim-

ply L = −
∑

i
∂2

∂x2

i

(the sign is a convention). Eigen-

functions gives us back the function itself, scaled by
an eigenvalue. If the domain is the unit circle, the
trigonometric functions sin(θ) and cos(θ) form eigen-
functions, which leads to Fourier analysis, the most
well-known example of harmonic analysis. Abstract
harmonic analysis generalizes Fourier methods to or-
thogonal decompositions of smooth functions on ar-
bitrary Riemannian manifolds. The smoothness func-
tional for an arbitrary real-valued function on the man-
ifold f : M → R is given by

S(f) ≡
∫

M
| ∇f |2 dµ =

∫

M
f∆fdµ = 〈∆f, f〉L2(M)

where ∇f is the gradient vector field of f . For Rn,
the gradient vector field is ∇f =

∑

i
∂f
∂xi

∂
∂xi

. For a
Riemannian manifold (M, g), where the Riemannian
metric g is used to define distances on manifolds, the
Laplace-Beltrami operator is given as

∆ = − 1√
det g

∑

ij

∂i

(

√

det g gij∂j

)

where g is the Riemannian metric, det g is the measure
of volume on the manifold, and ∂i denotes differentia-
tion with respect to the ith coordinate function. This
general form is invariant to reparameterization, and
reduces to the expression for ∆ given earlier for Eu-
clidean spaces Rn where G = I and detG = 1.

Theorem 2 (Hodge [17]): Let (M, g) be a compact
connected oriented Riemannian manifold. There exists
an orthonormal basis for all smooth (square-integrable)
functions L2(M, g) consisting of eigenfunctions of the
Laplacian. All the eigenvalues are positive, except that
zero is an eigenvalue with multiplicity 1.

Hodge’s theorem guarantees that a smooth function
f ∈ L2(M) can be expressed as f(x) =

∑∞
i=0 aiei(x)

where ei are the eigenfunctions of ∆, i.e. ∆ei = λiei.
The smoothness S(ei) =< ∆ei, ei >L2(M)= λi. This
theorem shows that the eigenfunctions of the Laplace-
Beltrami operator can be used to approximate any
value function on a manifold. We now turn to describe
some experimental results.

6 Experiments
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Figure 5: The state value function produced during a
run of RPI in a two room gridworld with 100 states.

Figure 5 shows a sample state value function output by
RPI for a 100 state grid world MDP partitioned into
two room. Here, an initial random walk of 9144 steps
was used to learn an undirected graph, from which
20 basis functions were extracted by computing the
normalized Laplacian. A constant reward of −1 was



provided at each step, and the goal is to reach the di-
agonally opposite corner in the far room (hidden from
view). Note how the nonlinear geometry of the envi-
ronment is transparently reflected in the approxima-
tion produced by RPI. Figure 6 gives an example of the
eigenfunctions of the Laplacian for a grid world MDP
consisting of five rooms, each of dimension 21×20 con-
nected by a single door in the middle of the bound-
ary walls separating each room. The smoothness of
each basis function depends on its spectral ranking:
low-order functions are geodesically smooth: within
each room, they are smooth, but discontinuous across
rooms to capture the geometric invariant of the walls
separating the rooms. Higher order functions provide
harmonic functions for reconstructing value functions
within a room. These properties makes Laplacian ba-
sis functions well-suited to value function approxima-
tion. Figure 7 shows how Laplacian eigenfunctions
capture the presence of a centrally placed obstacle in
a square grid. Finally, Figure 8 shows how eigenfunc-
tions can efficiently approximate a given value function
in a four room grid world (here, the goal is to get to
the diagonally opposite corner of the last room).
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Figure 6: Laplacian eigenfunctions for a five-rooom
grid world MDP, where rooms are connected by a sin-
gle central door. The low-order basis functions capture
large-scale geometry.

Next, we provide a detailed control learning experi-
ment comparing the learned basis functions using RPI
with using two handcoded basis functions in LSPI,
polynomial encoding and radial-basis functions (RBF)
(see Table 1). Following [8], +1 rewards are given in
states 10 and 41 only in this 50 state chain. Each row
reflects the performance of either RPI using learned
basis functions or LSPI with a handcoded basis func-
tion (values in parentheses indicate the number of ba-
sis functions used for each architecture). Each re-
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Figure 7: Laplacian eigenfunction for a 20 × 20 grid
world with a central obstacle. Note how the basis func-
tion captures the nonlinearity of the obstacle.

sult is the average of five experiments on a sample
of 10, 000 transitions. The two numbers reported are
average steps to convergence and the average error in
the learned policy (number of incorrect actions). The
results show the automatically learned Laplacian basis
functions in RPI provide a more stable performance at
both the low end (5 basis functions) and at the higher
end with k = 25 basis functions. As the number of
basis functions are increased, RPI takes longer to con-
verge, but learns a more accurate policy. LSPI with
RBF is unstable at the low end, converging to a very
poor policy for 6 basis functions. LSPI with a 5 de-
gree polynomial approximator works reasonably well,
but its performance noticeably degrades at higher de-

Figure 8: Top: optimal value function. Bottom: ap-
proximation using 20 basis functions, both for a four
room grid world, where each room is of size 31 × 20,
achieving a dimensionality reduction from R2480 →
R20.



grees, converging to a very poor policy in one step for
k = 15 and k = 25.

Method #Trials Error

RPI (5) 4.2 -3.8
RPI (15) 7.2 -3
RPI (25) 9.4 -2

LSPI RBF (6) 3.8 -20.8
LSPI RBF (14) 4.4 -2.8
LSPI RBF (26) 6.4 -2.8
LSPI Poly (5) 4.2 -4
LSPI Poly (15) 1 -34.4
LSPI Poly (25) 1 -36

Table 1: This table compares the performance of RPI
using automatically learned basis functions with LSPI
combined with two handcoded basis functions on a 50
state chain graph problem. See text for explanation.

7 Discussion

Further development of RPI is continuing on several
fronts, including incremental variants, extensions to
factored MDPs, and scaling to large state and ac-
tion spaces. The basis functions used in this paper
are global Fourier eigenfunctions. A related approach
from harmonic analysis is to use multiscale wavelets,
which are based not on differential equations, but di-
lation equations. Diffusion wavelets [5] are a general
multiresolution model of diffusion processes on mani-
folds and graphs. A detailed study of Fourier eigen-
functions and diffusion wavelets with RPI for value
function approximation has been completed [12]. The
left inverse of the Laplacian is called the Green’s func-
tion and closely relates to the solution of the Bellman
equation. We have also developed a novel fast pol-
icy evaluation method by using diffusion wavelets to
compactly represent powers of the transition matrix
[9]. In large graphs the learned basis functions can be
computed from samples of the complete graph using
Nystrom approximations and other low-rank methods.
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