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Abstract. This paper describes research to analyze students’ initial skill level and to predict their hidden charac-
teristics while working with an intelligent tutor. Based only on pre-test problems, a learned network was able to
evaluate a students mastery of twelve geometry skills. This model will be used online by an Intelligent Tutoring
System to dynamically determine a policy for individualizing selection of problems/hints, based on a students learn-
ing needs. Such knowledge is essential to the overall effectiveness of the tutor. Using Expectation Maximization,
we learned the hidden parameters of several Bayesian networks that linked observed student actions (e.g. correct,
incorrect or skipped answers on the pre-test) with inferences about unobserved features (e.g. knowledge of specific
skills). Bayesian Information Criterion was used to evaluate different skill models. The contribution of this work
includes learning the parameters of the best network, whereas in previous work, the structure of a student model
was fixed.

1 Introduction

Intelligent tutoring systems provide individualized instruction based on students’ knowledge level. This is a hard prob-
lem mainly because knowledge is measured in terms of skill mastery, which are unobservable abstractions. Previous
approaches include belief networks [14] and Bayesian networks [4],[1]. Traditional Bayesian approaches to deter-
mining students’ understanding of a skill consist of the evaluation of observable student behavior on problems that
are thought to require specific skills to be solved correctly. For example, the cognitive mastery approach performs
Bayesian estimations of mastery given some observed evidence about students’ correct or incorrect responses to prob-
lems [5]. Such models rely on parameters that link problems to skills, such as the probability of answering a problem
correctly even though the skill is not mastered (guessing) and the probability of answering incorrectly given that the
skill is mastered (slipping). These parameters are easier to estimate when a problem involves just one skill, but get
more complicated as the number of skills involved in a problem increases.

We propose that a full model of student mastery of skills can be learned with machine learning techniques that
deal with missing data (Expectation Maximization). Our past work showed that student models can be learned from
simulated data of students’ responses on problems [10]. In this paper, we present the results of learning a student model
from real student data. We take students’ actual responses from a pencil-and-paper pre-test and learn the parameters
that link problems to skills, producing a model that allows us to make inferences about students’ mastery levels. Last,
we use the resulting model for inference and show how the mastery of skills improves after using our tutoring system.

One concrete future use of this model is a proper initialization of the student model before the tutoring session
starts. Students will take an online pre-test, skill mastery will be inferred, and then the tutoring session will start, well
informed about each student’s strengths and weaknesses. More precisely, the ITS will have information about which
skills a student has already mastered and what level of improvement is still needed for others.

2 Problem Definition

The goal of this research is to gain knowledge of the student’s skill level and thereby improve the problem and hint
selector of the Intelligent Tutoring System. Decisions made by the problem and hint selector improve the tutor’s ability
to customize problems for an individual student. Estimating the current skill mastery of each student is essential to
the problem selector regardless of which learning philosophy we follow. For example, if the best strategy is to start on



topics that the student has the most trouble with, then we can use the student’s skill levels to determine what areas need
the most improvement. Similarly, perhaps a good strategy is to switch between problems that the student has trouble
with and problems in which they are already proficient. Again, if we know which skills the student has mastered, the
system can select the proper problems with which to challenge or encourage him or her.

Wayang Outpost is an Intelligent Tutoring System that emphasizes SAT-math preparation [2]. The system can
individualize the tutoring based upon a student’s specific needs. In particular, the intent is to develop a tutor that will
select an action (i.e. a particular problem or hint) based on knowledge about a student’s learning needs (i.e. problems
he or she tend to get correct/incorrect/skip, inferred knowledge and skills, motivation level, mathematics fact retrieval
time and learning style). The information we know about students increases as they use the system, but we also need to
gather some student characteristics before the tutoring session begins, to initialize the student model and start proper
tutoring. This information is collected by giving a pre-test to the students before they begin that includes short-answer
problems similar to the problems within the tutoring session. This helps determine which skills a student initially has
mastered so this information can be used to discern the best policy for optimizing the student’s learning.

We cannot observe a student’s mastery of a skill directly, so the tutor must infer this knowledge from student
answers to problems involving these skills. Twelve basic geometry skills were identified based on skills commonly
used on the math portion of the SAT. These skills include:

Skill 1. area of a square: Determine the area of a square from its sides
Skill 2. area of a right triangle: Given the height and width, find the area of a right triangle
Skill 3. properties of an isosceles triangle: Understand that these triangles have two equal opposite sides and angles
Skill 4. identify rectangle: Understand a rectangle has 90 degree angles, opposite parallel sides of same length
Skill 5. area of a rectangle: Find the area of a rectangle given the length of its sides
Skill 6. perimeter of a rectangle: Find the perimeter of a rectangle given the length of its sides
Skill 7. identify right triangle: 90 degree angle, identify height and width of a right triangle.
Skill 8. area of a triangle: Given the height and width, find the area of a triangle
Skill 9. Pythagorean theorem: Given a right triangle, find the length of one side given the lengths of the other two
Skill 10: corresponding angles: Spot corresponding angles, determine measures of corresponding angles
Skill 11: supplementary angles: Determine the measures of adjacent supplementary angles
Skill 12: sum of interior angles of a triangle: Determine the measure of interior angles given the measures of other angles

Geometry problems were created utilizing these 12 skills, in the following fashion: 12 one-skill problems each
of which used only 1 of each of the 12 skills; 12 two-skill problems which combine 2 of the 12 skills; 4 three-skill
problems which use 3 of the 12 skills. Each set of three skills {1,2,3}, {4,5,6}, {7,8,9}, and {10,11,12} (see Figure
2) was combined to create the one-skill, two-skill and three-skill problems as described above for each set. This totals
28 problems for the student pre-test, 7 from each set of 3 skills. Some skills are obviously simpler than others (i.e.
identify rectangle versus Pythagorean theorem); thus, we expect to find results that these skills are initially mastered
more than others. Similarly, the one-skill problems were generally easier for students than the two-skill and three-skill
problems.

We know exactly which problems involve which skills, and we know how each student answers each problem:
incorrect, correct, or skipped. However, the actual mastery of a skill, which is what we really want to know, is a hidden
variable. We treated these hidden skill variables as missing data and used Expectaction Maximization (EM) to estimate
the parameters of the Bayesian network to learn skill mastery. This methodology is described in Section 4.

3 Data

The data used to create the models comes from a Spring 2005 study in an urban area High School in Massachusetts.
Students took the pre-test, then spent two days using the tutor (50 minutes the first day and 30 minutes the next day)
and then took the post-test. A total of 159 students took the pre-tests that were used to learn the Bayesian network and
132 students took the post-tests that were used to learn a second Bayesian network. The post-test involves different
problems than the pre-test, but each problem is associated with the same set of skills as in the pre-test. Each problem



resulted in one of four observable student actions: incorrect, correct, skipped or left blank1. Problems that are skipped
supply information about the associated skill(s) being possibly unmastered, as opposed to problems that are left blank
that we discount as uninformative.

Some information can be gathered based on the raw counts of how many student observed answers for problems
involving each skill were incorrect, correct, or skipped (See Figure 1). Note when examining the raw counts that due
to various reasons 27 more students took the pretest than the posttest, therefore small decreases/increases may not be
significant.

(a) Pretest Observation Counts Across Skills (b) Posttest Observation Counts Across Skills

Fig. 1. Improvement in student skill mastery from pre-test to post-test

The difference between the pre-test and post-test graphs suggests that the Intelligent Tutoring System is teaching
students to improve their performance on these types of problems. More problems were answered correctly and less
skipped from pre-test to post-test. More importantly, the non-uniform distribution of skill levels suggests that students
improve more on certain skills than others, highlighting the value in modeling and learning the distribution of skill
mastery levels across all students as well as within individual students.

4 Methodology

As stated earlier, the goal is to infer a student’s skills based on evaluating only the pre-test. We now describe how to
learn a Bayesian model of skill mastery that links problem outcomes to skill mastery levels. Such a network has hidden
nodes representing the mastery of each skill (modeled by a binomial distribution) and observed nodes representing
student answers (modeled by a multinomial distribution). Problems were created by hand to be associated with specific
skills, so we have a clear idea of how problems are linked to skills. We constructed a Bayesian network (BN) linking
each of the 12 skills to each of the problems that are associated with it. Each skill is used in four problems: 1 one-skill
problem, 2 two-skill problems, and 1 three-skill problems (see Figure 2).

Even though the dependencies between skills and problems are known, it is not clear what the structure of the skills
should be–whether the domain skills should be linked within the network (i.e., does the mastery of one skill affect
the mastery of another skill?). Thus, we analyzed different models using the following methodology: 1) Expectation
Maximization method (EM) was used to learn the parameters of each Bayesian network on the pre-test data; 2) different
BN models were evaluated using the Bayesian Information Criterion (BIC) to decide which model fit the data best; 3)

1 Left blank is different than skipped since a problem is left blank when the student runs out of time before reaching the problem
(and thus is left blank at the end of the test); instead, a problem is considered skipped when the student may not know how to
solve the problem and then skips to the following problem (and leaves the problem blank in between other answered problems).



the best fitting model was used for inference of student mastery levels given some outcome of responses to problems.
Details about each of these are described below.

– Parameter Learning using Expectation Maximization: EM is a framework for maximum-likelihood parameter
estimation with missing data [6]. EM finds the model parameters that maximize the expected value of the log-
likelihood, where the data for the missing parameters are “filled in” by using their expected value given the
observed data. In general, EM is trying to learn the pattern that best associates the observed data and the hidden
parameters within the context of the specified graphical model. The log-likelihood value maximized though EM
is used to calculate the BIC score of that model.

– Model Evaluation using Bayesian Information Criterion: The BIC, also known as Schwarz’s Bayesian Criterion
[15], is used to evaluate different models and has been proven to be consistent [9]. Simply put, given a set of data
and probability distribution generating the likelihood, the larger the likelihood, the better the model fits. The BIC
score is calculated with the following formula: −2 ∗ ll + npar ∗ log(nobs), where ll is the log-liklihood, npar
represents the number of parameters and nobs the number of observations in the model. Thus, the model with the
highest BIC score is assumed to have the best structure for this task.

– Inferring Mastery Levels: Inference can be thought of as querying the model. The junction tree inference algo-
rithm was used, which is an exact inference engine that uses dynamic programming to avoid redundant compu-
tation. Given a set of observations, the algorithm provides the probability of other events. For example, when a
student answers Problem 1 (using only Skill 1) and Problem 2 (using only Skill 2) correctly, how likely is it that
he or she will answer Problem 4 (using Skills 1 and 2) correctly as well. Inference is used to predict a student’s
overall skill mastery. Given a pre-test for a new student, inference is run on the learned model given the new
student answers to estimate this student’s skill levels. The skill mastery prediction will eventually be done during
runtime and used to enhance the tutor’s ability to provide individualized help and achieve optimal learning for
each student.

Flat Skill Model.

Fig. 2. Bayesian Network for Flat Skill Model: This identical linking pattern is repeated for each group of 3 skills and 7 problems.
In total, there are 12 Skills (hidden nodes initialized with uniform priors), and 28 Problems (observed nodes initialized randomly).
Skills have 2 possible values: Not Mastered, Mastered. Problems have 3 possible observed actions: Incorrect, Correct, Skipped.

Based on the parameters learned when using uniform priors (where the probabilities of mastered and not mastered
are both initially 50%), we discovered that it is not the incorrect answers from which we infer a lack of mastery, but
the skipped answers instead. In an effort to increase the accuracy of EM, informed prior probabilities were used on the
hidden skill nodes. See technical report for these and more results [7].



Hierarchical Skill Difficulty Model.

Fig. 3. Bayesian Network for Hierarchical Skill Difficulty Model: The hierarchy is based on the order in which skills should be
learned (i.e. a student should know how to identify a right triangle (Skill 7) before learning how to take its area (Skill 8) which
should all be mastered before learning the Pythagorean Theorem (Skill 9)). In total, there are 12 Skills (hidden nodes initialized
with uniform priors), and 28 Problems (observed nodes initialized randomly). See Figure 4 for a higher level view.

Twelve skills associated with the problems in the pre- and post-test were identified by psychology and education
researchers. However, these skills are not necessarily mutually exclusive. Figures 3 and 4 capture the idea that the skills
have different difficulty levels. For example, if the skill of identifying a triangle is not mastered, it seems probable that
the skill of finding the area of a triangle is not mastered either. In particular, this Hierarchical Skill Difficulty Model is
arranged so that each parent node is a skill which should be mastered before its child node can be mastered.

5 Results and Discussion

Flat Skill Model With Simulated Priors. This section describes and compares the results achieved for the different mod-
els. As a first sanity check, we created an experiment using hand-coded priors to get baseline conditional probability
Tables (CPTs). The structure of the model is identical to that of the flat skill model (Figure 2) only with user-specified
parameters for all 40 nodes. We then sampled from this network to create simulated training data and built an identical
model with the skill nodes hidden and initialized randomly. Finally, we found the maximum likelihood estimates of
the parameters using the generated data on the model with random parameters. We compared the learned parameters
to the parameters set in the initial model using the Kullback-Leibler Divergence (see Figure 5). The KL-Divergence is
a distance metric used to measure the difference between two probability distributions. We see that the learned param-
eters are fairly close to the “true” ones. The divergence decreases as the number of samples is increased, but begins
to converge at an achievable sample size (400 students). The improvement to estimating the distribution with just 100
more samples is significant. We are in the process of collecting additional data which will increase our model’s accu-
racy.



Fig. 4. Higher Level Look at Skill Difficulty Hierarchy Model (hidden skill nodes shown only)

Flat Skill Model With Uniform Priors.
BIC Results. (Note that maximum BICs and average BICs are based on 50 random runs.)

Max BIC Average BIC Standard Deviation Variance
−5202.4 −5294.7 47.022 2216.7

Table 1. Bayesian Information Criterion For Flat Skill Model With Uniform Priors

Learned Model.
In Figure 6, we consider one-skill problems as a simple case. We have learned the conditional probabilities of a

student getting a specific problem incorrect/correct/skipped assuming we know if the skill is mastered or not. Notice
that it is not the incorrect answers from which we infer a lack of mastery, but skipped instead. This makes sense since
the pre-test problems are not multiple choice, so if a student has no mastery of the skill needed, he or she will usually
skip it. When the observation is correct we can usually infer the skill is mastered and when the observation is skipped
we can usually infer the skill is unmastered, but incorrect can mean either. Perhaps, the student does not have the
skill fully mastered and thus answers incorrectly, or he or she may make a simple math error or misunderstand the
wording of the problem and answer incorrectly even though the skill is mastered. For example, the graph on the top
left of Figure 6 shows that a correct answer on problem 1 indicates a 90% probability that Skill 1 (area of a square) is
mastered.

Hierarchical Skill Difficulty Model.
BIC Results.

Max BIC Average BIC Standard Deviation Variance
−4927.7 −5041.1 47.4178 2248.4

Table 2. Bayesian Information Criterion For Hierarchical Skill Difficulty Model With Uniform Priors



Fig. 5. Kullback-Leibler Divergence across 28 problems for increasing sample size

We see that the Hierarchical Skill Difficulty Model yields the maximum BIC, as well as the highest average BIC.
Thus, we conclude that this has the best structure to fit our data. This may be because some sets of skills/problems
which were independent previously are now relevant to each other. For example, Skill 2 (area of a right triangle) is
actually a subset of Skill 8 (area of a triangle), but in the flat BN these skills are not linked, and are no way dependent
on each other. However, in this model, these skills are conditionally dependent on each other. Recall that the skills
and their associated problems were originally split up into the following 4 independent sets of skills: {1,2,3}, {4,5,6},
{7,8,9}, {10,11,12}. In this model, these sets of skills are no longer independent so this model is actually more
informative than the flat skill model.

Recall that in the flat skill model experiments, we showed that our model with informed priors scored a higher
BIC then the model with uniform priors. We would like to see if we can improve upon our current best model, the
Hierarchical Skill Difficulty Model with uniform priors, by using informed priors. But, our estimate method only
works for root nodes and there are only 3 root nodes in this model structure. Partially informed priors estimated by this
method do not make the model better. This could be because the majority of the nodes’ priors are still set uniformly,
and thus this partially informed method is skewing the results because the uniform priors are being misinterpreted as
informed.

Inference. We will look at individual students to show the inference results of the best model: Hierarchical Skill
Difficulty Model With Uniform Priors. We will look at the observations of the last set of 7 problems involving Skills
10, 11 and 12. See Figure 3 for linkings between problems and skills.

For Student 1 (Figure 7) we see an overall improvement in skill mastery from pre-test to post-test. This aligns with
the student’s performance on the tests. The test scores are calculated to evaluate individual improvement as follows:
corr/attmp, the number of problems the students answered correctly divided by the number of problem the student
attempted to answer (did not skip). Student 1 got a score of 27 on the pre-test and 83 on the post-test. For most skills,
Student 1 shows a higher certainty of mastery in the post-test than in the pre-test. However, the certainty that Skill 6
(perimeter of a rectangle) is mastered has lowered from pre-test to post-test. This may be because the student did poorly
on the post-test problem involving this skill. It is unclear as to whether this assumption should lead to the conclusion
of mastery or non-mastery of Skill 6. Notice that Skill 7 (identify right triangle) initially had the most certainty of



Fig. 6. Reflects the learned conditional probabilities of seeing each of the observations given it is know whether the skill is mastered
or not: Flat Skill Model with uniform priors, One-skill problems involving Skills 1, 2 & 3

being unmastered in the pre-test, but shows a high certainty of being mastered in the post-test. This is an easy skill,
and this result allows us to assume our tutor does a good job of teaching it. However, Skill 11 (supplementary angles)
actually increases in it’s probability of being not mastered from pre-test to post-test. This may show that the tutor is
not doing a good job of teaching Skill 11, but may also be caused simply by the answers this student supplied on the
tests and not the tutor’s capability.

For Student 2 (Figure 8) the number of skills that seem to be mastered does not increase from pre-test to post-test.
This results is expected since the test score of Student 2 did not improve same from pre-test to post-test. Specifically,
this student got 51% of the problems correct on both the pre-test and the post-test. The inference showing that the
student has 6 of the 12 skills mastered on both tests, aligns with this score. Note that Student 2 has not skipped
any problems. We have previously learned that skipped problems are more closely correlated to non-mastery than
incorrect answers. If many students skip no problems, this idea may need modification. When a student does not skip
any problems, then incorrect answers become more meaningful in identifying non-mastery. Future work may include
initial clustering of students followed by learning on different Bayesian networks based on this clustering, and finally,
running inference for a new student on which BN their clustering group places him or her.

6 Conclusions

In summary, a data-centric approach was demonstrated to build a model of how student outcomes in a pre-test are
linked to skill mastery. Graphical models were built to infer student mastery of skills, and the Bayesian Information
Criterion used to evaluate several models and pick the most accurate one. A hierarchical model that links skills that
are dependent on each other gave a better fit than a flat skill model that did not use this dependency information about
the domain. In this best fitting model, related skills were linked so that parent nodes represented more basic skills that
should be mastered before their more difficult child node skills are mastered (prerequisites).

The procedure to create each model included: i) a Bayesian network based on domain knowledge about the relation
between a students’ answers to problems (observed data) and inferred skills (hidden data), ii) hidden parameters of
the model (guesses, slips, etc.) learned using the Expectation Maximization (EM) algorithm from training data in a
pre-test (conditional probability tables obtained over all students), iii) inference results on new student data (which
had not been used for training) based on these learned parameters, providing an estimate of a student’s initial skill
levels. Thorough qualitative analyses of the inferences made on this test set indicates that the model makes reasonable



(a) Student 1 Pretest Skill Mastery Inferred Probabilities (b) Student 1 Posttest Skill Mastery Inferred Probabilities

Fig. 7. Student 1 Improvement in the probabilities of overall student skill mastery from pre-test to post-test

inferences. Finally, inference algorithms run on the students’ post-test data showed the inferences of skill mastery
after using the tutoring software, demonstrating how the Wayang Tutor was successful in teaching students individual
mathematical skills

We can now make predictions not only of how a student will do on a particular problem, but also of how much
a student’s performance on problems reflects their ability of individual specific skills. With the sparsity of data our
current predictions are not optimally accurate, however, the Kullback-Leibler divergence results prove that with a little
more data, accuracy will greatly improve. Something interesting learned from this data-centric approach to estimation
of skill mastery was the fact that the resulting models automatically found that if a skill is not mastered the student
is more likely to skip the problem than answer incorrectly. This makes sense if we think that when students do not
know the underlying skills, then they do not even attempt it; meanwhile, if the student has some idea, they probably
attempt an answer and give an incorrect response. In general, data-centric models can help reveal valuable information
such as this, which was not obvious at first sight. Finally, student improvement from pre- to post-test was demonstrated
through raw counts, learned parameters, and inference, again highlighting the positive effect of the Intelligent Tutoring
System.

7 Future Work

More student data is currently being collected, and the KL-divergence results display that this increase in data will
allow us, if necessary, to reexamine our models and BIC scores to find the ”true” best fitting model. Additionally,
collected data includes results on more complicated test questions which include various combinations of up to eight
more difficult mathematical and test-taking skills which still need to be analyzed.

Besides a scale-up in number of skills that compose the model, future work involves analyzing the accuracy of
alternative models. For instance, clustering of the students based on various features may be an important way of
separating different types of students whose inference may need to be done on different Bayesian networks, as there
is indication of groups of students behaving very differently. For example, some students never skip problems during
the pre-test and/or post-test, some students never ask for hints during the tutoring session, and some students actually
score worse on the post-test than the pre-test. Therefore, different models may need to be learned for students who
behave in various different ways.

The next goal involves using the parameters learned from this Bayesian network to run inference during an on-line
pre-test to gather prior skill masteries for students, which will be used to enhance the policy selection of the Intelligent
Tutoring System. Immediately after the pre-test is taken, inferences will be made using the student pre-test answers
as evidence. This will provide an estimate of the student’s skill mastery before the tutoring session, which will be



(a) Student 2 Pretest Skill Mastery Inferred Probabilities (b) Student 2 Posttest Skill Mastery Inferred Probabilities

Fig. 8. Student 2 Improvement in the probabilities of overall student skill mastery from pre-test to post-test

utilized by the machine learning algorithm within the tutor to individualize the session and improve each student’s
learning. Inference made on the students’ post-test will estimate exactly which skills have improved and by how
much. Eventually, this estimate will be taken a step further to predict the score the student will get on the Scholastic
Achievement Test (SAT).
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