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Abstract. Item Response Theory (IRT) models were investigated as a tool for
student modeling in an intelli gent tutoring system (ITS). The models were
tested using red data of high school students using the Wayang Outpost, a
computer-based tutor for the mathematics portion o the Scholastic Aptitude
Test (SAT). A crossvalidation framework was developed and threemetrics to
measure prediction acarracy were mmpared. The trained models predicted
with 72% acairacy whether a student would answer a multiple choice problem
corredly.

1 Introduction

Student modeling is defined as the system’'s belief about a learner's state of
knowledge. This is one of the most important aspects of an intelligent tutoring
system. Any pedagogicd strategy must rely on an accurate model to understand the
effed of different tutorial actions on student performance Student models can be
caegorized into two broad categories. expert-centric or data-centric [14]. The
expert-centric gpproach, which includes cognitive modeling and knowledge tradng
[1, 10], relies on an expert to identify the skill s required to solve eab problem. The
expert provides the structure of the model and possbly the parameters. The data-
centric gpproach relies on using the data to uncover the structure relating student
ability to performance. Examples of data-centric student models are structure-learned
dynamic Bayesian networks [14], models |earned using the Q-Matrix method [6], and
Item Response Theory [16, 17] models. Data-centric models typicdly have far fewer
parameters compared to expert-centric models.

In this paper, we evaluate the predictive power of IRT models. A data-centric
model was €leded to contrast with our previous work [13] using an expert-centric
model. From [13], we concluded that robust parameter estimation was difficult given
the ratio of the amnount of data available from student logs to the model complexity
(i.e. number of parameters). IRT models are an attractive aternative because they
have arelatively smal number of parameters. To confirm this hypothesis, we
developed a aossvalidation framework to quantify a trained model’s predictive
aocuragy.



2 Item Response Theory

IRT models and their corresponding parameter estimation techniques have along
history of development in the psychometrics literature. The purpose of these models
is to probabilisticdly explain an examineg€'s responses to test items via a
mathematical function based on higher ability. Assesanent of an examinee's ability
isthe first step of student modeling in an ITS becaise student state is a prerequisite
for creaing a pedagogicd strategy.

The following two subsections describe the spedfic model and parameter
estimation procedure used in our work.

21 Mode

IRT posits a static, generative model that relates a student’s ability, 0, to his’her
performance on a given problem, u, via a charaderistic curve, f(u | 8). A graphicd
view of this model is $hown in Figure 1. Circles represent continuous variables,
squares indicate discrete variables, and shaded items are observed variables.
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Fig. 1. Graphicd depiction d an Item Response Theory model

In thiswork, we asaume 6 is drawn from a unidimensional normal distribution with
mean 0 and variance 1. Experiments were dso conducted with a multidimensiona
normal distribution, but those studies are not discussed in this paper. The random
variables assciated with each problem, u, come from a Bernoulli distribution with
probability of a corred response (1) given by the following parameterized function.
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This is referred to as the three-parameter logistic equation, where a is the
discrimination parameter that determines the slope, b, is the difficulty parameter that
determines the locaion, and ¢, is the pseudo-guessng parameter that determines the
lower asymptote. A plot of the function, with varying values of the discrimination
parameter, is siown in Figure 2. Note that the two-parameter logistic equation is a



special case of the three-parameter equation where ¢ is st to 0. A more thorough
description of the IRT model and the role of each of the parameters can be found in

any text on the subjed (i.e. [17]).

P(U. = correct | 0)

Fig. 2. Threeparameter logistic function relating proficiency (0) to the probabili ty of a correct
response. Thethree wrvesillustrate the discrimination parameter’s effed, g ={0.3, 1.0, 5.0},
whil e keeping the other parameters constant at b, = 0.5 and ¢, = 0.2

2.2 Parameter Estimation

Marginal maximum likelihood estimation [8] is the most common technique used to
learn the problem parameters (see [4] for a specific implementation of this agorithm).
This is an instance of the expedation-maximization (EM) [11] algorithm where the
hidden student variables (8) as well as the parameters for each problem (a, b, c) are
estimated ssimultaneously. The parameters are chosen to maximize the likelihood of
the data.

In the most general case, the three parameters (g, b, ¢) are assumed to be constants
that should be learned from the data. However, it is well known that jointly
estimating parameters g and ¢, can prove difficult. The estimates can be constrained
however by asauuming the parameters themselves have prior distributions. For
example, the discrimination parameter, g, can be assumed to come from a lognormal
distribution. The prior distribution assumption helps to avoid deviant parameter
estimates by shrinking the val ues toward the specified mean of the distribution.



3 Design of Experiments

Experiments were designed to determine the effectivenessof IRT models at cgpturing
astudent’s gate of knowledge. Multiple experimentswere conducted to find the most
appropriate modeling assumptions given our dataset.

3.1 Domain and Data

The Wayang Outpost (ht t p:/ / wayang. cs.u mass . edu) [2, 3] provides web-based
tutoring on SAT mathematics problems. The tutor uses multimedia as a tool for
engaging students and has been shown to be particularly beneficia for girls.
Specificdly, the tutor presents multiple choice geometry problems to students and
offers them the option to seek help in solving the problems.

Data exists for 401 high school students and 70 multiple choice problems in the
Wayang Tutor. Every student completed a minimum of ten problems and eath
problem was attempted at least thirty times. For ead problem and each student, three
pieces of information were recorded: number of mistakes made, number of hints
requested, and the time spent. Furthermore, the order in which the students finished
the problems was tradked. Problems were asdgned randomly and a single problem
was not given more than once to the same student (note that pairs of very similar
problems do exist in the tutor). On average, a student completed 32 o the 70
available problems. The IRT asaumption of static student proficiency is justified
given this limited interaction with a student. Dynamic IRT models [12] or latent
transition analysis models [9] that capture student learning could be used with longer
data sequences.

The data was dichotomized becaise the relatively small sample size does not
warrant using polytomous IRT models. A conservative dichotomization procedure
was used: a response was labeled as corred only if the student’s first action was to
click on the correct answer. If the student answered incorrectly or asked for a hint,
then the data point was labeled as incorred.

3.2 Experiments

Four experiments were run with varying assumptions about the parameters in the
logistic equation. The first two experiments use the two-parameter logistic equation
while the last two experiments use the three-parameter equation. The first and third
experiments assime g and b, are constants to be estimated from the data. In the
seaond and fourth experiments, the discrimination parameter, a, is assumed to come
from alognormal prior distribution with mean 11 and variance0.6. Themean of 1.1
is a typical value for the discrimination parameter. These two experiments test
whether constraints, in the form of prior distributions, help in estimating the
parameters. Estimates for g that strongly deviate from the prior mean of 1.1 are
penalized acwrding to the lognormal distribution. This has the dfect of shrinking



estimates closer to the mean of the prior distribution. Table 1 summarizes these
assmptions.

Table 1. Parameter assumptions for the four experiments

Experiment a b C
1 constant constant N/A
2 ~lognormal (1.1, 0.6) constant N/A
3 constant constant 0.2
4 ~lognormal (1.1, 0.6) constant 0.2

The pseudo-guessng parameter, ¢, was not estimated during the parameter
estimation processin Experiments 3 and 4. Given the small amount of data available,
¢ wasfixed at avalue of 0.2 for each problem. This corresponds to an assumption of

uniform guessng as there ae five responses for each multiple dhoice problem.

3.3 Validation Framework

Five-fold crossvalidation was used to evaluate the IRT models|earned in each of the
four experiments. This means that ~320 students were used to train the model and
~80 students were used to test the model’s predictive power. This process was
repeated five times by rotating the training and testing populations such that eadh
group o roughly 80 students was used once & the testing population.

Training the model involves running EM to lean the parameters a, b, and ¢, for
each problem. The testing procedure involves using the trained model to estimate a
student’ s ability given performance on previous problems, and then to use the model
again to predict how the student should fare on the next problem. The predicted
response is compared with the adual student response. This is described in more
detail in Figure 3.



Input: a,b ,c
Data (u) for each student in test population

Output: ACC, MAE, MSE

fori=1to (# students in test population)

, for each problem

/I Assume u‘j refers to the i'th student’s response

/I (0 or 1) to the j'th problem he/she attempted
for j = 2 to (max # problems student i performed)

6, =MLEof 6 given (ui,ai,bl,cl), (u‘j_l,aj_l,bj_l,cj_l)

p = flu=116.a,b,,c,)

~

if( p = 0.5) then U =1
else 0 =0

if (u'J == G) then correct += 1
else incorrect +=1

MAE += |u'J - p|

i 2
MSE += (u'l - p)
ACC = correct / (correct + incorrect)

MAE = MAE / (correct + incorrect)
MSE = MSE / (correct + incorrect)

Fig. 3. Pseudocode for the aossvalidation framework. Note, MLE is short for maximum
likelihood estimate

Three metrics were evaluated during the testing phase: acarracy, mean absolute
error (MAE), and mean squared error (MSE). Accuracy compares the actual response
with a predicted response, wheress MAE and M SE compare the adual response with
the predicted probability of a corred response. A better model results in higher
accuragy and lower MAE and MSE values. MAE and MSE are aror metrics that
provide amore granular explanation of the model’s accuracy than just the accuracy
metric. To seethis, consider an example where astudent answers a problem corredly
but the model predicted a0.49 probability of a correct response. The accuracy metric
will have an error of 1.0 whereas MAE will have an error of 0.51 (=1.0 — 0.49) and
MSE will have an error of 0.26 (=0.517).



4. Resultsand Discussion

The results from the four experiments are shown in Table 2. Note that all three
metrics tradk with one another; therefore, MAE and MSE do na provide alditional
insight compared to the accuracy metric for this dataset. However, it is dill useful to
track these metrics because they provide information an the sensitivity of the model
(e.0. aMAE of 0.37 indicates the model is not predicting the probability of a crred
response to be doseto the extreme values of 0 and 1).

Table 2. Results averaged aaossthe five aossvalidation runs

Experiment Accuracy MAE MSE
1 2% 0.37 0.19
2 2% 0.37 0.19
3 67% 0.40 0.23
4 71% 0.38 0.21

Experiments 1 and 2 produced the best average acaracy value of 72%. Both
experiments used the two-parameter logistic equation. Experiment 1 assumed the
parameter g was a constant whereas Experiment 2 assumed g came from a prior
lognormal distribution. These two experiments were very robust to initial starting
conditions for the parameters. Thus, the prior distribution (Experiment 2) did not
provide alditiona lift over Experiment 1.

Experiments 3 and 4 resulted in aacuracy values of 67% and 71% respedively. In
this case, the prior distribution assimption onthe discrimination parameter, a, had a
significant effect. This occurred because several of the 70 problems had g, estimates
that either became very small (close to 0) or very large (close to the maximum
alowable value of 30). The prior distribution helped to shrink some of those extreme
values closer to the distribution’s mean value.

The 72% acaracy from Experiments 1 and 2 can be compared with two simple
baseline strategies:

1. Alwayspredict the student answersincorredly (i.e. the majority classlabel).

2. Predict based on a student’s percentage of previous problems answered

correctly (if percentageis = 0.5, then predict a mrrect response).

The first strategy achieves 61% accuracy and the second strategy 67%. The 2-

parameter IRT model significantly outperforms both baselines. To demonstrate

significance, the Z-statistic was used asauming corred/incorrect predictions are

modeled as binomia variables with an apha vaue of 0.01

(Z=1511>27, =Z,,, =2.33 for strategy 1 and Z =6.89>Z, =Z,,, = 2.33

for strategy 2). Accuracy values from 75% to 85% are reported in [15] for training
IRT models with synthetic data. However, there are two significant differences
between the synthetic datasets and the actual data used for this gudy. One, the
sample size for the synthetic datasets is much larger. Two, there is presumably no
off-task behavior (i.e. students “gaming” the system, [5]) in the synthetic datasets.



Given these differences, 72% accuracy is a good starting point for modeling the
Wayang dataset.

Aside from the accuracy metric, we considered a more intuitive way to gauge the
results of training the IRT model. The parameter b, measures the difficulty level of a
problem, where larger values correspond to a problem being more difficult. Another
simple measure of difficulty that isnot diredly related to the IRT model isthe percent
of students who answered a problem incorredly. Again, larger values of this metric
indicate the problem ismore difficult. The correlation between these two measures of
problem difficulty acrossall 70 problemswas r = +0.68 (using the b, estimates from
Experiment 1). This is a high correlation because the percentage incorrect metric
does not account for the different students that did each problem, whereas the IRT
model does. The EM agorithm appears to lean redistic values for the difficulty
parameter b,

5. Conclusions

Dichotomous IRT models were used to estimate a student’s proficiency in answering
multiple choice questions. The results presented in this paper came from adual data
of high school students using the Wayang Outpost, a SAT-style geometry tutoring
system. A crossvalidation framework was introduced to evaluate the predictive
power of the student model.

The best results, which predicted a student’s response with 72% accuracy, were
achieved using the two-parameter logistic equation. Although the three-parameter
equation is more expressve, there was not enough data to effedively lean the values
of the parameters. The number of parameters (and thus complexity) of the student
model should be determined through a aoss-validation process. As more data is
gathered over time, the complexity of the model can be incrementally increased.
Longer sequences of datawould also warrant use of dynamic IRT models that account
for student learning.

Our prior research suggests that an expert-centric model must have a large amount
of data to lean the parameters of a model with many hidden variables [13]. In
contrast, IRT models posit asingle hidden variable and a mnstrained function relating
the hidden variable to performance Based on this dudy, this data-centric model
provided reliable and acarrate estimates of a student’s proficiency. In the future, we
will investigate the relationship between expert-centric models and data-centric
models given afinite anount of data from which to learn the model parameters.

We plan to implement the IRT model to estimate a student’s proficiency while
he/she interads with the tutor. Different pedagogical strategies will be tested based
on the student’s proficiency to determine the impad on a student’s gain from pretest
to posttest. We ae also extending the IRT model to capture astudent’s (unobserved
and dynamic) motivation level. Intelligent tutors are in a unique position to measure
engagement because they track the number of hints requested and the response time,
both key variables in deteding “gaming” behavior. Several recent papers ([3], [7])



have proposed models of student engagement. However, student modeling asawhole
will be enhanced by measuring proficiency and engagement in one unified model.
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