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Abstract.  Item Response Theory (IRT) models were investigated as a tool for 
student modeling in an intelli gent tutoring system (ITS).  The models were 
tested using real data of high school students using the Wayang Outpost, a 
computer-based tutor for the mathematics portion of the Scholastic Aptitude 
Test (SAT).  A cross-validation framework was developed and three metrics to 
measure prediction accuracy were compared.  The trained models predicted 
with 72% accuracy whether a student would answer a multiple choice problem 
correctly. 

1 Introduction 

Student modeling is defined as the system’s belief about a learner’s state of 
knowledge.  This is one of the most important aspects of an intell igent tutoring 
system.  Any pedagogical strategy must rely on an accurate model to understand the 
effect of different tutorial actions on student performance.  Student models can be 
categorized into two broad categories:  expert-centric or data-centric [14].  The 
expert-centric approach, which includes cognitive modeling and knowledge tracing 
[1, 10], relies on an expert to identify the skill s required to solve each problem.  The 
expert provides the structure of the model and possibly the parameters.  The data-
centric approach relies on using the data to uncover the structure relating student 
abil ity to performance.  Examples of data-centric student models are structure-learned 
dynamic Bayesian networks [14], models learned using the Q-Matrix method [6], and 
Item Response Theory [16, 17] models.  Data-centric models typically have far fewer 
parameters compared to expert-centric models. 

 
In this paper, we evaluate the predictive power of IRT models.  A data-centric 

model was selected to contrast with our previous work [13] using an expert-centric 
model.  From [13], we concluded that robust parameter estimation was diff icult given 
the ratio of the amount of data available from student logs to the model complexity 
(i.e. number of parameters).  IRT models are an attractive alternative because they 
have a relatively small number of parameters.  To confirm this hypothesis, we 
developed a cross-validation framework to quantify a trained model’ s predictive 
accuracy. 



2 Item Response Theory 

IRT models and their corresponding parameter estimation techniques have a long 
history of development in the psychometrics literature.  The purpose of these models 
is to probabilistically explain an examinee’s responses to test items via a 
mathematical function based on his/her ability.  Assessment of an examinee’s ability 
is the first step of student modeling in an ITS because student state is a prerequisite 
for creating a pedagogical strategy. 

 
The following two subsections describe the specific model and parameter 

estimation procedure used in our work. 

2.1 Model 

IRT posits a static, generative model that relates a student’ s ability, θ, to his/her 
performance on a given problem, ui, via a characteristic curve, ƒ(ui | θ).  A graphical 
view of this model is shown in Figure 1.  Circles represent continuous variables, 
squares indicate discrete variables, and shaded items are observed variables. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Graphical depiction of an Item Response Theory model 

In this work, we assume θ is drawn from a unidimensional normal distribution with 
mean 0 and variance 1.  Experiments were also conducted with a multidimensional 
normal distribution, but those studies are not discussed in this paper.  The random 
variables associated with each problem, ui, come from a Bernoulli distribution with 
probability of a correct response (1) given by the following parameterized function. 

 

P(ui = correct | θ)  =  ƒ(ui = 1 | θ)  =  
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This is referred to as the three-parameter logistic equation, where ai is the 

discrimination parameter that determines the slope, bi is the difficulty parameter that 
determines the location, and ci is the pseudo-guessing parameter that determines the 
lower asymptote.  A plot of the function, with varying values of the discrimination 
parameter, is shown in Figure 2.  Note that the two-parameter logistic equation is a 
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special case of the three-parameter equation where ci is set to 0.  A more thorough 
description of the IRT model and the role of each of the parameters can be found in 
any text on the subject (i.e. [17]). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Three parameter logistic function relating proficiency (θ) to the probabili ty of a correct 
response.  The three curves illustrate the discrimination parameter’s effect, a

i
 = { 0.3, 1.0, 5.0} , 

while keeping the other parameters constant at b
i
 = 0.5 and c

i
 = 0.2 

2.2 Parameter Estimation 

Marginal maximum likeli hood estimation [8] is the most common technique used to 
learn the problem parameters (see [4] for a specific implementation of this algorithm).  
This is an instance of the expectation-maximization (EM) [11] algorithm where the 
hidden student variables (θ) as well as the parameters for each problem (ai, bi, ci) are 
estimated simultaneously.  The parameters are chosen to maximize the li kelihood of 
the data. 

 
In the most general case, the three parameters (ai, bi, ci) are assumed to be constants 

that should be learned from the data.  However, it is well known that jointly 
estimating parameters ai and ci can prove difficult.  The estimates can be constrained 
however by assuming the parameters themselves have prior distributions.  For 
example, the discrimination parameter, ai, can be assumed to come from a lognormal 
distribution.  The prior distribution assumption helps to avoid deviant parameter 
estimates by shrinking the values toward the specified mean of the distribution. 



3 Design of Experiments 

Experiments were designed to determine the effectiveness of IRT models at capturing 
a student’s state of knowledge.  Multiple experiments were conducted to find the most 
appropriate modeling assumptions given our dataset. 

3.1 Domain and Data 

The Wayang Outpost (ht t p:/ / wayang. cs.u mass . edu ) [2, 3] provides web-based 
tutoring on SAT mathematics problems.  The tutor uses multimedia as a tool for 
engaging students and has been shown to be particularly beneficial for girls.  
Specifically, the tutor presents multiple choice geometry problems to students and 
offers them the option to seek help in solving the problems. 

 
Data exists for 401 high school students and 70 multiple choice problems in the 

Wayang Tutor.  Every student completed a minimum of ten problems and each 
problem was attempted at least thirty times.  For each problem and each student, three 
pieces of information were recorded: number of mistakes made, number of hints 
requested, and the time spent.  Furthermore, the order in which the students finished 
the problems was tracked.  Problems were assigned randomly and a single problem 
was not given more than once to the same student (note that pairs of very similar 
problems do exist in the tutor).  On average, a student completed 32 of the 70 
available problems.  The IRT assumption of static student proficiency is justified 
given this limited interaction with a student.  Dynamic IRT models [12] or latent 
transition analysis models [9] that capture student learning could be used with longer 
data sequences. 

 
The data was dichotomized because the relatively small sample size does not 

warrant using polytomous IRT models.  A conservative dichotomization procedure 
was used: a response was labeled as correct only if the student’s first action was to 
click on the correct answer.  If the student answered incorrectly or asked for a hint, 
then the data point was labeled as incorrect. 

3.2 Experiments 

Four experiments were run with varying assumptions about the parameters in the 
logistic equation.  The first two experiments use the two-parameter logistic equation 
while the last two experiments use the three-parameter equation.  The first and third 
experiments assume ai and bi are constants to be estimated from the data.  In the 
second and fourth experiments, the discrimination parameter, ai, is assumed to come 
from a lognormal prior distribution with mean 1.1 and variance 0.6.  The mean of 1.1 
is a typical value for the discrimination parameter.  These two experiments test 
whether constraints, in the form of prior distributions, help in estimating the 
parameters.  Estimates for ai that strongly deviate from the prior mean of 1.1 are 
penalized according to the lognormal distribution.  This has the effect of shrinking ai 



estimates closer to the mean of the prior distribution.  Table 1 summarizes these 
assumptions. 

Table 1.  Parameter assumptions for the four experiments 

Experiment ai bi ci 
1 constant constant N/A 
2 ~ lognormal(1.1, 0.6) constant N/A 
3 constant constant 0.2 
4 ~ lognormal(1.1, 0.6) constant 0.2 

 
 
The pseudo-guessing parameter, ci, was not estimated during the parameter 

estimation process in Experiments 3 and 4.  Given the small amount of data available, 
ci was fixed at a value of 0.2 for each problem.  This corresponds to an assumption of 
uniform guessing as there are five responses for each multiple choice problem. 

3.3 Validation Framework 

Five-fold cross validation was used to evaluate the IRT models learned in each of the 
four experiments.  This means that ~320 students were used to train the model and 
~80 students were used to test the model’ s predictive power.  This process was 
repeated five times by rotating the training and testing populations such that each 
group of roughly 80 students was used once as the testing population. 

 
Training the model involves running EM to learn the parameters ai, bi, and ci for 

each problem.  The testing procedure involves using the trained model to estimate a 
student’ s ability given performance on previous problems, and then to use the model 
again to predict how the student should fare on the next problem.  The predicted 
response is compared with the actual student response.  This is described in more 
detail in Figure 3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Input:  a j , b j , c j  for each problem  

 Data (u) for each student in test population  

Output:  ACC, MAE, MSE  

for i = 1 to (# students in test population)  

   // Assume 
i
ju  refers to the i’th student’s response  

   // (0 or 1) to the j’th problem he/she attempted  

   for j = 2 to (max # problems student i performed)  

      iθ̂  = MLE of θ given ( )1111 ,,, cbau i , � , ( )1111 ,,, −−−− jjj
i
j cbau  

      p  = ƒ ( )jjji cbau ,,,ˆ|1 θ=  

      if ( p  ≥ 0.5)  then û  = 1  

                      else û  = 0  

      if ( )uu i
j ˆ==     then correct += 1  

                      else incorrect += 1  

      MAE += pu i
j −  

      MSE += ( )2
pu i

j −  

ACC = correct / (correct + incorrect)  

MAE = MAE / (correct + incorrect)  

MSE = MSE / (correct + incorrect)  

Fig. 3.  Pseudocode for the cross-validation framework.  Note, MLE is short for maximum 
likelihood estimate 

 
Three metrics were evaluated during the testing phase: accuracy, mean absolute 

error (MAE), and mean squared error (MSE).  Accuracy compares the actual response 
with a predicted response, whereas MAE and MSE compare the actual response with 
the predicted probability of a correct response.  A better model results in higher 
accuracy and lower MAE and MSE values.  MAE and MSE are error metrics that 
provide a more granular explanation of the model’s accuracy than just the accuracy 
metric.  To see this, consider an example where a student answers a problem correctly 
but the model predicted a 0.49 probability of a correct response.  The accuracy metric 
wil l have an error of 1.0 whereas MAE will have an error of 0.51 (=1.0 – 0.49) and 
MSE will have an error of 0.26 (=0.512). 
 



4. Results and Discussion 

The results from the four experiments are shown in Table 2.  Note that all three 
metrics track with one another; therefore, MAE and MSE do not provide additional 
insight compared to the accuracy metric for this dataset.  However, it is still useful to 
track these metrics because they provide information on the sensitivity of the model 
(e.g. a MAE of 0.37 indicates the model is not predicting the probability of a correct 
response to be close to the extreme values of 0 and 1). 

Table 2.  Results averaged across the five cross-validation runs 

Experiment Accuracy MAE MSE 
1 72% 0.37 0.19 
2 72% 0.37 0.19 
3 67% 0.40 0.23 
4 71% 0.38 0.21 

 
 

Experiments 1 and 2 produced the best average accuracy value of 72%.  Both 
experiments used the two-parameter logistic equation.  Experiment 1 assumed the 
parameter ai was a constant whereas Experiment 2 assumed ai came from a prior 
lognormal distribution.  These two experiments were very robust to initial starting 
conditions for the parameters.  Thus, the prior distribution (Experiment 2) did not 
provide additional lift over Experiment 1. 

 
Experiments 3 and 4 resulted in accuracy values of 67% and 71% respectively.  In 

this case, the prior distribution assumption on the discrimination parameter, ai, had a 
significant effect.  This occurred because several of the 70 problems had ai estimates 
that either became very small (close to 0) or very large (close to the maximum 
allowable value of 30).  The prior distribution helped to shrink some of those extreme 
values closer to the distribution’s mean value. 

 
The 72% accuracy from Experiments 1 and 2 can be compared with two simple 

baseline strategies: 
1. Always predict the student answers incorrectly (i.e. the majority class label). 
2. Predict based on a student’ s percentage of previous problems answered 

correctly (if percentage is 5.0≥ , then predict a correct response). 
The first strategy achieves 61% accuracy and the second strategy 67%.  The 2-
parameter IRT model significantly outperforms both baselines.  To demonstrate 
significance, the Z-statistic was used assuming correct/incorrect predictions are 
modeled as binomial variables with an alpha value of 0.01 
( 33.211.15 01.0 ==>= ZZZ α  for strategy 1 and 33.289.6 01.0 ==>= ZZZ α  

for strategy 2).  Accuracy values from 75% to 85% are reported in [15] for training 
IRT models with synthetic data.  However, there are two significant differences 
between the synthetic datasets and the actual data used for this study.  One, the 
sample size for the synthetic datasets is much larger.  Two, there is presumably no 
off-task behavior (i.e. students “gaming” the system, [5]) in the synthetic datasets.  



Given these differences, 72% accuracy is a good starting point for modeling the 
Wayang dataset. 

 
Aside from the accuracy metric, we considered a more intuitive way to gauge the 

results of training the IRT model.  The parameter bi measures the difficulty level of a 
problem, where larger values correspond to a problem being more difficult.  Another 
simple measure of difficulty that is not directly related to the IRT model is the percent 
of students who answered a problem incorrectly.  Again, larger values of this metric 
indicate the problem is more difficult.  The correlation between these two measures of 
problem difficulty across all 70 problems was 68.0+=r  (using the bi estimates from 
Experiment 1).  This is a high correlation because the percentage incorrect metric 
does not account for the different students that did each problem, whereas the IRT 
model does.  The EM algorithm appears to learn realistic values for the difficulty 
parameter bi. 

5. Conclusions 

Dichotomous IRT models were used to estimate a student’ s proficiency in answering 
multiple choice questions.  The results presented in this paper came from actual data 
of high school students using the Wayang Outpost, a SAT-style geometry tutoring 
system.  A cross-validation framework was introduced to evaluate the predictive 
power of the student model. 

 
The best results, which predicted a student’ s response with 72% accuracy, were 

achieved using the two-parameter logistic equation.  Although the three-parameter 
equation is more expressive, there was not enough data to effectively learn the values 
of the parameters.  The number of parameters (and thus complexity) of the student 
model should be determined through a cross-validation process.  As more data is 
gathered over time, the complexity of the model can be incrementally increased.  
Longer sequences of data would also warrant use of dynamic IRT models that account 
for student learning. 

 
Our prior research suggests that an expert-centric model must have a large amount 

of data to learn the parameters of a model with many hidden variables [13].  In 
contrast, IRT models posit a single hidden variable and a constrained function relating 
the hidden variable to performance.  Based on this study, this data-centric model 
provided reliable and accurate estimates of a student’s proficiency.  In the future, we 
wil l investigate the relationship between expert-centric models and data-centric 
models given a finite amount of data from which to learn the model parameters. 

 
We plan to implement the IRT model to estimate a student’s proficiency while 

he/she interacts with the tutor.  Different pedagogical strategies will be tested based 
on the student’ s proficiency to determine the impact on a student’s gain from pretest 
to posttest.  We are also extending the IRT model to capture a student’s (unobserved 
and dynamic) motivation level.  Intelligent tutors are in a unique position to measure 
engagement because they track the number of hints requested and the response time, 
both key variables in detecting “gaming” behavior.  Several recent papers ([3], [7]) 



have proposed models of student engagement.  However, student modeling as a whole 
wil l be enhanced by measuring proficiency and engagement in one unified model. 
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