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Abstract

We present a novel hierarchical framework for solving Markov decision processes
(MDPs) using a multiscale method called diffusion wavelets. Diffusion wavelet bases
significantly differ from the Laplacian eigenfunctions studied in the companion paper
(Mahadevan and Maggioni, 2006): the basis functions have compact support, and are
inherently multi-scale both spectrally and spatially, and capture localized geometric
features of the state space, and of functions on it, at different granularities in space-
frequency. Classes of (value) functions that can be compactly represented in diffusion
wavelets include piecewise smooth functions. Diffusion wavelets also provide a novel
approach to approximate powers of transition matrices. Policy evaluation is usually the
expensive step in policy iteration, requiring O(|S|3) time to directly solve the Bellman
equation (where |S| is the number of states for discrete state spaces or sample size in
continuous spaces). Diffusion wavelets compactly represent powers of transition matri-
ces, yielding a direct policy evaluation method requiring only O(|S|) complexity in many
cases, which is remarkable because the Green’s function (I − γP π)−1 is usually a full
matrix requiring quadratic space just to store each entry. A range of illustrative exam-
ples and experiments, from simple discrete MDPs to classic continuous benchmark tasks
like inverted pendulum and mountain car, are used to evaluate the proposed framework.

Keywords: Markov Decision Processes, Reinforcement learning, Spectral Graph The-
ory, Harmonic Analysis, Riemannian Manifolds.
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Abstract

We present a novel hierarchical framework for solving Markov decision processes (MDPs)
using a multiscale method called diffusion wavelets. Diffusion wavelet bases significantly
differ from the Laplacian eigenfunctions studied in the companion paper (Mahadevan and
Maggioni, 2006): the basis functions have compact support, and are inherently multi-scale
both spectrally and spatially, and capture localized geometric features of the state space,
and of functions on it, at different granularities in space-frequency. Classes of (value) func-
tions that can be compactly represented in diffusion wavelets include piecewise smooth
functions. Diffusion wavelets also provide a novel approach to approximate powers of tran-
sition matrices. Policy evaluation is usually the expensive step in policy iteration, requiring
O(|S|3) to directly solve the Bellman equation (where |S| is the discrete state space size or
sample size in continuous spaces). Diffusion wavelets compactly represent powers of transi-
tion matrices, yielding a direct policy evaluation method requiring only O(|S|) operations
in many cases, which is remarkable because the Green’s function (I − γPπ)−1 is usually
a full matrix requiring O(|S|2) just to store each entry. A range of illustrative examples
and experiments, from simple discrete MDPs to classic continuous benchmark tasks like
inverted pendulum and mountain car, are used to evaluate the proposed framework.

Keywords: Markov decision processes, reinforcement learning, policy iteration, multiscale
analysis, diffusion wavelets

1. Introduction

This paper introduces a novel multiscale framework for solving Markov decision processes
(MDPs) (Puterman, 1994), based on diffusion wavelets (Coifman and Maggioni, 2004). In
the companion paper (Mahadevan and Maggioni, 2006) we discussed the use of eigenfunc-
tions of the Laplacian on a state space for value functions approximation. Diffusion wavelet
bases are also adapted to the geometry of the state space, and can be learned once the state
space is explored. However, the wavelet framework provides significant advantages in that
the constructed bases have compact support, and the approach yields a completely novel
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approach to the hierarchical abstraction of Markov chains and Markov decision processes, a
classical problem of much interest in reinforcement learning (Barto and Mahadevan, 2003).

The central motivation behind both Laplacian eigenfunctions and diffusion wavelet
bases is to build representations that capture how the geometry of the state space af-
fects the functions of interest on that space (e.g. the value function). Among these, the
eigenfunctions of certain Laplacians on the state space are natural candidates because of
their smoothness properties and their approximation properties in smoothness spaces (see
Section 5.1 and 5.2). There is a growing trend in machine learning towards designing
techniques that exploit the intrinsic geometry of the space that the data lie in (see for
example (Belkin and Niyogi, 2003a; Coifman and Maggioni, 2005; Maggioni and Coifman,
2006; Coifman et al., 2005a,b; Coifman and Maggioni, 2004; Bremer et al., 2004)). It is
natural to assume that the functions of interest have some regularity with respect to the
natural geometry of the state space, and they are appropriately approximated by suitable
representations via elements that are adapted to the geometry of the state space.

The Fourier analysis associated with expansions on eigenfunctions of the Laplacian
is a powerful tool for global analysis of functions, however it is known to be relatively
poor at representing or approximating local or transient properties. This motivated the
construction, about 20 years ago, of classical wavelets, which allow a very efficient multiscale
analysis, much like a tunable microscope probing the properties of a function at different
locations and scales. Recently wavelet analysis has been generalized in a natural way to
manifolds and graphs (Coifman and Maggioni, 2004), under the name of diffusion wavelets.
They are associated with a diffusion process that defines the different scales, and allow
a multiscale analysis of functions on manifolds and graphs, as shown in (Coifman and
Maggioni, 2004; Maggioni et al., 2005b). Diffusion wavelets have desirable properties in
view of applications to learning, function approximation, compression and denoising of
functions on graphs and manifolds. In many applications the multiscale diffusion wavelet
analysis constructed is interpretable and meaningful. For example, when applied to the
analysis of document corpora, it suggests groupings of documents (or words) at different
scales, corresponding to topics at different levels of specificity; when applied to Markov
decision processes, it leads to new aggregate groupings of states and actions; when applied
to the analysis of images, it leads to multiscale features of images.

Diffusion wavelet bases can be viewed as a multiscale extension of the notion of a
proto-value function (Mahadevan, 2005c,a), in that these basis functions are also task-
independent and collectively span the space of all possible value functions on a given state
space. Like Laplacian eigenfunctions, diffusion bases incorporate geometric constraints
intrinsic to the environment (see for example Figure 1). However, diffusion wavelet bases
are more powerful in that their intrinsic multiresolution nature enables them to be used
not just to represent value functions, but also provides a new representational framework
for compact approximation of powers of transition matrices.

Diffusion wavelets enable a hierarchical analysis of MDPs by learning a multiscale tree
of wavelet-type basis functions on the state space of a MDP, which enables an efficient
hierarchical representation of not just value functions, but also yields a fast algorithm
for the direct solution of the Bellman equation for policy evaluation. Bellman’s equation
usually involves the solution of a sparse linear system of size |S|, where S is the state
space. A classical direct solution of the system is infeasible for large problem sizes, since
it requires O(|S|3) steps. One common technique is to use an iterative method, such as
value iteration, which has worst case complexity O(|S|2) for sparse transition matrices,
O(|S| log |S|) when the problem is well-conditioned and only low-precision is required. The
approach to policy evaluation based on diffusion wavelets is fundamentally different, and
yields a direct solution in time O(|S| log2 |S|). Also, it results in a multiscale structure that
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depends only on the structure of the state space and on the policy, which can be reused
for different reward functions and discount rates.

The rest of this paper is organized as follows. In Section 2 we review some basic ideas
in multiscale analysis, both for function approximation and study of multiscale processes
such as random walks, or more general Markov chains. (A very short review of classical
wavelet multiscale analysis, for function approximation in Euclidean spaces, can be found in
the Appendix.) We then introduce diffusion wavelets, simultaneously addressing multiscale
function approximation on manifolds and graphs, as well as the multiscale representation
of “diffusion processes” on such spaces. In Section 4 we describe applications of diffusion
multiscale analysis to Markov Decision Processes (MDPs). Each policy in an MDP induces
a Markov chain process, for which there is a natural multiscale analysis whose construction
and interpretation is described. We then show how to use these multiscale decomposi-
tions for multiresolution value function approximation, for example to be included in a
least-squares policy iteration scheme, very much in parallel with what we presented in the
companion paper (Mahadevan and Maggioni, 2006) using eigenfunctions of the Laplacian.
We also show that, remarkably, this multiscale analysis enables a direct efficient solution of
Bellman’s equation, providing a numerical scheme of independent interest. In Section 5 we
consider function approximation in spaces of smooth and piecewise smooth functions, and
compare the behavior of approximations by eigenfunctions of the Laplacian and by diffu-
sion wavelets. In Section 6 we discuss the case of continuous state spaces, as opposed to
finite state spaces. In particular we discuss how to extend basis functions, usually learned
from a finite discrete sampling of the state space, to new states. We devote Section 7 to a
detailed experimental study of diffusion wavelets in MDPs. We conclude with a discussion
of ongoing and future research directions.

2. Multiscale Analysis: a quick overview

Due to the somewhat technical nature of the diffusion wavelet framework and construction,
we begin first with some illustrative examples that provide insight into this multiresolution
method. Unlike the first paper, where the value function is approximated on a subspace
of eigenfunctions of a graph Laplacian, in this paper we consider a different set of bases,
called diffusion wavelets, that are multiscale in nature. Qualitatively, each basis function
has two parameters, corresponding to a scale j and a location k, and it resembles an
oscillating function supported on a ball of approximately geodesic diameter 2j . For large j
(coarsest scale) they resemble the lowest frequency eigenfunctions of the Laplacian. These
basis functions are learned from the data (similar to the eigenfunctions of the Laplacian)
and are automatically constructed, given a matrix representing a diffusion process T π (e.g.
a “random walk”, or a Markov process corresponding to a policy) on the state space S.
They are naturally defined and constructed for non-symmetric processes Tπ, unlike the
Laplacian.

The motivation for the introduction and use of diffusion wavelet basis functions is that
they are able to represent efficiently larger classes of (value) functions than Laplacian eigen-
functions. They also enable analyzing an MDP at different levels of spatial and temporal
granularity . To make these ideas more concrete, let us first illustrate the multiscale basis
functions using two simple examples.

Example 1 (Room with an obstacle) In this example, the state space S is a square discrete grid
with a square obstacle placed in the middle (see Figure 1). We consider the natural random walk
on the graph representing the state space, with reflecting boundary conditions. In the continuous
setting, this would correspond to considering the heat kernel with Neumann boundary conditions.
The associated diffusion wavelet basis functions, automatically constructed from a matrix (unsorted!)
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Figure 1: The state space is a room with an obstacle in the middle. The diffusion scaling
functions are automatically adapted to the state space. From top to bottom,
left to right, we represent ϕ3,10, ϕ3,23, ϕ4,32, ϕ5,5, ϕ6,8, ϕ9,2, where the first index
denotes scale (the larger the index the coarser the scale) and the second one
indexes the location. Compared to the eigenfunctions of the Laplacian, each of
which has global support, the scaling functions are localized at different scales.
At the coarsest scale, they are very similar to the eigenfunctions of the Laplacian.

representing the random walk process on S, are naturally adapted to S, as shown in Figure 1. In the
construction of the basis functions, there is no assumption that the points are uniformly sampled on
a grid.

Example 2 (Two rooms with a door) The second example represents a two-room spatial do-
main, connected by a single door, similar to the environments analyzed in the first paper (Mahade-
van and Maggioni, 2006). The state space is a discretization of two rooms, connected by one edge
(representing the door). Some diffusion wavelets associated with the natural random walk on this
state space are illustrated in Figure 2.

By representing certain classes of value functions (e.g. smooth value functions) effi-
ciently, the dimensionality of the problem is significantly reduced. Solving the reduced
problem in a subspace of dimension k requires solving Bellman’s equation, which has in
general cost O(k3): this makes any savings in k very attractive. We will discuss the approx-
imation properties of eigenfunctions of the Laplacian in more detail in this paper, but the
main observation is that eigenfunctions only efficiently represent globally smooth functions,
but not functions which are only piecewise smooth, or not uniformly smooth, on the state
space. See Figure 3 for a simple but revealing example. (We refer the reader to Figure 19
for an example involving classical wavelets.)

Wavelets in general efficiently represent functions which are not uniformly smooth
because they perform a multiscale analysis, in such a way that the smoothness of the
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Figure 2: Diffusion wavelet scaling functions on a discrete two-room spatial domain con-
nected by a common door. Top: some scaling functions at scale 3 and 4, bottom:
some scaling functions at scale 5 and 8. All the scaling functions are naturally
adapted to the state space and its topological features. Large (i.e. coarse) scale
scaling functions are very similar to eigenfunctions of the Laplacian.

function at a point affects the size of the coefficients only of those wavelets whose support
contain that point. The number of wavelets whose support includes any given point is
proportional to the number of scales considered (which grows proportionally to log |S|,
where S is the state space). Hence if a function is “generally” smooth, with a few locations
of non-smoothness, only very few wavelet coefficients will be affected.

Example 3 In Figure 3 we compare the performance of diffusion wavelet bases and Laplacian eigen-
functions in approximating a value function in a discrete two-room environment, with two positive
rewards at opposite corners of the two rooms. The value function is quite peaked, and hence induces
a large gradient in localized regions close to the rewards. It is thus non-smooth, at least in the sense
that the gradient is large in certain regions, or not uniformly smooth in the sense that the gradient
is very small in some regions and quite large in others. We can approximate the value function by
choosing the best set of eigenfunctions of the Laplacian for approximating it (nonlinear approxima-
tion), and contrast it with the best set of diffusion wavelets. The difference in approximation rates
is highly significant, and reveals the power of the multiscale diffusion bases.

With these illustrative examples, we can now turn to a more detailed description of
how such a multiscale analysis can be constructed on general state spaces by first reviewing
the diffusion analysis framework (Coifman et al., 2005a,b; Coifman and Maggioni, 2004;
Bremer et al., 2004; Maggioni et al., 2005b,a; Coifman and Lafon, 2004a,b; Lafon, 2004;
Coifman and Maggioni, 2005).
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Figure 3: Approximation of a value function which is not very smooth because of localized
peaks that induce local large gradients. This value function corresponds to a
discrete two room domain connected by a door in the middle, with two (posi-
tive but different) rewards at the two opposite corners of the two rooms. Top
left: the exact desired value function we need to approximate. Top right: decay
of the coefficients onto the Laplacian eigenfunction basis and the best wavelet
packet basis (in log10 scale). Bottom left: approximation obtained by nonlinear
approximation with the 30 best eigenfunctions of the Laplacian. Bottom right:
approximation obtained by nonlinear approximation with 30 best wavelet packet
functions.

3. Technical background

In this section we review some background material on multiscale analysis of functions
and diffusion processes, which may help the reader in better understanding the diffusion
wavelet framework. The topics we discuss expand on the similar discussion in the first
paper (Mahadevan and Maggioni, 2006) on Laplacian eigenfunctions. We discuss some
ideas from “diffusion analysis”, the study of diffusion processes on graphs, which leads to
a natural analysis of the geometry of a space, manifold or graph, and of functions on it
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(Coifman et al., 2005a,b; Coifman and Maggioni, 2004; Bremer et al., 2004; Maggioni et al.,
2005b,a; Coifman and Lafon, 2004a,b; Lafon, 2004; Coifman and Maggioni, 2005). This
framework has its roots in harmonic analysis (Stein, 1970), potential theory and the study
of Brownian motion (Kemeny and Snell, 1976; Doob, 1984), partial differential equations
(Evans, 1998), probability, and spectral graph theory Chung (1997). It is related to work
in the machine learning community (Belkin and Niyogi, 2003a, 2001; Kondor and Lafferty,
2002; Lafferty and Lebanon, 2005, 2002; Zhu et al., 2003). A global diffusion analysis
leads to the study of the eigenfunctions of the Laplacian discussed in the companion paper
(Mahadevan and Maggioni, 2006); here we focus on multiscale analysis. This analysis is in
fact two-fold: on the one hand it applies to function approximation, on the other to the
multiscale representation of certain Markov processes.

This section is organized as follows: in section 3.1 we discuss the framework of diffusion
analysis, introducing the relevant basic concepts and notation. In section 3.1.2 we describe
the connection with Fourier analysis on graphs and manifolds, and eigenfunctions of the
Laplacian, and briefly discuss function approximation with eigenfunctions. In section 3.2
we motivate and introduce multiscale diffusion analysis of Markov processes (Coifman and
Maggioni, 2004; Maggioni et al., 2005a). We briefly discuss classical multiscale function
approximation with wavelets in the appendix (section 10) (excellent classical references are
(Daubechies, 1992; Mallat, 1998)). In section 3.2.1 we introduce diffusion wavelets (Coifman
and Maggioni, 2004; Coifman et al., 2005b; Maggioni et al., 2005a) and briefly discuss their
construction. Section 3.2.3 summarizes various applications of diffusion wavelets.

3.1 Diffusion Analysis

An intrinsic analysis of a data set, modeled as a graph or a manifold, can be developed by
considering a natural random walk P on it. The random walk can be viewed as a diffusion
process on the data set, which explores it and discovers clusters and regions separated by
bottlenecks (Chung, 1997; Ng et al., 2001; Belkin and Niyogi, 2001; Zha et al., 2001; Lafon,
2004; Coifman et al., 2005a,b). Recall that for a weighted undirected graph (G,E,W ),
the random walk is defined by P = D−1W , where D is the diagonal matrix defined by
Dii =

∑

j∼i Wij . On a manifold, the natural random walk is Brownian motion on the
manifold, which can be obtained by “restricting” Brownian motion in Euclidean space
(Sidorova et al., 2003; Sidorova, 2003). This Markov process can be represented as an
integral operator, whose kernel is heat kernel on the manifold (Rosenberg).

For the purpose of this discussion, we restrict our attention to the case of a finite undi-
rected1 weighted graph (G,E,W ). Most of the constructions we present can be generalized,
mutatis mutandis, to directed graphs, infinite graphs, smooth compact Riemannian mani-
folds, and more general spaces (Coifman and Maggioni, 2004). If P represents one step of
the random walk, by the Markov property P t represents t steps. For an initial condition δx

(i.e, where x is the starting state), P tδx(y) represents the probability of being at y at time t,
conditioned on starting in state x. The matrix P encodes local similarities between points,
and the matrix P t is diffusing, or integrating, this local information for t steps to larger
and larger neighborhoods of each point. The process {P t}t≥0 can be analyzed at different
time scales. For very large times (t → +∞), the random walk can be analyzed through
its top eigenvectors, which are related to those of a Laplacian on the graph/manifold. The
analysis for large times leads to Fourier analysis of the large scale spatial and temporal
regularities of the graph/manifold, and to the identification of useful structures, such as
large scale clusters.

1. The construction of diffusion wavelets applies as is to directed graphs (Coifman and Maggioni, 2004);
however the connection with the spectral theory of the operator is quite different and a delicate matter.
In this section we restrict ourselves to undirected graphs for pedagogical purposes.
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For small and medium times (t bounded away from infinity), the random walk in
general cannot be studied effectively with Laplacian eigenfunctions, which are global and
not suited for analyzing small- and medium-scale behavior. On the other hand, many
interesting features of the data and of functions on the data can be expected to exist at
small and medium time scales: one remarkable example is complex (computer, biological,
information, social) networks, where communities (of computers, genes and/or proteins,
people) of different sizes co-exist and cluster together at different scales. Another important
example is the boundary between two classes in a classification problem. In the case of
Markov Processes, it is easy to imagine regions of the state space where the process is
smoother than others (e.g. inverted pendulum near the vertical position and zero velocity
versus almost horizontal position with high velocity). The task of analyzing P t for all
times and locations seems tantalizing, since it would seem to require either large time in
order to compute all powers of P (which is computationally expensive since, even if P is
sparse, its powers are not), and/or large space to store those powers. However it is easy
to observe is that there is redundancy in time and space in the family {P t(x, y)}t≥0;x,y∈X .
First of all there is a spatial redundancy: if x and y are close and t2 is large (depending on
the distance between x and y), P t(x, ·) is very similar to P t(y, ·) (as distributions on X).
Secondly, there is a redundancy across time scales: if we know P t(x, ·) and P t(y, ·), then
by the Markov property we know P 2t(x, y). It is remarkable that this redundancy can be
eliminated, and an efficient multiscale encoding is possible. This leads to diffusion wavelet
analysis, which is described in Section 3.2.1.

3.1.1 Basic setup and notation

Fourier analysis on graphs is based on the definition of a Laplacian, and on its eigenfunc-
tions, which constitute an orthonormal basis of Fourier modes on the graph. Spectral
graph theory (Chung, 1997) studies the properties of the Laplacian on a graph and of its
eigenfunctions, and has been applied to a wide range of tasks in the design of computer
networks, parallel computation, clustering, manifold learning, classification.

We introduce notation that will be used throughout the paper. x ∼ y means that there
is an edge between x and y, d(x) =

∑

x∼y w(x, y) is the degree of x, D is the diagonal
matrix defined by Dxx = d(x), and W the matrix defined by Wxy = w(x, y) = w(y, x).
We can assume w(x, y) > 0 if x ∼ y. Sometimes G is naturally endowed with a measure
(weight) µ on its vertices. A typical example is µ({x}) = d(x); in some other cases µ could
be a probability distribution, for example related to sampling. In most of what follows we
shall assume that µ is simply the counting measure, but the construction generalize to the
case of general measures µ. One defines the space of square-integrable functions

L2(G) := {f : G → R s.t. ||f ||22 :=
∑

x∈G

|f(x)|2µ({x}) < +∞} , (1)

which is a Hilbert space with the associated inner product

〈f, g〉 =
∑

x∈G

f(x)g(x)µ({x}) .

There is a natural random walk on G, given by P = D−1W . This Markov chain is
necessarily reversible, and thus it is conjugate, together with its powers, to a symmetric
operator T :

T t = D
1
2 P tD− 1

2 = (D− 1
2 WD− 1

2 )t

= (I − L)t =
∑

i

(1 − λi)
tξi(·)ξi(·) .

(2)
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where

L = D− 1
2 (D − W )D− 1

2 (3)

is the normalized Laplacian, and 0 = λ0 ≤ λ1 ≤ · · · ≤ λi ≤ . . . are the eigenvalues of L
and {ξi} the corresponding eigenvectors: Lξi = λiξi. Clearly P t = D

1
2 T tD− 1

2 , and hence
studying T is equivalent, as far as spectral properties are concerned, to studying P .

3.1.2 Fourier Analysis on Graphs and Manifolds

The eigenvectors {ξi} of L form an orthonormal basis for L2(G) and hence can be used
for analysis and approximation of any such function. This has lead to novel algorithms in
dimensionality reduction, classification and learning (Belkin and Niyogi, 2003c; Niyogi and
Belkin, 2001; Lafon, 2004; Coifman and Lafon, 2004a; Coifman et al., 2005a; Mahadevan
and Maggioni, 2005).

The Laplacian is positive semi-definite, and hence defines a (quasi-)norm, related to a
notion of smoothness, and an associated function space of smooth functions on which it is
naturally defined:

||f ||2H1 =
∑

x

|f(x)|2d(x) +
∑

x∼y

|f(x) − f(y)|2w(x, y) = ||f ||2 + 〈f,Lf〉 . (4)

The first term in this norm controls the size of the function f , and the second term controls
the size of the gradient. This norm measures the smoothness of f , in the sense that f is
not smooth if its L2-norm and/or the L2-norm of its gradient are large.

For a function f on G, its gradient is defined as the function on the edges of G given
by ∇f(i, j) = w(i, j)(f(i) − f(j)) if there is an edge e connecting i to j, 0 otherwise. The
gradient can thus be interpreted as a function on the edges, and the norm in H1 can be
rewritten as

||f ||2H1 = ||f ||2 + ||∇f ||2 ,

where the second L2-norm is on the space of edges with measure w. The definitions in the
case of a manifold are completely analogous2.

For a function f ∈ L2(G), one can write f =
∑

i〈f, ξi〉ξi, with convergence at least
in the L2-norm, as a generalization of Fourier series expansions. Ideally the sum can be
restricted to few terms for a given precision. In the case of linear approximation, we
restrict ourselves in choosing the coefficients αi(f) := 〈f, ξi〉 among the first I, in which
case efficient approximation is possible if |αi(f)| decays rapidly with i. It turns out that
the rate of decay of {αi(f)} is related to the global smoothness properties of f (the greater
the smoothness, the faster the decay). In the case of nonlinear approximation, we allow
ourselves to compute all the coefficients αi(f) and pick the largest among all of them.

However it is well known that if f does not have uniform smoothness everywhere, the
approximation by eigenfunctions is poor not only in regions of lesser smoothness, but the
poor approximation spills widely to regions of smoothness as well. See for example Figure
3. This lack of localization can be avoided by using carefully designed kernels, in particular
it is avoided with the multiscale constructions we discuss in the next section.

3.2 Multiscale Analysis of Functions and Markov Processes

In this section, we view multiscale analysis from two related, but nonetheless distinct per-
spectives. The first is approximation of functions, the other is approximation of (Markov)

2. One only needs some care on the boundary: boundary conditions need to be specified, and the behavior
of functions in H1 are affected by them.

9
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processes. Multiscale and wavelet analysis of functions is well understood in Euclidean
space (Daubechies, 1992; Mallat, 1998), and it is motivated by the need for studying func-
tions (or signals) that have different behavior at different locations at different scales.

Regarding multiscale analysis of Markov processes, many applications require repre-
senting time series data at multiple levels of resolution, for example robot navigation
(Theocharous et al., 2001), sensor networks (Xu et al., 2004), and social network analysis
(McCallum et al., 2004). Given the inherent uncertainty in such domains, a computational
approach that automatically abstracts stochastic processes at multiple levels of abstrac-
tion is highly desirable. Parametric graphical models have been extensively studied in this
regard. In the uncontrolled setting, hierarchical hidden Markov models are one of a gen-
eral family of multi-resolution stochastic time-series models (Fine et al., 1998; Mahadevan
et al., 2004). A central limitation of such parametric multi-resolution stochastic time se-
ries models is that the overall structure describing the evolution of the process at multiple
levels of abstraction is usually assumed to be given. In the work on hierarchical HMMs,
for example, it is typically assumed that a human hand-codes the tree structure, and most
research focuses on efficient parameter estimation techniques, which are variants of expec-
tation maximization (EM) (Dempster et al., 1977; Neal and Hinton, 1999). Similarly, in
much work on hierarchical reinforcement learning, the overall decomposition mapping high-
level tasks into subtasks is assumed to be given, and the focus is on parameter estimation
methods such as SMDP Q-learning (Barto and Mahadevan, 2003).

In contrast, the diffusion wavelet framework provides a general and powerful way of
learning multiscale structures, relieving a human of having to hand code a suitable hierar-
chical structure. Let Pπ represent the one-step evolution of a stochastic Markov process,
where Pπ

ij represents the probability of transition from state i to state j, if the policy π is
followed. This policy can be viewed as a random walk on a graph associated with the state
space, where vertices are the states. Longer random walks on the graph are represented by
powers of the one-step Markov process; diffusion wavelets encode the multi-step process by
compactly encoding all dyadic powers of the one-step process.

Consider a random walk P on a set like the one represented in Figure 4. It is clear
that several structures exist at different scales, and the set is “lumpable” at different scales.
How does this affect the random walk? If we consider different powers of P , corresponding
to different “time-scales” of the random walk, then we would expect to construct, for each
power of P , a compressed Markov random walk on a set of “lumps” of the set. This
is one of the outcomes of the multiscale diffusion analysis introduced in (Coifman and
Maggioni, 2004; Maggioni et al., 2005a): it yields a multiscale set of lumps (more precisely,
of probability distributions or functions on the set), and a compressed Markov chain acting
at each scale on the set of lumps corresponding to that scale, in a consistent way, as
discussed below. In Figure 4 we show some of the scales and the corresponding lumps,
as well as the matrices representing the Markov chains at different scales acting on such
lumps.

It is easy to imagine how this simple example could be extended to much more general
situations, for example the case of dynamical systems with several time scales, or problems
in reinforcement learning where there exist bottleneck structures at different time or space
scales in the action-state space (Barto and Mahadevan, 2003).

3.2.1 Diffusion Wavelets

Diffusion wavelets (Coifman and Maggioni, 2004; Bremer et al., 2004) enable a fast mul-
tiscale analysis of functions on a manifold or graph, generalizing wavelet analysis and
associated signal processing techniques (such as compression or denoising) to functions on
manifolds and graphs. They allow the efficient and accurate computation of high powers of
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Figure 4: Top left: a multiscale lumpable set. This can be though of samples from a
continuous state space of several rooms connected by corridors. Top right and
second row: lumps (localized functions on the set) at increasing coarser scales,
whose values are represented by colors on the set. Bottom row: compressed
powers T 2j

of the random walk T at different time-scales.

a Markov chain P on the manifold or graph, including direct computation of the Green’s
function (or fundamental matrix) of the Markov chain, (I − P )−1, which can be used to
solve Bellman’s equation. Space constraints permit only a brief description of the construc-
tion of diffusion wavelet trees. More details are provided in (Coifman and Maggioni, 2004;
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Bremer et al., 2004). We refer the reader not familiar with wavelets to the appendix, where
we briefly discuss classical multiresolution analysis.

A multiresolution decomposition of the functions on the graph is a family of nested
subspaces V0 ⊇ V1 ⊇ · · · ⊇ Vj ⊇ . . . spanned by orthogonal bases of diffusion scaling
functions Φj . If we interpret T t as an operator on functions on the graph, then Vj is

defined as the numerical range, up to precision ǫ, of T 2j+1−1, and the scaling functions
are smooth bump functions with some oscillations, at scale roughly 2j+1 (measured with
respect to geodesic distance). The orthogonal complement of Vj+1 into Vj is called Wj ,
and is spanned by a family of orthogonal diffusion wavelets Ψj , which are smooth localized
oscillatory functions at the same scale. The detailed construction of the multiresolution
analysis is quite non-trivial, and we refer the reader interested in all the technical and
algorithmic details to the paper by Coifman and Maggioni (2004). Here, we summarize the
main steps below.

3.2.2 Construction of Diffusion Wavelets

Here and in the rest of this section we will use the notation [L]B2

B1
to indicate the matrix

representing the linear operator L with respect to the basis B1 in the domain and B2 in
the range. A set of vectors B1 represented on a basis B2 will be written in matrix form
[B1]B2

, where the rows of [B1]B2
are the coordinates of the vectors B1 in the coordinate

system defined by B2.
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Figure 5: Spectra of powers of a diffusion operator T and corresponding multiscale
eigenspace decomposition.

The input to the algorithm is a “precision” parameter ǫ > 0, and a weighted graph
(G,E,W ). We assume that G is strongly connected and “local” (in the sense that each
vertex is connected to a small number of vertices). The construction is based on using the
natural random walk P = D−1W on a graph (where D is the out-degree matrix if the graph
is directed) which we assume aperiodic. We use the powers of P to “dilate”, or “diffuse”
functions on the graph, and then define an associated coarse-graining of the graph. Observe
that in many cases of interest P is a sparse matrix. We usually normalize P and consider
T = Π−1PΠ, where Π is the asymptotic distribution of P . Because of the hypotheses
on P , Π exists is unique and can be chosen to be a strictly positive distribution by the
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−−−−−−−−−−→
[T ]

Φ1
Φ0 −−−−−−−−→

[T 2]
Φ2
Φ1 −−−−−−−−→

[T 2
j
]
Φj+1

Φj −−−−−−−−−→
[T 2

j+1
]
Φj+2

Φj+1

−−−−−−−−−−→

[T ]
Φ0
Φ0

−−−
−−
−−
−−
−−
−−
−−
−→

[Φ1]Φ0

−−−−−−−−−−→

[T 2]
Φ1
Φ1

−−−
−−
−−
−−
−−
−−
−−
−→

[Φ2]Φ1

−−−
−−
−−
−−
−−
−−
−−
−−→

[Φj+1]Φj

−−−−−−−−−−→[T 2
j+1

]
Φj+1

Φj+1

−−−
−−
−−
−−
−−
−−
−−
−→

[Φj+2]Φj+1
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Φ̃1 Φ̃2 . . . Φ̃j+1

Figure 6: Figure shows downsampling, orthogonalization and operator compression. (All
triangles are commutative by construction)

Perron-Fröbenius Theorem (Kemeny and Snell, 1976). We refer the reader to (Chung,
2006; Zhou et al., 2005) for details on the directed graph Laplacian. If G is undirected, P

is reversible, Π = D
1
2 , and T is symmetric. In the other cases, when T is not symmetric,

in what follows any statement regarding (or implied by) the spectral decomposition of T
should be disregarded. We take powers to obtain

T t = (Π− 1
2 PΠ− 1

2 )t = Π− 1
2 P tΠ− 1

2 = (I − L)t =
∑

i≥0

(1 − λi)
tξi(·)ξi(·) (5)

where {λi} and {ξi} are the eigenvalues and eigenfunctions of the Laplacian. Hence the
eigenfunctions of T t are again ξi and the ith eigenvalue is (1 − λi)

t.
In what follows, we assume that T is a sparse matrix, and that the numerical rank of

the powers of T decays rapidly with the power. For example a desirable situation is when
the number of singular values of T t larger than ǫ is smaller than 2−γt.

A diffusion wavelet tree consists of orthogonal diffusion scaling functions Φj that are
smooth bump functions, with some oscillations, at scale roughly 2j (measured with respect
to geodesic distance), and orthogonal wavelets Ψj that are smooth localized oscillatory
functions at the same scale. The scaling functions Φj span a subspace Vj , with the prop-
erty that Vj+1 ⊆ Vj , and the span of Ψj , Wj , is the orthogonal complement of Vj into

Vj+1. This is achieved by using the dyadic powers T 2j

as “dilations”, to create smoother
and wider (always in a geodesic sense) “bump” functions (which represent densities for the
symmetrized random walk after 2j steps), and orthogonalizing and downsampling appro-
priately to transform sets of “bumps” into orthonormal scaling functions.

We now describe the multiscale construction in detail. It may be useful to compare
the description that follows with the diagram in Figure 6. T is initially represented on
the basis Φ0 = {δk}k∈G; we consider the columns of T , interpreted as the set of functions
Φ̃1 = {Tδk}k∈G on G. We use a local multiscale orthogonalization procedure, described
in (Coifman and Maggioni, 2004), to carefully orthonormalize these columns to get a basis
Φ1 = {ϕ1,k}k∈G1

(G1 is defined as this index set), written with respect to the basis Φ0, for
the range of T up to precision ǫ. This information is stored in the sparse matrix [Φ1]Φ0

. This
yields a subspace that we denote by V1. Essentially Φ1 is a basis for the subspace V1 which
is ǫ-close to the range of T , and with basis elements that are well-localized. Moreover, the
elements of Φ1 are coarser than the elements of Φ0, since they are the result of applying the
“dilation” T once. Obviously |G1| ≤ |G|, but this inequality may already be strict since the
numerical range of T may be approximated, within the specified precision ǫ, by a subspace
of smaller dimension. Whether this is the case or not, we have computed the sparse matrix
[T ]Φ1

Φ0
, a representation of an ǫ-approximation of T with respect to Φ0 in the domain and
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{Φj}J
j=0, {Ψj}J−1

j=0 , {[T 2j

]
Φj

Φj
}J

j=1 ← DiffusionWaveletTree ([T ]Φ0

Φ0
,Φ0, J,SpQR, ǫ)

// Input:
// [T ]Φ0

Φ0
: a diffusion operator, written on the o.n. basis Φ0

// Φ0 : an orthonormal basis which ǫ-spans V0

// J : number of levels to compute
// SpQR : a function compute a sparse QR decomposition, template below.
// ǫ: precision

// Output:
// The orthonormal bases of scaling functions, Φj , wavelets, Ψj , and

// compressed representation of T 2j

on Φj , for j in the requested range.

for j = 0 to J − 1 do

[Φj+1]Φj
, [T ]Φ1

Φ0
←SpQR([T 2j

]
Φj

Φj
, ǫ)

Tj+1 := [T 2j+1

]
Φj+1

Φj+1
← [Φj+1]Φj

[T 2j

]
Φj

Φj
[Φj+1]

∗
Φj

[Ψj ]Φj
← SpQR(I〈Φj〉 − [Φj+1]Φj

[Φj+1]
∗
Φj

, ǫ)

end

Function template for sparse QR factorization:
Q,R ← SpQR (A, ǫ)

// Input:
// A: sparse n × n matrix
// ǫ: precision

// Output:
// Q,R matrices, possibly sparse, such that A =ǫ QR,
// Q is n × m and orthogonal,
// R is m × n, and upper triangular up to a permutation,
// the columns of Q ǫ-span the space spanned by the columns of A.

Figure 7: Pseudo-code for construction of a Diffusion Wavelet Tree.

Φ1 in the range. We can also represent T in the basis Φ1: with the notation above this
is the matrix [T ]Φ1

Φ1
. We compute [T 2]Φ1

Φ1
= [Φ1]Φ0

[T 2]Φ0

Φ0
[Φ1]

T
Φ0

. If T is self-adjoint, this is

equal to [T ]Φ1

Φ0
([T ]Φ1

Φ0
)∗, which has the advantage that numerical symmetry is forced upon

[T 2]Φ1

Φ1
.

It is now clear how to proceed: we look at the columns of [T 2]Φ1

Φ1
, which are Φ̃2 =

{[T 2]Φ1

Φ1
δk}k∈G1

. By unraveling the notation, these are functions {T 2ϕ1,k}k∈G1
, up to

the precision ǫ. Once again we apply a local orthonormalization procedure to this set of
functions, obtaining an orthonormal basis Φ2 = {ϕ2,k}k∈G2

for the range of T 2
1 (up to

precision ǫ), and also for the range of T 3
0 (up to precision 2ǫ). Observe that Φ2 is naturally

written with respect to the basis Φ1, and hence encoded in the matrix [Φ2]Φ1
. Moreover,

depending on the decay of the spectrum of T , |X2| is in general a fraction of |X1|. The
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matrix [T 2]Φ2

Φ1
is then of size |G2| × |G1|, and the matrix [T 4]Φ2

Φ2
= [T 2]Φ2

Φ1
([T 2]Φ2

Φ1
)∗, a

representation of T 4 acting on Φ2, is of size |G2| × |G2|.
After j iterations in this fashion, we will have a representation of T 2j

onto a basis Φj =

{ϕj,k}k∈Gj
, encoded in a matrix Tj := [T 2j

]
Φj

Φj
. The orthonormal basis Φj is represented

with respect to Φj−1, and encoded in the matrix [Φj ]Φj−1
. We let Φ̃j = TjΦj We can

represent the next dyadic power of T on Φj+1 on the range of T 2j

. Depending on the decay
of the spectrum of T , we expect |Gj | << |G|, in fact in the ideal situation the spectrum of
T decays fast enough so that there exists γ < 1 such that |Xj | < γ|Xj−1| < · · · < γj |X|.
This corresponds to downsampling the set of columns of dyadic powers of T , thought of as
vectors in L2(G). The hypothesis that the rank of powers of T decreases guarantees that
we can downsample and obtain coarser and coarser lattices in this spaces of columns.

While Φj is naturally identified with the set of Dirac δ-functions on Gj , we can extend
these functions living on the “compressed” (or “downsampled”) graph Gj to the whole
initial graph G by writing

[Φj ]Φ0
= [Φj ]Φj−1

[Φj−1]Φ0
= · · · = [Φj ]Φj−1

[Φj−1]Φj−2
· · · · · [Φ1]Φ0

[Φ0]Φ0
. (6)

Since every function in Φ0 is defined on G, so is every function in Φj . Hence any function
on the compressed space Gj can be extended naturally to the whole G. In particular,
one can compute low-frequency eigenfunctions on Gj in compressed form, and then extend

them to the whole G. The elements in Φj are at scale T 2j+1−1, and are much coarser
and “smoother”, than the initial elements in Φ0, which is why they can be represented in
compressed form. The projection of a function onto the subspace spanned by Φj will be
by definition an approximation to that function at that particular scale.

There is an associated fast scaling function transform: suppose we are given f on G
and want to compute 〈f, ϕj,k〉 for all scales j and corresponding “translations” k. Be-
ing given f means we are given (〈f, ϕ0,k〉)k∈G. Then we can compute (〈f, ϕ1,k〉)k∈G1

=

[Φ1]Φ0
(〈f, ϕ0,k〉)k∈G, and so on for all scales. The sparser the matrices [Φj ]Φj−1

(and [T ]
Φj

Φj
),

the faster this computation. This generalizes the classical scaling function transform.
Wavelet bases for the spaces Wj can be built analogously by factorizing IVj

− Qj+1Q
∗
j+1,

which is the orthogonal projection on the complement of Vj+1 into Vj . The spaces can be
further split to obtain wavelet packets (Bremer et al., 2004). The wavelets can be consid-
ered as high-pass filters, in the sense that they capture the detail lost from going from Vj to
Vj+1, and also in the sense that their expansion in terms of eigenfunctions of the Laplacian

essentially only involves eigenfunctions corresponding to eigenvalues in [ǫ−2j−1, ǫ−2j+1−1].
In particular their Sobolev norm, or smoothness, is controlled.

In the same way, any power of T can be applied efficiently to a function f . Also, the
Green’s function (I−T )−1 can be applied efficiently to any function, since it can represented
as product of dyadic powers of T as in (9), each of which can be applied efficiently. We
are at the same time compressing the powers of the operator T and the space X itself, at
essentially the optimal “rate” at each scale, as dictated by the portion of the spectrum of
the powers of T which is above the precision ǫ.

Observe that each point in Gj can be considered as a “local aggregation” of points
in Gj−1, which is completely dictated by the action of the operator T on functions on G:
the operator itself is dictating the geometry with respect to which it should be analyzed,
compressed or applied to any vector. The algorithm is summarized in Figure 7.

A Fast Diffusion Wavelet Transform expands, in O(n) computations (where n is the
number of vertices) any function in the wavelet, or wavelet packet, basis, and efficiently
searches for the most suitable basis set. Diffusion wavelets and wavelet packets are a very
efficient tool for representation and approximation of functions on manifolds and graphs
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(Coifman and Maggioni, 2004; Bremer et al., 2004), generalizing to these general spaces
the nice properties of wavelets that have been so successfully applied in Euclidean spaces.

Diffusion wavelets allow computing T 2k

f for any fixed f , in order O(kn). This is non-
trivial because while the matrix H is sparse, large powers of it are not, and the computation

T 2k

f = T ·T · · ··(T (Tf)) . . . ) involves 2k matrix-vector products. As a notable consequence,
this yields a fast algorithm for computing the Green’s function, or fundamental matrix,

associated with the Markov process T , via (I − T 1)−1f =
∑

k≥0 T k =
∏

k≥0(I + T 2k

)f .

In a similar way one can compute (I − P )−1. For large classes of Markov chains we can
perform this computation in time O(n), in a direct (as opposed to iterative) fashion. This
is remarkable since in general the matrix (I − T 1)−1 is full and only writing down the
entries would take time O(n2). This multiscale compression scheme makes it possible to
efficiently represent (I −T 1)−1 in compressed form, taking advantage of the smoothness of
the entries of the matrix. This is discussed in general in (Coifman and Maggioni, 2004). In
(Maggioni and Mahadevan, 2005) we use this approach to develop an efficient direct policy
evaluation algorithm, which we describe in more detail below.

Example 4 (Multiscale compression of a simple Markov chain) To illustrate the multiscale
analysis enabled by diffusion wavelets, it helps to see the results of the analysis on a simple example.
We consider the Markov chain on 4 states {a, b, c, d}:

T =







0.8 0.2 0 0
0.2 0.75 0.05 0
0 0.05 0.75 0.2
0 0 0.2 0.8







.

This chain has a “bottleneck” between the set of states {a, b} and the set of states {c, d}, as the
small weight (transition probability) on the edge bc indicates. We fix a precision ǫ = 10−10. See
Figure 8 for the discussion that follows. The scaling functions Φ0 are simply {δa, δb, δc, δd}. We
apply T to Φ0 and orthonormalize to get Φ1 (Figure 8). Each function in Φ1 is an “abstract-state”,
i.e. a linear combination of the original states. We represent T 2 on Φ1, to get a matrix T2, apply to
Φ1 and orthonormalize, and so on. At scale 5 we have the basis Φ5 and the operator T5, representing
T 25

on Φ5. At the next level, we obtain Φ7, which is only two dimensional, because T5Φ5 has ǫ-rank
2 instead of 4: of the 4 “abstract-states” T5Φ5, only two of them are at least ǫ-independent. Observe
the two scaling functions in Φ6 are approximately the asymptotic distribution and the function which
distinguishes between the two clusters {a, b} and {c, d}. Then T6 represents T 26

on Φ7 and is a 2 by
2 matrix. At scale 10, Φ10 is one-dimensional, and is simply the top eigenvector of T (represented
in compressed form, on the basis Φ8), and the matrix T9 is 1 by 1 and is just the top eigenvalue, 1,
of T .

Already in this simple example we see that the multiscale analysis generates a sequence of Markov
chains, each corresponding to a different time scale (i.e. power of the original Markov chain),
represented on a set of scaling functions (“aggregates of states”) in compressed form. This approach
clearly provides a new way to approach the problem of hierarchical reinforcement learning (Barto
and Mahadevan, 2003), although for reasons of space we cannot get into the details in this paper.

Figures 1 and 2 discussed above show several diffusion scaling functions and wavelets
corresponding to diffusion operators T that are the natural random walk, with reflecting
boundary conditions, on the space.

3.2.3 Other Applications of Diffusion Wavelets

In brief passing, we note that diffusion wavelets and wavelet packets have been shown to
be an efficient tool for representation and approximation of functions on manifolds and
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Figure 8: The four panels on the top display matrices [T 2j
]
Φj

Φj
representing compressed

dyadic powers of T , with gray level representing entry values. Observe that
the size of the matrix decays, since so does the rank of the powers of T . The
four panels on the bottom illustrate some scaling function bases on the 4-state
Markov chain.

graphs (Coifman and Maggioni, 2004; Bremer et al., 2004), generalizing to these general
spaces the wavelets that have so successfully employed for similar tasks in Euclidean spaces.
Applications include the analysis of networks, graphs, document corpora (Coifman and
Maggioni, 2004, 2005), nonlinear and anisotropic image denoising, learning tasks, and value
function approximation (Mahadevan and Maggioni, 2005; Maggioni and Mahadevan, 2005).
We focus on their application to MDPs for the rest of the paper.

4. Applications of Diffusion Wavelets to Markov Decision Processes

In this section, we describe how to apply multiscale analysis ideas discussed above to the
analysis of value functions and multiscale representation of transition matrices in MDPs.
There are several motivations for such an analysis.

(i) Multiscale view. The multiscale approach provides a deeper understanding of the intrinsic
regularities underlying an MDP, by generating a hierarchy of processes of decreasing com-
plexity. The capacity for understanding and solving problems by hierarchical subdivision into
sub-problems is one of the hallmarks of human intelligence.

(ii) Approximation efficiency. It is important to be able to efficiently represent the value function
(or approximations of it). This is already clear in large discrete state spaces, and cannot
be avoided in the case of continuous state spaces. In the companion paper (Mahadevan and
Maggioni, 2006) we have discussed approximation through the eigenfunctions of the Laplacian,
whose advantages over standard bases for value function approximation include adaptivity to
the geometry of the state-space, automatic construction, and good approximation properties
for globally smooth value functions. The multiscale bases we discuss in this second part share
these same advantages, but guarantee better approximation properties for value functions
which are not uniformly smooth, and are much more agile and tunable to geometric and
functional properties of the problem at hand.

(iii) Bellman’s equation. At each iteration in a policy iteration algorithm, Bellman’s equation needs
to be solved. The multiscale construction we discuss enables the efficient solution of such an
equation: the inverse operator needed to solve Bellman’s can be expressed and computed
efficiently in this basis.
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4.1 Multiscale analysis associated with a Markov Decision Process

Let M = (S, A, P a
ss′ , Ra

ss′) be a discrete3 Markov decision process. The relevant standard
definitions are given in the first paper (Mahadevan and Maggioni, 2006). Let π be a policy,
and denote by πs(a) the probability of choosing action a in state s under π. There is a
natural Markov process Pπ defined on S, defined by

Pπ(si → sj) =
∑

a∈A

P a
si,sj

πsi
(a) . (7)

We assume that Pπ is reversible, 4 and let Tπ be the self-adjoint operator similar to
Pπ. Associated with Tπ, there is an associated multiscale analysis: let {Φπ

j } and {Ψπ
j }

be the associated diffusion scaling functions and wavelets, respectively, and let T π
j be the

compressed representation of (Tπ)2
j

. We interpret {Φπ
j } as the vertices of a coarser graph,

on which the Markov process Tπ
j is a compressed version of (Tπ)2

j

, or a “coarsened” version

of Tπ, “viewed at time-scale 2j”. Hence each basis element of Φπ
j is a super-state of the

MDPs, corresponding to the policy π, and the compressed matrix (T π)2
j

expresses the
transition probabilities among these super-states, for 2j steps of the Markov chain. See
Example 4 discussed above. The wavelets {Ψj} form an orthonormal basis for L2(S), of
functions localized at different scales. The value function V π (or an estimate thereof) and
the rewards R can be expanded onto this basis.

4.2 Multiscale value function approximation

Linear approximation methods for solving MDPs, in particular LSPI (Lagoudakis and Parr,
2003), are described in the companion paper (Mahadevan and Maggioni, 2006). One of the
key ingredients is the projection of the state-action value function Qπ, for a policy π, onto
a set of basis functions Φ for some subspace 〈Φ〉 ⊆ L2(S,A). The Bellman equation

Qπ = (I − γPπ)−1R

can then be solved by projecting both sides of the equation onto the basis elements. One
of the advantages sought is a reduction of dimensionality of the problem: one would like to
select a small number of functions Φ such that ||Qπ − P〈Φ〉Q

π|| is small. Here PV denotes
the orthogonal projection onto the subspace V . In the companion paper we considered
the case where Φ is a subset of eigenfunctions of a Laplacian on a graph associated with
the state space of the MDP. Here, motivated by the increased approximation properties
of multiscale wavelets, we consider the case where Φ is a set of diffusion wavelets. The
diffusion wavelet basis has a natural ordering, from coarse to fine, as follows. The diffusion
scaling functions at the coarsest scale, spanning VJ come first. They are followed by the
diffusion wavelets in WJ−1,WJ−2 and so on. Hence if the number of basis functions to be
used is set to be equal to k, the basis functions used will be the first k extracted from Φ
according to the ordering just described. Observe that the scaling functions are essentially
like “Gaussian bumps” adapted to the geometry of the set.

The representation policy iteration algorithm is summarized in Figure 9. It is com-
pletely analogous to the algorithm in the companion paper, but with diffusion wavelets
replacing eigenfunctions of the Laplacian.

3. The case of continuous MDPs could be treated similarly, but there are several technical points which we
prefer not to address here.

4. As remarked above, the construction of diffusion wavelets is easily generalized to the non-reversible, non
self-adjoint case.
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RPI Algorithm (T,N, ǫ, P,O, δ):

// T : Number of initial random walk trials
// N : Maximum length of each trial
// ǫ : Convergence condition for policy iteration
// P : Number of proto-value basis functions to use
// O: Type of graph operator used
// δ: Parameter for basis adaptation

Representation Learning Phase

1. Perform a random walk of T trials, each of maximum N steps, and store the states visited in
S.

2. Build an undirected weighted graph G from S, in one of the ways described in the first paper
(Mahadevan and Maggioni, 2006). For example, connect state i to state j if it is one of its k

“nearest” neighbors, assigning a weight w(i, j) = e−(
‖si−sj‖

δ
)2 . Alternatively, connect state i

to state j with a weight of 1 if the pair (i, j) form temporally successive states ∈ S.

3. Construct the diffusion operator T associated with the graph built in the previous step. Con-
struct the diffusion wavelets associated with T , ordered from coarse to fine, and including the
coarsest scale scaling functions. Collect the first k of them as columns of the basis function
matrix Φ, a |S| × k matrix. The encoding of a state action pair (s, a) is given as ea ⊗ φ(s),
where ea is the unit vector corresponding to action a, φ(s) is the sth row of Φ, and ⊗ is the
tensor product.

Control Learning Phase

1. Initialize w0 ∈ Rk to a random vector.

2. Repeat the following steps:

(a) Set i ← i+1. For each transition (st, at, s
′
t, a

′
t, rt) ∈ D, compute low rank approximations

of matrix A and b as follows:

Ãt+1 = Ãt + φ(st, at) (φ(st, at) − γφ(s′t, a
′
t))

T

b̃t+1 = b̃t + φ(st, at)rt

(b) Solve the system Ãwi = b̃

(c) Optional basis adaption step: Modify the set of proto-value functions Φ by discarding
those whose coefficients are smaller than δǫ.

3. until ‖wi − wi+1‖2 ≤ ǫ.

4. Return Q̂∗ ≈
∑

i wiΦ as the approximation to the optimal value function.

Figure 9: Pseudo-code of the representation policy iteration algorithm with diffusion
wavelets for discrete Markov decision processes.
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4.3 Direct multiscale solution of Bellman’s equation

An efficient algorithm for the direct (vs. iterative) solution of Bellman’s equation is associ-
ated with the multiscale analysis. This algorithm can be immediately incorporated in exact
policy iteration (PI) algorithms (Lagoudakis and Parr, 2003; Mahadevan, 2005b; Mahade-
van and Maggioni, 2005; Maggioni and Mahadevan, 2005), and even in approximate policy
iteration, under some additional conditions. The Bellman equation (which was introduced
in the first paper) usually involves the solution of a (typically sparse) linear system

V π = R + γPπV π (8)

of size |S|, where S is the state space. Here V π is the unknown (the value function), R and
Pπ are given (for each step in policy iteration). We can divide the approaches for solving
this equation in two families: direct or iterative.

(a) Direct solution involves the computation of the inverse (I − γPπ)−1, in some form that can
be directly applied to any vector R. While the matrix I − γP is usually sparse, its inverse is
in general a full matrix, and its computation usually takes time O(|S|3). This is in general
infeasible on large problems. However it presents certain computational advantages: very
stable algorithms exist, computations can be done to very high precision, and once the inverse
matrix has been computed, it can be applied very rapidly to any reward vector R, which is
an advantage in problems where there are multiple rewards.

(a) Iterative solution involves iterative techniques, such as conjugate gradient or value iteration,
which compute (I − γPπ)−1R for a given R. These techniques have worst case complexity
O(|S|2) for sparse transition matrices, O(|S|) when the problem is well-conditioned and only
low-precision is required. No structure of the problem or of previous solutions is constructed,
so the computation has to be repeated for different R’s.

We now introduce a fundamentally different approach, based on diffusion wavelets,
that can yield a direct solution in time O(|S|), for certain classes of transition matrices
Pπ. This is surprising because, as we observed before, just writing down all the entries
of the full inverse matrix would take time O(|S|2). However, observe that the goal is
not to compute the entries of this matrix, but to compute a structure that enables the
rapid computation of (I − γPπ)−1R for any given R. The proposed approach constructs
a (multiscale) structure given which it is possible to perform this computation in only
O(|S|) operations. Related ideas are at the core of the Fast Fourier Transform, which is
exactly a full matrix multiplication by a vector, and hence would seem to necessarily require
O(|S|2) operations, but it can actually be performed in O(|S|) operations by factoring the
full matrix in a product of matrices. A related principle is also behind the Fast Multipole
Method (Greengard and Rokhlin, 1987) and its generalizations, which allow to evaluate the
product of certain full matrices (arising from potential theory) by vectors in time O(|S|).

The algorithm consists of two parts:

(i) a pre-computation step, that depends on the structure of the state space and on the policy,
and yields the multiscale analysis described above. This computation has in many cases
complexity O(|S|), and complexity O(|S|3) in general.

(ii) an inversion step which uses the multiscale structure built in the pre-computation step to
efficiently compute the solution of Bellman’s equations for a given reward function. This
phase of the computation has complexity O(|S|) for many problems of practical importance
where the transition matrix is diffusion-like (defined precisely below). The constants in front
of this asymptotic complexity are much smaller than those in the pre-computation step.
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The multiscale basis functions constructed in the pre-computation step are also very
useful for approximating the value function and improve the learning process, as discussed
above. The class of problems for which the complexity of the method is linear (up to loga-
rithmic factors) includes state spaces that can be represented by a finite directed weighted
graph, with all the vertices of “small” degree in which transitions are allowed only among
neighboring points, and the spectrum of the transition matrix decays rapidly. The direct
method we present offers several advantages.

(i) It is well-known that the number of iterations necessary for an iterative method to converge can
be very large, depending on the condition number of the problem, which in general depends
on the number of points, and on the precision required. Increasing precision in the direct
inversion technique we propose can be done more efficiently.

(ii) When the state space and the policy are fixed, and many value functions corresponding to
different rewards (tasks) need to be computed, iteration schemes do not take advantage of the
common structure between the problems. In this case, the number of iterations for finding
each solution is multiplied by the number of solutions sought. Our direct inversion technique
efficiently encodes the common structure of the state space in the pre-computation step, and
then takes advantage of this in the solution of multiple problems, thus enabling transfer across
tasks in a completely novel manner.

A key advantage of the proposed approach is that direct inversion reveals interesting
structure in the underlying problem.

4.3.1 Multiscale inversion

In this section we show that the multiscale construction we discussed enables a direct
solution of Bellman’s equation (8). The starting point are the identities

V π = (I − γPπ)−1R =
∑

k≥0

(γΠ− 1
2 TπΠ

1
2 )kR =

∏

k≥0

(I + γ2k

Π− 1
2 (Tπ)2

k

Π
1
2 )R , (9)

where Pπ = Π− 1
2 TπΠ

1
2 , Π is the matrix whose diagonal is the asymptotic distribution of

P , and R is the reward vector. The first identity follows by the definition of T π, the second
is the usual Neumann series expansion for the inverse, and the last identity is called the
Schultz formula. The equality holds since each term of the Neumann series appears once
and only once in the product, since every integer has a unique binary expansion. Observe
that reordering the terms of the summation is allowed because both the sum and the
product are absolutely convergent. The formulas hold for γ ≤ 1 and R has no component
in the kernel of (I − γPπ). Observe that since γ ≤ 1 and ||Pπ||2 ≤ 1, the only case for
which this kernel is not trivial is when γ = 1, and in this case the kernel is the span of
the unique (since we assumed the state space is connected) asymptotic distribution of Pπ.
The product in (9) are of course finite, with O(log |S|) terms, for any fixed precision.

A key component in the construction of diffusion wavelets was the compression of the

(quasi-)dyadic powers of the operator Tπ. The product [T 2j−1

]
Φj−1

Φj−2
[T 2j−2

]
Φj−2

Φj−3
. . . [T ]Φ1

Φ0
[R]Φ0

is T 1+2+22+···+2j−1

R = T 2j−1R, represented on Φj−1, i.e. “in compressed form”. The ma-
trices [Φj+1]

∗
Φj

“un-pack” this representation back onto the basis Φ0. In other words

[(Tπ)2
j−1f ]Φ0

= [Φ1]
∗
Φ0

. . . [Φj−1]
∗
Φj−2

[T 2j−1

]
Φj−1

Φj−2
[T 2j−2

]
Φj−2

Φj−3
. . . [T ]Φ1

Φ0
[R]Φ0

To obtain T 2j

f we only need to apply T once more. In this way the computation of

T 2j

f requires only O(j|S|) operations when [T 2j−1

]
Φj−1

Φj−2
contains about O(|S|) entries. This
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cost should be compared to that of computing directly the matrix T 2j

, which is O(2j |S|)
since this matrix contains about O(2j |S|) nonzero entries; this is also the cost of applying
about 2j times the matrix T to R.

Observe that the same diffusion wavelet tree can be used for this multiscale inversion
for different values of the discount rate γ. In general one does not know if R does not have
a component in the kernel of (I −γPπ), i.e. R = R1 +R2, with R2 ∈ ker(I −γPπ). Clearly
in this case the system (8) has no solution. One usually seek the least squares solution
(compare with the standard direct inversion below) of the associated normal system

(I − γPπ)∗(I − γPπ)V π = (I − γPπ)∗R (10)

which can be re-written as

(I − γ (Pπ + (Pπ)∗ − (Pπ)∗Pπ)
︸ ︷︷ ︸

:=P̃ π

V π = (I − γPπ)∗R . (11)

We can normalize P̃π as usual to obtain T̃π. The normal equations can be solved
in a multiscale fashion by applying diffusion wavelets associated with P̃π or T̃π. We
note in passing that the operator T̃π arises very naturally, but it seems it has not been
much considered in the literature (see (Chung, 2006; Zhou et al., 2005) for definition and
properties of a directed Laplacian).

4.3.2 Comparison with standard direct inversion and iterative methods

The standard direct inversion technique consists in the explicit computation of (I−γPπ)−1.
This typically involves the computation of the singular value decomposition of (I − γPπ):
I − γPπ = UΣV with U, V orthonormal and Σ diagonal, with diagonal entries σ1 ≥ · · · ≥
σ|S|. For a fixed precision ǫ, only a partial decomposition UNΣNVN is computed, where
N = N(ǫ) is the largest n for which σn ≥ ||I − γPπ||2ǫ. One then writes

(I − γPπ)−1 = V ∗Σ−1U∗ .

Very stable algorithms are available for the computation of the singular value decomposi-
tion. Optimality of the singular vectors with respect to approximation properties of the
matrix itself are also well-known and are the main motivation for this technique. Unfortu-
nately these techniques are expensive, with complexity O(|S|2N(ǫ)).

In iterative methods such as value iteration, up to |S| iterations are necessary, and the
cost is thus O(|S|2). Our technique has cost only O(|S|). However in practice less than |S|
iterations may be needed for iterative methods to converge, especially when the problem is
well-conditioned (e.g. γ far from 1), and/or low precision in the result is requested. Even
when this is the case our method offers several advantages: it generates basis functions
tuned to the structure of the problem that efficiently represent the value function, and
once computed, this structure enables the direct fast inversion of Bellman’s equation for
many different rewards R. Observe that the eigenvectors of (I − P π)−1, at least when Pπ

is symmetric, are the same as those of Pπ, and thus the eigenfunctions of the Laplacian
used in the companion paper.

Formula (9) only involves, say, K(ǫ, γ) terms, depending on the precision ǫ and the
distance between γ and the spectrum of Pπ. So the total cost for computing (9) is
O(K(ǫ, γ)|S| log2 |S|). The constant is typically very small, and depends crucially on the

sparsity and the size of the filter matrices [T 2j

]
Φj

Φj
. The best scenario is when [T 2j

]
Φj

Φj
has

size O(2−j |S|) and only O(2−j |S| log |S|) non zero entries. The analysis in (Coifman and
Maggioni, 2004) shows this is the case for certain diffusion-like processes on discretized
manifolds, and certain classes of random walks on graphs.
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5. Function Approximation and Dimensionality Reduction

In the companion paper, we reviewed function approximation in Euclidean and Hilbert
spaces. There, the main example of Hilbert space was L2, the space of square-integrable
functions. Here we discuss Hilbert spaces of smooth functions, and more general spaces
of piecewise smooth functions. We also want to make explicit the connection between the
task of efficiently approximating functions and dimensionality reduction. We will keep this
discussion at the minimum level necessary to appreciate its relevance to the solution of
MDPs, motivate the use of the eigenfunctions of the Laplacian and diffusion wavelets, and
compare between them.

Suppose we knew a priori that the value function lies in a certain normed vector space
of functions. In the companion paper we discussed the Hilbert space L2 of square-integrable
functions. This space is often too big, in the sense that it includes quite wild functions
(e.g. functions everywhere discontinuous). Here we focus on spaces of smooth or piece-
wise smooth functions, which in many situations include value functions of interest. The
advantage of this approach is that faster approximation, and more powerful dimensionality-
reduction, is possible in these function spaces, if the appropriate basis is used.

5.1 Smoothness spaces, Fourier basis and wavelets in 1 dimension

We start from simple examples to show how smoothness is useful in order to find low-
dimensional approximation of functions. This material is classical, we refer the reader to
the books by Daubechies (1992); Mallat (1998).

Consider the interval [0, 1]. We define the following natural spaces of functions:

(i) L2([0, 1]) = {f measurable : ||f ||22 :=
∫ 1

0
|f(x)|2dx < +∞};

(ii) Hs([0, 1]) = {f : ||f ||2s :=
∑

k∈Z
|f̂(k)|2(1 + |k|2s) < +∞}.

Here f̂(n) is the k-th Fourier coefficient, defined below. Functions in L2([0, 1]) could be
discontinuous everywhere, functions in Hs([0, 1]) are much more regular and have s weak
derivatives (when s is an integer). In fact the “natural” definition of Hs is through weak
derivatives, with the norm defined by

||f ||2s :=
∑

k≤s

||f (k)||22 ,

when s is an integer. However the definition through the Fourier transform is much more
natural for our purposes, and immediately suggests generalizations to manifolds and graphs.
Clearly L2([0, 1]) ) Hs([0, 1]). Both L2([0, 1]) and Hs([0, 1]), with the norms defined above,
are Hilbert spaces.

Let us consider the functions

φk =
1√
2π

e2πik , k ∈ Z .

It is well known that {φk}k∈Z is an orthonormal basis in L2([0, 1]), called the Fourier
basis. Observe that each complex exponential can be expressed as a sum of sine and cosine
functions, at the appropriate frequency. Hence any function f ∈ L2([0, 1]) can be expressed
as

f =
∑

k∈Z

〈f, φk〉φk =
∑

k∈Z

f̂(k)φk (12)
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where the limit involved in the summation is unconditional when taken with respect to the
distance in L2([0, 1]), and the k-th Fourier coefficient is given by

f̂(k) :=< f, φk >=

∫ 1

0

f(x)φk(x)dx =
1√
2π

∫ 1

0

f(x)e2πikxdx .

This basis is very useful in characterizing the function spaces above and in efficiently
representing functions in those spaces. We have the following results:

(i) f ∈ L2([0, 1]) if and only if {f̂(k)} ∈ ℓ2 5, and in fact ||f ||L2([0,1]) = ||{f̂(k)}||ℓ2 (Parseval’s
relation);

(ii) f ∈ Hs([0, 1]) if and only if {(1 + |k|s)f̂(k)} ∈ ℓ2;

In other words, the decay of the Fourier coefficients f̂(k) as |k| approaches infinity contains
information about the smoothness of f . These results generalize to spaces of functions on
Rn and, as we shall see below, on manifolds and graphs.

A simple consequence of these results is the following result in linear approximation.
Consider the subspace of band-limited functions with band K:

BK = 〈{φk : |k| ≤ K}〉 .

The orthogonal projection on BK is given by

PBK
f =

∑

|k|≤K

< f, φk > φk .

We can estimate a priori the error of approximating f by PBK
f , depending on the

smoothness of f and its norm. For example, if f ∈ Hs([0, 1]), then

||f − PBK
f ||2 =

∥
∥
∥
∥
∥
∥

∑

|k|>K

f̂(k)φk

∥
∥
∥
∥
∥
∥

≤




∑

|k|>K

(|k|s|f̂(k)|)2




1
2




∑

|k|>K

|k|−2s





1
2

≤ Cs||f ||Hs

Ks+ 1
2

.

(13)

Hence for a fixed precision ǫ, it is enough to choose Kǫ ≤ Csǫ
1

s+ 1
2 ||f ||Hs in order to

approximate f by PBK
f up to error ǫ. No such result could hold if we just knew that

f ∈ L2, the only statement we could make is that ||f − PBK
||2 → 0 as K → 0, but this

rate of convergence could be arbitrarily slow.
This simple example shows how decay properties of the coefficients onto a basis of

a function with certain smoothness properties can be taken advantage of in determining
useful subspaces in which to approximate the given function. This has far-reaching gener-
alizations, to many different function spaces and bases (Daubechies, 1992; Mallat, 1998).
Many natural questions arise: for example, is the Fourier basis the best possible for the
K-term linear approximation described above? It turns out that the answer, in a certain
worst-case sense, is yes!

We turn now to more complex, but natural and interesting, situations in which the
Fourier basis is not the optimal basis for linear approximation. This happens when the
smoothness is not global, but varies in different parts of the domain. For example if we
consider a function [0, 1] that is infinitely differentiable, we expect its Fourier coefficients

5. A sequence {ak} is in ℓ
2 iff ||{ak}||

2

ℓ2 :=
∑

k
|ak|

2
< ∞.
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to decay faster than any inverse polynomials. Now if we consider a function everywhere
infinitely differentiable except for a point of discontinuity (for example the function equal
to 1 on [0, 1

2 ] and −1 on ( 1
2 , 1], it turns out that its Fourier coefficients decay no faster

than 1
k
. We ought to be able to do better than this, perhaps by choosing another basis!

Wavelet bases turn out to be a much better choice, the optimal in some sense, if one does
not known a priori the location of the discontinuity. More generally, the optimal basis
for functions of one-variable, with isolated discontinuities (of the function itself and/or in
any of its (weak) derivatives) at unknown points, and in some Hs in every interval not
containing discontinuities, is a wavelet basis.

5.2 Smoothness spaces on manifolds

We introduce various notions of smoothness and indicate how to take advantage of them
in order to define interesting subspaces V and corresponding basis functions. We will treat
separately two cases: when the state space is a Riemannian manifold, or when it is a graph.
We will then show that there is a common approach for both cases.

Suppose the state space can be modeled as a smooth compact oriented Riemannian
manifold (M, g) (possibly with boundary), where g denotes the Riemannian metric 6.
Simple examples are the state space of a pendulum, the circle S1, and the state space of a
double pendulum, which is S1×S1. There is a natural volume measure on M, and L2(M)
is defined with respect to this measure. A Laplacian ∆ can be defined intrinsically on M,
see for example (Rosenberg). Associated with ∆ is the heat kernel, which can be defined
as the operator Ht = e−t∆. The heat kernel solves the heat equation, at time t, with initial
solution given by a Dirac δ-function: Ht(δx)(y) is the amount of heat at y at time t when
a unit mass of heat is put at x at time 0. This is connected to natural random walks in
the state space, which can thought of Brownian motion on the manifold.

Under the assumptions above, the heat kernel exists, is unique, strictly positive, and is a
compact self-adjoint operator. As such, there exists an orthonormal basis of eigenfunctions
φj ∈ L2(M) corresponding to eigenvalues e−tλj :

Htφj = e−tλj φj . (14)

Of course we have
∆φj = λjφj . (15)

The eigenvalues are nonnegative, and have no accumulation point except for infinity. We
will always sort the eigenvalues so that

0 = λ0 ≤ λ1 ≤ · · · ≤ λj ≤ . . . .

One can define smoothness spaces in the following way: we can let

Hs(S) =
{

f ∈ L2(M) : {(1 + λs
j)f̂(j)}j ∈ ℓ2

}

, (16)

where f̂(j) = 〈f, φj〉. In particular for the space H1 we have

||f ||2H1(S) ∼
∑

j

|f̂(j)|2 +
∑

j

λ2
j |f̂(j)|2 = ||f ||22 + ||∇f ||22 = ||f ||22+ < ∆f, f >

One could of course repeat the simple estimates in (13).

6. The compactness assumption is not strictly necessary, but we prefer to work in this setting in order to
avoid matters regarding existence, uniqueness, positiveness and compactness (as an operator) of the heat
kernel.
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5.3 Smoothness spaces on graphs

The smoothness of a function on a graph, can be measured by the Sobolev norm (4) exactly
as above. The simple estimates in (13) can of course be applied here as well.

5.4 Eigenfunctions of the Laplacian

In the companion paper (Mahadevan and Maggioni, 2006), the top K eigenfunctions of the
Laplacian of the graph associated with the state space are considered, and (at each iteration
of a policy iteration algorithm) the value function V π is approximated in the subspace BK

spanned by them. Suppose we know a priori at V π ∈ Hs for some s > 0. Then for a fixed
precision ǫ > 0 we see from (13) that we can estimate a K = K(ǫ) such that the error
introduced by the projection of V π onto BK is smaller than ǫ. It is natural then to choose
the top K eigenfunctions as the basis in which to represent the value function in policy
iteration. However it is not guaranteed that the initial policy and all the iterates will lie in
this subspace.

5.5 Approximation of Piecewise-smooth Functions with Diffusion Wavelets

By using diffusion wavelets, it is possible to represents functions which are piecewise in Hs

but not globally in Hs. Partition the state space into a finite number of regions, separated
by piecewise smooth boundaries, of total length L. Assume that a function f is in H1 of
each region, but possibly discontinuous at the boundary between two regions. There two
types of wavelet coefficients cj,k := 〈f, ψj,k〉. If the support of ψj,k intersects one of the
boundaries, then |cj,k| will in general be large, while if ψj,k does not intersect any boundary,
then |cj,k| will satisfy the decay estimates as if f ∈ H1. Observe the at each scale j, only

at most CL̇ · 2j wavelets intersect one of the boundaries, and since there are only log |S|,
across all scales only ∼ L wavelet coefficients are affected by the boundary. This is radically
different from what happens to the coefficients 〈f, φj〉, where φj is the jth eigenfunction of
∆: because of the discontinuities, no estimate better than {〈f, φj〉} ∈ ℓ2 can be expected!
In this case nonlinear approximation with diffusion wavelets proves very useful.

5.6 Linear and nonlinear approximation

Let Φ = {φk}k=0,1,... be a set of basis functions. For a function f , its K-term linear
approximation on Φ is of the form

f ∼
I∑

i=0

αiφi . (17)

Here I is either a parameter, or it is chosen so that ∼ in the formula above indicates an
error smaller than some precision ǫ, so that I = I(ǫ). Observe that the only degree of
freedom here is the choice of the coefficients αk. For example if the approximation is in
the L2-norm and Φ is orthonormal, then the optimal choice is αi = 〈f, φi〉, corresponding
to orthogonally projecting f on the subspace spanned by {φ1, . . . , φI}. When Φ is a set
of Laplacian eigenfunctions, φi is picked to be the eigenfunction corresponding to the i-th
lowest eigenvalue of the Laplacian, i.e. corresponding to the i-th lowest frequency. When
Φ is a set of diffusion wavelets, the set is naturally ordered by scale, from coarse to fine. So
φj,k will be listed before φj′,k′ is j > j′. There is no natural ordering within a given scale.
A small caveat: in the construction of diffusion wavelets of (Coifman and Maggioni, 2004),
the index of the scaling functions and wavelets at a given scale is roughly proportional to
the frequency at that scale, so in fact there is a “rough” sorting even within each scale.
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A K-term nonlinear approximation of f is in the form

f ∼
I∑

i=0

αiφki
. (18)

In other words in this expansion we are allowed to pick an arbitrary subset of I functions in
Φ, rather than the first I, besides the corresponding set of coefficients {αi}I

i=0. Nonlinear
approximation is in general more powerful than linear approximation, for example if Φ
is orthonormal, then for fixed I it will provide a better approximation to f unless the
largest I inner products among {〈f, φk〉}k=0,1,... are exactly those corresponding to k =
0, . . . , I − 1. However the best nonlinear approximation is much harder to compute, since
for example when Φ is orthonormal it may require the computation of all the inner products
{〈f, φk〉}k=0,1,..., before selecting the largest ones.

In general nonlinear approximation in a wavelet basis differs dramatically from nonlin-
ear approximation in the eigenfunction basis.

6. Scaling Multiscale Analysis of MDPs to Continuous Domains and

Factored Domains

In continuous domains, one of the critical ingredients for success of a method based on
the representation of the value function on some basis of the state-action space is the
capability of approximating the value function efficiently in this basis, and in extending
these basis functions to novel states. In the first paper we showed how it is possible to
extend eigenfunctions of the Laplacian learned on a subset of points in the state space
to new states. The main tool was Nyström extension (see (Belongie et al., 2002; Fowlkes
et al., 2001; Williams and Seeger, 2000)). Here we would like to extend diffusion wavelets
learned and sampled on a subset of a continuous state space to new states. A simple
Nyström extension formula does not apply in this case, and we need to use different local
interpolation rules. A simple local averaging rule has been used in the examples of this
paper. As a future extension, we propose the use of a much more refined type of extension,
originally suggested in (Coifman and Maggioni, 2004) and inspired by (Coifman et al.,
2005b; Coifman and Lafon, 2004b; Lafon, 2004).

6.1 Subsampling techniques

The complexity (however defined) of the value function determines the number of samples
necessary to approximate the value function up to a given precision. This number of
samples is independent of the number of states explored. Consider the following simple
example.

Example 5 Suppose the state space is the interval [0, 1], and that the value function V is bandlimited
with band B. This means that the Fourier transform V̂ is supported in [−B,B]. Then by Shannon’s
theorem, only B/(2π) equispaced samples are needed to recover V exactly.

Suppose we have observed samples S ′ in the state space S, and that V is smooth so
that a subset S ′′ much smaller than S ′ would suffice to determine V . We propose two
simple methods in order to select S ′′.

6.1.1 Purely random subsampling

We fix |S ′′|, and select |S ′′| points uniformly at random in S ′. For very large |S ′| one would
expect that the points in S ′′ are going to be well-spread in S ′.
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6.1.2 Well-spread random net

The previous algorithm has two main drawbacks: the first one is that it is not clear how to
select |S ′′|, even if in theory this can be determined by knowing the complexity of the value
function to be approximated. The second one is that the points in S ′′ are not going to be
necessarily well-spread in S ′: while it is true that for large |S ′|, with very high-probability
no two points in S ′′ are going to be very close, it is not true that the points in S ′′ are going
to be roughly equidistant nor well equidistributed in balls contained in S ′.

In order to guarantee that the set of points is well spread, we consider the following
construction. We define an ǫ-net of points in S ′ to be a subset S ′′ such that no two points
are closer than ǫ, and that for every point y in S ′, there is a point in S ′′ which is not
farther than ǫ from y. One can construct a (random) ǫ-net in S ′ as follows. Pick x0 ∈ S ′

at random. By induction, for k ≥ 1 suppose x0, x1, . . . , xk have been picked so that the
distance between any pair is larger than ǫ. If

Rk := S ′ \ (∪k
l=1Bǫ(xl))

is empty, stop, otherwise pick a point xk+1 in Rk. By definition of Rk the distance between
xk+1 and any of the points x0, . . . , xk is not smaller than ǫ. When this process stops, say
after k∗ points have been selected, for any y ∈ S ′ we can find a point in S ′′ not farther
than ǫ, for otherwise y ∈ Rk∗ and the process would not have stopped.

One can prove upper bounds of the distance between the eigenfunctions of the Laplacian
on S ′ and the eigenfunctions of the Laplacian on S ′′, which depend on ǫ and the order of
the eigenfunction (Maggioni, 2006).

6.2 Factored Domains

The case of factored domains can be treated exactly as in the companion paper. Essentially
whenever the diffusion/random walk on a graph factors as a product of random walks on
factor graphs, the associated diffusion wavelets factor into tensor products of diffusion
wavelets on each factor. This leads to savings in both computational and storage costs.
We notice however that this is not enough to defeat the “curse of dimensionality” during the
function approximation case. In general a large number of basis functions will be needed in
order to approximate a generic function on a factorizable space. However, if the function to
be approximate satisfies particular smoothness conditions or separability conditions, then
its approximation can be performed efficiently.

6.3 Randomized algorithms

Randomized algorithms can play a role in the multiscale analysis at least two respects.
First of all the construction of diffusion wavelets can be randomized: instead of performing
a QR-factorization Tj = QjRj at each scale, one can randomize the computation of such a
factorization, for example by column sampling. In particular it is clear how to apply certain
randomized algorithms for low-rank matrix approximation (see for example (Achlioptas
et al., 2002; Chennubhotla and Jepson, 2005; Frieze et al., 1998; Drineas et al., 2004; Drineas
and Mahoney, 2005)) to this context. This and finer randomized algorithms tuned to the
multiscale construction are currently under investigation, and progress will be reported in
a future publication.

Secondly, suppose we have a large number of samples X ′ of the state space. Many
such samples may be “redundant” in view of the computation of the multiscale basis, and
of the approximation of the value function. One can randomly subsample X ′ , with algo-
rithms similar to the ones mentioned above, to a much smaller sample set X ′′, perform the
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multiscale construction on X ′′, and then extend the basis functions to X ′ by interpolation.
We have applied successfully this technique in several domains, in particular in continuous
domains such as the inverted pendulum, continuous two-rooms domain, etc. Further in-
vestigation of these techniques is needed, in order to design optimal adaptive sampling and
sub-sampling techniques. This is well-known to be a hard problem.

7. Experimental Results

In this section, we describe a detailed set of experiments in both discrete and continuous
MDPs that illustrate the diffusion wavelet framework for policy evaluation given a fixed
transition matrix, and control learning with approximate policy iteration. In all the cases,
the ability of diffusion wavelets to automatically construct a hierarchy of intermediate
representations provides a new framework for solving MDPs, as will be illustrated.

7.1 Control Learning using Representation Policy Iteration

7.1.1 Chain domain

First, we turn to control learning and compare the performance of diffusion wavelets and
Laplacian eigenfunctions using the Representation Policy Iteration (RPI) algorithm de-
scribed in (Mahadevan, 2005b) on the classic chain example from (Lagoudakis and Parr,
2003). RPI can be viewed as a modified LSPI algorithm where the basis functions φ(s, a)
handcoded in LSPI are learned from the graph Laplacian using a random walk of 5000
steps for a 50 state chain. The chain MDP is a sequential open (or closed) chain of varying
number of states, where there are two actions for moving left or right along the chain. In
the experiments shown, a reward of 1 was provided in states 10 and 41. Given a fixed k,
the encoding φ(s) of a state s for Laplacian eigenfunctions is the vector comprised of the
values of the kth lowest-order eigenfunctions on state k. For diffusion wavelets, all the basis
functions at level k were evaluated at state s to produce the encoding.

Figure 10: This experiment compares value function approximation in a 50 state chain
MDP using 44 diffusion wavelet basis functions at level 4 (top left), 19 basis
functions at level 6 (top middle), and 10 basis functions at level 8 (top right)
of the hierarchy, and using 40 Laplacian basis functions (bottom left), 20 basis
functions (bottom middle), and 10 basis functions (bottom right). For each
plot, the dotted line is the exact value function, and the smooth line is the
approximation.

Figure 10 illustrates the varying smoothness of the approximation produced by diffusion
wavelet trees and Laplacian eigenfunctions. As the number of basis functions are reduced,
the smoothness increases and the approximation gets progressively worse. As the figure
shows, it is possible to get very accurate approximation using either technique provided
sufficient number of basis functions is selected.
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Method #Trials Error

RPI DF (9) 4.2 2.4

RPI DF (13) 5.2 4.6

RPI DF (19) 5.4 8.2

RPI Lap (5) 4.2 3.8

RPI Lap (15) 7.2 3

RPI Lap (25) 9.4 2

Method #Trials Error

LSPI RBPF (6) 3.8 20.8

LSPI RBPF (14) 4.4 2.8

LSPI RBF (26) 6.4 2.8

LSPI Poly (5) 4.2 4

LSPI Poly (15) 1 34.4

LSPI Poly (25) 1 36

Table 1: This table compares the performance of RPI using diffusion wavelets and Laplacian
eigenfunctions with LSPI using handcoded polynomial and radial basis functions
on a 50 state chain graph MDP.

Table 1 compares the performance of RPI using diffusion wavelets and Laplacian eigen-
functions, along with LSPI using two handcoded parametric basis functions: polynomials
and radial-basis functions (RBF). Each row reflects the performance of either RPI using
learned basis functions or LSPI with a handcoded basis function (values in parentheses
indicate the number of basis functions used for each architecture). The two numbers re-
ported are steps to convergence and the error in the learned policy (number of incorrect
actions), averaged over 5 runs. The results show the automatically learned Laplacian and
diffusion wavelet basis functions in RPI provide a more stable performance at both the low
end and at the higher end, as compared to the handcoded basis functions used in LSPI.
As the number of basis functions are increased, RPI with Laplacian basis functions takes
longer to converge, but learns a more accurate policy. Diffusion wavelets converge quickly,
but strangely the error grows as the number of bases functions is increased. This result
is somewhat puzzling and will be investigated further. LSPI with RBF is unstable at the
low end, converging to a very poor policy for 6 basis functions. LSPI with a 5 degree
polynomial approximator works reasonably well, but its performance noticeably degrades
at higher degrees, converging to a very poor policy in one step for k = 15 and k = 25.

7.1.2 Inverted Pendulum

This domain is described in the first paper (Mahadevan and Maggioni, 2006). We use
diffusion wavelets instead of eigenfunctions of the Laplacian. The sampled state space
results from 300 runs of length at most 50, and consists of 2868 points. A random subset
of 900 points is used to construct a graph, with 90 nearest neighbors and δ = 0.9. The
diffusion wavelets associated with the natural random walk on this graph are constructed,
and 27 basis functions are kept, counting them from the coarsest level down to finer levels.
These are then extended to all the points via local nearest-neighbors averaging.

7.1.3 Mountain car domain

This domain is also described in the first paper (Mahadevan and Maggioni, 2006). We
use diffusion wavelets instead of eigenfunctions of the Laplacian. The sampled state space
results from 400 runs of length at most 50, and consists of 18734 points. A well-distributed
subset of 1111 points is used to construct a graph, with 30 nearest neighbors and δ =
0.1. The diffusion wavelets associated with the natural random walk on this graph are
constructed, only the coarsest scaling functions and increasingly high frequency wavelets
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Figure 11: Top left: Q-value function for the action “left”, reconstructed from its repre-
sentation of the diffusion wavelet basis. Top right: trajectory of the pendulum
in phase space according to the policy learned. Center row: trajectory of angle
and angle velocity variables. Bottom row: some diffusion wavelets used as basis
functions for representation during the learning phase.

for a total of 50 basis functions are kept. These basis functions are then extended to all
the points via local averaging.

7.2 Direct multiscale inversion

We now turn to describe the direct inversion of the transition matrix using the multiscale
method. We tested the multiscale analysis on several MDPs, on discrete and continuous
spaces of different topologies. In fact the technique used is extremely flexible, since it
essentially only needs Pπ, or an estimate thereof, as an input. We consider here two
examples. In the first example we consider the problem in which Pπ is given, and the
optimal value function, solution of Bellman’s equation (8) is sought, and solve Bellman’s
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Figure 12: Measures of performance based on 20 experiments, as a function of number of
training runs (each of which of length at most 100). From left to right: average
number of successful steps of inverted pendulum balancing, average probability
of succeeding in balancing for at least 3000 steps, and worst and best number
of balancing steps. Each simulation was stopped and considered successful after
3000 steps, which biases the first and third graphs downwards.

equation using direct multiscale inversion. The domain we consider consists in a continuous
two-room environment, quite arbitrarily shaped, discrete sampled, with Pπ given by a
random walk on the samples. In the second example we test the direct inversion on the
chain domain: instead of solving the projected Bellman’s equations by using least-squares
methods, we use the multiscale direct inversion.

7.2.1 Two-rooms environment

We describe here one example in some detail. It simulates a continuous two-rooms environ-
ment, where the two rooms have an elongated shape and are connected by a corridor. The
shape of the rooms and of the corridor is quite arbitrary, the bases are built automatically:
we do not require any special topology or shape property for them (except connectedness,
without loss of generality): we could have chosen rooms of arbitrary shapes, in arbitrary
dimension, as the only input to the algorithm is the set of sampled points (vertices) and
the local distances between close-by points (edge weights).

The agent has randomly explored the space, so S consists of |S| randomly scattered
points in the rooms (see Figure 15). We construct a natural diffusion associated with the
random walk in the two rooms, restricted to the states S actually explored, by letting
W (i, j) = e−2||xi−xj ||2 . This diffusion approximates the natural random walk (Brownian
motion) in the continuous domain (see (Belkin and Niyogi, 2003b; Lafon, 2004)), corre-
sponding to a policy of random moves. We then construct the corresponding multiscale
analysis, with precision set to 10−10. In Figure 15 we represent some of the scaling func-
tions we obtain. In Figure 16 we represent compressed dyadic powers of this random walk.
In Figure 17, left, we compare the direct computation time of (I − γPπ)−1 and the com-
putation time for the multiscale structure, i.e. the pre-processing time for the two direct
methods under consideration. We then pick a random reward R on S (a vector of white
Gaussian noise), and compute the corresponding value function in three different ways:

(i) direct computation of the matrix I − γPπ,

(ii) Schultz’s method and diffusion wavelet transform as in (9),

(iii) conjugate gradient descent for symmetric matrices.
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Figure 13: Top left: Q-value function for the action “left”, reconstructed from its represen-
tation of the diffusion wavelet basis. Top right: trajectory of the mountain car
in phase space according to the policy learned (107 steps). Bottom row: some
diffusion wavelets used as basis functions for representation during the learning
phase.

In this example we set γ = 1. We repeat the above for |S| = 320 : 40 : 1040 and,
for each S, for 10 randomly generated rewards R. The first two methods are direct: we
look at both the pre-processing time for computing, respectively, the inverse matrix and
the diffusion wavelet tree (see Figure 17 left). Then we compare, over several random
choices of the reward vector, the mean and standard deviation of the time for computing
the corresponding value function, with all three methods: see Figure 17, right. Finally, in
Figure 18 we show the L2- and L∞-norms of the Bellman residual ((I −Pπ)Ṽ π −R, where
Ṽ π is the estimated value function), achieved by the three methods.

We stress that the code that implements the construction of Diffusion Wavelet Tree
and Schultz’s formula is written mainly in Matlab and large parts of it are not optimized
in any way; on the contrary the codes distributed with Matlab for conjugate gradient and
direct inversion have been highly optimized. The results here are thus qualitative and not
absolute, but point out that at the very least the direct solution using diffusion wavelets
seems competitive with state-of-the-art methods, even before having optimized the code
implementing it. Future work will be devoted for these optimizations, which will result in
speed-ups and the ability to tackle larger problems. In particular factored spaces are easily
tackled since the natural policies on these spaces factor, and so do the diffusion wavelets,
as in the case of eigenfunctions of the Laplacian (Mahadevan and Maggioni, 2006).
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Figure 14: Measures of performance based on 23 experiments, as a function of number of
training runs (each of which of length at most 100). Left: average and median
number of successful steps for reaching the goal; right: average and median
probability of succeeding in reaching the goal in less than 800 steps. The best
policy actually finds a path in 103 steps.

7.2.2 Direct inversion for the chain domain

As a proof of concept, we applied the direct multiscale inversion to the solution of the
projection of Bellman equation within the RPI framework. At each step of iteration in the
representation policy iteration algorithm the projected Bellman equation is solved with the
direct multiscale solver. Observe that in general the matrices involved are asymmetric, since
the policy clearly has strong directional preferences. The difference between the solution
obtained by standard least squares and direct multiscale inversion at every iteration is
always smaller than 10−8.

This approach is however problematic in general: while γPπ has (operator) norm ≤ 1,
its approximation on the basis used for representation may have norm larger than 1, which
prevents the use the Neumann series expansion for (I−γPπ)−1 and hence the applicability
of the multiscale expansion.

8. Discussion

Many extensions of the framework proposed in this paper are being actively explored,
which can only be briefly summarized due to space constraints. We have naturally tried to
restrict our discussion to the simplest methods, but the scope of multiscale analysis based
on diffusion can easily be extended to cover more general situations. It is natural that all
the possible generalizations discussed at the end of the companion paper apply here as well.
Here we discuss some other possibilities.

8.1 Adaptive Nonlinear Approximation

In the examples considered in this paper we considered bases given by the coarsest scaling
functions and the wavelets in a fixed number of wavelet subspaces, counting from the
coarsest toward the finest. First of all, this involves the choice of an arbitrary parameter,
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Figure 15: Top: set of samples in a two-room environment. Bottom: four diffusion scaling
functions built on the set, at increasing scale. Note the localization at the finer
scales, and the global support at coarser scales.

the number of wavelet subspaces to include in the basis. On the one hand the learning
does not seem to be very sensitive to this parameter, on the other hand it is the case that
if too few basis functions are specified, the learning is severely impaired, and if too many
are specified, many more training samples seem to be needed to guarantee stability in the
learning phase. It would be desirable to detect this parameter automatically. Even further,
this choice of basis functions is in general suboptimal, and one would like to select the “most
useful” basis functions out of the whole wavelet basis, and discarding the “less useful” basis
elements as the learning proceeds. This is extremely natural in situations where the value
function has very different characteristics from location to location. For example fine
wavelets in regions of smoothness essentially do not contribute to the approximation, but
can increase the variance of the estimation.

This kind of nonlinear approximation can be extremely powerful. Preliminary experi-
ments suggest that not only it is possible to borrow techniques and results from approxi-
mation theory in order to develop algorithms that adaptively select the most relevant basis
functions, and their number, during the learning phase, but that this also tends to improve
results over parameters carefully selected by hand.

8.2 Best Basis

As a particular case of the above, one could use techniques related to best basis algorithms
(Coifman and Wickerhauser, 1992; Coifman and Saito, 1994), which have been generalized
to diffusion wavelet packets (Bremer et al., 2004), in order to quickly search through a rich
dictionary of bases for the one which is best adapted to the problem.
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Figure 16: Compression of the powers of the symmetrized random walk T in a continuous
two-room environment. From top left to bottom right by rows: T0, T1, T4 and
T6. All the matrices are represented in log10 scale. T0 is sorted to show the two-
room and corridor structures (the algorithm is of course independent of the order
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and at the right indicating the transitions from the corridor to the rooms. Notice
the decreasing size of the matrices. T6 is very small, and essentially represents
only the transition between two states (the two rooms): for time scales of order
26 the algorithm has automatically decided this representation is faithful enough
for the precision requested.
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Figure 17: Left: mean and standard deviation of running time for solving a Bellman equa-
tion on a random walk in the two-room environment, as a function of the num-
ber of states explored (x-axis). We compared direct DWT inversion, iterative
Conjugate Gradient Squared method (Matlab implementation) and direct in-
version. Left: pre-processing time, comparing computation of the full inverse
and construction diffusion wavelet tree. Right: computation time of applying
the inversion scheme, comparing direct inverse, Schultz’s method with diffusion
wavelet transform, and symmetric conjugate gradient.

8.3 Bases for joint state and action space

While in this paper we have focused on constructing bases purely on the state space, and
replicated them for each action in order to generate a basis for the joint state and action
space, it is easy to generalize this approach for the construction of bases directly on the
joint state action space. It is again natural to do this in a multiscale fashion, since the value
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Figure 18: Precision, defined as log10 of the Bellman residual error ||(I − γP π)Ṽ π − R||p,
where Ṽ π is the computed solution, achieved by the different methods. The
precision requested was 1e− 10. We show the results for p = 2 (left) and p = ∞
(right).

function and policy may have different smoothness properties depending on the region of
state-action space.

8.4 Policy-dependent Bases

The diffusion wavelet considered in the examples were associated with the natural random
walk on the sampled state space. It is natural to adapt the construction to Pπ, when the
policy π is not necessarily a random policy. For example one can repeat the multiscale
construction at every step of a policy iteration algorithm, at step k constructing diffusion
wavelets associated with Pπk .

8.5 Other Multiscale Bases

Different types of multiscale bases on graphs and manifolds have been considered in (Mag-
gioni et al., 2005b), and more are currently being investigated. These bases have properties
which are different from those of diffusion wavelets, and may be better tuned (or tunable)
to specific applications.
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10. Appendix A. Classical Multi-Resolution Analysis

Consider a one-dimensional function f (e.g. a signal, such as a sound), and suppose we want
to represent efficiently such a function, or perform tasks such as compression or denoising.
Transform methods use a (usually linear) invertible map f 7→ f̂ , where this map ideally has

the property that simple operations on f̂ , followed by an inversion of the transformation,
can be used to perform the task at hand. Typical transformations include the Fourier
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transform and wavelet transform. In these cases f̂ is the set of coefficients of f onto an
orthonormal basis (resp. Fourier and wavelets), and simple operations include hard- and
soft-thresholding (e.g. setting to 0 all the coefficients below a certain threshold τ , function
of the noise level, smoothness etc...). When the function f is expected to have different
behavior at different locations (for example a seismic wave as a function of time), it is
natural to analyse and transform such a function using basis functions which are localized.
In general not only the scale of localization is unknown, but it may change from location
to location. It is thus desirable to have basis functions localized at all possible scales: the
ones at coarse scale analyse coarse or slow variations in the signal, while the ones at fine
scale analyse finer and more rapid variations. Wavelets (Daubechies, 1992; Mallat, 1998)
are an example of such a basis.

A consolidated framework in wavelet analysis is the idea of Multi-Resolution Analy-
sis (MRA). A MultiResolution Analysis (Daubechies, 1992; Mallat, 1998) of L2(R) is a
sequence of subspaces {Vj}j∈Z with the following properties:

(i) Vj+1 ⊆ Vj , ∪j∈ZVj = L2(R), ∩j∈ZVj = {0};

(ii) f ∈ Vj+1 if and only if f(2·) ∈ Vj ;

(ii) there exists an orthonormal basis {ϕj,k}k∈Z := {2− j
2 ϕ(2−j · −k)}k∈Z of Vj .

The subspace Vj is called the jth approximation or scaling space. The functions ϕj,k

are called scaling functions. The function ϕ that generates, under dyadic dilations and
integer translations, the family ϕj,k is called the mother scaling function. The orthogonal
projection on the scaling space Vj

Pjf =
∑

k∈Z

〈f, ϕj,k〉ϕj,k (19)

gives an approximation at scale j. As j increases these approximations get coarser and
coarser, while as j decreases the approximations get finer and finer, and eventually (because
of (ii)), they tend to f : Pjf → f as j → −∞, where the limit is taken of course in L2(R).
One says that Pjf is an approximation of f at scale j. One defines the detail or wavelet
subspaces Wj as the orthogonal complement of Vj+1 inside Vj . It turns out one can always

find a function ψ such that {ψj,k}k∈Z := {2− j
2 ψ(2−j · −k)}k∈Z is an orthonormal basis for

Wj . Clearly ⊕⊥
j∈Z

Wj = L2(R) (the sum is orthogonal because Wj ⊥ Wj′ is j 6= j′), and

therefore {ψj,k}j,k∈Z is an orthonormal basis for L2(R).
The set of coefficients {〈f, ψj,k〉} is called the wavelet transform (WT) of f . The

inclusion Vj+1 ⊆ Vj implies that ϕj+1,k can be written as a linear combination of ϕj,k’s,
and similarly the inclusion Wj ⊆ Vj implies that ψj,k can be written as a linear combination
of ϕj,k’s. Moreover because of the dilation and translation structure, it is easy to see that
the coefficients in these linear combinations do not depend on j and k. Hence if one knows
the coefficients {〈f, ϕJ,k〉}k∈Z of PJf for some J , it is possible to compute in a multiscale
fashion all the coefficients {〈f, ϕj,k〉} and {〈f, ψj,k〉}, for all j ≥ J . This leads to a fast
computation of the wavelet transform, called Fast Wavelet Transform. It can be performed
in O(n log n) computations, where n is the number of samples of f or of nonzero coefficients
at finest scale {〈f, ϕJ,k〉}k∈Z.

The first example of MRA is due to Haar, who constructed it around 1910. He let the mother
scaling function be

ϕ(x) = χ[0,1](x) =

{

1 , x ∈ [0, 1]

0 , otherwise
(20)
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Example 6 Figure 19: A wavelet transform example produced with the Wavelet Toolbox
in MatlabTM. Top left: original signal. First column, top to bottom, are the
projections of the original signal onto subspaces Vj generated by Daubechies-8
scaling functions at increasing resolution. At the top of the second column a
representation of the wavelet transform of the original signal: the horizontal
axis corresponds to location, the vertical axis corresponds to scales (finer scales
at the bottom), the color is proportional to size of the wavelet coefficient at
corresponding location and scale. The second plot is the reconstructed signal.
The other plots in the second column represent the wavelet coefficients in the
spaces Wj generated by wavelets at increasing resolution. This signal is highly
compressible in the Daubechies-8 wavelet basis: for example with 4.65% of the
coefficients it is possible to recover 99.98% of the energy (L2-norm) of the signal.

and the corresponding wavelet

ψ(x) =

{
1√
2

, x ∈ [0, 1
2 )

− 1√
2

, x ∈ [ 12 , 1]
. (21)

For a function f ∈ L2(R), Pjf is the function which is piecewise constant on dyadic intervals of the

form Ik,j = [k2j , (k + 1)2j ], and height equal to 2−
j
2

∫

Ij,k
f on Ij,k.
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The Haar scaling functions and wavelets are discontinuous. The first construction of
smoother wavelets with compact support is due to (Daubechies, 1992), and it allowed
wavelets to be applied in signal processing and numerical analysis. Many generalizations
of the original wavelet construction and MRA definition have been proposed. They allow
to construct general families of wavelets in Rn, with respect to a wide variety of dilation
matrices. Other techniques (Sweldens, 1996, 1997) can be used for constructing wavelet-like
systems on meshes, usually low-dimensional, but in principle in any number of dimensions.

The approximation properties of wavelets and their generalizations have been studied
in many function spaces, for example spaces of piecewise smooth functions. A construction
of wavelets on general graphs and manifolds has been recently proposed in (Coifman and
Maggioni, 2004; Maggioni et al., 2005a; Bremer et al., 2004). This construction is based on
natural diffusion operators defined on a graph and these wavelets have been called diffusion
wavelets.

References

D. Achlioptas, F. McSherry, and B. Scholkopff. Sampling techniques for kernel methods. In Pro-
ceedings of the International Conference on Neural Information Processing Systems. MIT Press,
2002.

A. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete Event
Systems Journal, 13:41–77, 2003.

M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering.
In Advances in Neural Information Processing Systems 14 (NIPS 2001), pages 585–591. MIT
Press, Cambridge, 2001.

M Belkin and P Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 6(15):1373–1396, June 2003a.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396, 2003b.

M Belkin and P Niyogi. Using manifold structure for partially labelled classification. Advances in
NIPS, 15, 2003c.

S Belongie, C Fowlkes, F Chung, and J Malik. Spectral partitioning with indefinite kernels using
the Nyström extension. ECCV, 2002.

James C Bremer, Ronald R Coifman, Mauro Maggioni, and Arthur D Szlam. Diffusion wavelet
packets. Tech. Rep. YALE/DCS/TR-1304, Yale Univ., Appl. Comp. Harm. Anal., submitted,
Sep. 2004. doi: http://www.math.yale.edu/$\sim$mmm82/DiffusionWaveletPackets.pdf.

C. Chennubhotla and A. Jepson. Hierarchical eigensolver for transition matrices in spectral methods.
In Proceedings of the International Conference on Neural Information Processing Systems. MIT
Press, 2005.

F. G. Chung. The diameter and Laplacian eigenvalues of directed graphs. Electronic Journal of
Combinatorics, 13(4), 2006.

Fan Chung. Spectral Graph Theory. Number 92. CBMS-AMS, May 1997.

Ronald R Coifman, Stephane Lafon, Ann Lee, Mauro Maggioni, Boaz Nadler, Frederick Warner,
and Steven Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition
of data. part i: Diffusion maps. Proc. of Nat. Acad. Sci., (102):7426–7431, May 2005a.

40



A Multiscale Framework for Markov Decision Processes using Diffusion Wavelets

Ronald R Coifman, Stephane Lafon, Ann Lee, Mauro Maggioni, Boaz Nadler, Frederick Warner,
and Steven Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition
of data. part ii: Multiscale methods. Proc. of Nat. Acad. Sci., (102):7432–7438, May 2005b.

Ronald R Coifman and Mauro Maggioni. Diffusion wavelets. Tech. Rep. YALE/DCS/TR-1303, Yale
Univ., Appl. Comp. Harm. Anal., Sep. 2004. doi: http://www.math.yale.edu/$\sim$mmm82/
DiffusionWavelets.pdf. to appear.

Ronald R Coifman and Mauro Maggioni. Multiscale data analysis with diffusion wavelets. Tech.
Rep. YALE/DCS/TR-1335, Dept. Comp. Sci., Yale University, September 2005.

Ronald R Coifman and Naoki Saito. Constructions of local orthonormal bases for classification and
regression. C. R. Acad. Sci. Paris, 319 Série I:191–196, 1994.

Ronald R Coifman and Mladen V Wickerhauser. Entropy-based algorithms for best basis selection.
IEEE Trans. Info. Theory, 1992.

RR Coifman and S Lafon. Diffusion maps. Appl. Comp. Harm. Anal., 2004a.

RR Coifman and S Lafon. Geometric harmonics. Appl. Comp. Harm. Anal., 2004 2004b. Submitted.

I Daubechies. Ten lectures on wavelets. Society for Industrial and Applied Mathematics, 1992. ISBN
0-89871-274-2.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

Joseph L Doob. Classical Potential Theory and Its Probabilistic Counterpart, volume XXV of Clas-
sics in Mathematics. Reprint of the 1st ed. berlin heidelberg new york 1984 2001 edition, 1984.
ISBN 3-540-41206-9. Softcover.

P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for matrices II: Computing
a low-rank approximation to a matrix. Technical Report YALEU/DCS/TR-1270, Yale University
Department of Computer Science, New Haven, CT, February 2004.

P Drineas and M W Mahoney. On the Nyström method for approximating a Gram matrix for
improved kernel-based learning. J. Machine Learning Research, (6):2153–2175, 2005.

Lawrence C Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, 1998.

S. Fine, Y. Singer, and N. Tishby. The Hierarchical Hidden Markov Model: Analysis and Applica-
tions. Machine Learning, 32(1), July 1998.

C Fowlkes, S Belongie, and J Malik. Efficient spatiotemporal grouping using the nyström method.
CVPR, 2001.

A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for finding low-rank approx-
imations. In Proceedings of the IEEE Symposium on Foundations of Computer Science, pages
370–378, 1998.

Lesli Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. J Comput Phys,
73:325–348, 1987.

J. G. Kemeny and J. L. Snell. Denumerable Markov Chains. Number 40 in Graduate Texts in
Mathematics. Springer-Verlag, New York, 1976.

41



Maggioni and Mahadevan

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In Proceedings
of the ICML, 2002.

J. Lafferty and G. Lebanon. Information diffusion kernels, 2002. URL citeseer.ist.psu.edu/

lafferty02information.html.

John Lafferty and Guy Lebanon. Diffusion kernels on statistical manifolds. J. Mach. Learn. Res.,
6:129–163, 2005. ISSN 1533-7928.

Stephane Lafon. Diffusion maps and geometric harmonics. PhD thesis, Yale University, Dept of
Mathematics & Applied Mathematics, 2004.

M. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning Research,
4:1107–1149, 2003.

M. Maggioni and S. Mahadevan. Fast direct policy evaluation using multiscale analysis of markov
diffusion processes. In University of Massachusetts, Department of Computer Science Technical
Report TR-2005-39; submitted, 2005.

Mauro Maggioni. Quantitative bounds on eigenfunctions of perturbed graphs. preprint, 2006.

Mauro Maggioni and Ronald R Coifman. Multiscale spectral analysis on data sets with diffusion
wavelets. In ICML, submitted, 2006.

Mauro Maggioni, James C Bremer Jr, Ronald R Coifman, and Arthur D Szlam. Biorthogonal
diffusion wavelets for multiscale representations on manifolds and graphs. August 2005a. Proc.
SPIE Wavelet XI.

Mauro Maggioni, Arthur D Szlam, , Ronald R Coifman, and James C Bremer Jr. Diffusion-driven
multiscale analysis on manifolds and graphs: top-down and bottom-up constructions. August
2005b. Proc. SPIE Wavelet XI.

S. Mahadevan. Proto-Value Functions: Developmental Reinforcement Learning. In Proceedings of
the International Conference on Machine Learning, 2005a.

S. Mahadevan. Representation policy iteration. In Proceedings of the 21st International Conference
on Uncertainty in Artificial Intelligence, 2005b.

S. Mahadevan. Samuel Meets Amarel: Automating Value Function Approximation using Global
State Space Analysis. In Proceedings of the Twentieth National Conference on Artificial Intelli-
gence (AAAI), Pittsburgh, 2005c. AAAI Press/MIT Press.

S. Mahadevan, M. Ghavamzadeh, K. Rohanimanesh, and G. Theocharous. Hierarchical approaches
to concurrency, multiagency, and partial observability. In Learning and Approximate Dynamic
Programming: Scaling up to the Real World. 2004.

S. Mahadevan and M. Maggioni. Value function approximation with diffusion wavelets and laplacian
eigenfunctions. In University of Massachusetts, Department of Computer Science Technical Report
TR-2005-38; Proc. NIPS 2005, 2005.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework for learning
representation and control in markov decision processes. submitted, 2006.

Stephane Mallat. A wavelet tour in signal processing. Academic Press, 1998.

42



A Multiscale Framework for Markov Decision Processes using Diffusion Wavelets

A. McCallum, A. Corrada-Emmanuel, and X. Wang. The author-recipient-topic model for topic and
role discovery in social networks: Experiments with enron and academic email. Technical Report
UM-CS-2004-096, Department of Computer Science, University of Massachusetts, Amherst, 2004.

R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other
variants. In Michael Jordan, editor, Learning in Graphical Models, number 1, pages 355–368.
1999.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm, 2001. URL
citeseer.ist.psu.edu/ng01spectral.html.

Partha Niyogi and Mikhail Belkin. Semi-supervised learning on Riemannian manifolds. Technical
Report TR-2001-30, University of Chicago, Computer Science Dept, Nov. 2001.

M. L. Puterman. Markov decision processes. Wiley Interscience, New York, USA, 1994.

S Rosenberg. The Laplacian on a Riemannian manifold, volume 31 of Student Texts. Cambridge
University Press, London Mathematical Society.
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