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ABSTRACT

CONCURRENT DECISION MAKING IN MARKQOV DECISION
PROCESSES

FEBRUARY 2006

KHASHAYAR ROHANIMANESH
B.Sc., UNIVERSITY OF TEHRAN
M.Sc., MICHIGAN STATE UNIVERSITY
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

This dissertation investigates concurrent decision making and coordination in systems
that can simultaneously execute multiple actions to perform tasks more efficiently. Con-
current decision-making is a fundamental problem in many areas of robotics, control, and
computer science. In the field of Artificial Intelligence in particular, this problem is rec-
ognized as a formidable challenge. By concurrent decision making we refer to a class
of problems that require agents to accomplish long-term goals by concurrently executing
multiple activities. In general, the problem is difficult to solve as it requires learning and
planning with a combinatorial set of interacting concurrent activities with uncertain out-
comes that compete for limited resources in the system.

The dissertation presents a general framework for modeling the concurrent decision

making problem based on semi-Markov decision processes (SMDPs). Our approach is



based on a centralized control formalism, where we assume a central control mechanism
initiates, executes and monitors concurrent activities. This view also captures the type of
concurrency that exists in single agent domains, where a single agent is capable of perform-
ing multiple activities simultaneously by exploiting the degrees of freedom (DOF) in the
system. We present a set of coordination mechanisms employed by our model for monitor-
ing the execution and termination of concurrent activities. Such coordination mechanisms
incorporate various natural activity completion mechanisms based on the individual ter-
mination of each activity. We provide theoretical results that assert the correctness of the
model semantics which allows us to apply standard SMDP learning and planning tech-
niques for solving the concurrent decision making problem.

SMDP solution methods do not scale to concurrent decision making systems with large
degrees of freedom. This problem is a classic example of the curse of dimensionality in
the action space, where the size of the set of concurrent activities exponentially grows as
the system admits more degrees of freedom. To alleviate this problem, we develop a novel
decision theoretic framework motivated by the coarticulation phenomenon investigated in
speech and motor control research. The key idea in this approach is based on the fact that
in many concurrent decision making problems, the overall objective of the problem can be
viewed as concurrent optimization of a set of interacting and possibly simpler subgoals of
the problem for which the agent has gained the necessary skills to achieve them. We show
that by applying coarticulation to systems with excess degrees of freedom, concurrency is
naturally generated. We present a set of theoretical results that characterizes the efficiency
of the concurrent decision making based on the coarticulation framework when compared
to the case in which the agent is allowed to only execute activities sequentially (i.e., no
coarticulation).

We also present a set of techniques for scaling the coarticulation framework to large
domains. We develop tractable approximate algorithms suitable for such domains capable

of executing many activities in parallel. We empirically evaluate our algorithms in a set



of simulated domains ranging from an agent navigating in a grid world performing con-
current activities, to a simulated robot with multiple degrees of freedom that is capable of

performing tasks concurrently.
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CHAPTER 1
INTRODUCTION

Evolution in humans and other animals has led to a complex body with more degrees of
freedom than are needed to perform any particular task. Such redundancy affords flexible
and adaptable motor behavior (Bernstein, 1967) when all degrees of freedom can coordi-
nate to contribute to task performance by enabling agents to carry out multiple concurrent
activities, or by allowing them to commit to multiple tasks simultaneously.

Humans in particular are very efficient at performing tasks concurrently. Concurrent
coordination and control takes place at different levels of the human control system. For
example, when grasping an object, low level movements of our arms involves simultaneous
contraction of multiple muscles that control the arm joints. At higher levels of control, we
can initiate more complex activities along with the other ones that are already in progress.
In some problems concurrency can be viewed as a means of enhancing planned activities
by allowing them to overlap for further optimization of costs, improving over the optimal
sequential solutions. In such problems we overlap activities in order to achieve goals faster
where the optimization objective is the time required to achieve goals.

All such coordination must be done in the face of uncertainty; uncertainty about the
state of the environment as well as uncertainty about the effects of the activities, and also
uncertainty about the outcomes of multiple co-occurring activities. As an example, con-
sider an episode of our everyday life which may involve getting up in the morning, making
breakfast, driving to work, shopping and so on. When making breakfast, we may start the
coffee maker, and as the coffee is preparing, begin boiling eggs. While these two processes

are in progress, we might empty the dish-washer and turn on the radio for the morning



news. Some time later, perhaps we notice that the eggs are almost ready, and thus we might
begin toasting bread. While waiting for all of these processes to complete, we may start
arranging the table in order to serve the breakfast. After breakfast, as we get ready to drive
to work, the phone might ring and a friend of ours may ask for a ride to work. As a result,
we may modify our plan in order to commit to this new objective by selecting a path that
intersects to our friend’s house en route to work. From the above example, we can observe
several distinctive properties of this class of problems. First, concurrent activities compete
for the limited amount of resources in the system; second, activities that run in parallel
often do not terminate at the same time; and third, it can be conjectured that concurrency

emerges due to the multi-objective optimization nature of the problem.

Str1 741 m:
C,i
##% Ci

e

Figure 1.1. An abstract view of the concurrent decision making problem. At time ¢, the
agent executes a set of activities Cy, C,, . .., C,,, concurrently in state s;. A concurrent ac-
tion termination mechanism 7 determines when to terminate the concurrent action. Upon
termination at some random time t + &, the agent observes the new state s;, 5 according to
the transition function P and receives the multi-step reward R ;.



Concurrent decision making can be defined as a class of problems that involve a de-
cision making process in which the agent’s goal is to behave optimally, either by concur-
rently executing multiple activities, or by optimizing multiple objectives simultaneously.
More specifically, we assume that an agent inhabits an environment and has access to a set
of previously acquired skills (Singh et al., 2004) ¢ = {C;,Cs, . ..,C,}, some of which can
be executed concurrently (Figure 1.1). The agent and environment interact at discrete time
steps t. At time step t the agent observes the current state of the environment s; € S, where
S is the set of possible states. The agent then selects a subset of activities {C;,Ca,...,Cpn}
and initiates them in the current state s;. At every primitive time step, the agent transitions
to the next state s;,, according to a transition function P, and receives single step reward
ry,1. A concurrent action termination mechanism (the box labeled 7 in Figure 1.1) deter-
mines when to terminate the set of activities that are running in parallel. Upon termination
at some random time t + &, the agent receives a multi-step accumulated reward R;,x € R
, and observes the next state of the environment s;,,. The agent’s goal is to compute a
mapping from states to a set of activities in order to maximize the total amount of reward
it receives over the long run.

Concurrent decision making problem is challenging for several reasons:

e The world is stochastic and the uncertain outcomes of executing multiple activities
concurrently makes this problem difficult. In sequential decision making, the agent
would simply select the next action when the current action being executed termi-
nates. However, in concurrent decision making, often when a set of concurrent activ-
ities are executed, one or more activities may terminate before the rest (in the above
example, while we are emptying the dish-washer, the eggs may become ready to
serve). The optimality of the agent’s behavior varies depending on how the seman-

tics of concurrent action termination are defined.

e The agent has access to a limited set of resources in the system. Thus resource

conflict may easily happen when a set of interactive activities are running in parallel.



e The curse of dimensionality incurs a combinatorial space of concurrent activities. In
general, the agent can execute any subset of its acquired skills concurrently, which
causes the space of its available concurrent activities to become exponential in the

set of primary activities available to the agent.

Various forms of concurrency have been studied in many areas of science and engineer-
ing, such as computer systems, robotics and control, artificial intelligence, and machine
learning (Figure 1.2). For example, in computer systems, concurrency has been studied in
the contexts of computer architecture (i.e., pipeline architectures (Hennessy and Patterson,
1990)), operating systems (i.e., parallel processing (Tanenbaum and Woodhull, 1997)) and

concurrent programming (i.e., multi-user database systems (Andrews and Elliott, 1991)).

Robotics

- Redundancy Utilization

Motor Control

- Coarticulation ) Mu|ti—Agent Systems
- Lyapunov Functions
- Uncontrolled Manifold

Concurrency
Computer Systems

- Operating Systems
— Computer Architecture
Artificial intelligence - Concurrent Programming

— Partial Order Planning

Machine Learning

— Multi—Criterion Reinforcement Learning

Figure 1.2. Concurrency has a long history in many areas of science and engineering, such
as computer systems, robotics and control, artificial intelligence, and machine learning.

In robotics, concurrency is primarily introduced in the context of multi-objective con-
trol by exploiting the redundancy in the system kinematics (Craig, 1989; Nakamura, 1991).

The common trend is to approximate the overall task in terms of concurrent optimization



of a set of sub-tasks, based on their respective degrees of significance. This approach has
been studied extensively in many robotics tasks such as obstacle avoidance (Khatib and
Maitre, 1978; Nakamura, 1991; Grupen, 2006), avoiding mechanical joint limits (Liegeois,
1977), multi-legged walking (Huber et al., 1996), coordinating multiple communicating
mobile robots (Sweeney et al., 2002), robot grasping (Platt et al., 2002), and robust fin-
ger gaits in object manipulation (Huber and Grupen, 2002b). Similarly, in motor control
research concurrency is primarily investigated in the context of redundancy utilization, or
equivalently, the uncontrolled manifold approach (Pellionisz and Llinas, 1985; Saltzman
and Kelso, 1987; Mussa-lvaldi et al., 1988; Todorov and Jordan, 2002), and in the context
of coarticulation (Jordan and Rosenbaum, 1989; Jordan, 1990; Soechting and Flanders,
1992; Hoff and Arbib, 1993; Engel et al., 1997; Wiesendanger and Serrien, 2001; Johnson
and Grafton, 2003; Breteler et al., 2003; Cohen and Rosenbaum, 2004; Baader et al., 2005;
Perkins, 2002). Most of these ideas, however, have been investigated only in continuous
domains and do not address concurrent decision making in discrete domains. Also, in gen-
eral the problems studied by such approaches mostly involve lower level of control and do
not pertain to higher level reasoning and planning as it takes place in humans.

Concurrent decision making also has a long history in machine learning in the context
of decision making under uncertainty based on Markov decision processes (MDPs) when
the actions are considered to be structured (Boutilier and Goldszmidt, 1995; Boutilier and
Dearden, 1996; Singh and Cohn, 1998; Dean et al., 1998; Boutilier et al., 1999; Guestrin;,
2003; Russell and Zimdars, 2003; Younes and Simmons, 2004; Mausam and S.Weld, 2004;
Marthi et al., 2005; Mausam and Weld, 2005). Most of these approaches, however, ignore
the temporal properties of such problems, and do not address learning and planning with
activities that take various amounts of time for completion (e.g., activities modeled as tem-
porally extended actions (Precup, 2000)).

Multi-agent systems (Weiss, 2000) by definition involve concurrent decision making

as they consider several agents acting in the environment simultaneously. The most com-



mon setting in multi-agent systems is based on the distributed-control paradigm. In such
systems, the main challenge arises from the distributed control problem, limited access of
the agents to the state of the environment and other agents, and noise in communication
among agents. Despite the large body of work on distributed multi-agent systems, very lit-
tle research addresses concurrent decision making in centralized control systems where one
assumes a central control mechanism initiates, executes and monitors concurrent activities.

There has also been an extensive study of action representation and reasoning with
actions in situation calculus, temporal logic and reasoning, and planning. Certain aspects
of these areas address the specification and synthesis of concurrent actions. The idea of
incorporating partial-order planning (Sacerdoti, 1975, 1977) to generate parallel execution
plans has been studied since the early days of planning (Vilain et al., 1989; Veloso et al.,
1991; Regnier and Fade, 1991; Knoblock, 1994; Boutilier and Brafman, 2001b,a). Most of

these approaches, however, do not address stochastic domains.

1.1 Research Summary

In the broadest sense, the goal of our research is to develop a general decision theoretic
framework for studying the concurrent decision making problem. In particular we are inter-
ested in developing learning and planning algorithms that alleviate some of the challenges
that we face in solving this class of problems.

In summary, in the course of this research, we carry out the following major steps: we
first focus on modeling aspects of the concurrent decision making problem, and develop a
general decision theoretic model for monitoring execution and termination of concurrent
activities. Next, we address the curse of dimensionality that arises in our model. We intro-
duce a framework that is in spirit related to the concept of coarticulation in motor control
research and demonstrate how this approach can alleviate the curse of dimensionality in
concurrent decision making. However, we observe that learning basic models for perform-

ing coarticulation may still suffer from the curse of dimensionality. Thus, in the last part



of our research, we present a set of approximation methods for performing coarticulation

with a tractable complexity. These steps are further elaborated in the following sections.

1.1.1 Concurrent Action Model

Our approach to modeling concurrent decision making is based on semi-Markov de-
cision processes (SMDPs) (Howard, 1971; Puterman, 1994), a widely studied probabilis-
tic decision making paradigm. More formally, we introduce the concurrent action model
(CAM) (Rohanimanesh and Mahadevan, 2001, 2002), where we primarily consider a sys-
tem capable of performing multiple activities concurrently. We use the terminology multi-
action to refer to a set of activities running in parallel. One can think of each activity
either as a single step action, or a more complex skill acquired by the agent, modeled as
a temporally extended action (e.g., a closed loop policy over single step actions (Sutton
et al., 1999)). A centralized control architecture is also used for initiating, monitoring and
termination handling of the concurrent activities.

One important problem in CAMs is to define the semantics of concurrent action ter-
mination, 7. When several activities run in parallel, some of them may terminate earlier,
while the remaining activities continue to run. In this case how can one characterize the
completion of a concurrent action? How does the choice of concurrent termination mech-
anism influence the optimality of the agent’s behavior? We need to precisely define the
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Figure 1.3. Left: T,,, termination scheme. A concurrent action terminates when any of
the primary actions terminates, Middle: T,; termination scheme. A concurrent action ter-
minates when all of the primary actions terminate. Right: T,.,4inue termination scheme. A
concurrent action terminates when any of the primary actions terminates, but those primary
action that did not terminate will continue execution.



decision process based on different termination scenarios. To that end, we introduce three
natural concurrent action termination mechanisms, namely Ty, (Figure 1.3 (Left)), Ty
(Figure 1.3 (Middle)) and Teontinue (Figure 1.3 (Right)). In Ty, termination, a concurrent
action terminates when any of the primary actions currently being executed terminates. At
this point the agent initiates the next concurrent action, ignoring the fact that some of the
primary actions have not yet terminated. If the next concurrent action that an agent executes
chooses those primary actions that did not terminate, then they continue to run, otherwise
they will be interrupted. In the breakfast example, when the eggs are ready to serve, we
may interrupt other activities, such as watching television, and start serving the eggs.

In T,;; termination, a concurrent action terminates when all of the primary actions ter-
minate. In the breakfast example, we may wait, until both boiling eggs and toasting bread
processes are all done, before we start serving them. The last termination mechanism (i.e,
Teontinue) terminates concurrent activities in a manner similar to 7,,,. However, it lets the
activities that are still in progress continue running (without interrupting them), while the
agent may also initiate new activities along with them. T,onsinue termination mechanism
is indeed very natural and can be observed in many real world problems. In the breakfast
example, if the coffee becomes ready before the eggs are done, we let the process of boiling
the eggs to continue until the eggs become ready, and may initiate a new activity, such as
arranging the table.

Returning to the breakfast example, consider modeling this problem using a CAM,
where the states of the problem may involve features such as whether or not the coffee
is ready, status of the boiling eggs, and whether or not a friend has called for a ride. By
primary actions, we refer to the set of basic abilities of the agent that can be executed along
with other activities, such as boiling the eggs or making coffee, and so on. Note that each
primary action may take a different amount of time to complete and also its termination
is stochastic (for example the amount of time required to boil the eggs is different from

the amount of time required to make coffee, and it also varies depending on the type of



the pot and the heat level). A concurrent action is then formed by executing two or more
primary actions simultaneously, such as boiling the eggs and making coffee. At every step,
the agent may also initiate a set of new primary actions along with the other activities that
are in progress. For example the agent may turn on the radio while the above activities are
in progress.

Modeling concurrent decision making based on SMDPs allows us to cast this prob-
lem in a very general setting, inherited from the ability of SMDPs to model a large class
of decision making problems. Furthermore, we can incorporate reinforcement learning
(RL) methods, that are often employed with SMDP models of the problem. Reinforcement
learning (Sutton and Barto, 1998) refers to a class of learning problems in which the agent
learns to act through trial-and-error interaction with a dynamic environment. This is a more
realistic view of the agent-environment interaction where the agent may not have access to
the complete model of the environment.

In this dissertation, we formally establish that CAMs with a set of termination mecha-
nisms as described above, are one realization of SMDPs, and thus standard SMDP learning
and planning techniques can be applied to solve them. In succession, we extensively ana-
lyze each of the concurrent action termination mechanisms and present a set of theorems
that characterize the optimality of the agent’s behavior based on the various termination
mechanisms. We then compare them with the sequential model that allows only one action
to be executed at a time. We also present empirical results in a simple grid world domain

that involves concurrent decision making.

1.1.2 Coarticulation Framework

Although CAMs provide an abstract framework for modeling concurrent decision mak-
ing, the standard SMDP learning and planning methods for solving such problems may be
intractable due to the combinatorial set of concurrent activities to which the agent has ac-

cess. Recall that concurrent actions are formed by executing two or more primary actions



and thus the total number of concurrent actions is exponential in the number of primary
actions (the maximal concurrent action set is the power set of the primary actions). Al-
though in practice not every configuration of primary actions can be executed concurrently,
we cannot assume any feasible bound on the number of possible concurrent actions a pri-
ori. It is known that the complexity of planning in MDPs and the complexity of the near
optimal reinforcement learning methods are polynomial in the set of states and actions (Pa-
padimitriou and Tsitsiklis, 1987; Kearns and Singh, 1998). This renders the complexity
of learning and planning in CAMs exponential in the number of primary actions. Thus in
general finding the exact solution for CAMs using standard SMDP learning and planning
methods is a hard problem.

Our approach to solving this problem (Rohanimanesh et al., 2004a,b) is based on the
fact that many real-world concurrent decision making problems can be viewed in terms
of concurrent optimization of a set of prioritized subgoals of the problem (Huber, 2000;
Grupen, 2006). In general — especially in multi-objective optimization — it is intuitive to
approximate the overall objective of the problem in terms of a set of sub-utility functions,
each associated with a subgoal of the problem. This view has a long history in multi-
attribute utility theory (Keeney and Raiffa, 1993), and in particular seems very suitable for
the concurrent decision making problem. It also relates to the multi-criterion Reinforcement
Learning (MRL) (Gabor et al., 1998) approach in which the reward signal is expressed as a
vector whose elements describe a local reward signal associated with one of the objectives
of the problem.

This view is observed in our daily activities, where by exploiting many degrees of
freedom (DOF) in our body (e.g., arms, legs, eyes, etc), we are able to simultaneously
commit to several tasks and as a result generate concurrent plans. A familiar example is
a driving task which may involve subgoals such as safely navigating the car, talking on a
cell phone, and drinking coffee, with the first subgoal taking precedence over the others.

Having the benefit of extra DOF in our body, we are able to simultaneously commit to
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multiple subgoals. For example we can control the wheels by the left arm and use the right
arm to answer the cell phone or drink coffee.

Abusing the terminology from speech and motor control research, by coarticulation we
refer to the general class of problems in which an agent simultaneously commits to multiple
objectives. The key idea in our approach is based on the fact that in many goal-oriented
activities — in addition to the optimal policy — there often exists a redundant set of ascending
(and possibly sub-optimal) policies that guarantee achieving the goal with a cost of a slight
deviation from optimality. Ascendancy is a property of a policy that guarantees making
progress toward the goal of the problem at every step. Such flexibility enables the agent to
simultaneously commit to multiple subgoals. This model is also natural in a sense that it
enables the agent to reuse the learned activities for solving new tasks by slightly modifying
its policies, instead of starting a new learning problem for every possible combination of
goals that it may face in future.

It is worth noting that the notion of policy redundancy also captures a form of redun-
dancy that is not explicitly based on the degrees of freedom in the system. To illustrate this,
consider the simple example in Figure 1.4 where an agent is located in the lower left corner
of the environment and is planning to navigate to a refrigerator located in the upper right
corner. The agent can execute one of the four navigation actions Up, Left, Down and Right
at every state. There is also a phone located in the environment which starts ringing as the
agent gets ready to move to the refrigerator. The agent can choose between two redundant
optimal paths (i.e., p; and p,) in order to get to the refrigerator, but it chooses the path p,
in order to answer the phone while approaching the refrigerator. In this example, the agent
has only one degree of freedom with respect to its set of actions, since it can only execute
one navigation action at a time.

Interestingly, there exists a form of policy redundancy that emerges in systems with
multiple degrees of freedom. This type of redundancy generally stems from the fact that

not all degrees of freedom are involved when performing an activity. In the above example,
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Figure 1.4. An example of policy redundancy: the agent can choose from two equally
optimal paths (i.e., p; and p,) in order to get to the refrigerator, but it chooses the path p,
in order to answer the ringing phone while moving toward the refrigerator.

if the agent has more degrees of freedom, such as arms, more redundant policies can be
found. These include, navigating to the goal state through the path p, and moving the arms
upward, or navigating to the goal state through the path p,, moving the left arm upward,
and moving the right arm downward. This type of policy redundancy serves as a basis of
performing coarticulation as we describe later in Chapter 4.

We argue that coarticulation is a natural way for generating parallel execution plans for
several reasons. First, many concurrent decision making problems can actually be viewed
as concurrent optimization of a set of prioritized subgoals, in which the agent manages its
DOF to simultaneously commit to those subgoals. Second, because of the multiple DOF
in the system, learned activities offer more flexibility in terms of the range of ascending
policies associated with them. For example in the driving task, while the best policy for
driving the car would be to control the wheel using both arms, by exploiting the extra DOF
in our body we can perform the same task sub-optimally by engaging one arm for turning
the wheel and releasing the other arm for committing to the other subgoals of lower priority
(such as drinking coffee). However, the key advantage of coarticulation in concurrent deci-
sion making lies in its efficient search in the exponential space of concurrent actions. The

action selection mechanism in this approach is restricted to those policies that ascend the
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value functions associated with each activity. This interactive search enables the agent to
perform the search in a much smaller space of concurrent actions with a controllable cost
in optimality.

To further motivate our approach, consider the life span of an agent. The agent is
constantly performing learning and planning based on the set of current and future tasks
introduced in the system. The agent also constantly acquires new skills from each learn-
ing experience (Iba, 1988; McGovern and Barto, 2001; Pickett and Barto, 2002; Simsek
and Barto, 2004). Even when the agent is not faced with a specific task, it may continue
acquiring useful task-independent skills by exploring the environment (Singh et al., 2004;
Simgsek et al., 2005). Such skills are efficiently incorporated by the agent when it is faced
with a new task during its lifespan.

We can think of such acquired skills as the basic blocks of coarticulation (similar to
phonemes in speech synthesis, or reaching to grasp skill in human). It can be observed that
we are able to efficiently combine such skills when faced with a new task, however we are
able to modify our skills in a context-sensitive fashion. In other words we are coarticulating
among our skills in order to produce a more natural course of actions for performing the
task more efficiently.

This is illustrated well in the driving example, where one possesses acquired skills such
as navigating, drinking coffee, talking on a cell phone, etc. One can perform such tasks
in parallel without severely affecting the overall performance. We can observe a form
of coarticulation in this example that exploits the many DOF in our bodies to generate
concurrent plans. Among different ways that we have learned to steer the wheels, we
choose the one that enables us to commit to other subtasks, such as drinking coffee. In
other words, we coarticulate between the two subtasks. For example we can steer the
wheels by one hand, two hands, or for a short amount of time we can release the wheel

completely if the road is clear and straight.
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More technically, we can think of each acquired skill as a temporally extended action
(Precup, 2000) in a semi-Markov Decision Process. Each skill models an activity that op-
timizes a subgoal of some sort. We assume that the agent has access to a set of learned
activities modeled by a set of SMDP controllers C = {C;,C,,...,C,} each achieving a
subgoal w; from the set of subgoals Q@ = {ws,ws,...,w,}. We further assume that the
agent-environment interaction is an episodic task where, at the beginning of each episode,
a subset of subgoals w C 2 are introduced to the agent, where subgoals are ranked accord-
ing to some priority ranking system. The agent is to devise a a policy by coarticulating
among the subgoals such that it simultaneously commits to them according to their degree
of significance. In general, optimal policies of controllers do not offer flexibility required
in order to commit to many subtasks. However, there exists a special class of admissible
near-optimal policies that guarantee making progress toward the goal in every state of the
problem. Given a controller, an admissible policy is either an optimal policy, or a policy
that ascends the optimal state-value function associated with the controller (i.e., on average
leads to states with higher values), and is not far from the optimal policy. The ascendancy
property of policies is inspired by the Lyapunov constraints for action selection in MDPs

introduced by Perkins (2002); Perkins and Barto (2001b,a).

C1 C2

C

AV

(a) (b)
Figure 1.5. (a) actions a, b, and c are ascending on the state-value function associated
with the controller C, while action d is descending; (b) action a and c ascend the state-

value function C; and C, respectively, while they descend on the state-value function of the
other controller. However action b ascends the state-value function of both controllers.
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To illustrate this idea, consider Figure 1.5(a) showing a two dimensional state-value
function. Regions with darker colors represents states with higher values. Assume that
the agent is currently in state marked s. The arrows show the direction of state transition
as a result of executing different actions, namely actions a, b, ¢, and d. The first three
actions lead the agent to states with higher values, in other words they ascend the state-
value function, while action d descends it. Figure 1.5(b) shows how introducing admissible
policies enables simultaneous solution of multiple subgoals. In this figure, actions a and
c are optimal in controllers C; and C, respectively, but they both descend the state-value
function of the other controller. However if we allow actions such as action b, we are
guaranteed to ascend both value functions, with a slight degradation in optimality. In this,
example by choosing action b we are coarticulating between both tasks while the first task
takes precedence over the second task.

In this dissertation, we investigate this class of policies and, in particular, introduce e-
redundant controllers as the basic blocks of the coarticulation in MDPs. An e-redundant
controller represents a class of ascending policies that deviate from the optimal policy asso-
ciated with the controller by a user controllable factor e. The larger the e factor, the broader
the class of ascending policies that the controller represents, and hence the more flexibil-
ity each controller offers for the coarticulation problem. We also present a coarticulation
algorithm for performing coarticulation among a set of subtasks, each associated with an
e-redundant controller. We show how our coarticulation algorithm can reduce the impact of
the curse of dimensionality in the action space. One major contribution of this dissertation
is a set of theoretical results analyzing various aspects of our coarticulation framework.
We present results characterizing various properties of e-redundant controllers. We also
present a set of conditions under which we can theoretically prove when a concurrent pol-
icy performs strictly better than a purely sequential policy. Finally, we present our empirical

results in a simulated grid world problem.
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1.1.3 Approximate Solutions for Scaling Coarticulation to Large Problems
Although we demonstrate that our coarticulation algorithm performs a more efficient
search in the space of concurrent actions, the algorithms for computing the class of ascend-
ing policies in e-redundant controllers still suffer from the curse of the dimensionality in
large domains. Thus, efficient algorithms for computing the set of ascending policies in
such controllers, and also scalable algorithms for the action selection problem are required.
We present a set of approximation techniques in order to address this problem (Rohan-
imanesh and Mahadevan, 2005). We assume that the optimal state-action value function
associated with each controller can be approximated using linear function approximation
techniques (Bertsekas and Tsitsiklis, 1997; Sutton and Barto, 1998). We then present an ap-
proximate algorithm based on non-serial dynamic programming methods (Dechter, 1999)
for computing the top h best actions in every state. We show that our algorithm has a
computational complexity logarithmic in h and exponential in the network width (Dechter,

1999) induced by the structure of the approximate linear additive value function.

- .

Dish Rack Dish Washer

Figure 1.6. A simulated robot for object manipulation task. The task of the robot is to
empty the dishes from the dish-washer and stack them into the dish-rack.

We use a simulated robot for evaluating our coarticulation approach. Figure 1.6 shows

a robot with three degrees of freedom, namely, the eyes, the left arm, and the right arm. The

16



robot’s task is to empty the dish-washer and stack the dishes in the dish-rack. Note that the
robot can exploit its DOFs and perform the task more efficiently. For example, while the
robot uses its right arm to stack a dish that has already been picked up, it can transport its left
arm to the dish-washer in order to pick a different dish concurrently. We incorporate all the
ideas that we presented throughout this dissertation for solving this problem and show how
our coarticulation framework can be used naturally to generate parallel execution plans.
Our empirical evaluation includes results both on the performance of the coarticulation
method versus non-concurrent plans, and also the accuracy and the performance of our

approximate algorithms.

1.2 Overview of Technical Contributions
The main contributions of this dissertation are summarized as follows:

Concurrent Action Model

e We formally introduce and describe the concurrent action model (CAM). This model
is derived from the semi-Markov decision process model, where the notion of action
is generalized to include sets of actions (that will be executed concurrently). We
introduce a set of concurrent action termination mechanisms and establish that the

semantics of the model under such termination mechanisms are well defined.

e \We extensively analyze each termination mechanism and present a set of theorems
that characterize the optimality of the policies learned under each of them. We also

provide experimental results in a simulated domain supporting our theoretical results.
A Model of Coarticulation for Solving the Concurrent Decision Making Problem

e We formally introduce the concept of coarticulation in MDPs and demonstrate how
it can be used in order to alleviate the curse of dimensionality in the combinatorial

space of concurrent actions.
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e We introduce e-redundant controllers as the basic block of the coarticulation frame-

work. We define ascending policies and investigate their properties.

e \We present a coarticulation algorithm for solving a concurrent decision making prob-
lem approximated in terms of a set of prioritized subtasks, each associated with an

e-redundant controller.

e \We present an extensive set of theoretical results characterizing various properties of
the e-redundant controllers, and also a set of theoretical results establishing bounds

on the optimality of the coarticulation algorithm.

e We empirically demonstrate the performance of our coarticulation method in a sim-

ulated grid-world domain.
Scaling the Coarticulation Framework to Large Domains

e We introduce an approach for scaling the coarticulation framework to large problems.
We present a tractable approximate algorithm for computing the ascending policies

in e-redundant controllers.

e We empirically demonstrate all of the methods studied in this thesis on a simu-
lated robot performing a concurrent decision making task. Our experimental results
demonstrate how coarticulation can be viewed as one natural way for generating par-
allel execution plans. We also present a set of results that measure the performance

and the accuracy of the approximate algorithm in larger domains.

1.3 Outline

The rest of this dissertation is organized as follows:

Chapter 2: This chapter provides the background material for this dissertation. We
start by overviewing Markov decision processes (MDPs), and review some key ideas and

solution methods. Next we overview the reinforcement learning (RL) problem and briefly
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explore the standard solution methods for solving this problem. Finally, discrete time
semi-Markov decision Processes (SMDPs) are introduced, and the options framework is
presented as a special case of SMDPs.

Chapter 3: We introduce CAMs and provide an in depth study of the various coordina-
tion mechanisms employed by the model. A set of theoretical results on the correctness of
the model semantics, and the optimality of concurrent decision making based on the vari-
ous concurrent action termination mechanisms is presented. We also present an empirical
evaluation of this model in a simulated grid world domain.

Chapter 4: We present a model of coarticulation for alleviating the curse of dimen-
sionality in CAMs. We begin by reviewing the historical development of the coarticulation
phenomenon in other communities such as speech and control. Then we formally define
e-redundant controllers as the basic block of the coarticulation framework, and present an
algorithm for performing coarticulation. An extensive set of theoretical results character-
izing such controllers, and also provide theoretical bounds on the performance of the coar-
ticulation method are presented. Finally, we detail a set of empirical results in a simulated
grid world domain.

Chapter 5: We demonstrate how we can scale the coarticulation framework to large do-
mains. We present a tractable approximate algorithm for computing the class of ascending
policies in e-redundant controllers. We then empirically demonstrate the performance of
our coarticulation method in a simulated grid world domain in the context of a concurrent
decision making object manipulation task.

Chapter 6: We summarize the dissertation and discuss some directions for future re-

search.
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CHAPTER 2
BACKGROUND

The development of our model for concurrent decision making is a multidisciplinary
endeavor, with a considerable amount of related literature. The goal of this chapter is
to provide the necessary background and framework for describing the basic research in
this dissertation. Consequently, the following review is somewhat general with additional
details deferred to later chapters. For a more comprehensive introduction, readers may also

refer to standard texts such as (Bertsekas and Tsitsiklis, 1997; Sutton and Barto, 1998).

2.1 Markov Decision Processes

Markov decision processes (MDPs) (Puterman, 1994) model the sequential decision
making problem, where a learning agent interacts with an environment at some discrete
time scale, t = 0,1,2,.... On each time step ¢ the agent observes the current state of
the environment, s; € S, and selects an action, a;. In response to each action, a4, the
environment produces a delayed reward, r;.; € R, and a next state s;,;. Formally an
MDRP is a tuple (S, A, P,R), where S is the set of states, A is the set of actions, P :
S x Ax S — [0,1] is the transition probability function with P(s,a, s") (alternatively
represented as Pg,,) being the probability of transition from state s to state s’ when action
a is executed, and R : S x A — TR is the expected reward function, with R(s, a) being
the expected reward for taking action a in state s. Let A, C A denote the set of actions
admissible in state s. In this work we assume that S and A are finite.

A stochastic Markov policy 7 is defined as a mapping = : S x A — [0,1] , where

7 (s, a) gives the probability of selecting action a in state s. For any policy 7, the value of a
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state s under  is defined as the expected discounted infinite-horizon sum of rewards from
state s. The state-value function V™ defines a mapping from states to their values under the

policy

V”(s) = Eﬂ-{’f't_H =+ YTri+2 =+ ... |8t = S}

= Ep{reri + YV (st41)[se = s} (2.1)

= Z 7(s,a) |R(s,a)+ 7 ZP(S,aa sHV(s)

acA; s'eS
where 0 < « < 1 is a discount factor. The objective of the learning agent is to learn an
optimal policy that maximizes the expected discounted future reward. The optimal state-
value function gives the value of each state under the optimal policy:

V*(s) = max V"(s)

™

= max E{rerr + 9V (st41)|5t = 5,00 = a} (2.2)

= max |R(s,a) + v Z P(s,a,s)V*(s")

acEA, es
S

Any policy that achieves the maximum in Equation 2.2 is by definition an optimal policy.
Equations 2.1 and 2.2 are referred to as Bellman equations , which recursively relate value
functions to themselves.

Similarly, we can define Bellman equations for state-action pairs. The state-action
value function Q™ for a policy = is the mapping from state-action pairs to their values, and
gives the expected value of the sum of future rewards starting from state s, taking action a,

and following = thereafter:

Qﬂ(saa) = Eﬂ{rt+1 +Yrip2 + - \St =S,a¢ = a}

=R(s,a) + 7 Z P(s,a,s)V"(s")

s'eS
=R(s,a)+7 Z P(s,a,s") Z n(s',a)Q" (s, d)
s'es a'c€ A

8
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and the optimal action-value function Q* satisfies:

Q*(s) = max Q" (s, a)

=) P(s,a,5) [R(S, a) + 7 Jax Q"(s', d') (2.3)

s'esS
_ ! PSRN
_R(saa)+’yzp(8aa’as)arlré?f:lg (S,CL)

s'eS

The Bellman equations 2.2 and 2.3 are related by:
V*(s) = max Q*(s, a) (2.4)

known as the Bellman optimality equation. Typically, a solution to a MDP problem is found
by solving the Bellman optimality equation 2.4. An alternative way of defining the optimal

value function is based on the Bellman operator 7* defined as:
T*V™(s) = max Q" (s, a) (2.5)

The optimal value function V* is the fixed point V* = T*V*.

2.2 Reinforcement Learning

Reinforcement learning (RL) (Sutton and Barto, 1998) is a computational framework for
solving the sequential decision making problem. RL is distinguished from other computa-
tional approaches by its emphasis on learning from direct interaction with an environment.
When a sequential decision making problem is modeled as an MDP, RL algorithms try to
approximate the optimal value function. Many RL algorithms are instances of the temporal
difference (TD) learning (Sutton, 1988) where an agent learns and updates estimates of the
value function directly from raw experience without a model of the environment’s dynam-

ics. One important feature of TD methods is that they update the estimates based in part
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on other learned estimates, without waiting for a final outcome.One of the more popular
TD methods is known as Q-learning (Watkins, 1998) that seeks to approximate the optimal
action-value function from an experience that involves a transition from the current state s

to the next state s as a result of executing action a in state s and observing a reward of r:

Q'(s,0) - Q'(s,0) & |r 7 max Q'(s,) ~ Q'(s,0) (26)

where 0 < a < 1 is the learning rate.

2.3 Discrete-Time Semi-Markov Decision Processes

Discrete-time semi-Markov decision processes (SMDPs) (Howard, 1971; Dietterich,
2000) are extension of MDPs that model actions that can take variable amount of time to
complete. Formally a discrete-time SMDP is a tuple (S, A, P, R), where S is the set of
states, A is the set of actions, P : S x A x § x IN — [0, 1] is the transition probability
function with P(s, a, s', n) being the probability of transition from state s to state s’ in n
time steps when action a is executed. In this model R : S x A — IR is the expected reward
function, with R (s, a) being the expected reward for taking action a in state s. Let A, C A

denote the set of actions admissible in state s.

For a stochastic policy =, the value of a state s under = is defined as the expected
discounted infinite-horizon rewards from state s and the state-value function V™ defines a

mapping from states to their values under the policy =:

V™(s) = Ex{ris1 + yriee + ... |8t = s}
% (2.7)
= Z m(s,a) |R(s,a) + Z Z'yk P(s,a,s' k) V(s

acA, s'eS k=1
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where 0 < v < 1is a discount factor. The objective of the learning agent is to learn an
optimal policy that maximizes the expected discounted future reward. The optimal state-

value function gives the value of each state under the optimal policy:

V*(s) = max V™(s)
%0 (2.8)
=max [R(s,a) + Z Z’yk P(s,a,s' k) V*(s')

acAs s'eS k=1

Any policy that achieves the maximum in Equation 2.2 is by definition an optimal
policy. Similarly, we can define Bellman equations for state-action pairs. The action value
function Q™ for a policy = is the mapping from state-action pairs to their values, and gives
the expected value of the sum of future rewards starting from state s, taking action a, and

following 7 thereafter:

Q" (s,a) = Ex{rey1 +yrepe + ... |st = s,a, = a}

=R(s,a) + Z Z’yk P(s,a,s' k) Z n(s',a")Q" (s, d")

s'eS k=1 a'cAy

and the optimal action-value function Q* satisfies:

Q*(s) = max Q" (s, a)
00 (2.9)
=R(s,a) + Z Z'yk P(s,a,s' k) ax Q*(s',a")

s'eS k=1

SMDP learning methods, such as SMDP Q-learning (Bradtke and Duff, 1995) extend

the Q-learning (Equation 2.6) taking into account the duration of each action:

Q(s,a) +Q(s,a) + a |r ++* max Q(s',d') — Q(s,a) (2.10)

a’EAsl
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where r is the reward received upon completion of the action a, and & is the duration of

the action a.

2.3.1 Options

Options (Sutton et al., 1999) are one realization of SMDPs that generalize the primitive
actions in MDPs to model temporally extended courses of action. Options consist of three
components: a policy 7 : S x A — [0,1] , a termination condition 5 : S — [0, 1], and
an initiation set Z C S, where I denotes the set of states s € S in which the option can
be initiated. Note that we can restrict the scope of application of a particular option by
controlling the initiation set and the termination condition. For any state s, if option 7 is
taken, then primitive actions are selected based on 7 until it terminates according to 5. An
option O is a Markov option if its policy, initiation set and termination condition depend
stochastically only on the current state s € S.

Given a set of options O, let O, denote the set of options in O that are available in each
state s € S according to their initiation set. O, resembles A; in the standard reinforce-
ment learning framework, in which A, denotes the set of primitive (single step) actions.
Similarly, we introduce policies over options. For a decision epoch d;, the Markov policy
over options i : § x O — [0, 1] selects an option o, € O, according to the probability
distribution u(s;, .). The option o, is then initiated in s; until it terminates at a random time
t + k in some state sy, according to the termination condition, and the process repeats in
si1. FOran option o € O, and for any state s € S, let (o, s, t) denote the event of o being
initiated in state s at time t. The total discounted reward accrued by executing option o in

any state s € S is defined as:

R, =E{riq1 +yria+ ...+ Y | (o, 5,t)}
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where ¢ + k is the random time at which o terminates. Also let P°(s, s’, k) denote the
pseudo-probability ! that the option o is initiated in state s and terminates in state s’ after &

steps. Then

pIES Z'Poss k)y

Given the reward and state transition model of option o, we can write the Bellman equation

for the value of a general policy u as :

VE(s) = 3 u(s,0)

0€0,4

R+ PLVH(s')

s

Similarly we can write the “option-value” Bellman equation for the value of an option o in

state s as

OH( ’R"+Z b Z s',0")OH(s',0)

0'€0

and the corresponding optimal Bellman equations are as follows:

R"+Z V5 (s")

Vo(s) = max

Q% (s,0) = R"—i-z 2, max Q*(s',0')
0'€0sy 4,
We can use synchronous value iteration (SVI) (Bellman, 1957; Puterman, 1994; Sutton and
Barto, 1998) to compute V}(s) and Q% (s, o), which iterates the following step for every

state s € S:

1This quantity is not atrue probability distribution for y # 1. Thuswe use the term pseudo-probability to
refer toit. Infact it can be shown that it induces a sub-stochastic processin the SMDP level.
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RO+ P;;,vt_l(s')]

Vi(s) = max ’
S

Qi(s,0) = RS + ZP;’S, Imax QO 1(s',0)
S,

Alternatively, if the option model is unknown, we can estimate Q% (s, o) using SMDP Q-
learning, by doing sample backups after the termination of each option o, which transitions

from state s to s’ in k steps with cumulative discounted reward r :

Q(s,0) +Q(s,0) + a |r +~* max 9(s',0') — Q(s,0)
2.3.2 Subgoal Options
Formally, a subgoal option Precup (2000) of an MDP M = (S, A, P, R) is defined by
atuple C = (Mc¢,Z,3). The MDP M. = (S¢, Ac, Pc, Re) is the option MDP induced by
the option C in which S¢ C S, A¢ C A, P¢ is the transition probability function induced
by P, and R is chosen to reflect the subgoal of the option. The policy component of such

options are the solutions to the option MDP M. associated with them.
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CHAPTER 3

CONCURRENT DECISION MAKING: A GENERAL
FRAMEWORK

In this chapter we present a general decision theoretic framework for modeling the con-
current decision making problem. We are interested in developing a model that allows
concurrent execution of various activities. We describe a set of concurrent coordination
mechanisms and present a set of theoretical results asserting the correctness of the model
semantics. We also theoretically study various concurrent coordination mechanisms and
present a set of theoretical results that evaluate the class of optimal policies under each
concurrent coordination mechanism. Our theoretical results are complemented by an ex-
perimental study using a simulated navigation task. The experiments illustrate the trade-
offs between optimality and convergence speed, and the advantages of concurrency over

sequentiality.

3.1 Concurrent Action Model

Building on SMDPs (Howard, 1971; Puterman, 1994), we introduce the Concurrent Ac-
tion Model (CAM) (Rohanimanesh and Mahadevan, 2001, 2002) as a tuple (S, A, P, R, T),
where S is a set of states, A is a set of primary actions, P is a transition probability distri-
bution § x p(A) x & x IN — [0, 1], where p(.A) is the power-set of the primary actions
and IN is the set of natural numbers, and R is the reward function mapping S x A — IR.
Here, a concurrent action is simply represented as a set of primary actions (hereafter called
a multi-action), where each primary action is either a single step action, or a temporally

extended action (e.g., modeled as a closed loop policy over single step actions, see (Sutton
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et al., 1999)). 7 is a concurrent action termination mechanism. Note that when a set of
concurrent activities are being executed, some of them may terminate before others. 7
defines the semantics of the concurrent action termination event.

We denote the set of multi-actions that can be executed in a state s by A, (hote that
this also includes primary actions, since a primary action is essentially a multi-action of
cardinality one). In practice, this function can capture resource constraints that limit how
many actions an agent can execute in parallel. Thus, the transition probability distribu-
tion in practice may be defined over a much smaller subset than the power-set of primary
actions. Hereafter we use bold face letters (e.g., a) to refer to a multi-action and use the

normal letters to refer to the primary actions present in a (e.g., a € a).

t t+k

! a; termipated !

i interrupted
! a; A

] a, N .

St @ as 1N

a 14

: multi-action :
dn a'[ = {a11 a21 a3 1a4} dn+l

Figure 3.1. T,,, termination scheme. The termination occurs when any of the concurrent
activities terminate.

An important problem is to understand how to define decision epochs for concurrent
processes, since the primary actions in a multi-action may not terminate at the same time.
The event of termination of a multi-action (i.e., 7°) can be defined in many ways. We have

considered three natural ways of terminating a multi-action:

T = {Tany, Tany, TcontinuE}
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These termination schemes are illustrated in Figures 3.1, 3.2, and 3.3. In the T, termi-
nation scheme (Figure 3.1), the next decision epoch is when the first primary action within
the multi-action currently being executed terminates, where the rest of the primary actions
that did not terminate naturally are interrupted (the notion of interruption is similar to (Sut-
ton et al., 1999)). In the Ty; termination scheme (Figure 3.2), the next decision epoch is
the earliest time at which all the primary actions within the multi-action currently being

executed have terminated.

t t+k

. terminated |

a o Tl

l a, L
St @ a; o

! a,

multi-action

d, a ={a;, a,,a;z,a4} n+1

Figure 3.2. T,; termination scheme. The termination occurs when all of the concurrent
activities terminate.

We can design other termination schemes by combining T, and T, : for example,
another termination scheme called continue is one that always terminates based on the T,
termination scheme, but lets those primary actions that did not terminate naturally continue

running, while initiating new primary actions if they are going to be useful (Figure 3.3).

A deterministic Markovian (memoryless) policy in CAMs is defined as the mapping
m: S — p(A). Note that even though the mapping is independent of the termination
scheme, the behavior of a multi-action policy depends on the termination scheme that
is used in the model. To illustrate this, let (m,7) (called a policy-termination construct)

denote the process of executing the multi-action policy = using the termination scheme
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Next multi—action

F a; terminated t-“-k at+k: {a’lu ad,as ,a4}
| T d)
3 a, A:—>
| / a, | R
St @ a, v
! a, V'

: . =
 Current multi-action

‘ _ ‘ Continue to run
dn 31 - {alv a2| a3 !a4} dn+1

Figure 3.3. T ontinue termination scheme. The termination occurs when any of the concur-
rent activities terminate, however the next multi-action will continue the execution of those
activities that did not terminate.

T € {Tuany, Tau}- To simplify notation, we only use this form whenever we want to ex-
plicitly point out what termination scheme is being used for executing the policy 7. For a
given Markovian policy, we can write the value of that policy in an arbitrary state given the
termination mechanism used in the model. Let ©(, s;, 7) denote the event of initiating the
multi-action 7 (s;) at time ¢ and terminating it according to 7 € {T,y,, Tau} termination

scheme. We can write the value function equation for such a policy as:

V<7T,T> (8) = E{’]“H_]_ + A +...+ ‘ @(ﬂ—) St’T)}

o0 3.1)
= Z m(s,a) |R®™ 4+ ZZ’yk P(s,a,s, k) VO (s')
acA, s’ k=1
and:
RET = B{re + s + - +7F e | O(a, 5, 7)} (3.2)

where R represents the expected partial return of executing the multi-action a in state
s until it terminates according to the 7 termination scheme. In all of these equations, we
augment the transition probability function with the termination scheme (i.e., P (s, a, s))
to denote the probability of transitioning from state s to state s’ when the termination 7

occurs.
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Also let 7*= denote the optimal multi-action policy within the space of policies over
multi-actions that terminate according to the 7 € {T,,,, To;} termination scheme. To
simplify notation, we may alternatively use ., to denote optimality with respect to the 7

termination scheme. Then the optimal value function can be written as:

V™ (s) = max “>+227 P7(s,a,s, k) V- (s) (3.3)

acA
® s'eS k=1

Similarly, we can write the Bellman equations for the value of a state-multi-action pair:

Q<7T’T>(8, a) = E{Tt+1 T VT2 + .. | @(W’ St T)’ a}

= +ZZ’V P (s,a,s k) V™ (s)

s’ k=1

(3.4)

where Q{™™) (s, a) denotes the multi-action value of executing a in state s (terminated using
7 termination scheme) and following the policy = thereafter. For the optimal value of a

state-multi-action pair we can write the Bellman equation as follows:

Q' (s,a) +ZZ’7 P7(s,a,s', k) max Q* (s a’) (3.5)

aIE.AsI
s’ k=1

Similarly, we can write SMDP Q-learning (Bradtke and Duff, 1995) update rules, for learn-

ing the state-multi-action value function through direct interaction with the environment:
Q" (s,a) <~ Q7 (s,a) +a |r + " max Q" (s',a) - Q7 (s,a) (3.6)
a'c Al

where r is the reward received upon completion of the multi-action a (based on the 7
termination scheme), and & is the duration of the multi-action a.
The policy associated with the continue termination scheme is a history dependent pol-

icy, since for a given state s;, the continue policy will select a multi-action such that it
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includes the set of all the primary actions of the multi-action executed in the previous de-
cision epoch that did not terminate naturally in the current state s; (we refer to this set
as the continue-set represented by h;). The continue policy is defined as the mapping
Teont © S X H — p(A) in which 7 is a set of continue-sets h,. Note that the value function
definition for the continue policy should be defined over both state s; and the continue-set
h: (represented by (sy, hy)), i.e., V™ont({sy, hy)). Let the function A(sq, hy) return the set of
multi-actions that can be executed in state s; that include the continuing primary actions in

hs. Then the continue policy is formally defined as:

7Tcont(<3t7 ht)) =arg 1max Qﬂcont(<3t7 ht>1 a)
acA(s¢,ht)

To illustrate this, assume that the current state is s; and the multi-action a; = {a1, az, as, a4}
is executed in state s;. Also, assume that the primary action a; is the first action that ter-
minates after k£ steps in state s; . According to the definition of the continue termination
scheme (that terminates based on Ty,,), the multi-action a, is terminated at time ¢ + &
and we need to select a new multi-action to execute in state s;., (with the continue-set
hirr = {as,as,a4}). The continue policy will select the best multi-action ayy that in-
cludes the primary actions {a», as, a4}, since they did not terminate in state s, (see Fig-

ure 3.3).

3.2 Theoretical Results
In this section, we present our theoretical results, establishing the correctness of the
concurrent action model, and characterizing various coordination mechanisms that we pre-

sented in the previous section.

3.2.1 Model Correctness
First, we establish that CAMs are well defined. This asserts the correctness of the

optimization problem expressed in terms of the value function equations (Equations 3.1 -
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3.6). In (Rohanimanesh and Mahadevan, 2001) we showed that the model is well defined
when the multi-actions are defined as options. Here, we prove it for the general case where
the actions are modeled as the general SMDP actions, and hence the case for the options
immediately follows from that.

According to the definition of CAM, the set of states and set of multi-actions are well
defined. We only need to establish that the multi-action transition probabilities P7 (s, a, ', k),
and the multi-action reward function R{*™, for all s,8' € S,a € S, based on various ter-

mination schemes 7 € {Tqny, Tuu } are well defined.

3.2.1.1 Correctness of the State-Prediction Model
We start by showing this for the multi-action transition probability model, for each ter-

mination scheme:

Case 1) T,,, termination scheme: T,,, termination scheme declares termination
when any of the primary actions a € a terminates. We can write this event as (assuming

that 7 = T4,y ):

P7(s,a,8 k) =& (s,a,8, k) (L= [[(1 = Bals)) (3.7)

aca

where £7 (s, a, s, k) denotes the probability of taking the multi-action a in state s and after
k steps transitioning (without termination) into state s’. The second term on the right hand
side of the Equation 3.7 denotes the probability that at least one of the primary actions
a € a terminates in state s’ (which is computed as one minus the probability that none
of them terminates in state s’). Here we used 3,(s’) to represent the probability that the
primary action a € a terminates in state s’ and it can be computed by marginalizing out the

source state (i.e., s) and the number of steps to completion (i.e., k):

Ba(s) = Zzp(s,a, s’ k) (3.8)

sES k=1
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note that P(s, a, s', k) is well defined and is independent of the termination scheme 7. Now
we show that £7(s, a, s’ k) is also well defined. We can write a recursive expression for

£7(s,a,s', k) as follows:

£ (s,a,s, k) Zf’sas k—1) I—H(l—ﬁas] {(s5a,8,1) (3.9
s;€S aca

where the first term on the right hand side denotes the probability of initiating the multi-
action a in state s and transitioning into an intermediate state s, after k£ — 1 steps (without
termination) ; the second term denotes the probability that none of the actions a € a
terminates at state s;; and the last term denotes the probability that the multi-action a is
initiated in state s; and executed for a single step, and ended up in state s’. Note that
the last term (i.e., £7(s;, a, s', 1)) is also independent of the termination scheme 7, since
it terminates deterministically after one step, and thus it is well defined. The stopping
criterion for the recursive expression in Equation 3.9 is when £ = 1. Thus, we have shown
that all the expressions are well defined and therefore P7 (s, a, s', k) is well defined for
T = Tyny-

Case 2) T,; termination scheme: T,; termination scheme declares termination
when all of the primary actions a € a terminate. This case is a little more complex, since
for any number of steps &, we have to consider every possible permutation of termination of
primary actions a € a within & steps. It can be computed based on the following recurrent

equation (assuming that 7 = T;):

(s,a,s' k) ZZ Z§ s,a,8;,1) [H(l—ﬁa(sj)

i=1a'Cas;€S aca’

P(s,(a—a’),s, (k— z’))e3 10)

The first summation runs over all intermediate steps 7 < k at which none of the primary
actions a € a terminates. The second summation comprises every subset a’ of the multi-

action a that terminates at step ¢, and the third summation runs over every possible inter-
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mediate state in which the multi-action a terminates in 7 < k steps. The first term inside
the summation denotes the transition probability that the multi-action a initiated in state s
transitions to the intermediate state s; after ¢ steps; the second term denotes the probabil-
ity that some subset of the primary actions a € a (i.e., a’) terminates at the intermediate
state s;; and the third term denotes the (k — 4)-steps transition probability of the rest of the
primary actions (i.e., (a — a’)) from state s to state s'.

In the proof of the r = T,,,, case, we established that the first and second term of
the right hand side of the Equation 3.10 are well defined. The stopping criterion for this
recurrent expression is when the set (a — a’) contains only one element (i.e., one primary
action). In that case P7(s,a = {a}, s', k — 7) is the transition probability defined over
a primary action, that is independent of the termination scheme © = T,; and also well
defined. In sum, we have shown that all the expressions are well defined and therefore

P7(s,a,s' k) is well defined for 7 = Ty.

3.2.1.2 Correctness of the Reward Model
Correctness of the multi-step reward model 3.2 immediately follows the correctness of
the transition model, since it establishes the fact that the distribution over next states given

any termination scheme 7 € {T,,,, Tau} is well defined, based on the Equation 3.2.

Theorem 3.1 (Concurrent Actions Model = SMDP): For any CAM, and any set of con-
current Markov actions defined on that CAM, the decision process that selects only among
multi-actions, and executes each one until its termination according to the multi-option
termination condition, forms a semi-Markov decision process.

Proof: For a decision process to be a SMDP, it is required to define (1) set of states, (2)
set of actions, (3) an expected cumulative discounted reward defined for every pair of state

and action and (4) a well defined joint distribution of the next state and next decision epoch.
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In the concurrent action model, we have defined the set of states and, the set of actions are
multi-actions. The expected cumulative discounted reward and joint distributions of the
next state and next decision epoch have been defined in terms of the underlying MDP. The
policy and termination condition for every option that belongs to a multi-action, and the

termination condition for a multi-action have also been defined.

3.2.2 Optimality and the Coordination Mechanisms in CAMs

In this section we present our theoretical results (Rohanimanesh and Mahadevan, 2002)
comparing the optimality of various policies under different termination schemes intro-
duced in the previous section. In all of these theorems we use the partial ordering relation
Y™ < Y™ 1 < my (Sutton and Barto, 1998), in order to compare different policies.
Note that in Theorems 3.2 and 3.4, which compare the continue policy with 7*smv and 7r*au
policies, the value function is written over the pair (s;, h;) to be consistent with the defi-
nition of the continue policy (i.e., m.on¢). This does not influence the original definition of
the value function for the optimal policies in Ty, and T,; termination schemes, since they
are independent of the continue-set h;. First, we compare the optimal multi-action policies

based on the 7, termination scheme and the 7, policy.

Theorem 3.2:  For every state s; € .S, and all continue-set h; € H,

Vﬂ'cont(<st’ ht>) < V*any(<8t, ht>).

Proof: By writing the value function definition for each case we have:

Vreont ({5, hy)) = aegl(?txht) Qo ({5, hy), @)

S max anont(<8t, ht),a)
aeA(st)

S max Q*aw«sta ht)aa)
acA(st)

= Vv ((s, he))
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The inequality holds since the maximization in 7, is over a smaller set (i.e., A(s¢, ht))

which is a subset of the larger set A(s;) that is maximized over, in the 7*emv case.

Next, we show that the optimal policy with multi-actions that terminate according to
the T4, termination scheme are better compared to the optimal policy with multi-actions

that terminate according to the T,; termination scheme:

Theorem 3.3:  For every state s € S, V*a(s) < V*any(s).

Proof: The proof is based on the following lemma which states that if we alter the
execution of the optimal multi-action policy based on T,; (i.e., w*at) in such a way that
at every decision epoch the next multi-action is still selected from #*s, but we terminate
it based on T, then the new policy-termination construct represented by (x,;, any) is
better than the 7*a policy. Intuitively this makes sense, since if we interrupt 7*a(s) when
the first primary action a; € a = w*s(s) terminates in some future state s’, due to the
optimality of 7*au, executing 7*«(s') is always better than or equal to continuing some
other policy such as the one in progress (i.e., 7*s(s)). Note that the proof is not as simple
as in the first theorem since the two different policies discussed in this theorem (i.e., 7 *env
and 7*«) are not being executed using the same termination method.

Let V;ai(s) is the value of executing the policy 7*# in state s using the termination
mechanism Ty, at every step:

Lemma l: Forevery state s € S, V*all(s) < Vil ().

any

Proof: Let Vet (s) denote the value of following the optimal 7*« policy in state
s, where for the first n decision epochs we use the T,,, termination scheme and for the
rest we use the T, termination scheme. By induction on n, we can show that V*ei(s) <

Vi (s), Vs € S and for all n. We use induction to prove Lemma 1:

n,any
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1. Induction hypothesis:

Yrail(s) < Vet (s), Vs € S (3.11)

n,any

2. Induction base: Let the primary action a; be the first primary action in the multi-
action a; that terminates at some time ¢ + k, when the multi-action a; is initiated in

state s;. \We can rewrite V*«u(s;) based on the termination of a, as follows:

V¥l (8) = B{ryp1 + Yree + oo + 7 o Y Q5 (Stqk, wiik) }

< E{rip1 + e + o+ ’Yk_thJrk + ’YkQ*“”(Sa aiyp)} (3.12)

— *all
— Y1l,any

where w; . = a; — a;. The inequality in equation 3.12 holds, because a;,, =
m*all (s4,x) 1S the optimal multi-action in state s, and thus Q*e¥(sy g, wirg) <

Q*“”(St—f—ka a:‘f_'_k) .

3. Induction step: We need to show that if:

Vrett(s) < Vyell (s), Vs € S (3.13)
then:
V7el(5) < Vit amy(5), Vs € S (3.14)
we first show that:
Vitany(8) < Vil any(s), Vs € 8 (3.15)

and then the induction hypothesis will immediately follow from that. To show the Equa-

tion 3.15 let R™ denote the partial return of following the policy 7*st(s) and for the first
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n times terminating it according to the T,,, termination event until step =, and also let &,

denotes the total number of primitive steps until ny, termination event:

Viell (s) = B{R" + "V (s,4,)}
< E{R" +y*" Vet (si1r,)}
= E{R"™" + yFntipren (s, 1)}

= Vol any(5)

where the inequality is based on the induction base. Using the induction hypothesis and

Equation 3.16 we obtain:

V*all (S) S V*all (s)

n,any

S v*all (S)

n+1,any

which completes the proof for the Lemma 1. Using Lemma 1 we obtain:

Vreti(s) < lim Yyl (s) = Vel (s) (3.16)

n,an
n—00 any

Based on the optimality of the policy «*_in the space of policies with the termination

any

mechanism Ty, and the results of the Equation 3.16, it follows:

Prail(g) < Vrall(g) < Pranv(g) (3.17)

any

which completes the proof for Theorem 3.3.

In the next theorem, we show that if we execute the 7..,: policy in which at any decision
epoch we always execute the best set of primary actions along with those ones that were
executed in the previous decision epoch and have not terminated yet, we achieve a better

return compared to the case in which we execute the best set of primary actions, but always
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wait until all of the primary actions terminate before making a new decision:

Theorem 3.4: For every state s; € S:

V*all (St) S V*cont (st)

Proof: When executing w*s policies, multi-actions are executed until all of the pri-
mary actions of that multi-action terminate. The 7*e* policy, however, may also initiate
new primary actions whenever the current multi-action terminates according to the T,
termination mechanism. First we show that for every m*s policy, there exist an equivalent
Teont POlICY. First we introduce a notation that will be used in the rest of the proof. Assume
that we are executing the policy w*a in some state s; at time ¢. Executing the multi-action
a; = m*a(s;) continues until all of the primary actions in a; terminate. Whenever a pri-
mary action terminates in some state s; , , the rest of the primary actions continue execution
until all of them are terminated. Let wyx = aj — hy s, represent the set of primary actions
that did not terminate in state s;, at time ¢ + k. The new multi-action w; will be executed
in that state until all primary actions are terminated until execution (i.e., when w;, = 0, for
some k). This is equivalent to a policy 7. that uses the T, termination mechanism, and
only let those primary actions that did not terminate to continue running (without initiating
new primary actions). Thus we have V*«(s) = Vmoni(s). But we know that the policy

m*eont s the optimal policy among continue space of policies, thus:

V*all (5) — V”rcont(s) S V*cant (S)
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which completes the proof.

Finally we show that the optimal multi-action policies based on T; termination scheme
are as good as the case where the agent always executes a single primary action at a time,
as it is the case in standard SMDPs. Note that this theorem does not state that concurrent
plans are always better than sequential ones; it simply says that if in a problem, the sequen-
tial execution of the primary actions is the best policy, CAM is able to represent and find
that policy. Let 7*sea represent the optimal policy in the sequential case, where only one

primary action can be executed at a time:

Theorem 3.5: For every state s € .S, V*=a(s) < V*au(s), in which V*s=a(s) is the value of

the optimal policy when the primary actions are executed one at a time sequentially.

Proof: It suffices to show that sequential policies are within the space of concurrent
policies. This holds since a single primary action can be considered as a multi-action
containing only one primary action whose termination is consistent with either of the
multi-action termination schemes (i.e., in the sequential case both T, and Tg; termination
schemes are same).

Corollary 1 summarizes our theoretical results. It shows how different policies in a con-
current action model using different termination schemes compare to each other in terms

of optimality.

Corollary 1:  Ina concurrent action model and a set of termination schemes

{Tany ) Tall ) Tcont}

the following partial ordering holds among the optimal policy based on 7,,,, the optimal

policy based on Ty, the continue policy (i.e., m.ont), and the optimal sequential policy:
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ﬂ-*seq S ﬂ-*all S W*cont S ,n.*any (318)

Proof: This follows immediately from the above theorems.

3.3 Experiments

In this section, we present experimental results using a grid world task comparing var-
ious termination schemes (see Figure 3.4). Each hallway connects two rooms, and has a
door with two locks. An agent has to retrieve two keys and hold both keys at the same time
in order to open both locks. The process of picking up keys is modeled as a temporally ex-
tended action that takes different amount of times for each key. Moreover, keys cannot be
held indefinitely, since the agent may drop a key occasionally. Therefore the agent needs to
find an efficient solution for picking up the keys in parallel with navigation to act optimally.
This is an episodic task, in which at the beginning of each episode the agent is placed in a
fixed position (upper left corner) and the goal of the agent is to navigate to a fixed position
goal (hallway H3).

The agent can execute two types of action concurrently: (1) navigation actions, and (2)
key actions. Navigation actions include a set of one-step stochastic navigation actions (Up,
Left, Down and Right) that move the agent in the corresponding direction with probability
0.9 and fail with probability 0.1. Upon failure the agent moves instead in one of the other
three directions, each with probability 31—0 There is also a set of temporally extended actions
defined over the one step navigation actions that transport the agent from within the room
to one of the two hallway cells leading out of the room (Figure 3.5). Key actions are defined
to manipulate each key (get-key, putback-key, pickup-key, etc). Among them pickup-key is

a temporally extended action (Figure 3.6). Note that each key has its own set of actions.
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Agent | HO

- 4 stochastic primitive actions

(Up, Down, Left and Right)

- Fail 10% of times, when fails it will
move randomly to one of the neighbors

- 8 multi-step navigation actions
(to each room'’s 2 hallways)

- One primitive no-op action

H1

- 3 stochastic primitive actions for keys
(get-key, key-nop and putback-key)

- 2 multi-step key actions (pickup-key),
one for each key

- Drop each key 30% of times when holding it

Figure 3.4. A navigation problem that requires concurrent plans. There are two locks on
each door, which need to be opened simultaneously. Retrieving each key takes different
amounts of time.

Door is closed
:
_\_ keyisready

-~ _.-{ Doorisopen

“Target
Hallway  Hallway option can betaken

Hallway option cannot be taken

Door is closed
& Outside the room
key is not ready

Figure 3.5. The policy associated with one of the hallway temporally extended actions.
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In this example, navigation actions can be executed concurrently with key actions. Ac-
tions that manipulate different keys can be also executed concurrently. However, the agent
is not allowed to execute more than one navigation action, or more than one key action
(from the same key action set) concurrently. In order to properly handle concurrent exe-
cution of actions, we have used a factored state space defined by state variables position

(104 positions), keyl-state (11 states) and key2-state (7 states). In our previous work we

Primitive action "get-key" A

Primitive action "key-nop"

Primitive action "putback-key"  _______ -
Multi-step action "pickup-key" .
1 1 0.7 1 1

Figure 3.6. Representation of the key pickup actions for each key process.

showed that concurrent actions formed an SMDP over primitive actions (Rohanimanesh
and Mahadevan, 2001), which turns out to hold for all the termination schemes described
above. Thus, we can use SMDP Q-learning (Bradtke and Duff, 1995) to compare con-
current policies over different termination schemes with the use of this method for purely
sequential policy learning (Sutton et al., 1999). After each decision epoch where the multi-
action a is taken in some state s and terminates in state s’, the following update rule is
used: Q(s,a) + Q(s,a) + o [r + v* maxwcas) Q(s', ') — Q(s,a)], where k denotes
the number of time steps since initiation of the multi-action a at state s and its termination
at state s’, and r denotes the cumulative discounted reward over this period. The agent is

punished by —1 for each primitive action.
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Figure 3.7. Moving median of number of steps to the goal.

Figure 3.7 compares the number of primitive actions taken until success, and Figure 3.8
shows the median number of decision epochs per trial, where for trial n, it is the median of
all trials from 1 to n. These data are averaged over 10 episodes, each consisting of 500, 000
trials.

As shown in Figure 3.8, concurrent actions over any termination scheme yield a faster
plan than sequential execution. Moreover, the policies learned based on T,y (i.e. both
¥y and 7o) are also faster than Ty;; . Also, w*e»v achieves higher optimality than 7.,
however the difference is small.

We conjecture that sequential execution and T, converge faster compared to T,,,
due to the frequency with which multi-actions are terminated. As shown in Figure 3.8,
T.u makes fewer decisions, compared to Tg,,. This is intuitive since Ty, terminates only
when all of the primary actions in a multi-action are completed, and hence it involves less
interruption compared to learning based on T,,,. Note m..,: converges faster than m*emv

and it is nearly as good as Tgy,. . We can think of 7., as a blend of T; and 7,,, . Even
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Figure 3.8. Moving median of number of multi-action level decision epochs taken to the
goal.

though it uses the 7,,,, termination scheme, it continues executing primary actions that did

not terminate naturally when the first primary action terminates, making it similar to 7,;; .

3.4 Concluding Remarks

In this chapter we introduced a a general framework for modeling the concurrent deci-
sion making problem based on semi-Markov decision processes. The agent is given a set of
primary actions that can be parallelized parallel (consisting of primitive actions, and also
actions temporally extended actions). A multi-action is a subset of primary actions that
the agent executes concurrently. We introduced different concurrent action coordination
mechanisms to determine the termination of a multi-action.

We theoretically established that the model is well defined and is in fact a generaliza-
tion of SMDPs for performing concurrent activities. We also presented theoretical results
characterizing the optimality of the agent’s behavior based on various coordination mecha-

nisms. Our experiments back up the set of theoretical results that we presented throughout
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this chapter. However, as it can be observed from the experimental results, even in a sim-
ple grid world example that contains few hundred states and a few concurrent actions, the
standard SMDP learning and planning methods take hundreds of thousands of step in order
to learn the optimal behavior.

Although in our experiments we did not employ more powerful RL learning algorithms
(such as TD methods (Sutton, 1988; Boyan, 1999) augmented with function approximation
techniques (Bertsekas and Tsitsiklis, 1997; Sutton and Barto, 1998)), the computational
complexity of such algorithms theoretically remain intractable as the system admits more
degrees of concurrency. In the following chapters, we introduce a set of techniques in order

to alleviate this problem.
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CHAPTER 4

COARTICULATION: AN APPROACH FOR SOLVING THE
CONCURRENT DECISION MAKING PROBLEM

In Chapter 3 we introduced a general framework for modeling the concurrent decision
making problem. Benefiting from the abstractness of the model, we were able to charac-
terize this class of problems in terms of a set of general theoretical results. In particular
we studied various concurrent coordination mechanisms and theoretically demonstrated
how such mechanisms partition the space of policies over concurrent actions into a set of
equivalent classes of policies, each associated with a different degree of optimality. Thanks
to Theorem 3.1 — where we proved CAMs are essentially SMDPs — we can now model
any concurrent decision making problem theoretically as a CAM and use standard SMDP
learning and planning methods to solve it.

Unfortunately such standard solutions do not scale to many concurrent decision mak-
ing problems, when they require large numbers of activities to be executed concurrently.
Even in a simple simulated domain with few hundred states and few concurrent actions, it
can take hundreds of thousands of iterations for the standard SMDP learning and planning
methods to converge to the optimal policy (see Figure 3.7 in Chapter 3). In order to alleviate
this problem, we first need to take a step back and study the specific properties of concur-
rent decision making which make it theoretically difficult to scale to larger domains. We
conjecture there are several reasons that CAMs cannot cope with large concurrent decision
making problems:

e The curse of dimensionality incurred by the combinatorial space of concurrent activ-

ities. In general, the agent can execute any subset of its acquired skills concurrently, which
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renders the space of the concurrent actions exponential in the set of skills available to the
agent. It is known that the complexity of planning in MDPs and the complexity of the
near optimal reinforcement learning methods are polynomial in the set of states and actions
(Papadimitriou and Tsitsiklis, 1987; Kearns and Singh, 1998) and thus such algorithms do
not scale as the size of the problem exponentially grows in terms of both state and action
spaces.

e CAMs ignore the exploitable reward structure that is present in many concurrent deci-
sion making problems. Many such problems can be viewed as a multi-objective optimiza-
tion problem. In general it is intuitive to approximate the overall goal of such problems in
terms of a function decomposable in the set of subgoals, each with a different level of pri-
ority. This view has also a long history in multi-attribute utility theory (Keeney and Raiffa,
1993), and also in multi-objective control (Nakamura, 1991; Grupen, 2006) in robotics.
It has also been explored in the context of multi-criteria reinforcement learning (MRL)
(Gabor et al., 1998) where the optimization criteria are expressed via a vector of reward
signals.

Interestingly, this property can also be observed from the empirical results that we pre-
sented in Chapter 3. The experimental results show that by overlaying the decision epochs
on activity completion events (for example, in T,,, termination mechanism the decision
epochs are points in time at which any activity terminates, or in T,; termination mecha-
nism the decision epochs are points in time at which all activities in progress terminate),
performance significantly improves. The experimental results with T..,,tinue alSO support
the fact that activity completion is a prominent factor in the overall performance of the
agent. This suggests that the system can be intuitively viewed as a multi-objective opti-
mization problem, in which each activity optimizes a subgoal of some sort in the problem.

e In many problems (in particular multi-objective optimization problems) there is no
simple way to express the optimization objective as a function of a single scalar reinforce-

ment signal (Gabor et al., 1998). This can also be observed in many concurrent decision

50



making problems. For example in a driving task, we perform various concurrent activi-
ties, such as safely navigating the car, drinking coffee, and so on (this example is further
elaborated in Section 4.2). In general, it is not known how to design a single scalar reward
function that captures various aspects of this type of optimization problem. Here, we do not
argue against scalar-valued representation for the reward signal in this class of problems.
In fact the agent may have an intrinsically motivated reward representation (Singh et al.,
2004) in such problems. However, discovering the details of such a representation remains
as a challenge in biological and artificial agents.

e From a task-independent agent-environment interaction perspective, in the life span
of an agent the subgoals are not known a priori. As the agent continues to operate in its
environment, new subgoals are introduced dynamically. In some cases, we may not be
aware of the existence of some subgoals which may be introduced later in the problem. For
example, an infant learns how to grasp an object in the absence of many other constraints
that later on may actually influence the performance of that particular skill. Yet he is
able to employ almost the same skill as he ages and gains more awareness about many
different conditions in his surrounding environment. It is unrealistic and impractical to
either form a general learning problem that takes into account every possible combination
of the present/future subgoals, or to define a new learning problem for every combination
of subgoals without caching out the previously acquired skills in some way. In general
we tend to reuse our previously learned skills (Singh et al., 2004) and intelligently modify
them when we are faced with a new task.

Based on these intuitions, in the rest of this chapter we introduce an approach (Rohan-
imanesh et al., 2004a,b) to cope with some of the issues that we discussed above. In our
approach, we pose the concurrent decision making problem as an multi-objective optimiza-
tion in which the overall objective is expressed in terms of a set of prioritized subgoals of

the problem. We will demonstrate that concurrency is then naturally generated when the
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skills for achieving the individual subgoals interact and compete for limited/redundant set
of resources in the system.

Abusing the terminology, by coarticulation we refer to a general class of the prob-
lems in which an agent simultaneously commits to multiple objectives, inspired by the
phenomenon of coarticulation in speech and motor control research. The key idea in our
approach is that in many goal-oriented activities — in addition to the optimal policy — often
there exists a redundant set of policies that guarantee progressing toward the goal state,
with a cost of a slight deviation from optimality. Such flexibility enables the agent to select
a policy that simultaneously progresses toward multiple subgoals of the problem.

We argue that coarticulation is a natural way for generating concurrency for several rea-
sons. First, the overall objective in many concurrent decision making problems can actually
be viewed as concurrent optimization of a set of prioritized subgoals. Second, because of
the multiplicity of DOFs in the system, learned activities/skills offer more flexibility in
terms of the range of redundant goal-progressing policies associated with them. For ex-
ample in driving, while the best policy for safely navigating the car would be to control
the wheels using both arms, by exploiting the extra DOFs in our body we can perform the
same task near-optimally by engaging one arm for controlling the wheels and releasing the
other arm for committing to other subordinate subgoals such as drinking coffee. However,
the key advantage of coarticulation in concurrent decision making lies in its efficient search
within the exponential space of concurrent actions. The action selection mechanism in this
approach (described later in this chapter) is restricted to those that progress toward the sub-
goals associated with each activity. This interactive search enables the agent to perform
the search in a much smaller sub-space of concurrent actions with a controllable cost in
optimality.

Figure 4.1 shows an abstract view of the coarticulation as a means for generating par-

allel execution plans. When the system admits a redundant set of goal-progressing policies
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for every subgoal of the problem, by exploiting the multiplicity of DOFs, coarticulation

leads to concurrency in the system in general.

Policy redundancy
Coarticulation based on
multiple DOFs

Figure 4.1. Coarticulation among a set of subgoals, for which there exists a redundant set
of goal-progressing policies due to the multiple degrees of freedom in the system, leads to
concurrency.

The rest of this chapter is organized as follows: In Section 4.1 we briefly overview
the coarticulation framework as studied in speech and motor control communities. In Sec-
tion 4.2 we formally describe the coarticulation problem in MDPs. Section 4.3 we describe
redundant controllers as the building blocks in our coarticulation model. Sections 4.4 and
4.5 describe the sequential and coarticulation algorithms. In section 4.6 we present a set of
theoretical results characterizing the performance of the coarticulation approach in compar-
ison with the performance of an agent that achieves the subgoals with a strong sequential

constraint. Finally we present our empirical results in a simulated domain in section 4.7.

4.1 Coarticulation: An Overview
Divide an conquer is one of the most effective strategies of solving problems in intelli-
gent systems (Russell and Norvig, 2002). We often solve a problem by decomposing it into

a sequence of subtasks and then we generate the overall solution by combining the local
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solutions to each subtask. In general how we solve each subtask is highly context sensitive
and is influenced prominently by the set of past and future subtasks.

Coarticulation is best understood in the context of speech synthesis. A standard method
of analyzing human speech is to divide it into its constituent linguistic elements, which
are the basic blocks of speech called phonemes. Speech words and phrases are produced
by concatenating phonemes. Synthesizing speech from individual phonemes, however,
can result in discontinuous and sometimes unintelligible sounds. The transitions between
phonemes that occur naturally during speech production are often missing in synthesized
speech. The effect of these transitions is known as the coarticulation phenomenon, the
overlap of an articulation with its neighbor (Kent and Minifie, 1977; Abbs et al., 1984).

Coarticulation phenomenon can be also observed in motor control. Complex move-
ments are generally thought to consist of a series of simpler elements. It can be argued
that a coarticulation mechanism enables the sensorimotor system to assemble the move-
ment segments to produce a smooth motion. Examples of this form come from studies of
the arm configuration for a three dimensional target tracking task (Breteler et al., 2003)
where the human subjects are to perform arm movements to various targets placed in three-
dimensional (3D) space. Each task consists of single, double, or triple segments in which
the first segment was the same across the tasks but with different second targets. It was
observed that the final arm posture consistently depended on which particular movement
was to follow as the second segment. This provided evidence for coarticulation of the two
segments at the level of arm posture.

Jordan (1990) also developed a model for motor learning with an emphasis on problems
involving excess degrees of freedom. The model consists of an internal predictive model
(referred to as a forward model) and a set of intrinsic constraints such as smoothness, dis-
tinctiveness and rest configuration, on motor learning. Experiments on a manipulator with
six degrees of freedom showed that by using the smoothness constraint, the model uses the

excess degrees of freedom to anticipate and manifest other actions.
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Other studies of coarticulation in human motor control include recruitments of finger
patters when playing piano (Engel et al., 1997), playing violin (Baader et al., 2005), or
sequential typing (Soechting and Flanders, 1992). In all of these studies evidence of coar-
ticulation can be observed where the patterns of finger recruitments consistently depend on
the previous and subsequent notes, or letters in the sequence.

In all of the above examples we can observe a strict order of sequentiality among the
basic blocks of the control systems (phonemes, or basic arm movements). For exam-
ple in speech synthesis phonemes cannot completely overlap, or in piano playing, non-
overlapping notes should be played according to the strict ordering presented in the music
sheet. However the control mechanism for generating each basic elements can preshape
or slightly overlap. This phenomenon can be more clearly observed in a class of problems
that allow for complete overlap of control actions. In such problems the strict sequential-
ity constraint is relaxed to a partial ordering constraint, allowing two or more actions be
performed concurrently. One clear example of this form of coarticulation is known as pre-
shaping for prehension (Jeannerod, 1981; Hoff and Arbib, 1993). When learning to reach
for grasping an object, the subject learns to open his hand while moving his arm toward the
target. A similar phenomenon is observed in control systems with excess degrees of free-
dom (DOF), such as bi-manual coordination (Wiesendanger and Serrien, 2001). In such
problems we use one hand to perform one task, and use the other to commit to the next
subtask (e.g., reaching and opening a drawer with one hand, while taking out an object
from the drawer with the other hand).

In reaching and grasping example, other forms of of coarticulation could also be in-
corporated, for example the way we position our hand for grasping a tool, may depend
on the next subtask, or how we plan to use it. This form of coarticulation is known as
prospective coding, or anticipatory activity studied in (Johnson and Grafton, 2003; Cohen

and Rosenbaum, 2004).
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4.2 Coarticulation and Concurrent Decision Making

In the previous section we briefly overviewed various forms of coarticulation. Of par-
ticular interest is the form of coarticulation with the relaxed assumptions on the strict order
of sequentiality of the control actions, which would enable the agent to simultaneously
commit to multiple subgoals of the problem. In addition if the system admits multiple
DOFs, coarticulation can serve as a basis for generating concurrency in the system.

In this section, we develop a decision theoretic framework by extending CAMs for
studying this form of coarticulation. To motivate our approach, consider the life span of
an agent. The agent is constantly performing learning and planning based on the set of
current and future tasks introduced in the system. The agent also constantly acquires new
skills from each learning experience (Iba, 1988; McGovern and Barto, 2001; Pickett and
Barto, 2002; Simsek and Barto, 2004). Even when the agent is not faced with a specific
task, it may continue acquiring useful task-independent skills by exploring the environment
(Simsek et al., 2005; Singh et al., 2004). Such skills are cached in and later are reused by
the agent when it is faced with a new task.

We can think of such acquired skills as the basic blocks of the control system (same as
phonemes in speech synthesis, or reaching to grasp skill in human) for performing coar-
ticulation. Given an instance of a new problem — which can be expressed approximately
in terms of the concurrent optimization of a set of subgoals — we coarticulate among the
subgoals and efficiently modify the skills that we have learned for achieving them. As a re-
sult we produce a more natural course of action when solving a problem. This is illustrated
further in the following examples:

Example 4.1 — Drinking Coffee and Running: We have developed skills, such as
drinking coffee that involves holding the coffee cup, and drinking without spilling the cof-

fee on the ground or burning ourselves. We have also learned how to run, possibly in the

1This example was brought up during a conversation with Richard Sutton.
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absence of many other subtasks such as drinking coffee. Yet we are able to perform both
tasks simultaneously, and reasonably well 2,

Example 4.2 — Driving: Consider a driving task where we have acquired skills such
as safely navigating the car, drinking coffee, talking on cell phone, etc. We can perform
such tasks in parallel without impacting the overall performance too severely. We can
observe a form of coarticulation in this example that exploits the many DOFs in our bodies
to generate concurrency. Due to multiplicity of DOFs in our body, each subgoal can be
achieved in many different ways. For example we can control the wheels optimally by
both hands, or near optimally by one hand. In some cases we may totally disengage our
hands from the wheels for a short amount of time in order to put on our overcoat if the
road is clear and safe. Such redundancy in the space of goal progressing policies enables
us to commit to other subgoals. For example, if suddenly we feel like having coffee, by
coarticulating between the subgoal of navigating the car and the subgoal of drinking coffee,
we may choose to release one hand from steering wheels and use it for holding a cup of
coffee. Note that in this case the generated policy simultaneously makes progress toward
both subgoals, although it may not behave optimally with regard to an individual subgoal
(for example controlling the wheels by one hand is not as safe as using both hands).

Based on these intuitions, we introduce a framework based on CAMs for modeling
coarticulation in concurrent decision making problem. Given a concurrent decision making

problem modeled by a CAM, we introduce COART as a tuple®:

2Note that although in this dissertation we have not explicitly addressed learning based on coarticulation,
our framework does not rule out the learning process. We believe that learning is an ongoing process and
inseparable from the life-span of an agent. For example even though by coarticulation we can quickly fi nd
areasonable initial policy when performing running and drinking coffee the performance initially may not
be close to the optimal behavior. From there, we continue learning until we perform this task optimally. In
Chapter 6, we present a set of ideas for exploring this problem for future investigation.

3Thismode! also capturesthe form of coarticulation when the agent executes non-concurrent actions. This
is based on the fact that a sequential model can be represented as a CAM with multi-actions of cardinality
one.
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COART £ (S, A4,P,Q,A,R,T,T,<)

where S, A, P, T are the same as in the base CAM (refer to Chapter 3). The rest of the
components of the model are as follows:

e O = {w;,ws,...,wn} are a set of subgoals, each representing a minimum cost-to-
goal problem. Recall that we assumed that the overall objective in a CAM can be approxi-
mated in terms of concurrent optimization of a set of subgoals. For theoretical reasons, in
this dissertation we focus on minimum cost-to-goal subgoals, as they also represent a large
class of optimization problems.

e A = {01,0,...,0n}areasetof stimulisignals indicating what subgoals are presently
active. Stimulus 9;, for example, indicates whether or not the subgoal w; is currently in-
troduced in the system (in driving task, d..yfe. is an indicator of whether the driver opts
to drink coffee, and é..; is an indicator of a present call received on the phone, for ex-
ample). Note that some stimuli signals are external to the agent and are controlled by the
environment (such as a phone call).

o R = [r1,72,.-.,7m|T € R™ is a vectored-valued reward signal, where r; is a reward
function optimizing the subgoal w; of the problem. We deliberately use the notation R to
emphasize that it expresses an approximation of the reward signal R in the original CAM.

Note that since each subgoal w; models a minimum cost-to-goal problem, we have:
Vi, 1 <1 < m,r, <0
o T = [e1,6,...,6n]|T is a vector of flexibility parameters. A flexibility parameter
0 < ¢ < 1 gives a measure of admissible near-optimality with respect to the subgoal w;

(we will give a more precise description of these parameters when we introduce the value

function).
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e <, is a binary relation that specifies the order of priority among subgoals. The expres-

sion:

w; < wj

should read: subgoal w; subject-to the subgoal w; (taken from (Huber, 2000)) which ex-
presses that the subgoal w; has a higher priority than the subgoal w;. A priority ranking
system is then specified by a set of relations {w; < w;}. The relation « is reflexive, transi-
tive, and anti-symmetric. Without loss of generality, we assume that given a set of subgoals

Q = {wi,ws, .. .,wn}, the following set of relations holds:

wj; < Wy, Iﬁlfj

Given a policy 7, the value of a state s can be defined as a vector given by:

V() = [V(s), V5 (s), ..., Vn(s)]"

where V7 (s) is the local value of state s with respect to the subgoal w; under the policy .
In order to define the optimization objective (the optimal value function), we need to
define a total ordering of the vectored value functions, taking into account the order of
priority, and also the flexibility parameters. We introduce the total order (that is reflexive,
anti-symmetric, transitive, and trichotomous) <} as follows:
Definition 4.1: Giventwo vectorsV = [V, Vs, ..., VT and W = W, Ws, ..., W, [T,
the total order V <X W is defined as:

—lex

oif Vi, 1 <i<m, V;=W,, thenV =L W
or
oif Vi, 1<i<m, V,<W,thenV <t W
or

e thereexists1 < j < m, suchthat Vi, 1 <i<j:
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LW, >Vioriy, <w; <V

2. Vj+1 < Wj+1

then V <X, W.

A simple interpretation of the above relation would be as follows: given two vectored
value functions, we prefer the one that achieves the most number of subgoals based on the
order of priorities among the subgoals, and the flexibility parameters Y. Note that since
each subgoal w; models a minimum cost-to-goal problem, all values in a vectored value

function are negative. Thus, the expression:
Eivi(S) > Wl(S)

states that the value V;(s) is within an acceptable optimality loss with respect to the value
Wi;(s) in state s. In other words, V;(s) is within an acceptable optimality loss with respect

to the value W (s), if we have:
1
G—WZ(S) < Vz(S) < W,(S)

Note that when T = [1,1,...,1], the relation <[ turns to the standard lexicographic
ordering in a multi-criterion reinforcement learning (Gabor et al., 1998) setting.
The relation < is an extension of the lexicographic ordering when we take into ac-

count flexibility measure expressed in terms of the parameters T = [e1, €2, ..., €m|*. The

optimal value function can then be defined as:

Viea(s) = sup, V'(s)
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and the optimal policy is represented by:

m.(s) =arg sup, V(s)

Note that in general 7}, may not optimize all the subgoals simultaneously, although it
optimizes the maximum possible number of subgoals based on their priority levels. To

illustrate this further, let:

Viea(8) = V1(8), V5 (5), -, Vi (8)] (4.1)

where V}(s) denotes the optimal value of state s with respect to the subgoal w;. Then V.,

is bounded by V. :

Vl*ex(s) Szx ]}l*e:c (S) (42)

We now describe an approach based on coarticulation for approximately solving the
above optimization problem. We assume that the agent has access to a set of controllers
C = {C,Cs,...,Cn}, Where the controller C; is modeled as a minimum cost-to-goal sub-
goal option (Precup, 2000) associated with the subgoal w; € € in the COART model.
We interchangeably use the subject-to relation for specifying the order of priority among

controllers:

Cj < Cz', Iffw]' < Wi

Returning to the examples 4.1 and 4.2, we can think that each controller models a general
purpose skill that the agent has learned in its life span. At different points in time, a set of
stimuli signals {41, d2, . . ., 0, } are activated. Then the agent initiates the set of controllers

{C1,Cs, - ..,Cp} concurrently until they terminate according to the termination mechanism
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T". At this time the system checks for the new set of stimuli signals and repeats the above
process. Each time a controller C; arrives in its goal state, it resets the stimuli signal §;.

In general optimal policies of controllers do not offer flexibility required in order to
commit to many subtasks. However, there exists a special class of admissible near-optimal
policies that guarantee making progress toward the goal in every state of the problem on
average. Given a controller, an admissible policy is either an optimal policy, or a policy
that ascends the optimal state-value function associated with the controller (i.e., on average

leads to states with higher values), and is not far from the optimal policy.

Figure 4.2. (a) actions a, b, and c are ascending on the state-value function associated
with the controller C, while action d is descending; (b) action a and ¢ ascend the state-
value function C; and C, respectively, while they descend on the state-value function of the
other controller. However action b ascends the state-value function of both controllers.

To illustrate this idea, consider Figure 4.2(a) showing a two dimensional state-value
function. Regions with darker colors represents states with higher values. Assume that
the agent is currently in state marked s. The arrows show the direction of state transition
as a result of executing different actions, namely actions a, b, ¢, and d. The first three
actions lead the agent to states with higher values, in other words they ascend the state-
value function, while action d descends it. Figure 4.2(b) shows how introducing admissible
policies enables simultaneous solution of multiple subgoals. In this figure, actions a and
c are optimal in controllers C; and C, respectively, but they both descend the state-value

function of the other controller. However if we allow actions such as action b, we are
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guaranteed to ascend both value functions, with a slight degradation in optimality. In this
example, by choosing action b we are coarticulating between both tasks while the first
task takes precedence over the second task. The ascendancy property of policies in MDPs
was first introduced by Perkins (2002) in the context of Lyapunov functions (Vincent and
Grantham, 1997). We use a similar concept when we select the optimal value functions as
the Lyapunov constraints themselves.

In the following sections we introduce a mathematical framework for modeling the
above form of coarticulation. This involves developing a model for representing each coar-
ticulatory controller and the flexibility they offer, together with a coarticulation algorithm
that enables the agent to concurrently commit to multiple subgoals, each associated with a

controller.

4.3 Redundant Controllers

In our approach for modeling coarticulation, we assumed that the agent has access
to a set of acquired skills, each represented an SMDP controller. More formally, we use
subgoal options (refer to Section 2.3.2) for modeling such skills. For generality, throughout
this dissertation we refer to subgoal options simply as controllers. Also, for theoretical
reasons, in this dissertation we assume that each controller optimizes a minimum cost-to-
goal problem. An MDP M modeling a minimum cost-to-goal problem includes a set of
goal states S C S. We also represent the set of non-goal states by Sq = S — Sq. Every
action in a non-goal state incurs some negative reward and the agent receives a reward of
zero in goal states. A controller C is a minimum cost-to-goal controller, if M. optimizes
a minimum cost-to-goal problem. The controller also terminates with probability one in
every goal state.

In order to perform the form of coarticulation that we described in Section 4.2, each
controller is required to offer some degree of flexibility, in terms of a class of policies

that is admissible with respect to the optimization of the subgoal associated with that con-
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troller. For example, in driving, we may incorporate different policies such as controlling
the wheels by both hands, or by only one hand, where the latter is not optimal. In many
problems there might exist multiple optimal policies, but in general this set often offers
limited flexibility required for concurrently committing to many subgoals. One way to in-
crease the flexibility of a controller is to extend the set of admissible optimal policies from
the optimal policies to those that ascend the value function and are not far from the optimal
behavior (see Figure 4.2):

Definition 4.2: Given an MDP M = (S, A,P,R), a function L : S — IR, and a

deterministic policy 7 : S — A, let:

p'(s) = B, _pre{L(s")} — L(s) (4.3)

where E_ y{.} is the expectation with respect to the distribution over next states given

1 prE
the current state and the policy . Then 7 is ascending on L, if for every state s (except for
the goal states if the MDP models a minimum cost-to-goal problem) we have p™(s) > 0. A
policy = is called ascending on M, if and only if 7 is ascending on V* in M.

For an ascending policy 7 on a function £, function p : S — IR gives a strictly positive
value that measures how much the policy 7 ascends on £ in state s. A deterministic policy
7 is descending on L, if for some state s, p™(s) < 0. In general we would like to study how
a given policy behaves with respect to the optimal value function in a problem. Thus we
choose the function £ to be the optimal state value function (i.e., V*). The above condition
can be interpreted as follows: we are interested in policies that in average lead to states
with higher values, or in other words ascend the state-value function surface.

Note that Definition 4.2 is closely related to the Lyapunov functions introduced in
(Perkins, 2002; Perkins and Barto, 2001b,a). In fact, the ascendancy property of an as-

cending policy emerges naturally from the constraints imposed by a Lyapunov function

L(s) = V*(s).
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The minimum and maximum rate at which an ascending policy in average ascends V*

are given by:

Definition 4.3: Assume that the policy = is ascending on the optimal state value
function V*. Then = ascends on V* with a factor at least «, if for all non-goal states
s € Sq, p"(s) > a > 0. We also define the guaranteed expected ascent rate of 7 as:
K™ = min,c 5, p"(s). The maximum possible achievable expected ascent rate of 7 is also

given by n™ = max,c 5, p"(s).

One immediate problem with ascending policies is that Definition 4.2 ignores the im-
mediate reward which the agent receives. For example it could be the case that as a result
of executing an ascending policy, the agent transitions to some state with a higher value,
but receives a huge negative reward. This can be counterbalanced by adding a second con-

dition that keeps the ascending policies close to the optimal policy:

Definition 4.4: Given a minimum cost-to-goal problem modeled by an MDP M =
(S, A, P,R), adeterministic policy = is e-optimal on M if it satisfies the following condi-

tion:

Vs €8,Q(s,7(s)) € [LV'(s) V() (4.4)

Note that because M models a minimum cost-to-goal problem, all values are negative.
Definition 4.5: Given a minimum cost-to-goal problem modeled by an MDP M =
(S, A, P,R), a deterministic policy 7 is e-ascending on M if it satisfies the following

conditions:

1. Ascendancy: = is ascending on V*
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2. e-optimality: = is e-optimal on V*

Here, e measures how close the ascending policy  is to the optimal policy. For any e,
the second condition assures that the ascending policy  is not far from the optimal policy.
Naturally we often prefer policies that are e-ascending for e values close to 1. In section
4.6 we derive a lower bound on e such that no policy for values smaller than this bound is
ascending on V* (in other words e cannot be arbitrarily small). Similarly, a deterministic

policy = is called e-ascending on C, if 7 is e-ascending on M.

Remark 4.1: Given a minimum cost-to-goal problem modeled by an MDP M =
(S, A,P,R), the optimal policy 7* is e-ascending on V* for v = 1 and all ¢ € (0,1].

Based on the Bellman optimality equation we have:

V(s) = B, _pro{Ru + 4V (s)}
= ES’N'P:*(S) {R;rs*’(S)} + PYES’NP‘;"* (=) {V* (S,)}

< ’yES,NP;r*(s) {V* (S')}

= ES,NP:*(S) {V* (S')}

(4.5)

The inequality holds because ES,NPW*(S){’RE;(S)} < 0 (since M is a minimum cost-to-goal
problem, all rewards are negative). This satisfies the first condition. The second condition

is also satisfied since for any optimal policy 7* we have Q*(s, 7*(s)) = V*(s).

Remark 4.2: Given a minimum cost-to-goal problem modeled by an MDP M =
(S, A, P,R) with a discount factor v # 1 the optimal policy is not necessarily an as-
cending policy on M. This immediately follows the fact that the equality in the last step of

the Equation 4.5 may not hold for all values of +.
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Figure 4.3. Example of an MDP in which the optimal policy is not ascending for some
value of ~.

Figure 4.3 shows an example of a deterministic MDP in which the optimal policy is not
ascending on the optimal state value function. All actions (a, b, ¢, and d) are deterministic.
The arcs are labeled by the action and the immediate reward that the agent receives a a result
of executing the action. The agent receives a reward of —1 in the goal state (marked by G)
and does not change state afterward. Using a discount factor v = 0.5, we can compute the

value function for every state:

VH(G) = =2, V*(S;) = -2, V*(Ss) =—1.5, V*(S;)=-17

The optimal policy in state S; is to choose action a, but it causes a transition to state S,
that has a lower value than state S;. However, action c causes a transition to state S; that
has a higher value than state S;.

Definition 4.6: Given a minimum cost-to-goal controller C, a deterministic policy  is
e-ascending on C, if 7 is e-ascending on the MDP M associated with the controller C.

Definition 4.7: A minimum cost-to-goal controller C is an e-redundant controller if
there exist multiple deterministic policies that are either optimal, or e-ascending on C. We
represent the class of of such policies by x&.

In Definition 4.3 we introduced the minimum and maximum ascent rates for an individ-

ual ascending policy 7. Given an e-redundant controller we can define the minimum and
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maximum ascent rates of the controller by taking the minimum and maximum ascent rates
across the class of e-ascending policies the controller admits.

Definition 4.8 Let C be a minimum cost-to-goal controller. The minimum ascent rate
of C is defined as & = ming¢ye ™ . Similarly, the maximum ascent rate of C is defined as
7 = maXzexe 0"

Similarly, we can extend the concept of ascendancy to the vectored value functions V;;,
in the COART model:

Definition 4.9 Given a COART model M, a set of controllers {Cy,Cs, ..., C,,} defined
over M, and a Vector €., = [e1, €2, - - ., €m]” Where ¢; € (0, 1], a deterministic policy  is

€1ez-ascending on f);;w(s), if for every state s either of the following relationship holds:
1. ¢ =0,0r

2. ¢ # 0, and the policy 7 is ¢;-ascending on V}(s)

4.3.1 Computing the e-redundant Set
Given the optimal value function of a controller C, we can compute the e-redundant
set of policies in every state s. The main computations are verifying Ascendancy and e-

optimality conditions (Definition 4.3). Algorithm1 summarizes these steps.

4.4 Sequential Algorithm (No Coarticulation)

Before we present our algorithm for performing coarticulation among a set of priori-
tized subgoals, we outline a sequential algorithm that runs the controllers in a sequence
back-to-back according to their order of priority. Whenever a controller of a higher prior-
ity terminates in some state s the next controller with the highest priority is invoked in that
state until all the controllers are terminated. We refer to such policy as the sequential policy

represented by 7., Which provides the trivial sequential solution to the problem.
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Algorithm 1 Function ComputeRedundantSets(s, ¢)

Inputs:
s \\ Current state
Q*(s,a)
€ \\ The flexibility afforded by the controller C (0 < e < 1)
Outputs:
A<(s) \\ e-redundant set in state s
1 A%(s) « 0
2. for all a such thata € A(s) do
3: Check Eg . ps{V*(s")} — V*(s) >0 \\\ Ascendancy condition
4. Check Q*(s,a) > 1V*(s) \\ e-optimality condition
5: If both conditions hold, add the pair a to A¢(s)
6: end for
7. Return A%(s) \\ Return the e-redundant set

Algorithm 2 Sequence(s, C1,Cs, . ..,Cp)

Input: current state s; set of prioritized controllers C;.
Initialize: currentState = s
2. fori=1,2,...,ndo
if currentState € I¢, then

4 Execute the optimal policy of the controller C; until it terminates in a goal state
Wi
currentState + w;
6: end if
end for
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We primarily use the sequential policy generated by the algorithm 2 as a basis for eval-

uating the performance of the coarticulation algorithm that we present in the next section.

45 Coarticulation Algorithm

In this section, we present an algorithm for performing coarticulation among a set of
prioritized subtasks Q = {w1,ws,...,wn} such that w; <w; if and only if j < i (refer to
the problem definition that we presented in Section 4.2). We assume that each subgoal w; is
modeled by an e-redundant controller C;. The objective is to devise a policy that maximizes
the number of subgoals committed at every step. Assume that the current state of the agent
is s. Each controller C; admits a class of policies represented by a redundant-set .A¢ (s) in
state s. We select an action that is admissible to the subordinate controllers, constrained by

the admissible policies with regard to the superior controllers.

Figure 4.4. A visualization of the action selection mechanism in Coarticulate algorithm.

The general idea of our algorithm is visualized in Figure 4.4. We first take the inter-
section of the redundant sets of the two top controllers (i.e., Az, (s) and Ag (s)). Then
we continue intersecting the resulting set with the third controller, fourth controller, and
so on. At each step, if the intersection is empty, we skip over that controller and move to
the next subordinate controller. In Figure 4.4 the intersection of the redundant sets of the
superior controllers becomes empty with the controller C5. Thus the algorithm skips over

the controller C3 and computes the intersection with the next subordinate controller, e.g. Cs.
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After scanning through all the controllers in a decreasing order of priority, the algorithm
returns an action from the set of actions that maximizes the number of committed subgoals.

Algorithm Coarticulate summarizes the above steps in more detail:

Algorithm 3 Coarticulate(s, C1,Cs, .. .,Cp)

Input: current state s; set of controllers C;; redundant-sets ¢ (s) for every controller
Ci-
Initialize: Uy = A,
fori=2,3,...,ndo

Ui=Ui 1 NAG

if U; = 0 then

Ui=U;i1

end if
end for
returna € U,

In this algorithm, U;(s) represents the ordered intersection of the redundant-sets AZ’J
up to the controller C; (i.e., 1 < 5 < 1) constrained by the order of priority. In other words,
each set U;(s) contains a set of actions in state s that are all ¢;-ascending with respect to
the superior controllers Cy,C,,...,C;. Due to the limited amount of redundancy in the
system, it is possible that the system may not be able to commit to some of the subordinate
controllers. This happens when none of the actions with respect to some controller C;
(ie,, a € AZ’J (s)) are e-ascending with respect to the superior controllers. In this case
the algorithm skips the controller C;, and continues the search in the redundant-sets of the
remaining subordinate controllers. The complexity of the above algorithm consists of the

following costs:

1. Computational cost of computing the redundant-sets A¢, for controller C; which is
linear in the number of states and actions (assuming that we have access to the opti-

mal value function):

O(|S[1A]) (4.6)
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2. Computational cost of performing the coarticulation algorithm (Algorithm 3) in ev-

ery state s, which is:
O((m — 1) (max | Az(s))) (4.7)

where m is the number of subgoals.

Note that while the computational complexity of computing the redundant-sets is poly-
nomial in the set of states and actions (Equation 4.6), the computational complexity of the
coarticulation approach is only polynomial in the size of the redundant-sets (Equation 4.7).
In general the size of the redundant-sets are considerably smaller than the original size
of the concurrent action space. Furthermore, we can always select a feasible subset of
redundant-sets and perform the coarticulation algorithm tractably.

It is worth to note that the action selection mechanism based on the algorithm Coartic-
ulate can be thought of the Lyapunov-constrained action selection approach described in
(Perkins, 2002; Perkins and Barto, 2001b,a), when the optimal value functions of the con-
trollers are selected as the Lyapunov functions themselves. In the next section, we theoret-
ically analyze redundant controllers and the performance of the policy merging algorithm

in various situations.

4.6 Theoretical Results

In this section, we present a set of theoretical results (Rohanimanesh et al., 2004a,b)
characterizing e-redundant controllers, in terms of the bounds on the number of time steps
it takes for a controller to complete its task, and the performance of the coarticulation
algorithm. To simplify our theoretical analysis, we assume that in all of the theorems the
discount factor is set to one (i.e., ¥ = 1). This renders the set of all optimal policies to be
ascending policies on the optimal state value function (refer to Remark 4.1). Note that since

all the MDPs model minimum cost-to-goal problems, they can be considered as episodic
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tasks that terminate with probability one in a goal state and thus the convergence properties
of the algorithms for learning the optimal state value function for the choice of v = 1 is
preserved.

In section 4.3 we stated that there is a lower bound on e such that there exist no e-
ascending policy for values smaller than this bound. In the next theorem we compute this

lower bound:

Theorem 4.1: Let M = (S, A, P,R) be a minimum cost-to-goal MDP and let = be

Vinazl \where V* . =

[V min

an e-ascending policy defined on M. Then ¢ is bounded by ¢ >

)
min'

mines, V°(5) and Vi, = max,cs, V*(s).

Proof: Since 7 is an e-ascending policy, we have Vs € S, B, -« {V*(s')} — V*(s) >
0, and Q*(s,m(s)) > 1V*(s). By rearranging the terms in the latter, first we obtain
—€Q*(s,m(s)) < —V*(s). Then we substitute it for V*(s) to obtain E, .« {V*(s')} —
e Q*(s,m(s)) > 0. Thus:

Swes PaPVe(s!)
Q*(s, 7 (s))

o s P Vs |

V;Laa: | Zs’es P:*.TS(’S)
v

€>|

(4.8)

note that since M models a minimum cost-to-goal problem, we have V.. < V.. <0,
and ‘ V:;zm |Z‘ V:;Laa: ‘

Such a lower bound characterizes the maximum flexibility we can afford in a redundant
controller and gives us an insight on the range of e values that we can choose for it. In the

second theorem we derive an upper bound on the expected number of steps that a minimum
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cost-to-goal controller takes to complete when executing an e-ascending policy:

Theorem 4.2: Let C be an e-ascending minimum cost-to-goal controller and let s de-
note the current state of the controller. Then any e-ascending policy = on C will terminate
the controller in some goal state with probability one. Furthermore, termination occurs in

average in at most [ 2-(¢)

“;1(5)1 steps, where x™ and ™ are the mini-

mum and maximum ascent rates of the policy .

Proof: We first present the following lemma:

Lemma 4.1: Let C be a minimum cost-to-goal controller and let = be an e-ascending pol-

icy on C. Then for any non-goal state s, there exists a state s’, such that P, > 0 and

V*(s') > V*(s).

We prove the lemma by contradiction. Let H be the set of states s’ € S such that
7, > 0 (note that >~ ., P. P™) = 1) and assume that Vs' € H, V*(s') < V*(s). Also

let W = maxg ey V*(s'). Then we have:

P(s) = By _pro{V'(s)} = V'(s)
— Z P:SIS)V*(S,) _ V*(S)

s'eH

< S PIEIW - V(s)
s'€H (4.9

_WZ y2

s'cH
=W —V*(s)

<0

this gives p™(s) < 0 which contradicts the fact that = is an e-ascending policy on C.

Now we present the proof for Theorem 4.2. Since C terminates only in goal states, we

only need to show there exists a goal state s, € Sq such that Pfs > 0, where PE, is the
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multi-step transition probability (Precup, 2000) that gives the probability of executing 7¢ in

state s until it terminates in state s’. Based on Lemma 4.1, there exists a path (s, s1, . . ., sp)

such that P, > 0, and the sequence (V*(s), V*(s1), ..., V*(s,)) is monotonically in-

creasing. Thus in the limit V*(s,) = V*(s,) for some goal state s,, = s, and thus we have

Pg,, > 0. Note that at every step the value of a state increases by ™ in average, thus in
—V*(s)

average it will take at most [ —-*/] steps for s,, in the sequence (s, s1, . .., s,) to converge

KT

to some goal state s,. Similarly, in average it will take at least [#’;(S)} steps for s,, in the

sequence (s, sy, .. ., s,) to converge to some goal state s,.

Based on Theorem 4.2, we can define a measurement of time for completion of an e-
ascending policy 7 being initiated in some state s. By completion we refer to the event of
arriving in goal state:

Definition 4.10: Given a minimum cost-to-goal M, and an e-ascending policy 7 on
M, let u.(s) denote the expected time of arriving in a goal state in M, when 7 is initiated

in a state s.

It is easy to verify that this time is bounded by:

—V*(s)

777[' K’Il'

[

Similarly, we can define a measurement of time for achieving the subgoal associated
with a controller in any state s:

Definition 4.11 Let C be a minimum cost-to-goal e-redundant controller. The worst
expected time for completion of C in a state s is defined as:

re(s) = 20
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and the best expected time for completion of C in a state s is defined as:

_ (V)
oc(s) = [ 7 |

This result assures that the controller arrives in a goal state and will achieve its goal
in a bounded number of steps. We use this result when studying performance of running
multiple redundant controllers in parallel. Next, we study how concurrent execution of two
controllers using Algorithm Coarticulate impacts each controller (this result can be triv-

ially extended to the case when a set of m > 2 controllers are executed concurrently):

Theorem 4.3: Given an MDP M = (S, A,P,R), and any two minimum cost-to-
goal redundant controllers {C;, C>} defined over M, the policy = obtained by Algorithm
Coarticulate based on the ranking system {C, < C;} is e;-ascending on C;(s). Moreover,
if Vs € S, A (s) N AZ (s) # 0, policy = will be ascending on both controllers with the
ascent rate at least k™ = min{x™, k™ }.

This theorem states that merging policies of two controllers using Algorithm Coarticu-
late would generate a policy that remains e;-ascending on the superior controller. In other
words it does not negatively impact the superior controller.

Proof: Since C, < Cy, Algorithm Coarticulate will always select an action from the set
AZ (s). Thus the resulting policy remains e;-ascending on C;. When we have Vs €
S, Az (s) N AZ(s) # 0, then the policy generated by Algorithm Coarticulate is e;-
ascending with respect to the controller C; and e;-ascending with respect to the controller

Cs, and thus it ascends both V{(s) and V;(s) with an ascent rate at least min{x™, k™ }.
In the next theorem we show that the coarticulated policy obtained by performing the

Algorithm Coarticulate over a set of e-redundant controller {C;,C,, ...,C,} is ascending

on V*(s). This intuitively implies that the policy generated by this algorithm will even-
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tually achieve all the subgoals associated with the controllers according to their degree of
significance. We also establish lower and upper bounds on €;,:

Theorem 4.4: Given an MDP M = (S, A, P, R), and a set of minimum cost-to-goal
controllers {Cy, C, ..., C,,} defined over M, let 7 denote the policy obtained by perform-
ing the Algorithm Coarticulate based on the ranking system {C; <« C;|¢ < j}. Then 7 is

€1ec-ascending on Vy. _(s). Moreover, we have:
E;Z;in < €lex < G;Z;w

Where €in = [€1, 0, ..., 0] and €qee = [e1, €2, - . ., €m]”.

Proof: The worst case for the Algorithm Coarticulate takes place when it can only optimize
the controller with the highest priority, i.e., C1. This happens when A¢. N AZ = 0,Vi # 1.
In this case = will be selected from the class of e-ascending policies of Cy, thus = is €;-
ascending on V; (s). Based on Definition 4.9, this implies that the policy 7 is e/ ascend-

ing on V;.(s), where e/* = [¢;, 0, ..., 0]7. The best case for the Algorithm Coarticulate
takes place when it can optimize all of the controllers in state s (i.e., N2, Ag. # 0). In this
case the policy 7 will be ¢;-ascending on V/(s) for all 1 < i < m. Based on Definition 4.9,

(s), where €79% = [e1, €3, .. ., €m]”.

lex

this implies that the policy = is €3* ascending on V.,
In the next theorem, we establish bounds on the expected number of steps that it takes
for the policy obtained by Algorithm Coarticulate to achieve a set of prioritized subgoals
w = {wi,...,wn} by concurrently executing the associated controllers {Cy,...,Cn}:
Theorem 4.5: Let ¢ = {C;,Cs,...,Cy} be a set of minimum cost-to-goal ¢;-redundant
(¢ = 1,...,m) controllers defined over MDP M. Let the policy 7...-: denote the policy
obtained by Algorithm Coarticulate based on the ranking system {C; <« C;| iff i < j}.
Let pcoart () denote the expected number of steps for the policy 7. fOr achieving all the
subgoals {w;, ws, . . ., wn, } associated with the set of controllers, when it is initiated in state

s. Then pieoar¢(s) is bounded by:
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where 7, is the maximum expected ascent rate for the controller C; (see Definition 4.3),
is the set of sequences h = (s,ws,ws, . ..,wsy) IN Which w; is a goal state in controller C;
(i.e., w; € Sq,). The probability distribution P, (h) = P& [T, PSi_ . Over sequences
h € H gives the probability of executing the set of controllers in sequence based on the
order of priority starting in state s (i.e., executing the policy ., obtained from Sequence
algorithm), and observing the goal state sequence (w1, . .., wp).

Proof: Based on Theorem 4.3, when Algorithm Coarticulate always finds a policy 7 that
optimizes all controllers (i.e., Vs € S,NZ, AZ (s) # 0), policy meoars Will ascend on all
controllers. Thus in average the total time for all controllers to terminate equals the time
required for a controller that takes the most time to complete which has the lower bound of
maxc, [%}S)] . The worst case happens when the policy generated by Algorithm Coarticu-
late can not optimize more than one controller at a time. In this case it always optimizes the
controller with the highest priority until its termination, then optimizes the second highest
priority controller and continues this process to the end in a sequential manner (which is
equivalent to the ., policy). The right hand side of the inequality given by Equation 4.10
gives an upper bound for the expected time required for all controllers to complete when
they are executed sequentially.

Note that the upper bound right in Equation 4.10 is not exactly equal to the expected
time that would take for the policy ., obtained from the algorithm Sequence to achieve
all the subgoals, although it still provides an upper bound for this time. Although Theorem
4.4 provides bounds for both m.er¢ aNd 74,4, it does not establish theoretically guaranteed
better performance for the coarticulated policy over the sequential policy. In the next set of
our theoretical results we express conditions under which the coarticulated policy performs
better, or strictly better than the sequential policy. First we limit the scope of the class of

admissible policies in a controller only to the redundant set of optimal policies it admits
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(i.e., e-ascending policies with e = 1). Next theorem, demonstrates that in such controllers
the coarticulated policy will be at worst performing as good as the sequential policy. For
simplicity we only consider two prioritized subgoals. The results can be extended to more
than subgoals similarly:

Theorem 4.6: Assume ¢ = {Cy1,Cs} is a set of prioritized minimum cost-to-goal 1-
redundant (i.e., e = 1) controllers defined over MDP M with a ranking system {Cs < C; }.
Let the policy 7., denote the policy obtained by performing the algorithm Sequence, and
let the policy 7.+ denote the policy obtained by performing the algorithm Coarticulate.

Assuming that the current state of the system is s, the following conditions hold:
e (@) The policy moqr+ achieves the subgoals in time no worse than the policy 7s,.
e (b) If the following conditions are satisfied:

1. Ineverystates’: Ag (s") N A (s') #0

2. Inthe current state s:  we, (s) > 7¢,(s)

then the policy 7..q-+ achieves the subgoals in average in time strictly better than the

policy myeq.

Proof: To prove the first part, note that the worst case of the Algorithm Coarticulate
takes place when A} (s') N AL, (s') = 0 forall s € S. In this case meoqr ONly optimizes
C: until it terminates in some subgoal of C;, and then subsequently optimizes C,. Thus
Teoart = Tseq aNd therefore in the worst case, the policy 7.+ achieves the subgoals in
average in time no worst than the policy 7.

To prove the second part, let fi.0q-¢(S) and puseq(s) respectively denote the expected
number of steps for the policies 7.4+ and 7y, for achieving all the subgoals {wy, ws}
associated with the set of controllers, when it is initiated in state s. The first condition
implies that at any state both controllers will be optimized by 7....¢:. Based on the second

condition (i.e., we, (s) > 7¢,(s)), this implies that 7 .4+ Will achieve C, while committing
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to Cy, thus the time required for completion of 7.4, IS bounded by the worst expected time

to achieve C;:

Ncoart(s) = My (S)
< g (8) + phrg (w1)

= Iseq(8)

note that the right hand side is the expected time of completion for the policy s 4. This is
indeed true since we have limited the class of ascending policies only to the set of redundant
policies, thus any policy selected by Algorithm Coarticulate is an optimal policy with
respect to each controller.

Recall that we are interested in e-redundant controllers that represent a class of policies
larger than the set of redundant optimal policies in order to offer more flexibility. Note that
when we execute an e-ascending policy for e # 1, at every step we deviate from optimality.
Thus we need a measurement of loss of optimality for such policies.

Proposition 4.1 The expected maximum loss of optimality incurred by executing any

e-ascending policy in an e-redundant controller C, in some state s is bounded by:

1—c¢
€

1>

LOSSc(s) —( YV*(s)

This can be verified directly from the e-optimality (Definition 4.4) property of any e-
ascending policy. Based on the Proposition 4.1, we can compute bounds for the expected
loss of optimality when an e-ascending policy is executed until it terminates in some goal
state.

Proposition 4.2 Let 7 be an e-ascending policy in a minimum cost-to-goal e-redundant

controller C. Let loss,(s)* represent the expected loss of optimality as result of execution

4We use lower case letters for representing the expected loss of optimality, and upper case letter for
representing the maximum loss of optimality.
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of 7 in some state s until termination in some goal state in M. Then loss,(s) is bounded

by:

—V*(s)

K‘rr

—V*(s)

LOSS¢(s) [ 1 < lossy(s) < LOSSe(s) [

|

Recall that according to the Theorem 4.2, the policy 7 being initiated in state s will ter-

minate in some goal state on average in at most [ 2.7 steps and at least [— V' (s)

| steps,
where k™ and n™ are the minimum and maximum ascent rates of the policy . According
to the Proposition 4.1, at every step the loss of optimality is bounded by LOSS.(s). This
is true for all the subsequent states, since 7 is an ascending policy and all the subsequent
states visited as the result of executing , in average have larger values than V*(s), and
since all the values are negative, V*(s) has the largest absolute value among all. Therefore
the expected loss is bounded by the time taken for completion multiplied by the maximum
loss of optimality in every time step.

Recall that any e-redundant controller C represents a class of e-ascending policies.
Based on Proposition 4.2, we can derive bounds for the expected loss of optimality that
characterizes the optimality of the controller:

Proposition 4.3: Let C be an e-redundant controller defined over a minimum cost-to-
goal MDP M. Let lossc(s) represent the expected loss of optimality as result of execution
of any e-ascending policy = € x§ in some state s until termination in some goal state in

M. Then loss¢(s) is bounded by:

lc(S) < |OSSc(S) < Lc(S)

where:

lc(S) = LOSSc(S) Uc(S)

Lc(S) = LOSSC(S) Tc(S)
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This can be easily verified from the bounds provided by the Proposition 4.2, and the
fact that 7¢(s) and o¢(s) represent the worst and best expected time of completion of the

controller C being initiated in state s respectively (see Definition 4.9).

Theorem 4.7: Assume ¢ = {C;,Cs} is a set of prioritized minimum cost-to-goal e-
redundant controllers defined over MDP M with a ranking system {C5<C; }. Let the policy
Tseq denote the policy obtained by performing the algorithm Sequence, and let the policy
Teoart deNote the policy obtained by performing the algorithm Coarticulate. Assuming that
the current state of the system is s, the policy 7..q.¢ IS Strictly more optimal than the policy

Tseq If the following conditions hold:
1. Ineverystates’: Ag (s') N AL (s) # 0
2. Inthe current state s:  we, (s) > 7¢,(s)

3. Inthecurrentstate s:  L¢,(s) < lc,(s)

Proof: Let f.0art(s) and puseq(s) respectively denote the expected number of steps for
the policies 7 .q-+ and 7, for achieving all the subgoals {w;, w,} associated with the set
of controllers, when it is initiated in state s. Following the proof of the Theorem 4.6, the
first condition implies that at any state both controllers will be optimized by 7...:. Based
on the second condition (i.e., we, (s) > 7¢,(s)), which implies that 7.,q-: Will achieve C,
while committing to Cy, thus the time required for completion of 7...¢ IS bounded by the

worst expected time to achieve C;:

Heoart (S) < /'Lseq (S)

where the right hand side is the expected time of completion for the policy 1ise,. If the third
condition holds, the loss incurred by the execution of the policy 7..q-: Will be compensated

by optimizing both subgoals concurrently and hence 7 oqr¢ Will be strictly more optimal
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than the policy 7.

4.7 Experiments

In this section, we present experimental results analyzing redundant controllers and the
performance of the Coarticulate algorithm described in section 4.5. Note that in this set
of experiments, we do not explicitly address the concurrent decision making, and we focus
more on evaluating the general form of coarticulation in MDPs. In the next chapter, we
solve a concurrent decision making problem using a simulated platform.

Figure 4.5(a) shows a 10 x 10 grid world where an agent is to visit a set of prioritized
locations marked by Gy, ..., G,, (in this example m = 4). The agent’s goal is to achieve

all the subgoals according to their degree of significance in the shortest amount of time.

G

Figure 4.5. A 10 x 10 grid world where an agent is to visit a set of prioritized subgoal
locations.

We model this problem by an MDP M = (S, A, R, P) , where S is the set of states
consisting of 100 locations in the room, and A is the set of actions consisting of eight
stochastic navigation actions (four actions in the compass direction, and for diagonal ac-
tions). Each action moves the agent in the corresponding direction with probability p and

fails with probability (1—p) (in all of the experiments we used success probability p = 0.9).
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Upon failure the agent is randomly placed in one of the eight-neighboring locations with
equal probability. If a movement would take the agent into a wall, then the agent will
remain in the same location. The agent also receives a reward of —1 for every action ex-
ecuted. We assume that the agent has access to a set of controllers C, ..., C,,, associated
with the set of subgoal locations Gy, ..., G,,. A controller C; is a minimum cost-to-goal
subgoal option C; = (M,,,Z, 3), where M., = M, Z includes any locations except for

the subgoal location, and 3 forces the option to terminate only in the subgoal location.

4.7.1 e-ascending policies

First, for every controller C; we compute the set of admissible policies. Figure 4.6(a)
shows the optimal policy of the controller C; (navigating the agent to the location G,).
Figures 4.6(b) and 4.6(b) show the class of e-redundant policies for e = 0.95 and ¢ = 0.90
respectively. Note that by reducing e, we obtain a larger set of admissible policies although

less optimal.
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Figure 4.6. (a) The optimal policy associated with the subgoal Gy; (b) The class of e-
ascending policies for e = 0.95; (c) The e-ascending policy for e = 0.90.
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4.7.2 Performance

In this set of experiments, we study the performance of the coarticulation algorithm
in the above grid-world problem. Our results compare the performance of the following
approaches:

e Sequential: We use Sequence (Algorithm 2) where we achieve the subgoals of the
problem by sequentially executing the controllers associated with them.

e Coarticulate: We use the coarticulation framework based on the algorithm Coartic-
ulate (Algorithm 3) for solving the problem.

In the first set of experiments, we fixed the number of subgoals. At the beginning of
each episode the agent is placed in a random location, and a fixed number of subgoals (in
our experiments m = 4) are randomly selected. Next, the set of admissible policies (us-
ing e = 0.9) for every subgoal is computed. Figure 4.7(a) shows the performance of both
planning methods, for every starting location in terms of number of steps for completing
the overall task. The concurrent planning method consistently outperforms the sequential
planning in all starting location.

Next, for the same task, we measure how the performance of both methods varies by vary-
ing €, when computing the set of e-ascending policies for every subgoal. Figure 4.8 shows
the performance of both methods and Figure 4.9 shows the average number of subgoals
committed by the agent — averaged over all states — for different values of e. In this experi-
ment, we varied e from 0.6 to 1.0. All of these results are also averaged over 100 episodes,
each consisting of 10 trials.

Note that for e = 1, the only admissible policy is the optimal policy and thus it does not
offer much flexibility with respect to the other subgoals. This can be also seen in Figure 4.9
in which the policy generated by the merging algorithm for e = 1.0 has the minimum
commitment to the other subgoals. As we reduce ¢, we obtain a larger set of admissible
policies, thus we observe improvement in the performance. However, the more we reduce

€, the lesser optimal admissible policies we obtain. Thus, the performance degrades (here
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Figure 4.7. Performance of both planning methods in terms of the average number of steps
in every starting state.

we can observe it for the values below ¢ = 0.85). Figure 4.9 also shows by relaxing
optimality (reducing ¢), the policy generated by the merging algorithm commits to more

subgoals simultaneously.

4.7.3 Performance: Varying the Number of Subtasks

In the final set of experiments, we set e to 0.9 and varied the number of subgoals from
m = 2 tom = 50 (all of these results are averaged over 100 episodes, each consisting of 10
trials). Figure 4.10 shows the performance of both planning methods. It can be observed
that the concurrent method consistently outperforms the sequential method by increasing
the number of subgoals.

Figure 4.11 shows the difference between the two plots in Figure 4.10 which demon-
strates by increasing the number of subgoals, the performance of the concurrent method

improves over the sequential method. This result is backed up by Figure 4.12 which shows

86



25

Coarticulate ———
24 + -
»w 23t .
o
9
L oL i
D)
[@)]
@
o 21+t 8
>
<
20 | .
19 + .

.7 0.75 0.8 085 0.9 095 1

Epsilon

0.55 0.6 0.65 0O

Figure 4.8. Performance for different values of .

by increasing the number of subgoals introduced in the problem, the average number of

subgoals simultaneously committed by the concurrent method increases.

4.8 Concluding Remarks

In this chapter, we introduced an approach for alleviating the curse of dimensionality
in concurrent decision making. The key idea in our approach is based on the fact that in
many complex concurrent decision making problems, the overall objective is intuitively
decomposable in terms of concurrent optimization of a set of simpler subgoals of the prob-
lem. We argue that concurrency naturally emerges from concurrent optimization of such
subgoals when the system admits a redundant set of resources that could be simultaneously
allocated for achieving them. Thus rather than posing the problem as a learning problem
with an exponentially large set of concurrent actions — which is intractable for every possi-

ble combination of subgoals— we assume that the agent generates parallel execution plans
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Figure 4.9. Average number of subgoals concurrently committed for different values of e.

by dynamically combining a set of previously acquired skills, each designed for achieving
a subgoal of some sort.

We used the term coarticulation to refer to our approach because of the similarities it
bears with the coarticulation phenomenon in motor control research. We introduced the
redundant controllers which serve as the building blocks of the coarticulation framework.
Each controller represents a class of ascending policies which represent the degree of flex-
ibility that such controllers afford. We presented algorithms for computing such policies
and for performing coarticulation in a general class of problems that also encompass the
class of concurrent decision making problems.

We also showed that while the computational complexity of computing the redundant-
sets is polynomial in the set of states and actions (Equation 4.6), the computational com-
plexity of the coarticulation approach is only polynomial in the size of the redundant-sets
(Equation 4.7). In general the size of the redundant-sets are significantly smaller than the
size of the set of all concurrent actions. Theorem 4.1 also states that the size of a redundant-

set does not arbitrarily grow as we reduce the flexibility parameter e. Thus by choosing a
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Figure 4.10. Performance of the planning methods in terms of the average number of steps
in every starting state.

feasible size for the redundant-sets, we can tractably perform coarticulation in every state
of the problem.

We also presented a set of theoretical results characterizing each controller, and also an-
alyzing the performance of the coarticulation algorithm in terms of the established bounds
on the time required for the algorithm to accomplish the goals of the problem. In par-
ticular in Theorem 4.4, we showed that our coarticulation algorithm (Algorithm 3) gen-
erates a policy that is ascending on V;: _(s) and thus it finds an approximate solution for
the COART model. We also presented a theorem (Theorem 4.7) that derives conditions
under which coarticulation approach is theoretically proven to outperform the sequential,

or non-coarticulated solutions.
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CHAPTER 5
SCALING COARTICULATION TO LARGE DOMAINS

In the previous chapter we introduced a decision theoretic framework for modeling a
form of coarticulation in a class of problems where the problem objective can be expressed
in terms of concurrent optimization of a set of prioritized subgoals. We demonstrated that
coarticulation can be viewed as one natural way for generating concurrency in the system.
At the heart of the coarticulation framework lies the e-redundant controllers which serve
as the basic blocks for performing coarticulation. Each controller represents a class of
redundant e-ascending policies and offers an affordable degree of flexibility for achieving
a subgoal of some sort. Such flexibility enables the agent to simultaneously commit to
multiple subgoals, while committing more strongly to those of higher priority. As a result,
when a system offers redundancy based on the multiplicity of DOFs, by coarticulating
among the subgoals of a problem, it can generate parallel execution plans for achieving
them.

In Chapter 4 we showed that the Coarticulate algorithm (Algorithm 4.3) alleviates the
curse of dimensionality in concurrent decision making. The computational costs of the
coarticulation framework are due to two major steps:

e The computational costs of computing the redundant-sets of e-ascending policies for
the set of coarticulatory controllers (Algorithm 1). The computational complexity of this
step is polynomial in the set of states and the set of concurrent actions in the system (Equa-
tion 4.4.6).

e The computational costs of performing coarticulation (Algorithm 3). We showed that

this complexity is quadratic in the size of the redundant-sets (Equation 4.4.7).
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Although by applying coarticulation we reduced the intractable exponential complexity
to a tractable quadratic complexity for finding an approximate solution, the complexity
of computing the redundant-sets remains intractable (i.e., the computational complexity of
this step is still exponential in the set of primitive skills that the agent possesses). In the rest
of this chapter we present approximate algorithms for scaling the coarticulation framework

to such problems.

5.1 Approximate Algorithmsfor Performing Coarticulation

In order to perform coarticulation for solving a concurrent decision making problem,
we first need to design a set of redundant controllers. Each controller is parametrized by
the parameter ¢, which controls the flexibility offered by the controller and identifies a class
of e-ascending policies in the controller. Computation of the set of e-ascending policies (or
equivalently, the redundant-sets) is the key step of the coarticulation approach.

In Chapter 4 we described an algorithm for computing the redundant-sets in a controller
(Algorithm 4.4.6) when the agent has access to the optimal state value function that opti-
mizes the subgoal associated with a controller. Briefly, the computation of this step involves
verifying the Ascendancy, and e-optimality conditions (Equations 4.3 and 4.4 in Chapter 4)
for every action, in every state of the controller. As we discussed in the introduction, this
is impractical when there exists an exponentially large number of concurrent actions. Fur-
thermore, assuming that we have access to the true optimal value function of a controller
is also unrealistic. This is because the standard RL methods without any generalization
techniques cannot also cope with the curse of dimensionality in the action space.

In order to address this challenge, we employ function approximation techniques (Bert-
sekas and Tsitsiklis, 1997; Sutton and Barto, 1998) for computing an approximate value
function. By exploiting the generalization offered by such approximation techniques, we
present a set of techniques for compactly computing the redundant-sets (Rohanimanesh

and Mahadevan, 2005). The key idea in our approach is rather than verifying the Ascen-
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dancy and e-optimality conditions for an exponential set of concurrent actions — which is
intractable — we only verify them for the top h concurrent actions that have the top h best
state-action values in every state s. We demonstrate that for a certain class of value function
approximation methods — namely the linear function approximation — our approximate al-
gorithm computes the top h concurrent actions with computational complexity logarithmic
in h, and the computational complexity polynomial in h for performing the coarticula-
tion algorithm. The parameter h is an input parameter which can be tuned to balance the
tradeoffs between the computational complexity and the flexibility of the controller.

More formally, let C be an e-redundant controller defined over an MDP M modeling a
concurrent activity. To develop a representation of a concurrent action, we assume that set
of concurrent actions A are described via a set of discrete action variablesa = {a;}?_ ;. For
clarity, we use bold-face letters for referring to a concurrent action (e.g., a), and a normal
form when referring to one of the constituent action elements (e.g., a; € a). Each action
variable a; takes on discrete values from some finite domain Dom(a;). Without loss of

generality, we assume that:

Va; € a, |Dom(a;)| =d

We also use the notation a to refer to a particular assignment of the action variables a; € a.
By exploiting the action structure in this model, we can use function approximation
techniques (Bertsekas and Tsitsiklis, 1997; Sutton and Barto, 1998) in order to learn an
approximation of the optimal state-action value function. In particular, we are interested in
a class of function approximation methods known as the linear function approximation. As
we will demonstrate later in this section, the linear additive nature of such approximation
techniques could be efficiently exploited for compactly computing the redundant-sets.
Assume that the optimal state-action value function Q* associated with the controller C
is approximated using linear function approximation techniques and admits the following

linear additive form:
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Q (s, {ai}iny) = Q(s,a)

m (5.1)
= Z Qi(S, lli)

=1
where each Q;(s,u;) is a local basis function defined over the set of states s and a subset
of action variables u; C a.

This form of approximation is based on the intuition that although in general value
functions might not be structured, there are many domains that admit exploitable additive
structure (Koller and Parr, 1999). In general it is intuitive to linearly approximate the value
of a state in terms of the set of subgoals achieved at that state. This view of value function
has also a long history in multi-attribute utility theory (Keeney and Raiffa, 1993), and in
particular seems very suitable for the concurrent decision making problem.

By exploiting such additive structure of the approximate state-action value function,
we describe a tractable algorithm (Rohanimanesh and Mahadevan, 2005) for computing
the redundant-sets, as the key component for performing coarticulation. We introduce an
operator T'B which returns the top h maximum values and the assignments to the set of the
action variables {a; € a} for a function Q*(s, a):

Definition 5.1: Let F represent the space of all state-action value functions Q*(s, a)
defined over the set of states s € S and a set of action variables represented by a =

{ai, as, ..., a,}. We introduce an operator:
Iy:F— (RxN")"

where T2 (Q*(s,a)) returns the top h maximum values of Q*(s, a) and the top h assign-
ments to the set of action variables a, that achieves each value. Note that each action a can
be expressed in terms of a set of assignments to its n constituent actions variables which
takes on discrete values from a finite domain {0, 1, ..., d}. Thus the operator T'® returns h

pairs, where each pair consists of a vector a € IN™ and its value.
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By exploiting the additive structure of the approximate state-action value function (Equa-
tion 5.1) we can use an algorithm in spirit similar to the variable elimination algorithm in
Bayesian networks (Jordan and Bishop, 2002) and efficiently compute T® (Q*(s,a)). Our
approach is inspired by the action selection algorithm introduced in (Guestrin et al., 2002)
that actually solves the special case for h = 1 (i.e., '}, which is the standard max, oper-
ator). It is also closely related to the problem of finding the h most probable configurations
in probabilistic expert systems (Nilsson, 1998).

The key idea is by exploiting the additive structure of the state-action value function,
rather than summing all local functions and then performing the T2 operator, we per-
form it over one variable one at a time. At every step we use only summands that involve
the eliminated variable. For example, consider the following state-action value function

defined over a set of action variables a = {a,, as, as}:

Q* (S, a) = Q* (S, ai, a, as)

= Ql(sa al) + Q2(S)a1a a2) + Q3(S)a2)a'3)

by propagating the T® operator through the additive structure of the function, and per-

forming the variable elimination algorithm we obtain:

Fh{al,az,as} (Q*(S, ai, az, a3)) =
Fh{al,az,as} (Ql(sa al) + Q2(S) ay, 0,2) + Q?)(S) a2, 0,3)) -

Fh{al} (Q]_(S,(l]_) @ F?GQ} (Q2(Saa1)a2) S F?as} (Q3(S,a2,0,3))))

At every step, when an action variable is eliminated, for every setting of the non-
eliminated variables that are involved in the corresponding summands, a set of top h best
values and the assignment to the eliminated variable is returned. In the above example,
when the action variable a3 is eliminated, the local operation returns the top h best values of
Qs(s, az, az) and the corresponding assignment to a3, for every value of the non-eliminated

action variable a,.

95



Note that in the above equation, we used the special sum operator &, because at each
elimination step the summation is performed over many-to-one functions that return the
top h maximum values of the past elimination steps. We then need to perform a cross-
summation across different sets of size h each pertaining to a past elimination step in order
to obtain the updated top h maximum values, as a result of the elimination of the next
variable. Note that in the special case of h = 1, the & operator turns into the standard
plus operator, and no cross-summation is required, because each elimination step returns

only one maximum value.

Algorithm 4  Function TR

Inputs:
s \\ Current state
Yo Qi(s,wy) \\ @* function
{ai} \\\ Elimination order
h \\\ Number of top max elements
Outputs:
(a;, vi)l4 \\ Top h assignments and values
1 Let F = {Q;(s,w)}, \\ set of summands

2: while not all variables eliminated do

3 Pick the next variable a;

4: Extract all summands {#,} from F

that involve a;

Perform: H; < &({#,})
Eliminate a; from #; to obtain #,
Add#H; to F

end while

o N o g

The above procedure is summarized in Algorithm 4. The key computational steps are
the steps 5 and 6 of this algorithm. Before describing the details of these two steps, first we
introduce some useful notation. Let 7 (w) denote a one-to-many mapping defined over a
set of variables w. Figure 5.1 shows a tabular view of this function, and demonstrates the
details of the computations performed in the step 5 of the Algorithm 4. For every setting of
variables w, it returns the sorted top h values and assignments to the subset of eliminated

variables from the previous steps (tables 7'(w) in Figure 5.1).
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5.1.1 The Cross-Summation Step (Function &)

Before the elimination algorithm starts, we can represent each summand Q;(s, u;) as
some function #;(u;) (to simplify notations, we omit the state s from the notations), where
every assignment of the variables @; is mapped to a single value Q;(s, @;). Assume that the
algorithm is at iteration ¢, where the variable a; is selected for elimination. Let {#;}5_,
be the set of summands that involve the variable a;. Also let y; denote the rest of the
variables involved in {#;}¥_, that are connected to a;, and let w; = y; U {a;}. As shown
in Figure 5.1, for every setting of variables w; summand #; returns a sorted top h values
and also the assignments to a subset of past eliminated variables (represented as tables
T;(w;)). There are k such tables and we need to compute the top h maximum values from
the set of all cross summations of & elements, one from each table T;(w;).

There are h* such values and a naive approach would first compute the whole h* sum-
mations, and then extract the top h maximum values, with the computational complexity

of:
O(h*(k — 1) + hilog(h))

where the first term denotes the complexity of computing the summations, and the second
term denotes the complexity of sorting these values. However considering that each table
is sorted, we can perform the above computation more efficiently. Rather than summing
all the values across all tables, we perform the summation over two tables at a time, and
extract a new table with the top h maximum values of the pairwise table summation. We
then repeat it for the rest of the tables. When performing the pairwise cross summation
over two tables, we only need to perform the summation only over the top v/h elements
from each table, since the tables are sorted. The computational complexity of this approach

is:
O((k—1)(h+h log(h))) (5.2)
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where (k — 1) denotes the total number of times the above procedure is performed for k
tables. Each time, there are (v/h)? = h summations to be performed to produce a local
list of top h elements. However this list is not sorted, therefore applying a standard sort
algorithm, it adds an additional complexity of h log(h) for every step. The final sorted list

of top h elements are stored in a new function #;(w;) for the setting w;.

5.1.2 The Variable Elimination Step

The details of the computations of step 6 of the Algorithm 4 are demonstrated in Fig-
ure 5.2. Note that step 5 returns a newly introduced function 7 (w;) that involves the
variable a;. The elimination takes place in step 6. First, a new function #~(y;) is intro-
duced that involves only the variables connected to a; (i.e., y;). Every setting y; is mapped
to d tables (where | Dom(a;)| = d), each for one assignment of the variable a;. Each table
contains the top h values and settings for a subset of eliminated variables in the previous
steps. We need to extract the top h values across these tables. There are d sorted tables of
size h, and we can extract the top h values across them with the computational complexity

of:

O(h . d) (5.3)

The new set of values are then stored in the function #; (y;) for the setting y; (see Fig-

ure 5.2).

5.1.3 Computational Complexity

The main computational costs are due to the steps 5 and 6 of Algorithm 4. The compu-
tational complexity of the step 5 of the algorithm is O (h*(k—1)+hlog(h)) (Equation 5.2),
and the computational complexity of the step 5 of the algorithm is O(h . d) (Equation 5.3).

This yields the overall computational complexity of:
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Figure 5.1. Visualization of step 5 of the Algorithm 4. Each function H; returns a sorted
table of size h. From cross summation of table values across #; functions, a new table of
the top h summations is produced.

O(nd™ (khlog(h)+h.d)=0(mnkd™ hliog(h)) (5.4)

for Algorithm 4. This complexity is logarithmic in h, and exponential in the network width

(Dechter, 1999) induced by the structure of the approximate state-action value function.

5.1.4 Computing the Redundant-Sets

By performing Algorithm 4 in a state s, we obtain the top h concurrent actions and their
values. We can then verify the ascendancy and e-optimality conditions that we described
in Definition 4.4, for each action. In either case, we need to compute V*(s). From the

Bellman optimality equation (Puterman, 1994; Sutton and Barto, 1998) we have:
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Figure 5.2. Visualization of step 6 of the Algorithm 4 where the variable a; is eliminated.

V*(s) = max Q*(s, a)

~ T, (Q(s,a)) (5.5)

which can be computed using Algorithm 4. Thus verification of the e-optimality condition
can be efficiently done. For the ascendancy condition, we need to compute the expected
optimal value of the next states given that the concurrent action a is executed in state s.

Expanding the optimal state-action value function for the action a yields:
Q*(s,a) = R(s,a) + yEsps{V*(s')}

by subtracting vV*(s) from both sides and rearranging the terms, we obtain:
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Eoump{V' (&)}~ V'(s) =

. (5.6)
;(Q*(S, a) — R(s,a) —7V'(s))
Algorithm 5  Function PruneActions( s, ¢, (a;, v; )I,)
Inputs:
s \\ Current state
€ \\ The flexibility afforded by the controller C (0 < e < 1)
S Qi(s,wy) \\ ©* function
{a;} \\ Elimination order
(a;, v; )i, \\ Top h assignments and values
Outputs:
A(s) = {(a, w)} \\ A set of e-ascending actions
1 Set V*(s) =T (Q*(s,a)) \\ Compute the approximate value of this state
2: while (not all actions processed) do
3 Pick the next top action a and its value v from (a;, v; ),
4 Assert %(v — R(s,a) —yV*(s)) >0 \\\ Ascendancy condition
5: Assert v > 1)*(s) \\ e-optimality condition
6: If both conditions hold, add the pair a to .A<(s)
7. end while

Note that the right hand side of the Equation 5.6 can be efficiently computed for a con-

current action a and can be used to verify the ascendancy condition. Function PruneActions

(Algorithm 5) summarizes the above steps for extracting the set of e-ascending actions from

the set of top h best actions returned by the variable elimination step.

Algorithm 6 gives the complete algorithm for computing the redundant-sets for an e-

redundant controller C in some state s.

5.1.5 Performing Coarticulation

Given a set of redundant controllers {C;}¥_,, we can perform Algorithm 6 and compute

the redundant sets for each controller. For performing coarticulation, we can then use

the algorithm Coarticulate (Algorithm 3 in Chapter 4). Note that the cardinality of the
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Algorithm 6  Function ComputeApproximateRedundantSets(s, ¢, h)

Inputs:
s \\ Current state
O*(s,a) =Y ir, Qi(s,w;) \\ 9 function
{a;} \\ Elimination order
€ \\ The flexibility afforded by the controller C (0 < e < 1)
h \\\ Number of top max elements

Outputs:

A<(s) \\\ An e-redundant-set of cardinality at most h

1 © +Th (Q*(s,a)) \\ Perform the variable elimination algorithm for extracting the
top h best values and concurrent actions

2: Return(PruneActions(s, €, ©)) \\ Prune the set of top h best actions to extract the
e-ascending actions

redundant set for the controller C; is at most h;. Thus the computational complexity of

performing the algorithm Coarticulate in every state s can be expressed as:
O((k — 1) (maxh;)?) (5.7)

which is quadratic in h.

5.2 Experiments

In this section, we present a concurrent decision making task and apply the coarticu-
lation approach based on the approximation techniques that we presented throughout this
chapter. Figure 5.3 shows a simulated robot with three controllable resources, namely, the
eyes, the left arm, and the right arm. The robot’s task is to empty the dish-washer and stack
the dishes into the dish-rack. Each arm of the robot at any time can be in three predefined
positions: washer, rack, and front as shown in Figure 5.3. In order to make a successful arm
movement from a source position to a target position, the robot needs to first fixate at the

target position. The eyes of the robot can also fixate on any of these positions. The set of

1This example was suggested by Andrew G. Barto
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Dish Rack Dish Washer

Figure 5.3. The robot’s task is to empty the dish-washer and stack the dishes into the
dish-rack.

Table 5.1. Action Variables

Leftarm (a)) | Rightarm (a,) | Eyes (a.) |
pick pick fixate-on-washer
washer-to-front | washer-to-front | fixate-on-front
front-to-rack front-to-rack fixate-on-rack
rack-to-front rack-to-front no-op
front-to-washer | front-to-washer
stack stack

no-op no-op

actions that the robot can perform is described via a set of action variables a = {a;, a,, a.},
each controlling one of the resources in the system. Action variable a; controls the left
arm, a, controls the right arm, and a. controls the eyes of the robot. Table 5.1 shows the
set of values that each action variable can be assigned to. There are control actions that
move one arm from a source position to a destination position. However, the arms cannot
move directly from washer to rack, and vice versa. In order to perform such movements,
the robot needs to first move the arm from the source position to the front position, and
then from that position to the target position in two primitive steps. The control action pick,
picks up a dish from the washer, if the arm is positioned at the dish-washer, and there is

a dish to pick up. The control action stack, stacks a dish into the dish-rack if the arm is
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holding a dish and is positioned at the dish-rack. The robot can also transfer a dish from
one arm to the other, if both arms are positioned in front of the robot, and the empty arm
executes the pick control action. The control actions for the eye movements cause the robot
to fixate on the specified position. There is also a no-op action that does not change the
state of the arms and eyes.

Note that each control action for arms, controls a 2-DOF arm, i.e., the joint angles be-
tween the arm and the shoulder, and the joint angle between the arm and the forearm. In this
experiment, we constructed three proportional-derivative (PD) controllers for controlling

each of the arms, and the eyes:
PD;: 7(6,6) = WK, (6] — 6) — Kyf] (5.8)

where § € IR? and § e IR? are the joint positions and velocities of the arms, respectively,
and 7 € IR? is a vector of joint torques (for the eyes controller we have 6, 6,7 € R). In
Equation 5.8 W; is a 2x2 gain matrix (for the eye controller W; € IR), 6} is the target
equilibrium point, and K, and K, are the nominal proportional and derivative gains, re-
spectively. All W are initialized to the identity matrix. In these experiments for simplicity,
we assume the eyes and arm movements take place in 2D XY -plane.

The states of the robot are also described via a set of state variables summarized in
Table 5.2. State variable s,qsner Keeps track of the number of dishes in the dish-washer.
State variable 1,,, shows the current position of the left arm (i.e, washer, front, rack). State
variable 1,;,; describes the current status of the left hand, i.e., whether it is holding a dish
or it is empty. Similarly state variable r,,, and r,,; describe the position and status of
the right arm. State variable e,,s, describes the current gaze of the robot’s eyes. Finally,
state variable s,..; describes whether or not a dish has been stacked into the dish-rack.
Any assignment to the set of action variables forms a concurrent action. However, not all
concurrent actions are allowed for execution in every state. Actions are pruned to simplify

learning and enforce safety constraints (Huber, 2000). For example the left arm can execute
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Table 5.2. State Variables

Swasher ‘ lpOS! Tposy €pos ‘ lstat) Tstat ‘ Srack ‘

0,1...,n | washer has-dish | stacked
front empty not-stacked
rack

the action pick only when it is located at the dish-washer and is empty, and there is also a
dish to pickup. Any concurrent action that violates the safety constraints is referred to as an
invalid action. If the robot executes an invalid action, it receives a negative reward and the
state of the robot do not change. The actions that control the gaze of the robot reflect the
limitations of a real robot system. The robot is required to look at a target position before
being able to move any of its arms to that position (except for any movement to the front

of the robot, i.e., the position marked front in Figure 5.3).

5.2.1 Coarticulation Approach

Recall that the overall objective is to empty the dish-washer and stack the dishes into
the dish-rack in the least number of steps. This objective can be approximated in terms
of concurrent optimization of two competing subgoals: wsqcr, and wpyicr, With the priority

ranking system:

Wpick < Wstack

The objective of the subgoal w .., IS to stack a dish that has already been picked up, into the
dish-rack, and the objective of the subgoal wy;cx is to pick up a dish from the dish-washer.

More interestingly, the robot is also required to minimize its energy consumption. In
other words the robot is required to perform as few moves as possible. The robot needs to
balance its energy consumption and the speed at which it completes the overall task. This

new constraint can be expressed through the following priority ranking system:
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Wpick < Wstack < Wenergy

All of these subgoals compete for the limited amount of resources in the robot (i.e., eyes and
arms). We design three redundant controllers Cp;cr, and Csqacr, and Cepergy that achieve each
subgoal. Note that Cp;.x, and Csqecr Can be viewed as general purpose object manipulation
controllers for picking up and stacking objects across different tasks (Singh et al., 2004).
We use subgoal options (Precup, 2000) to model each controller:

e The controller Cp;., is modeled as a minimum cost-to-goal subgoal option:

Cpick = <Ipicka T pick Bpick>

where Z;., is the set of states from which the robot can pick up a dish (i.e., the set of states
in which at least one of the robot’s hands is empty and there is a dish in the dish-washer).
The goal states consist of those states in which the robot successfully picks up a dish from
the dish-washer. Policy mp,.., specifies a closed loop policy for picking up a dish. The
termination condition occurs when the robot picks up a dish from the dish-washer (i.e.,
enters a goal state). When learning the optimal value function optimizing the subgoal of
this controller, the robot receives a reward of —1 at every step, and a reward of zero in the
goal states.

e The controller C,;,.x IS modeled as a minimum cost-to-goal subgoal option:

<Istack7 T stack /Bstack>

where Zq.r, 1S the set of states in which the robot can stack a dish (i.e., the set of states in
which the robot is holding at least one dish). The goal states consist of those states in which
the robot successfully stacks a dish into the dish-rack. Policy 7. Specifies a closed loop

policy for stacking a dish. The termination condition for this option occurs when the robot
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stacks a dish in the dish-rack. When learning the optimal value function of this controller,
the robot receives a reward of —1 at every step, and a reward of zero in the goal states.

e The controller Cr.r¢y is @ non-associative controller (Sutton and Barto, 1998), where
it terminates in every state with probability 1. The reward function for this controller favors
actions which result in minimum physical movement in the robot. In other words it favors
actions with more values of no-op for its constituent action variables. For example, an
action a = {washer-to-front, stack-plate, fixate-on-rack}, causes more movement than the
action a = {washer-to-front, no-op, no-op}. When learning the optimal value function of

this controller, the robot receives a reward of:

R(s,a) = —1 x number of no-op values in a

at every step.

Note that due to a redundant set of resources in the system, all of controllers are e-
redundant for some e. For example the robot can pick up a dish either by its left arm, or
by its right arm. Or, it can stack a dish either by moving the arm that is currently holding
a dish to the dish-rack and stack the dish, or it can transfer it to the other hand and use
the other hand to stack it. Controller Cepergy is also e-redundant for different values of e.
For example if the current choice of ¢ allows the robot to execute actions with at least two
no-op Vvalues for its constituent action variables, then there are four choices of actions in
every state (three actions with two no-op values, for its constituent action variables, and
one all no-op action).

It can be verified that the sequential solution (no coarticulation) which involves exe-
cuting Cpicr, and then Cy,er In Sequence, does not provide the most efficient solution. For
example while the robot is stacking a dish held by its right hand, it can concurrently pick
up a new dish with its left hand. By coarticulating between these two subgoals, the robot

can select an action that achieves the objective of the superior controller (i.e., Csacx), While
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committing to the objective of the subordinate controller (i.e., Cp;.). This is possible if the
intersection of the redundant-sets of these two controllers is non-empty in the current state.

To further illustrate this, consider the following scenario: assume that the robot has
picked up a dish with its right arm positioned at the front, and the controller C,sqcr 1S in
progress. Also, assume that its left arm is positioned at front and is empty. In this state, the
robot can execute at least two e-ascending actions with respect to the C,,.x controller: (1)
move the right arm to the dish-rack and concurrently look at the front position; (2) move
the right arm to the dish-rack and concurrently look at the dish-washer position. Note that
the second action is also e-ascending with respect to the Cy;., controller, since by looking
at the dish-washer position, the robot can then move its empty left arm to the dish-washer
in order to pick a new dish. By coarticulating between these two controllers, the robot
executes the second action that is e-ascending with respect to both controllers. Note that
while this action moves the robot’s right arm to the dish-rack to stack the dish, concurrently
it moves the empty left arm to the dish-washer in order to pick a new dish.

In our experiments, all controllers are defined over an MDP M = (S, A, R, P), where
the states and actions are described via the set of variables given in Tables 5.2, and 5.1.
All actions are stochastic; they succeed with probability p and fail with probability (1 — p)
(we used the failure probability of p = 0.1 throughout our experiments). When actions
succeed, they change the state of the robot to the next state as described above. Upon
failure, or executing an invalid action, the robot does not change its state. All actions are

also rewarded —1 upon termination.

5.2.2 Experimental Setup

Our empirical evaluation of the coarticulation framework for solving the above problem
consists of the following experiments:

e A set of experiments evaluating the accuracy of the approximation techniques for

computing the class of e-ascending policies (i.e., the variable elimination method described
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in Algorithm 6). This involves measuring the accuracy of the algorithm for computing the
redundant-sets for different values of h when computing the top h best actions, and for
various levels of flexibility offered by the controllers in terms of the e parameter.

e A set of experiments evaluating the performance of the coarticulation approach for
solving the above problem.

e A set of experiments evaluating the influence of the energy minimizing controller
(i.e., Cenergy) ON the policy generated by the coarticulation algorithm.

As a basis for analysis of the coarticulation framework, we also use the following mod-
els, in addition to the approximate coarticulation techniques that we presented in this chap-
ter:

Exact concurrent controller model: Given a controller, we compute the value func-
tion and subsequently the redundant-sets using the standard RL methods (no function ap-
proximation is involved).

Exact sequential controller model: Given a controller, we compute the optimal se-
quential policy using the standard RL methods (no function approximation is involved). In
this case the robot is only allowed to execute non-concurrent actions. For example, in the
simulated robot experiment, any concurrent action a = {ay, a,, a.} with at least two no-op
is a sequential action.

We use the term Oracle models to refer to the experiments that use the exact controller
models, in both sequential and concurrent cases. Note that the oracle models are merely
used for evaluating the accuracy of the approximate algorithm, and also the performance

of the coarticulation framework.

5.2.3 Learning the Redundant Controllers
In order to apply our coarticulation algorithm to the above problem, we need to compute
the redundant class of e-ascending policies for each controller. Thus, we first need to learn

the optimal value function associated with each controller, and then compute the redundant-
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sets using the Algorithm 1 for the oracle coarticulation model, and the Algorithm 6 for the
approximate coarticulation approach.

Note that there are |S| = nx3x2x3x2x 3 x2x2 = nx432 states — with n being the
total number of dishes into the dish-washer —and | A| = 7 x 7 x4 = 196 concurrent actions.
This produces [S]|.A| = n x 432 x 196 = n x 84672 state-action values to be learned by an
standard tabular RL algorithm. For even a small number of dishes, for example 10 dishes,
the robot has to learn |S||.A| = 846720 state-action values. Here, we can observe the curse
of dimensionality in the action space: even in problems with few degrees of freedom, the
total number of concurrent actions exponentially grows, as it is also evident in the above
problem.

To overcome this problem, we use the approximation techniques for coarticulation that
we introduced in Section 5.1. We assume that the optimal state-action value function can
be approximated using linear function approximation techniques (Bertsekas and Tsitsiklis,
1997; Sutton and Barto, 1998). We used a sparse-coarse-coded function approximator
(CMAC:s) (Albus, 1981) combined with Sarsa(A) algorithm (Rummery and Niranjan, 1994;
Sutton, 1996; Sutton and Barto, 1998). Each CMAC tiling represents a basis function
defined over a subset of state and action variables. The approximate state-value function
can be expressed as:

) m

Q*(s,a) = Y Ti(s)Qi(si, &)

i=1

where s and a are the set of state and action variables spanning the state and action spaces
respectively, m is the total number of tilings, and Q;(5;, &;) is a tiling defined over a subset
of state variables §; and a subset of action variables a;. Z;(s) is an indicator function that
returns 1 if the point {s, a} falls within the i” tiling. Table 5.3 shows the set of tilings that
we used for the CMAC approximation of the state-value functions for the controller C,;y.
This set consists of 10 tilings, for the total of 5914 tiles. In all of the controllers, we allowed

each tiling to be defined only over at most two action variables in order to reduce the
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Table 5.3. CMAC:s tilings

| Tiling | # of tiles |
Ql (Swasher7 POS 3 lstat) 12
Dy (Swasher7 Tpos; T stat) 12
Q3 (S'washer; Srack) Tposa /rsta,t) 24
(Swasher; Srack) A, ar) 196
(S'washer; POS lstata eposa al) 252
Q6 (Swashera T'p05a Tstat, epO.S) ar) 252
Q7 (Swasher; Srack lposa lstata eposa al) 504
QS (Swashera POS lstata eposa ay, ae) 1008
QQ (Swashera rposa Tstats eposa ara ae) 1008
QlO(Swashera lposa Tposs Eposs ay, ar) 2646

complexity of the variable elimination method that we described in Algorithm 4. In general
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Figure 5.4. Learning curves for controllers (a) Cpick, (D) Cstack, and (C) Cenergy- The hori-
zontal axis shows the iterations of SARSA()) for A = 0.8 and for every 500 iterations. The
vertical axis shows the max-norm error at every iteration.

we can use the domain knowledge for selecting the best CMAC design for the problem. For
example, the state variable s.,.sner Nas less relevance to the subgoal of stacking a dish in the
dish-rack. Thus, when designing the CMAC tilings for the controller Cp;.., we can take into
account such information. Note that in all three controllers, the exact number of dishes in
the dish-washer has less relevance to the subgoals associated with them. A more relevant
feature is whether or not there exists a dish in the dish-washer. Thus, when designing a

CMAC for each controller, we set the state variable s,qs1er t0 take on only two values,
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namely, zero for when the dish-washer is empty, and one for when there exist at least one
dish in the dish-washer. This is yet another advantage of the coarticulation approach in
terms of reusability of skills, since for any number of dishes , the same learned skill can be
incorporated when solving the problem.

In order to learn the approximate state-action value functions for each controller, we
used Sarsa()) algorithm (Rummery and Niranjan, 1994; Sutton and Barto, 1998). Sarsa())
is an on-policy TD(A) learning method that has been shown to have convergence properties
with linear function approximation techniques (Dayan, 1992; Tsitsiklis and Roy, 1996)2.

Figures 5.4(a), 5.4(b), and 5.4(c) show the max-norm error plots of the state-action
value function approximation for the controllers Cpick, Cstack, N Cepergy respectively. The
horizontal axis shows the iterations of SARSA(A) for A = 0.8. The vertical axis shows the
max-norm error at every iteration. As shown in these figures, all cases converge to the best

possible approximation based on the CMAC design incorporated in the approximation.

5.2.4 Accuracy Analysis

In this set of experiments, we study the precision of the approximate technique for
computing the redundant-sets in a controller. Note that the error in the approximate state-
action value function due to the approximation based on CMACs propagates to the next
level, where we use Algorithm 6 for computing the redundant-sets in the controller. Every
choice of the parameters {h, e} specifies a class of e-ascending policies in a controller C.
In order to measure the precision of the Algorithm 6 for computing the redundant-sets, we
conduct an experiment where we choose different values for h (for selecting the top h best
actions), and then apply the Algorithm 6 to compute the top h best actions in every state
of the controller. For evaluating the number of correctly picked actions in a redundant-

set, we compare the sets computed by both the oracle and approximate algorithms. Let

2The convergenceof the TD methodswith linear function approximation techniquesis not to the minimum
error approximation, but to a nearby approximation whose error is shown to be bounded (Tsitsiklis and Roy,
1996)
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Figure 5.5. Average accuracy of the redundant-sets computed by Algorithm 6 versus dif-
ferent values of the parameter h for controller C,;.;. These results are averaged over all
states.

AS"(s) represent the top h best actions computed from the approximate model using the
Algorithm 6, and Ag’h(s) represent the top h e-ascending policies computed from the oracle
model of the controller using the Algorithm 1 C in some state s. We define the following

measurement for studying the precision of the approximate approach:

. ASP(5)NASR (s
o Hit(s) = l(:l(«‘t);#:)\(m

Figures 5.5, 5.6, and 5.7, show the average hit rate of the redundant-sets computed by
Algorithm 6 — averaged over all states — versus different values of the parameter h. All
the controllers are 0.5-redundant (i.e., e = 0.5 in all controllers). Note that for small values
of h (i.e., h j 4), the average hit rate is relatively low (0.75, 0.40, and 0.77 for Cpic,
Cstack, and Cenergy respectively). By increasing h the average hit rate in all the controllers
increases. For controllers Cp;cr, and Cepergy, and for larger values of h, we attain very high
average precision (0.94 and 1.0, for Cpicx, and Cepergy respectively). For controller Cyiqer, We
attain the average precision of 0.76.

Note that by an intelligent design of CMACs (especially in case of the controller Cg;,

for example), we may attain better precision for the redundant-sets using our approximate
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Figure 5.6. Average accuracy of the redundant-sets computed by Algorithm 6 versus dif-
ferent values of the parameter h for controller Cy,.x. These results are averaged over all
states.

algorithm. Based on these results we can observe that our algorithm attains relatively high

precision for computing the redundant-sets.

5.2.5 Flexibility Analysis: The Influence of e

In this set of experiments, we study the influence of the parameter ¢ on the amount
of flexibility that e-redundant controller offers. We define the flexibility in terms of the
size of the redundant-sets obtained for a particular setting of the parameter e. Any given
e is associated with a class of e-ascending policies. Intuitively for larger values of ¢, we
enforce the policies to be near optimal and thus we expect to see less flexibility offered by a
controller. For smaller values of ¢, we allow the e-ascending policies to deviate more from
the optimal policy, and hence we obtain a larger class of e-ascending policies, although
less optimal. Figure 5.8 shows the plot of the average redundancy, averaged over all states
for different values of ¢, and for different controllers (i.e., Cpick, Cstack, @Nd Comega). FOr
controllers Cp;er, and Cyqcr, We can distinctively identify three different regions where the

average redundancy changes from one level to the other. Each region is associated with an
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Figure 5.7. Average accuracy of the redundant-sets computed by Algorithm 6 versus dif-
ferent values of the parameter h for controller C,..4,. These results are averaged over all
states.

interval defined over the values of ¢, namely the intervals [0.0 0.5], [0.5 0.6], and [0.6 1.0].
The size of the redundant-sets remains constant in every region. We conjecture that this is
due to the linearity of the CMAC approximation scheme, where the state-action values are
generalized for the set of states that fall in the same tiling. We can also observe that how the
flexibility of a controller is inversely proportional to the value of e. For controller C.pergy
we can distinctively identify five different regions associated with the intervals [0.0 0.2],
[0.2 0.4], [0.4 0.5], [0.5 0.6], and [0.6 0.1]. Similarly, each interval represents an equivalent
class of e-ascending policies for the values of ¢ in that interval. Taking a close look at the
e-ascending policies associated with each region, we identified three main regions, each
representing a certain property of the Cepergy controller. Figure 5.9 shows three intervals
over e. The interval [0.6 1.0] is associated with the class of e-ascending policies that strictly
enforce the agent to execute no-op action for both arms and the eyes. We refer to this kind
of controller as the lazy controller. The interval [0.34 0.6] is associated with the class
of e-ascending policies that strictly enforce the agent to execute at most one none no-op

action, for every settings of the action variables. As we demonstrate later in this section,
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Figure 5.8. Average redundancy per state (average size of the redundant-sets) for different
values of ¢, and for different controllers.

coarticulating with this class of e-ascending policies, would generate the sequential (non-
concurrent) policy. The interval [0.0 0.6] is associated with the class of e-ascending policies
that allows the agent to execute any action. this interval can be viewed as the region where

the controller is an active controller (i.e., allowing none no-op actions to be performed).

5.2.6 Performance Analysis: Emptying the Dish-Washer

In this set of experiments, we study the performance of the coarticulation algorithm
for emptying the dish-washer. Our results compare the performance of the following ap-
proaches:

e Coarticulate-CMAC: We use the approximation techniques based on the that we
described in Section 5.2.3 for computing the redundant-sets. When performing the variable

elimination algorithm (Algorithm 4), we used the following elimination order:

<ala O, ae>
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Figure 5.9. Average redundancy per state (average size of the redundant-sets) for different

values of e in controller C,..4,. Each region is associated with a certain class of policies
and characterizes a different energy consumption minimization strategy.

We then use Algorithm 4.3 for performing coarticulation.

e Coarticulate-Oracle: We use the oracle models for computing the true redundant-
sets. We then use Algorithm 4.3 for performing coarticulation.

e Sequential-Oracle: We use the oracle models of the controllers for performing the
tasks sequentially. We use the algorithm Sequence (Algorithm 4.2) for solving the problem
sequentially (no-coarticulation is involved).

In all of the experiments, we also used the T,,nsinue termination mechanism. In the first

set of experiments, we used the priority ranking system:

Cpick < Cstack

which should read Cp;cj, subject-to Cyqcr. Intuitively, by coarticulating between these two
subgoals based on the above priority ranking relation, the robot will attempt to maximize

stacking the dishes, while picking up new dishes from the dish-washer.
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Figure 5.10. Performance of the coarticulate-oracle, coarticulate-CMAC, and sequential-
oracle approaches for h = 10 and e = 0.5. In this experiment, we only used two controllers:
Cpick, and Csyqc, With the priority ranking system Cpicr < Csiacr. The horizontal axis shows
a numbering of the starting states. The vertical axis show the average number of steps
for completing the task. These results are averaged over 20 tasks, each consisting of 27
episodes, where each episode initializes the robot in one of 27 possible starting positions.

Figure 5.10 shows the performance of the coarticulate-oracle, sequential-oracle, and
coarticulate-CMAC approaches for h = 10. The performance is measured in terms of
the total number of steps for completion of the task. These results are averaged over 20
tasks, each consisting of 27 episodes. Each episode is associated with a starting state, with
20 dishes in the dish-washer, and the robots arms are set to empty. The horizontal axis
depicts the indices of the starting states. A starting state is defined in terms of the various
configurations of the state variables (e.g., initial positions of the arms and the eyes, and

their status, etc) that are relevant to the task (i.e., at least one controller can be initiated).
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Not surprising, the best performance (bottom plot) is achieved by the coarticulate-oracle
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Figure 5.11. Performance of the coarticulate-oracle, coarticulate-CMAC, and sequential-
oracle approaches using different values of h. In this experiment, we only used two con-
trollers: Cpick, and Csiqer, With the priority ranking system Cpicr < Csiack- The horizontal
axis shows a numbering of the starting states. The vertical axis show the average number
of steps for completing the task. These results are averaged over 20 tasks, each consist-
ing of 27 episodes, where each episode initializes the robot in one of 27 possible starting
positions.

approach (roughly, 80 steps to complete the task). The worst performance (top plot) is
achieved by the sequential-oracle approach (roughly, 170 steps to complete the task). The
coarticulate-oracle approach significantly speeds up the task completion (almost over two
times faster). The best performance of the coarticulate-CMAC approach is attained by
choosing h = 10, and in average completes the task between 120 and 140 steps, still

outperforming the sequential-oracle approach by a large margin.
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Figure 5.11 shows the same plot together with a set of coarticulate-CMAC experiments
for different values of the parameter h (the top h best actions, for h = 10, 20, 30). It
can be observed that the performance of the coarticulate-CMAC approach degrades as we
increase the size of the parameter h. The main reason is that the error in the state-action
value function approximation based on CMACs, propagates to the step (e.g., Algorithm 6)
where we compute the redundant-sets. Intuitively, by using a better CMAC design for
learning the approximate state-action value functions associated with the controllers, the
coarticulate-CMAC approach would perform more optimally and closer to the performance
of the coarticulate-oracle approach.

In all of the experiments that employ coarticulation, we also measured the total number
of coarticulation performed within each episode. A coarticulation takes place in a state
s whenever the algorithm Coarticulate finds a policy that achieves both subgoals. Note

that in general coarticulation does not succeed in every state. Figures 5.12(a) and 5.12(b)

o 50 Coarticulate-Oracle (h=20) —— <} 8 Coarticulate-CMAC (h=10) ——
£ a4} g 26 :
8 S 241
(O] 46 | [0
a o
p - 227 1
8 8
T 447 T 20+ 7
3 3
8 S 15! i
§ 42 ¢ § 8
o O 16 ‘ 1
40
0 5 10 15 20 25 30 0 5 10 15 20 25 30
State Number State Number
(a) coarticulate-oracle (b) coarticulate-CMAC

Figure 5.12. Distribution of the coarticulation occurrence in every episode for (a)
coarticulate-oracle approach, and (b) coarticulate-CMAC approach. These results are aver-
aged over 20 tasks, each consisting of 27 episodes, where each episode initializes the robot
in one of 27 possible starting positions.

show the distribution of the coarticulation occurrence for in every episode, for coarticulate-

oracle and coarticulate-CMAC approaches, respectively. Note that in coarticulate-oracle
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experiment, the robot coarticulates almost more than 50% of the total number of steps
before it completes the task. In coarticulate-CMAC experiment, the robot coarticulates
almost 20% of the total number of steps task completion. These results are in accordance
with the performance results that we presented in Figure 5.10. Note that in average, every
coarticulating occurrence saves two steps compared to the sequential-oracle approach. In
the coarticulate-oracle case, there is on average above 50% coarticulation per episode. Thus
without performing coarticulation, it would take on average over a hundred steps, that is

close to the performance of the sequential-oracle approach.

5.2.7 Incorporating Energy Constraints

In the last set of experiments, we study the effect of the controller Ceperg, When coar-
ticulating with the Cp; and Cyqer, Tor emptying dish-washer problem. Note that among
the best policies that complete the overall task, we prefer those that lead to less energy
consumption in the robot. In order to add this constraint to the problem, we can simply

perform coarticulation based on the following priority ranking system:

Cpick < Cstack < Cenergy

Implicitly, the above relation enforces the robot to select a concurrent action at every
step, with less number of non no-op values for its constituent action elements. Figure 5.13
shows the average amount of energy consumed per steps of an episode, for all coarticulate-
oracle (Cpick < Cstack), coarticulate-oracle (Cpick < Cstack < Cenergy), and sequential-oracle
approaches. These results are averaged over 20 tasks, each consisting of 27 episodes, where
each episode initializes the robot in one of 27 possible starting positions. Note that in
sequential-oracle approach, the robot consumes the least amount of energy because it only
executes actions with at most one non no-op element. Both coarticulation approaches con-

sume more energy, as they incorporate concurrent actions with no constraint. However
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Figure 5.13. The average amount of energy consumed per steps of an episode, for
coarticulate-oracle (Cpick < Cstack), coOarticulate-oracle (Cpick < Cstack < Cenergy), and
sequential-oracle approaches. These results are averaged over 20 tasks, each consisting
of 27 episodes, where each episode initializes the robot in one of 27 possible starting posi-
tions.

coarticulate-oracle (Cpic, <1 Csiack) ON @verage consumes more energy than the coarticulate-
oracle approach.

Figure 5.13 shows the performance of the coarticulate-oracle (Cpicr <Cstqcr), COarticulate-
oracle (Cpick < Cstack < Cenergy), and also the sequential-oracle approaches using all three
controllers. The performance is measured in terms of the total number of steps for comple-
tion of the task. Note that by incorporating the energy constraints, now the robot minimizes
the energy consumption, while completing the overall task with slightly worse performance
compared to the case with no energy constraints (i.e., Cpick < Cstack)- These results demon-
strate the advantage of the coarticulation framework for reusability of various skills ac-

quired by the robot, when facing a new task.
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Figure 5.14. Performance of the coarticulate-oracle (Cpicr < Cstack), COarticulate-oracle
(Cpick < Cstack < Cenergy), and sequential-oracle approaches for h = 10 and e = 0.5. In this
experiment, we only used all three controllers: Cpick, Cstack, ANA Cepergy With the priority
ranking system Cpick < Cstack < Cenergy- 1he horizontal axis shows a numbering of the
starting states. The vertical axis show the average number of steps for completing the
task. These results are averaged over 20 tasks, each consisting of 27 episodes, where each
episode initializes the robot in one of 27 possible starting positions.

5.3 Concluding Remarks

In this chapter we presented a set of approximation techniques for scaling the coartic-
ulation framework to large domains. Our approach is based on the key idea that in many
concurrent decision making problems, the state-action value function can be approximated
in terms of the linear combination of a set of local basis functions defined only over a sub-
set of state and action variables. Such exploitable structure enabled us to design efficient
approximate algorithms for compactly computing the redundant-sets with a logarithmic

complexity in the pre-specified size of the redundant-sets, and also to perform coarticula-
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tion with a polynomial complexity in the size of the redundant-sets. By selecting a feasible
subset of the redundant-sets in terms of the parameter h, we can balance the trade-offs
between the computational costs, and the performance of coarticulation when solving a
concurrent decision making problem.

We also empirically evaluated the coarticulation framework in a concurrent decision
making problem. We demonstrated that how concurrency naturally emerges by performing
coarticulation in such problems, and how it can be used to tackle a new problem reusing

various skills that the agent has acquired through its life span.
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CHAPTER 6
CONCLUSIONS AND FUTURE DIRECTIONS

Concurrent decision making is undoubtedly an inseparable component of decision-
making in humans and many other biological systems. While in the long history of machine
learning research — and in particular reinforcement learning — there has been a major inter-
est on optimal control with less assumption on the structure of the actions, less effort has
been placed in studying a large class of problems where the agent is capable of perform-
ing concurrent activities. As shown throughout this dissertation, one natural approach for
generating concurrency in the system is a combination of techniques that take advantage of

strategies from biology and machine learning.

6.1 Summary

In summary, we introduced a decision theoretic framework for modeling the concur-
rent decision making problem, and presented a set of techniques for addressing major chal-
lenges in this class of problems.

In Chapter 3 we introduced concurrent action models (CAMSs) — a general abstract
decision theoretic model — for decision making with a set of concurrent activities. The main
challenge with the modeling effort stems from the fact that activities that run in parallel, do
not terminate at the same time. To address this challenge, we introduced a set of concurrent
coordination mechanisms that incorporate various natural activity completion mechanisms
based on the individual termination of each activity. We presented a set of theoretical
results that assert the correctness of the model semantics which then allows us to apply

standard SMDP learning and planning for solving this problem. We also presented a set of
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theoretical results that characterize the optimality of the agent’s concurrent behavior based
on various coordination mechanisms.

Although CAMs provide a base-model for studying the concurrent decision making
problem, they still suffer from the curse of dimensionality due to the combinatorial space
of concurrent actions. Our experimental results with CAMs — where we used standard
SMDP learning and planning techniques — showed that even in a problem with a small set
of states and concurrent actions, it takes a long time for such methods to learn the optimal
concurrent policy.

We addressed this challenge in Chapter 4 where we presented an alternative view of
generating concurrency in the system. We demonstrated that one natural way for perform-
ing activities concurrently is through the interaction of previously acquired skills in the
system when the agent is faced to solve a multi-objective problem. A related concept in
biology is known as the coarticulation phenomenon with a long history in motor control
research. We presented a model of coarticulation in Markov decision processes for gener-
ating concurrency in the system. The basic blocks of this model are a set of coarticulatory
controllers — namely the e-ascending controllers — where each controller represent a class
of near-optimal policies that guarantee progress toward the goal state of the controller in
every state of the problem. By exploiting such flexibility, we presented algorithms for
performing coarticulation and demonstrated that how this approach reduces the curse of
dimensionality by performing the search for the best concurrent policy in a much smaller
space, constrained by the degree of flexibility that each redundant controller offers. An-
other major contribution of this chapter is a set of theoretical results that establish time
bounds on time for task completion for coarticulation algorithm, and also the sequential
algorithm (where the agent is allowed to perform only one activity at a time).

Although performing coarticulation would considerably alleviate the curse of dimen-
sionality, the algorithms for computing the redundant sets of policies associated with a

controller still do not scale to large problems. In Chapter 5 we presented a set of approx-
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imation techniques for addressing this challenge. The key idea in our approach is that
many concurrent decision making problems are inherently multi-objective optimization
problems, in which the overall objective of the problem can be approximately expressed
in terms of a linear combination of a set of sub-utility functions, each associated with an
objective of the problem. By exploiting such linear structure, we presented an approximate
algorithm that performs the computation required for the coarticulation approach with a
tractable complexity.

For evaluating the set of techniques and algorithms that we presented throughout this
chapter, we conducted a set of experiments on a simulated robot capable of performing
concurrent activities. We demonstrated how coarticulation can naturally generate parallel
execution activities in the system. The results show the coarticulation approach can be
tractably performed and it outperforms the sequential algorithms by a large margin.

In summary, coarticulation is a very natural way of generating concurrent activities. It
enables the agents to reuse their previously acquired skills with a minimum effort when
faced with a new task. In the life span of an artificial agent, the goals are not known a
priori; while the agent is committing to the current set of goals, a new set of objectives
may arrive in the system. Without coarticulation, it is not feasible to initiate a new learning

experiment for every possible combination of goals.

6.2 FutureWork

There are a number of questions and open issues that remain to be addressed and many
interesting directions in which this work can be extended:

e In concurrent action models (CAMSs) we introduced three concurrent termination
mechanisms. In fact we conjecture any other form of co-termination that may take place
among a set of parallel activities, can be considered as a valid termination condition. One
interesting direction for future investigation is to study other forms of concurrent activity

termination.
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e Although the strict order of priority in the coarticulation framework facilitates theo-
retical analysis of the behavior of the agent, it is not a realistic assumption in general. In
many problems, the strict order of priority of subgoals may be violated in order to improve
the overall performance. Perkins (2002) characterized a set of conditions under which the
agent can violate ascending on a Lyapunov surface. This idea can be extended to partially
relax the strict order of priority in the coarticulation framework.

e The key advantage of coarticulation for alleviating the curse of dimensionality is that
it performs the search for the best concurrent policy, in a tractable space of concurrent poli-
cies induced by the set of ascending policies associated with the subgoals of the problem.
This is in particular plausible for a class of reinforcement learning problems — such as pure
policy gradient methods (Williams, 1992; Sutton et al., 2000; Baxter and Bartlett, 2000)
— that do not explicitly incorporate value functions. An interesting future direction is to
investigate the concept of ascendancy in non-value based RL methods.

e \We believe that learning is an ongoing process in any agent. Even when we use our
previously learned skills to accomplish a new task, we continue learning and modifying
our skills constantly. This process is not addressed in our coarticulation framework. One
interesting direction for further investigation is to incorporate learning while performing
coarticulation. For example when an agent is faced with a new task, it can balance between
its exploratory actions, and coarticulatory actions in order to learn the optimal solution.

e As described in Section 4.1 of Chapter 4, one known form of coarticulation in biolog-
ical systems is when there exist a partial order among subgoals. For example when typing,
there exists a sequential constraint induced by the text when pressing the letters. One inter-
esting direction for further investigation is to incorporate such sequential constraints in the
model in order to perform coarticulation in a larger class of problems.

e Our approach for representing redundancy in a controller is based on direct search
in the space of policies of the controller. There is an interesting connection between proto

value functions (Mahadevan, 2005) and the uncontrolled manifold concept that provides
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a representation of redundancy in motor control research. One interesting direction for
further investigation is to study how to derive a functional representation of redundancy in

discrete MDPs.
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CHAPTER 7
RELATED WORK

In this section we briefly overview various related work that touch upon different forms

of concurrency in different fields of science and engineering.

7.1 Concurrent Actionsin MDPs

In MDPs, one natural way to model concurrent actions would be to extend the actions
to multi-dimensional actions, or vector-actions. Some of the related work that use multi-
dimensional action representation do not explicitly study this problem from the concurrent
decision making perspective, nevertheless the concurrent execution of actions are implied
in them.

Markey (1993) and Tham and Prager (1994) maintain a set of local Q-functions, one
for each element of the vector-action, and update them independently using Q-learning
(Watkins, 1998). Cichosz (1995, 1997) combined the local Q-functions to define a utility
function for a vector-action, simply by taking average of the local Q-functions (or average
of maximum of each local Q-function) when computing the (optimal) Q-function over
vector actions. The main problem with these methods is the naive way of combining Q-
functions based on a total independence assumption among action components.

Rosenstein and Barto (2001, 2002); Rosenstein (2003) also addressed reinforcement
learning with multi-dimensional actions in robot weight lifting task by direct policy search
(Rosenstein and Barto, 2001), and also in a hybrid setting that combines supervised learn-

ing with an actor-critic architecture (Rosenstein and Barto, 2002; Rosenstein, 2003), where
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a separate policy structure (the actor) is used to compactly represent the policy over com-
posite actions.

Peshkin et al. (1999) investigated the learning of policies with external memory (i.e.,
stigmergic policies (Peshkin et al., 1999)). In this model, actions were augmented by a set
of memory actions that are used to modify the content of the internal memory bits. Thus,
at every step, a set of actions are executed, some of them only pertaining to the internal
memory.

Boutilier and Goldszmidt (1995) lay out the basic ideas for exploiting the structure of
the problem for policy construction based on the stochastic version of goal regression in
stochastic systems (Boutilier and Goldszmidt, 1995; Boutilier and Dearden, 1996; Boutilier
et al., 2000, 1999). This is an important step that gives the basic framework for modeling a
broad set of problems that have structure in states and action. Dean et al. (1998); Boutilier
et al. (1999) develop representation for factored actions, and introduce variety of tech-
niques for specifying the transition matrices in order to provide representations that are
more compact than explicit transition matrices.

Gabor et al. (1998) study the multi-criteria sequential decision making problem in
which the learning objective is to attain multiple goals. Traditionally, RL algorithms solve
sequential decision making problems when the optimization criterion is expressed in a re-
cursive form (i.e., Bellman equations) using a scalar valued reinforcement signal (reward
function). However, there are problems where the optimization criteria may not be simply
expressed as a function of a single scalar reinforcement (Gabor et al., 1998). One such class
of problems is when the learning agent is required to attain multiple goals (generally com-
peting with each other) simultaneously. Gabor et al. (1998) consider multi-criteria decision
problems in the framework of abstract dynamic programming (Littman and Szepesvari,
1996), where the reinforcement signal is assumed to be vector valued (each element of
the reinforcement vector is associated with one of the criterions to be achieved) and are

compared by a total ordering defined over an appropriate vector space.
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Another way of modeling multi-dimensional actions in MDPs is to model the problem
as a cross-product MDP, where we assume that the original MDP (alternatively called the
composite MDP) decomposes into a set of sub-MDPs, where the state space and action
space of the composite MDP is the cross product of the state and action spaces of the sub-
MDPs, respectively (Singh and Cohn, 1998). Using this model, Singh and Cohn (1998)
introduced the dynamic merging problem, which is the problem of learning the optimal
solution for the composite MDP, from the solutions of its sub-MDPs. More specifically,
the proposed algorithm, efficiently learns the optimal composite policy given only bounds
on the value functions of the component MDP. This work, assumes that the composite MDP
completely factors into sub-MDPs and ignores joint action influence on each sub-MDP.

Meuleau et al. (1998) introduce a method for approximating optimal solutions in in
MDPs with large state and action spaces. They assume that the overall objective of the
problem can be expressed as a set of tasks whose utilities are independent, and the actions
taken with respect to a task do not affect the other tasks. However, these sub-tasks (each
modeled as a MDP) are weakly coupled by constraints imposed by the problem resources,
i.e., actions selected for a task, constraints the set of actions available to other tasks. These
two key properties are used to avoid explicitly enumerating the very large state and action
spaces.

Sallans and Hinton (2000); Sallans (2002) explored the action selection problem in
MDPs with structured states and actions (i.e, factored-MDPs), and used a family of undi-
rected graphical models named product of experts (Hinton, 2000) to capture the dependen-
cies among state and action variables. They showed that they can approximate the state-
action values as the negative free-energy of the state-action pair up to an additive constant)
under such models. This provides a compact representation of the state-action values and
can be used for learning the parameters of such models.

Younes and Simmons (2004) introduce generalized semi-Markov decision processes

where they explore stochastic decision making in a continuous time, asynchronous systems,
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capturing a large class of concurrent decision making problems, including those that also
include temporal activities with a semi-Markov property.

Mausam and S.Weld (2004); Mausam and Weld (2005) introduce concurrent Markov
decision processes and introduce various algorithms for fast concurrent policy construc-
tion. In their model they consider multiple parallel actions, each of a unit duration. Also,
the model is augmented by a set of conditions under which actions can be executed concur-
rently. This model is plausible when there exists a conflicting set of actions in the system,

something that we did not explicitly address in this dissertation.

7.2 Planning with Concurrent Actions

There has been an extensive study of action representation and reasoning with actions
in situation calculus, temporal logic and reasoning, and planning. Parts of these lines of
research deal with the specification and synthesis of concurrent actions. Here we give a
summary of these works.

Baral and Gelfond (1997) provide a semantic account of concurrency based on the well
known action description language A. (Gelfond and Lifschitz, 1992) which bears many
similarities to the situation calculus formulation of concurrent actions. However the action
language they developed is based on the propositional logic. Bornscheuer and Thielscher
(1994) build on the action description language A, that addresses non-determinism and
uncertainty. Reiter (1996a,b) provide generalization of the temporal situation calculus
to include concurrency, continuous time and various types of actions. There has been
also a massive literature on concurrent processes, dynamic logic, and temporal logic (see
(Winskel, 2002) for an overview).

The idea of incorporating partial-order planning (Sacerdoti, 1975, 1977) to generate
parallel execution plans has been studied since early days of planning. The problem of
parallel plan execution has been also addressed based on temporal planning (Allen et al.,

1991). Parallel execution problem can be handled by a temporal planner, but just the com-
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plexity associated with testing the satisfiability of a set of assertions is shown to be NP-
hard (Vilain et al., 1989). Veloso et al. (1991); Regnier and Fade (1991) approach this
problem by generating totally-ordered plans and converting them into a partially-ordered
plan. However, the parallel execution plans are constraint by the particular choice of the
totally-ordered plans. Backstrom (1993) studied the complexity of the general problem of
finding an optimal parallel execution plan and showed that this problem is NP-hard.
Knoblock (1994) investigated the idea of using partial-order planning to generate par-
allel execution plans in terms of underlying assumptions and situations for correctness of
such plans, and whether the planner can even find a plan if one exists. Boutilier and Braf-
man (2001b,a) extend the STRIPS action representation language to represent concurrent
interacting actions. They augment the STRIPS representation for each action with a con-
current action list that constrains the set of actions that can be executed concurrently with
this action and develop the semantics for defining concurrent actions. They also present the
partially ordered multi-agent planning (POMP) algorithm that builds on standard partial

ordered planning algorithms to allow planning with concurrent interacting actions.

7.3 Multi-Agent Systems

Naturally concurrency can be viewed as a sub-class of multi-agent systems with a
cooperative-centralized coordination system, and hence all of the extensive studies and ad-
vances in multi-agent systems are related to the concurrent decision making problem. Due
to a large literature on multi-agent systems, we only present the most relevant work to our
approach in the context of MDPs (for a complete set of work on multi-agent systems please
see the various proceedings of the International Conference on Multi-agent Systems).

Ephrati and Rosenschein (1994) propose a heuristic multi-agent planning framework
that incorporates sub-goals and sub-plans to construct a global plan. The overall goal of
the problem is decomposed into a set of sub-goals a priori, and each agent solves its local

sub-goal. Then the sub-goals are merged into a global plan using a set of heuristics.
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In MDPs, the multi-agent problem is often referred to as multi-agent reinforcement
learning and most of the work can be divided into work on competitive models vs. co-
operative models. Littman (1994), and Hu and Wellman (1999) investigated the problem
of Markov games for competitive multi-agent systems. Tan (1997) studied the cooperative
multi-agent systems where he extends the Q-learning to multi-agent Q-learning by using
joint state-action values. However the agents have to communicate their states and actions.

Makar et al. (2001); Ghavamzadeh et al. (2006) studied the use of hierarchy in multi-
agent reinforcement learning bas on MAXQ framework (Dietterich, 2000). In this ap-
proach, the agents learn to coordinate at higher levels of temporal abstraction (equivalently,
higher levels in the MAXQ hierarchy) by using joint action representation for each agent
at the highest level of the hierarchy.

Guestrin et al. (2002); Guestrin and Gordon (2002); Guestrin et al. (2001) developed
efficient learning and planning algorithms for cooperative multi-agent dynamic systems
based on factored MDPs (Boutilier et al., 1999). In this approach, each agent maintains
a local Q-function that are combined linearly to provide an approximation of the overall
Q-function. To cope with the action selection problem, at every iteration of the Q-learning,
they use an algorithm similar to the variable elimination algorithm in graphical models to
efficiently search for the best actions. The use of local Q-function is closely related to
our approach for approximately computing the redundant-sets in controllers described in
section 5.5.1.

Russell and Zimdars (2003) also use a very similar approach (to that of (Guestrin et al.,
2002)) called Q-decomposition in a centralized-control multi-agent setting that assumes
that the agent’s overall Q@ function can be additively decomposed into local @ functions
for each agent (referred to as a sub-agent). Each agent then reports its local @-function
to an arbitrator that would then choose an action that maximizes the overall Q-function,

that is the sum of the local Q-functions. They showed that if each sub-agent runs SARSA
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algorithm (Rummery and Niranjan, 1994) to learn its local @ function, then a globally

optimal policy can be achieved.

7.4 Roboticsand Control

Redundancy has been extensively investigated in robotics and motor-coordination. The
main body of work is based on utilization of redundancy in systems with excess degrees of
freedom involving some form of pseudo-inverse, in robotics (Liegeois, 1977; Yoshikawa,
1984; Nakamura, 1991), and in motor-coordination (Pellionisz and Llinas, 1985; Saltzman
and Kelso, 1987; Mussa-lvaldi et al., 1988; Jordan and Rosenbaum, 1989; Jordan, 1990;
Todorov and Jordan, 2002).

In robotics, concurrency is primarily introduced based on the redundancy in the sys-
tem kinematics and the degrees of freedom (DOF) in the system (Nakamura, 1991). Such
redundancy is then utilized in the context of concurrent decision making. The common
trend is to approximate the overall task in terms of concurrent optimization of set of sub-
tasks, based on their degrees of significance. Then redundancy in the system, then can
be exploited in such a way that the subordinate sub-tasks are realized using redundancy
not committed to satisfying the superior sub-tasks. This approach has been extensively
studied in many robotics tasks such as obstacle avoidance (Khatib and Maitre, 1978; Naka-
mura, 1991), avoiding mechanical joint limits (Liegeois, 1977), and singularity avoidance
(YYoshikawa, 1984).

Researchers from the Laboratory for Perceptual Robotics (LPR) at University of Mas-
sachusetts have extensively studied redundancy in various robotics problems (Huber et al.,
1996; Sweeney et al., 2002; Platt et al., 2002; Huber and Grupen, 2002a; Huber, 2000; Hu-
ber and Grupen, 2002b). They employ the general concept of redundancy and null-space
approach, based on the“subject-to” relation. This relation is represented as ¢; < ¢;, where
¢; represents the #;;, control law and < expresses the “subject to” relation. In this approach

the control laws are combined by forming the actions of subordinate control laws subject to
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the constraints imposed by other control laws (for example grasping subject to the obstacle-
avoidance constraint). Huber et al. (1996); Huber and Grupen (2002b) use a set of control
laws (such as configuration-space motion control, contact-configuration control and pos-
ture control) and combine them by defining a set of constraints among them (in terms of the
“subject-to” relation) for multi-legged walking and generating robust finger gaits in object
manipulation. Sweeney et al. (2002) propose a framework for coordinating multiple com-
municating robots where the system is modeled as a highly redundant system with multiple
objectives and concurrent decision making is performed using a generalization of null space
control. Platt et al. (2002) proposed a method for combining multiple control laws for the
robot grasping. They considered three control laws (force-based contact position, moment-
based contact position, and kinematic conditioning control laws) that are simultaneously
active and are combined by projecting the actions of the subordinate control laws into the
null-space of the superior control laws, with the relation @ sorce < Pmoment I Prinematic-

Brooks (1986) developed a layered architecture, known as the subsumption architec-
ture, for controlling mobile robots. Each layer implements a controller that interacts with
the other controllers in the system. Higher level controllers can subsume lower level laws
of control by suppressing their outputs. This is very similar to the approach that we de-
scribed for exploiting redundancy in a sense that in subsumption architecture we have a set
of concurrent controllers that are prioritized based on their degrees of significance. How-
ever in this architecture higher level control laws may completely suppress the subordinate
control laws.

Jordan (1990) developed a model for motor learning with an emphasis on problems
involving excess degrees of freedom. The model consists of an internal predictive model
(referred to as a forward model and a set of intrinsic constraints such as smoothness, dis-
tinctiveness and rest configuration, on motor learning. Experiments on a manipulator with
six degrees of freedom showed that by using the smoothness constraint, the model uses the

excess degrees of freedom to anticipate and manifest other actions.
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Todorov and Jordan (2002) developed a motor-coordination theory based on optimal
feedback control that learns strategies that allows variability in redundant (task-irrelevant)
dimensions. The redundancy in this model can be exploited to improve performance,
attains task constrained variability, motor synergies, goal-directed corrections and noise
buffering.

Perkins (2002); Perkins and Barto (2001b,a) investigated the use of Lyapunov function
in RL systems to achieve stability in dynamical system. A Lyapunov function constraints
the set of the actions available to the agent that would allow the agent to descent on the
Lyapunov surface and guarantees achieving the goals in problems whose objective is to
minimize cost to the goal. Some elements of our coarticulation approach is motivated by
this work. In fact, the ascendancy property of a policy emerges naturally when the value
functions associated with subgoals of the problem are used as the Lyapunov constraints

themselves.
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APPENDIX
GLOSSARY OF NOTATION

Table A.1. Glossary of Notation.

| Notation Definition
T,7 Termination mechanism in CAMs
Tany Termination mechanism when any of the activities terminates
Tan Termination mechanism when all of the activities terminates
YimT)(s) Value of state s under policy 7 using the termination mechanism
V*r(s) The optimal value of state s using the termination mechanism 7
Voah(s) The value of state s under the policy 7r*a
when it is terminated using the termination mechanism any
Vet (8) The value of state s under the policy 7*# when it is terminated
using the termination mechanism 7,,,, for the first n steps,
and 7y for the rest of the steps
Q™) (s, a) State-action value of state s under policy 7
using the termination mechanism 7
Q* (s,a) The optimal state-action value of state s
using the termination mechanism =
T, %, The optimal policy based on the termination mechanism 7
Teont ({8, h)) The continue policy in state s and continue-set &
Tseq(S) The sequential policy in state s
O(m, s4,7) The event of initiating the multi-action 7 (s;)
at time ¢ in state s; using the termination mechanism
R The expected partial return of executing the multi-action a
in state s using the termination mechanism =
h, continue-set, or the set of activities that
have not been terminated at time ¢
£ (s,a,s k) Multi-step transition probability of executing the multi-action a
in state s and transitioning to state s’ in k steps
P7(s,a,s',k) | Multi-step transition probability of executing the multi-action a
in state s and terminating in state s’ in k steps
K™ The minimum ascend rate of an ascending policy =
nr The maximum ascend rate of an ascending policy =
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Notation Definition
Re The minimum ascend rate of an e-redundant controller C
e The maximum ascend rate of an e-redundant controller C
X6 The set of redundant policies for an e-redundant controller C
< subject-to relation
Te(s) The worst expected time an e-redundant controller C

to arrive in a goal state when initiated in state s
oc(s) The maximum ascend rate of an e-redundant controller C
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