
An Intrinsic Reward Mechanism for Efficient Exploration

Özgür Şimşek ozgur@cs.umass.edu
Andrew G. Barto barto@cs.umass.edu

Department of Computer Science, University of Massachusetts, Amherst, MA 01003

Abstract

How should a reinforcement learning agent
act if its sole purpose is to efficiently learn
an optimal policy for later use? In other
words, how should it explore, to be able to
exploit later? We formulate this problem as
a Markov Decision Process by explicitly mod-
eling the internal state of the agent and pro-
pose a principled heuristic for its solution.
We present experimental results in a number
of domains, also exploring the algorithm’s use
for learning a policy for a skill given its re-
ward function—an important but neglected
component of skill discovery.

1. Introduction

We consider the following problem: How should a re-
inforcement learning agent act if it is not concerned
with accumulating reward, but with the ability to do
so when desired? In other words, how can it efficiently
learn how to accumulate reward without necessarily
collecting high reward during the process?

This problem is distinct from the one traditionally
addressed in reinforcement learning—accumulating as
much reward as possible within the agent’s lifetime—
which requires the agent to perform a trade-off be-
tween exploration and exploitation. In contrast, we
seek to perform optimal exploration for the sake of
learning a policy that will enable exploitation when
needed at a later time.

We are not proposing to replace the usual overall ob-
jective of a reinforcement learning agent. However,
using this two-stage structure—in which a training pe-
riod is present before performance becomes the main
concern—is a natural way to approach many prac-
tical problems. It also provides a useful conceptual

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the authors.

structure for designing reinforcement learning agents
that are able to efficiently accumulate a collection of
reusable skills with experience. By a skill we mean a
closed-loop policy over one-stage actions, for example
an option (Sutton et al., 1999). Most skill discovery
methods first identify a reward function that the skill
should maximize, then learn a corresponding policy.
The latter, if done during a period devoted exclusively
to learning a satisfactory skill policy, is an instance
of the exploration problem we consider here. Such
an active approach to skill acquisition has not been
explored in the literature, but we believe that a short-
term indifference to reward accumulation will prove to
be beneficial in this context.

We assume that the agent is facing a Markov Decision
Process (MDP) and refer to this as the task MDP. We
formulate the optimal exploration problem as a dif-
ferent MDP, one whose states have two components:
an external state that designates the state of the task
MDP and an internal state that refers to the internal
data structures of the agent. We call this the derived
MDP. When the agent acts according to the optimal
policy of the derived MDP, it performs optimal explo-
ration for learning an optimal policy of the task MDP.
This formulation is adapted from that of Duff (2003),
where the internal state of the agent is a probability
distribution over possible models of the task MDP. In-
stead of trying to optimally explore for the sake of
identifying the task MDP, as in Duff’s work, we are
interested in optimally exploring to form an optimal
policy for the task MDP.

We propose an approximate solution to the derived
MDP that produces a simple and intuitive algorithm,
schematically represented in Figure 1. The external
state and reward are used in the usual manner to up-
date the value function for the task MDP. Unlike the
usual case, however, behavior is directed by a second
value function, one that corresponds to the derived
MDP. The updates to the behavior value function ig-
nore external reward but use a different reward signal
that depends on the evolution of the task value func-



An Intrinsic Reward Mechanism for Efficient Exploration

AGENT

ENVIRONMENT

Behavior
Value 

Function

Task
Value 

Function

action

intrinsic
reward

external
reward

external
state

Figure 1. A Schematic Representation of our Approach.
External state and reward are used to update the task value
function. This update produces an intrinsic reward that is
used to update the behavior value function.

tion. Because this reward signal is a function of the
internal state of the agent, it is an intrinsic reward as
defined by Barto et al. (2004) and Singh et al. (2005).

We devote considerable attention to the formulation of
the derived MDP although our approximation is a rel-
atively simple one. We believe that an explicit repre-
sentation of full information state, consisting of inter-
nal and external state components, is the correct the-
oretical basis for understanding our algorithm. This
formulation not only reveals how our algorithm ap-
proximates the solution to a well-defined optimization
problem but also provides a basis for directions of fu-
ture development.

In the following sections, we first define the optimal ex-
ploration problem precisely, describe our formulation
and solution method, and experimentally evaluate its
performance. We then explore its use in skill acquisi-
tion, concluding with a discussion of related work, our
contributions, and future directions.

2. Background

We use the MDP framework to represent the agent’s
interaction with its environment. A finite MDP is a
tuple 〈S, A, T,R, D, γ〉, where S is a finite set of states,
A is a finite state of actions, T : S × A× S → [0, 1] is
a transition function, R : S × A × S → < is a reward
function, D is the initial state distribution from which
the start state is drawn, and γ is a discount factor,
0 ≤ γ ≤ 1. At each decision stage, the agent ob-
serves a state s ∈ S and executes an action a ∈ A with
probability π(s, a), where π : S × A → [0, 1] is a sta-

tionary stochastic policy. With probability T (s, a, s′),
the agent observes state s′ in the next decision stage
and receives an immediate reward with expected value
R(s, a, s′). The value function of policy π is a map
V π : S → < that specifies the expected return for
executing π starting from state s, where return is the
discounted sum of future rewards. An optimal pol-
icy is one that maximizes the value function over all
states. The actual value of state s is distinct from the
agent’s estimate of it. To refer to the latter at decision
stage t, we use Vt(s). For every policy π, we also define
its policy value, V (π), with respect to the initial state
distribution:

V (π) =
∑
s∈S

D(s)V π(s). (1)

3. The Optimal Exploration Problem

The optimal exploration problem is to devise an action
selection mechanism for generating trajectories in the
task MDP such that the policy learned by the end of
a given number of training experiences has as high a
value as possible as defined by Equation 1. We assume
that the learning algorithm maintains a value function,
but otherwise we treat it as a black box, seeking to
devise a method that will adapt to the particular al-
gorithm being used. We assume that the structure of
the task MDP is unknown, and, furthermore, that it is
not possible to sample a transition from an arbitrary
state but only from its current state.

In this context, an action has two direct consequences.
First, it generates a training experience for the learn-
ing algorithm by revealing an immediate reward and
the next state. Second, it changes the external state,
i.e., the state of the task MDP, determining which ex-
ternal state will be sampled next. To explicitly con-
sider the impact of both on future updates to the value
function, we model the external state of the environ-
ment as well as the agent’s internal representation of
the value function and other relevant data structures.

We observe that the joint evolution of external state
and the agent’s internal state satisfies the Markov
property and formulate the optimal exploration prob-
lem as a derived MDP each of whose states has two
components: external state (se) and internal state (si).
The actions in the derived MDP and their effect on the
external state component are identical to those in the
task MDP. The internal state includes the policy de-
rived from the agent’s current value function for the
task MDP, which we denote by πsi , and all other in-
formation that may impact changes to this in the fu-
ture. The exact representation of internal state and
the transition dynamics of the derived MDP depend



An Intrinsic Reward Mechanism for Efficient Exploration

1 2 3 4 5

+1

Figure 2. A Deterministic MDP with Five States. All tran-
sitions yield zero reward, except for transitions from state
2 into state 1, which yield a reward of +1. The initial state
is state 5 with probability 1.

on the algorithm used to learn the task MDP value
function. We do not need to specify them here be-
cause we do not solve the derived MDP exactly but
exploit certain of its structural properties to find an
approximate solution.

To make matters concrete, consider the determinis-
tic MDP shown in Figure 2. Assume the agent uses
Q-learning with step size α = 1, γ < 1, and initial
Q-values set to zero. Assume also that when the agent
reaches the absorbing state, the environment is initial-
ized to the start state (state 5). In this context, it is
adequate to consider the agent’s internal state to be
its current greedy policy. In Figure 3, we show the
state transition dynamics of the derived MDP, depict-
ing an internal state with the corresponding greedy
policy. As the policy for the task MDP is improved,
transitions move the state of derived MDP toward the
bottom of the diagram. Note that external state 1 is
not part of the derived MDP because the agent makes
no decisions at this state.

The reward for the derived MDP obtained upon a tran-
sition from state (se, si) to (s′e, s

′
i) is the difference be-

tween the values of their associated policies for the task
MDP: V (πs′

i
) − V (πsi

). It follows that, with γ = 1,
the return obtained in a trajectory of finite length is
the difference between the values of policies associated
with the last and the first state in the trajectory. Con-
sequently, with γ = 1 and a horizon that equals the
number of training experiences available, the optimal
solution to the derived MDP specifies an optimal ex-
ploration policy—one that yields a policy with as high
a policy value as possible after the specified number of
transitions.

It is worthwhile to make a few observations here on
the transition structure of the derived MDP. We do
not make any assumptions about the structure of the
task MDP, so the transitions along the external state
component can be arbitrary. But transitions along the
internal state component have a particular structure.
Internal state changes very little from one decision
stage to the next because a single training experience
changes the value function only slightly. Furthermore,

5432
EXTERNAL STATE

IN
TE

R
N

A
L 

S
TA

TE

Figure 3. State Transition Graph of the Derived MDP cor-
responding to the Task MDP of Figure 2. The horizontal
axis shows the external state while the vertical axis shows
the internal state, depicting an internal state with the as-
sociated greedy policy for the task MDP.

in general (but not always), the policy value increases
with more experiences. As a consequence, rather than
jumping arbitrarily along the internal state dimension,
the agent goes through a progression of internal states
that typically increase in value.

Furthermore, if we refer to a set of states with the
same internal state component as a layer , we observe
that the connectivity and reward structure of layers
that are directly connected are very similar. This is
due to the incremental nature of learning updates. If
an external state transition produces a change in the
value function, it is likely to produce a similar change
the next time it is experienced. In addition, transitions
that are close to such transitions are likely to soon
produce changes themselves because the changes in the
value function propagate in the state space.

4. Our Approach

The derived MDP models the agent’s learning process
and its optimal policy specifies an optimal exploration
policy for learning to solve the task MDP. It is, how-
ever, not practical to solve the derived MDP exactly.
Here we enumerate the major difficulties and explain
how we address them to derive a principled heuristic.

The agent cannot generate simulated experience for
learning trials. The transition probabilities of both
the task MDP and the derived MDP are unknown. As
a consequence, the only experiences available to solve
the derived MDP are those obtained during the train-
ing period itself—which the derived MDP is supposed
to optimize! Unless one takes a Bayesian approach



An Intrinsic Reward Mechanism for Efficient Exploration

to explicitly represent the uncertainty in the transi-
tion probabilities, which is intractable even for very
small problems, the only viable alternative is to learn
to solve both MDPs simultaneously, using the current
solution to the derived MDP to select actions. This is
the approach we take.

The state set of the derived MDP is enormous, even
if one could easily identify an appropriate internal
state representation. In any problem of reasonable
size, the agent is unlikely to observe a state of the
derived MDP more than once. We address this by
using state approximation. We ignore the internal
state component and learn a behavior policy as a func-
tion of external state only. When the internal state
component is hidden, the derived MDP appears as
a non-stationary MDP, with expected reward associ-
ated with transitions varying over time as the agent
jumps from one layer of the derived MDP to another.
This non-stationarity, however, is slowly varying be-
cause the directly connected layers are very similar.
It should therefore be possible to “track” this slowly-
varying non-stationary MDP in the sense of maintain-
ing a nearly optimal (or at least, good) policy over
time.

Reward for the derived MDP cannot be computed ex-
actly. Recall that the reward for transitioning from
state (se, si) to state (s′e, s

′
i) is V (πs′

i
) − V (πsi

), or
equivalently∑

s∈Se

D(s)
(
V

πs′
i (s)− V πsi (s)

)
, (2)

which we obtain using Equation 1 and where Se is
the state set of the task MDP. This expression is a
weighted sum, over all external states, of the change
in actual state value from one decision stage to the
next, brought about by the updates to the value func-
tion of the task MDP. It can not be computed exactly
because the actual state values are unknown, but a rea-
sonable estimate can be obtained using the evolution
of estimated state values, Vt(s), as we now explain.

We distinguish between two types of updates to the
value function: those that use the new training expe-
rience directly as a new sample, for example updates
performed by Q-learning with or without eligibility
traces, and those that propagate the direct updates
in the state space, for example model-based planning
updates of Dyna (Sutton, 1990). When both updates
are present, our estimate is∑

s∈Se

D(s)(Vt(s)− Vt−1(s)), (3)

where we assume that the transition takes place from
decision stage t − 1 to t. We arrive at this estimate

1

1

5

2

Figure 4. The Maze Task. Terminal states are marked with
the amount of reward they generate.

by assuming that the change in estimated value of a
state equals the change in its actual value. When only
direct updates are present, it is not clear how they
would propagate in the state space. Our estimate in
this case is ∑

s∈Se

(Vt(s)− Vt−1(s)), (4)

which is independent of the initial state distribution.
One can view this as the result of assuming the ex-
treme case that a direct update would propagate undi-
minished to all the other states, in other words that
it would change the estimated value of all other states
by the same amount.

With the approximation to the reward function given
by Expression 3 or 4, there are two issues to consider.
First, for a given state s, Vt(s) may show high fluctu-
ations over time. It may therefore be desirable to use
a smoother estimate of state value using the history
of value functions, for example a moving average or
the maximum estimate over history.1 Second, it is im-
portant to have pessimistic initial values because the
underlying assumption is that increases in estimated
value reflect increases in actual value.

5. Proposed Algorithm

The ideas in the preceding sections produce a simple
and intuitive algorithm schematically represented in
Figure 1. The agent maintains two value functions:

1This may be considered an instance of optimism under
uncertainty, a heuristic frequently employed in reinforce-
ment learning, because it assumes that the value of a state
is the highest single estimate in the agent’s lifetime.



An Intrinsic Reward Mechanism for Efficient Exploration

0 5 10 15 200

1

2

3

4

Number of transitions (×20000)

Po
lic

y 
va

lu
e

R

CP

CB

!V

0 5 10 15 200.5

1

1.5

2

2.5

3

3.5

4

Number of transitions (×20000)

RM
S 

er
ro

r

R

CP

CB

!V

Figure 5. Performance in the maze task: (a) Policy value as defined by Equation 1, (b) RMS error between the current
and optimal state values.

one that it can use to solve the task MDP (in the fu-
ture) and another that it uses to select actions in the
present. We call these the task value function and the
behavior value function, respectively, and we call their
associated policies the task policy and the behavior pol-
icy.

At decision stage t, the agent executes an action, ob-
serves an immediate external reward and the next ex-
ternal state, and updates the task value function. This
update produces an intrinsic reward, ri(t), which the
agent uses, together with observed external state, to
update the behavior value function. The reinforcement
learning algorithm used to update the behavior value
function may be different than the algorithm used for
learning the task value function. The number of avail-
able training experiences does not influence our algo-
rithm, so it does not need to be known in advance.

In the experiments presented here, we defined intrinsic
reward as follows:

ri(t) = p +
∑
s∈S

(
V max

t (s)− V max
t−1 (s)

)
, (5)

where V max
t (s) = maxT≤tVT (s) and p < 0 is a small

action penalty. The action penalty does not change
the optimal policy of the derived MDP but tends to
promote faster learning and therefore better tracking
of the non-stationary MDP observed when the internal
state component is ignored.

6. Performance in a Maze Task

We evaluated the performance of our algorithm in the
maze task shown in Figure 4. The available actions in
each state are north, south, east, and west. These
move the agent in the intended direction with proba-

bility 0.9 and in a uniform random direction with prob-
ability 0.1. If the direction of movement is blocked, the
agent remains in the same location. The start state is
the square in the center of the grid with probability
1. Reward is −0.001 for each action and an additional
1, 2, or 5 when transitioning into one of the termi-
nal states. When generating training experiences, the
agent returned to the start state after reaching a ter-
minal state. The agent used Q-learning with α = 0.1
and γ = 0.99 to learn both the task value function
and the behavior value function. Initial Q-values were
zero. The behavior policy was the greedy policy with
respect to the behavior value function. The penalty
term p was −0.005.

We provide comparisons with a number of base-
lines. Random (R) picked actions uniformly randomly.
Counter-based (CB) picked the action selected the
least number of times from the current state, which
is a model-free variant of the action selection mech-
anism in Thrun (1992). Constant-Penalty (CP) was
identical to our algorithm but as intrinsic reward used
only the penalty term p instead of the right hand side
of Equation 5.

Figure 5 shows two performance measures: (1) policy
value (of the greedy policy with respect to the task
value function) computed using Equation 1, and (2)
root mean-squared (RMS) error between the current
and optimal state values. The figure shows means
of 30 trials. In both performance measures, our al-
gorithm (which we denote ∆V) showed clear perfor-
mance gains over the baselines. These results were
typical in a variety of maze tasks with which we ex-
perimented. Use of eligibility traces in updating the
behavior value function further improved the perfor-
mance of our algorithm.



An Intrinsic Reward Mechanism for Efficient Exploration

5 10 15 20 25 30 35

0

200

400

600

800

Length of developmental phase (!1000)

R
e
w

a
rd

 i
n
 t
e
s
t 
p
h
a
s
e

R

CP

CB

!V

Primitives only

Figure 6. Performance in the gridworld task.

A closer examination of learning trials revealed that
the behavior of our algorithm was qualitatively differ-
ent than the others, as expected. Its behavior was
neither random, nor could it be characterized as re-
peated systematic sweeps of the state space. Instead,
it obsessively remained in regions in which the value
function was improving, efficiently backing up the re-
wards in the terminal states to the rest of the state
space.

7. Efficient Exploration for Skill
Acquisition

The majority of skill discovery methods proceed by
generating a reward function that the skill should max-
imize, typically by identifying a set of states that are
useful to reach and defining a skill reward function
whose optimal policy efficiently takes the agent to
these states, e.g., Hengst (2002), McGovern and Barto
(2001). When a new skill reward function is identified,
the algorithm we present here may be used to generate
the future experiences of the agent until a satisfactory
skill policy is acquired. In this context, a brief period
of indifference to reward may be a small sacrifice with
a high payoff. The sooner the skill is functional, the
sooner the agent can start obtaining its benefits.

We evaluated the utility of our algorithm in skill acqui-
sition in the two-room gridworld environment shown
in Figure 6, with dynamics identical to the maze do-
main presented above. A useful skill in this domain,
for solving a number of problems, is one that takes
the agent efficiently to the doorway. Many existing
discovery methods can identify this skill, e.g., Man-
nor et al. (2004), Şimşek and Barto (2004), Şimşek

et al. (2005). But, rather than using one of these al-
gorithms, we isolate the exploration problem from the
discovery problem by assuming that the agent has at
its disposal an ideal discovery method—one that would
identify the doorway as a useful subgoal the first time
it is experienced.

Our experimental method consisted of two phases: a
developmental phase in which the agent acquired the
skill policy and a test phase in which the agent used the
acquired skill (in addition to the primitive actions) to
maximize an external reward signal. Our performance
measure was the total discounted reward obtained in
the test phase, during which the agent repeatedly per-
formed an episodic task that started from a random
state in the west room and terminated at the south-
east corner of the grid. Reward associated with each
transition was −0.001, plus an additional +1 if the
transition took the agent to the terminal state. The
skill was made available only from the west room to
be able to attribute performance differences only to
differences in the quality of the acquired skill policy.
Otherwise, poor performance may also be attributed
to a well-acquired skill diverting the agent from reach-
ing the terminal state.

To represent skills, we used the options frame-
work (Sutton et al., 1999). A (Markov) option is
a temporally-extended action, specified by a triple
〈I, π, β〉, where I denotes the option’s initiation set,
i.e., the set of states in which the option can be in-
voked, π denotes the policy followed when the option
is executing, and β : I → [0, 1], denotes the option’s
termination condition, with β(s) giving the probability
that the option terminates in state s ∈ I. When the
agent observed the doorway state for the first time, it
created an option that terminated with probability 1
at the doorway, with an initiation set containing only
the state visited prior to visiting the doorway. The ini-
tiation set was expanded with subsequent experiences.
Each time the agent transitioned to a state in the ini-
tiation set from a state s of the west room outside the
initiation set, s was added to the initiation set. The
skill reward function assigned −0.001 for each tran-
sition and an additional +1 for transitioning to the
doorway.

In the test phase, the agent used intra-option Q-
learning with α = 0.1, ε = 0.05, γ = 1. The test phase
was 60,000 steps, which was the number of transitions
required, on average, for an agent using only primitive
actions to converge to its maximum performance. The
algorithms used in the developmental phase and any
unspecified parameters were identical to those in the
maze task.



An Intrinsic Reward Mechanism for Efficient Exploration

Figure 6 shows the total reward obtained in the test
phase as a function of the length of the developmental
phase measured in number of transitions. The figure
shows means over 100 trials. In addition to the pre-
vious baselines, we show the performance of an agent
that used only primitive actions, which is independent
of the length of the developmental phase. The figure
shows that our algorithm not only obtained the maxi-
mum performance with much less experience, but also
that it never produced a “harmful” skill with which
the agent accumulates less reward than it would using
only primitive actions.

8. Discussion

Exploration in reinforcement learning has been studied
extensively but typically with the objective of max-
imizing return in an agent’s lifetime, which requires
a trade-off between exploration and exploitation, e.g.,
Duff (2002), Kearns and Singh (1998). Doing this op-
timally is known as the optimal learning problem. In
contrast, we study the optimal exploration problem,
in which the objective is to learn how to maximize
return without necessarily accumulating high reward
in the process. Despite this difference, our approach
adopts aspects of the full Bayesian adaptive approach
to solving the optimal learning problem (Duff, 2002).
In particular, we motivate our algorithm through a
derived MDP with states factored into internal and
external components analogous to, but not the same
as, the information and physical state components of
the Bayesian adaptive approach.

Our formulation of this problem yields a simple and
intuitive algorithm for action selection. An important
property of our method is that it is not tied to a spe-
cific reinforcement learning algorithm but can be used
as long as the agent approximates a value function.
Similarly, when used in the context of skill acquisition,
our method can be used in conjunction with any skill-
discovery mechanism that identifies a reward function
to be maximized—the approach taken by most skill-
discovery methods in the literature. In addition, it can
be used to learn skills specified by a system designer
who provides a reward function, which might in some
cases be easier than specifying the policy itself.

The behavior achieved by our algorithm is focused ex-
ploration in regions of the state space in which the
learning updates improve the agent’s value function
the most. A similar behavior is achieved with Priori-
tized Sweeping (Moore & Atkeson, 1993) and Queue-
Dyna (Peng & Williams, 1993) when a model is used
to generate updates to the value function. This is
a different problem than ours because, being model-

based, states can be selected arbitrarily for backups.
Both of these algorithms are concerned with making
the most of available training experience, while we are
concerned with generating the training experience that
will be the most useful. As such, they are complemen-
tary to ours and can be used in conjunction with it.

An essential component of our algorithm is a reward
function defined as a function of the internal state of
the agent. Some other algorithms in the literature that
do the same are Kaplan and Oudeyer (2003), Schmid-
huber (1991), and Schmidhuber and Storck (1993),
which are concerned with learning predictive models of
the environment. In contrast, we learn a value func-
tion for maximizing an external reward signal. Our
formulation may help formalize the intuition behind
these related algorithms, although a value function is
more suitable for our approach than a model. Because
the value of a state is a function of the values of its
neighbors, changes in the value of one state propagate
throughout the state space, helping to create the struc-
ture in the derived MDP that our algorithm exploits.
This in general is not the case when learning a model.
A model, however, also is typically learned incremen-
tally, so the derived MDP would still have some of the
same structure when the goal is to learn a model.

A potential use of our algorithm is as a component
of an agent that autonomously builds a hierarchy of
reusable skills (Barto et al., 2004; Singh et al., 2005).
We advocate an active approach to skill acquisition
that has not been pursued in the literature. Most skill
discovery methods are passive, in that they do not di-
rect the agent to seek experiences that will be useful for
acquiring the skill. Instead, they use whatever expe-
riences are available. One exception is the algorithm
by Singh et al. (2005) in which an intrinsic reward
term is added to the external reward function. While
their method does not create a pure exploration policy
as we suggest, it has a similar idea of influencing the
behavior towards those experiences that would lead to
efficient learning of the skill policy. But subsequent
research has shown that this intrinsic reward is not
effective in achieving such behavior (Barto & Şimşek,
2005). A related potential use of our algorithm is in
solving the traditional reinforcement learning problem.
As a multi-step exploration policy, it may be useful for
addressing the exploration-exploitation trade-off.

Our findings generate a number of open questions, par-
ticularly in the skill discovery context. When should
the exploration period terminate? What if there are
multiple skills to be acquired? Should intrinsic rewards
that are generated by each of these skills be combined,
or should the agent pursue exploration in service of a



An Intrinsic Reward Mechanism for Efficient Exploration

single skill at a time? Perhaps the latter resembles
more closely the type of exploration in which people
engage, directing their attention to a single purpose
until they are satisfied, interrupted by something else,
or frustrated because of lack of progress. One idea
we are currently investigating is to define an explicit
exploration-skill for each skill, whose policy is gener-
ated using the algorithm we present here. Our pre-
liminary experiments show that performance gains are
possible even with simple threshold rules for activat-
ing and terminating this exploration skill, for example
those that track how much the skill value function is
changing. Another direction of future research is to
find better solutions to our formulation, perhaps by
identifying useful features for state approximation on
the internal state dimension, as in Duff (2003). Fi-
nally, important questions remain about integrating
our approach with methods that learn models and use
them for planning.

In the small domains that we tested our algorithm,
we saw marked performance gains when compared to
some heuristic methods of action selection. This is
somewhat surprising since these domains do not pro-
vide many choices for the agent. The active approach
we advocate should make a greater difference in large,
complex domains in which there is a real need for skill
discovery algorithms and in which the need for focused
exploration is much greater.

Acknowledgments

We would like to thank Michael Duff, George Konidaris,
Michael Littman, Andrew Stout, Chris Vigorito, and Ali-
cia P. Wolfe for useful discussions. This research was sup-
ported by the National Science Foundation under Grant
No.CCF-0432143 and by a subcontract from Rutgers Uni-
versity, Computer Science Department, under award num-
ber HR0011-04-1-0050 from DARPA. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References
Barto, A. G., & Şimşek, Ö. (2005). Intrinsic motivation for

reinforcement learning systems. Proceedings of the Thir-
teenth Yale Workshop on Adaptive and Learning Sys-
tems. New Haven, CT, USA.

Barto, A. G., Singh, S., & Chentanez, N. (2004). Intrin-
sically motivated learning of hierarchical collections of
skills. Proceedings of the Third International Conference
on Developmental Learning.

Duff, M. (2002). Optimal learning: Computational pro-
cedures for Bayes-adaptive Markov decision processes.
Doctoral dissertation, University of Massassachusetts
Amherst.

Duff, M. (2003). Design for an optimal probe. Proceedings

of the Twentieth International Conference on Machine
Learning.

Hengst, B. (2002). Discovering hierarchy in reinforcement
learning with HEXQ. Proceedings of the Nineteenth In-
ternational Conference on Machine Learning.

Kaplan, F., & Oudeyer, P.-Y. (2003). Motivational princi-
ples for visual know-how development. Proceedings of the
Third International Workshop on Epigenetic Robotics:
Modeling Cognitive Development in Robotic Systems.

Kearns, M., & Singh, S. (1998). Near-Optimal reinforce-
ment learning in polynomial time. Proceedings of the
Fifteenth International Conference on Machine Learn-
ing.

Mannor, S., Menache, I., Hoze, A., & Klein, U. (2004).
Dynamic abstraction in reinforcement learning via clus-
tering. Proceedings of the Twenty-First International
Conference on Machine Learning.

McGovern, A., & Barto, A. G. (2001). Automatic discovery
of subgoals in reinforcement learning using diverse den-
sity. Proceedings of the Eighteenth International Confer-
ence on Machine Learning.

Moore, A., & Atkeson, C. G. (1993). Prioritized sweeping:
Reinforcement learning with less data and less real time.
Machine Learning, 13, 103–130.

Peng, J., & Williams, R. J. (1993). Efficient learning and
planning within the dyna framework. Adaptive Behavior,
2, 437–454.

Schmidhuber, J. (1991). A possibility for implementing
curiosity and boredom in model-building neural con-
trollers. From Animals to Animats: Proceedings of the
First International Conference on Simulation of Adap-
tive Behavior.

Schmidhuber, J., & Storck, J. (1993). Reinforcement
driven information acquisition in nondeterministic en-
vironments. Technical report, Fakultat fur Informatik,
Technische Universit at Munchen.

Şimşek, Ö., & Barto, A. G. (2004). Using relative novelty
to identify useful temporal abstractions in reinforcement
learning. Proceedings of the Twenty-First International
Conference on Machine Learning.

Şimşek, Ö., Wolfe, A. P., & Barto, A. G. (2005). Identi-
fying useful subgoals in reinforcement learning by local
graph partitioning. Proceedings of the Twenty-Second
International Conference on Machine Learning.

Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrin-
sically motivated reinforcement learning. Advances in
Neural Information Processing Systems.

Sutton, R. S. (1990). Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. Proceedings of the Seventh International
Conference on Machine Learning.

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Be-
tween MDPs and Semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial
Intelligence, 112, 181–211.

Thrun, S. (1992). Efficient exploration in reinforcement
learning (Technical Report CMU-CS-92-102). Carnegie-
Mellon University.


