Decision Tree Methods for Finding Reusable MDP Homomorphisms

Alicia Peregrin Wolfe* and Andrew G. Barto T
Department of Computer Science
University of Massachusetts, Amherst
Amherst, MA 01035, USA
{pippin, bartg @cs.umass.edu

Abstract

State abstraction is a useful tool for agents interacting with
complex environments. Good state abstractions are compact,
reuseable, and easy to learn from sample data. This paper
combines and extends two existing classes of state abstraction
methods to achieve these criteria. The first class of methods
search for MDP homomorphisms (Ravindran 2004), which
produce models of reward and transition probabilities in an
abstract state space. The second class of methods, like the
UTree algorithm (McCallum 1995), learn compact models of
the value function quickly from sample data. Models based
on MDP homomorphisms can easily be extended such that
they are usable across tasks with similar reward functions.
However, value based methods like UTree cannot be extended
in this fashion. We present results showing a new, combined
algorithm that fulfills all three criteria: the resulting models
are compact, can be learned quickly from sample data, and
can be used across a class of reward functions.

Introduction

In this paper, we focus on state abstraction, specifically,
Markov Decision Process (MDP) homomorphisms (Ravin-
dran 2004). In general, a homomorphism is mapping from
one mathematical structure to another, possibly many to one,
which preserves some properties or operations on the orig-
inal structure. In the case of MDP homomorphisms, the
mapping is from the states and actions of one MDP to the
states and actions of another abstract MDP, and the proper-
ties preserved are the transition and reward functions. Due
to this preservation of reward and transition function, this
representation also preserves #adue functionover states,
which can be used to construct a policy for acting in the en-
vironment.

Methods like UTree (McCallum 1995), which can be used
to find state abstractions from sample interactions with the
environment, focus directly on modeling the value function.
Although this can result in compact models it has certain
drawbacks. The homomorphism framework, because it re-
tains the transition and reward functions directly, can be

*This research was facilitated in part by a National Physical
Science Consortium Fellowship and by stipend support from San-
dia National Laboratories, CA.

fThis research was funded in part by NSF grant CCF 0432143.
Copyright © 2006, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

easily extended to form models that can be used for more
than one reward function and task. These models, which are
formed by what we will term Controlled Markov Process
(CMP) homomorphisms, model some specific output func-
tion over the state space rather than a specific reward func-
tion. A single output function supports a family of related
reward functions—those which are some function of the out-
put function. Consider a navigating robot: one task might be
to get to a particular location, while an output function that
could support this goal as well as many others would simply
give the robot’s current location. The model appropriate for
a specific task may be more compact than the model for the
general output function, but the output function model can
be reused in multiple tasks.

The UTree algorithm is quite appealing, however, in that
the whole structure of the underlying MDP, whether ex-
pressed as an MDP or as a dynamic Bayes network (DBN),
need never be known. Most current homomorphism find-
ing techniques start with a complete model in one of these
two forms, then reduce the model to a simpler abstract MDP.
When using Utree, however, only those features relevant to
the task at hand are included, and the agent need not do more
exploration than is necessary to learn the abstract model:
there is no need to learn the complete model. This paper
therefore modifies the algorithm to find CMP homomor-
phisms, by including the transition probabilities and output
probabilities that support a specific output function, while
retaining the advantages of the decision tree approach.

The resulting algorithm tackles both of the basic problems
facing any agent that performs autonomous abstraction—
how to learn compact, but reusable models of an environ-
ment from data as quickly and accurately as possible.

Background

A Markov Decision Process (MDP) consists of tuple
(S, A, T, R) comprising a state sef}, action set 4), transi-
tion function (" : S x A x S — [0, 1]), and expected reward
function (R : S x A — R). The transition function defines
the probability of transitioning from state to state given the
current state and chosen action, while the reward function
represents the expected reward the agent receives for being
in a particular state and executing an action.

An MDP homomorphism (Ravindran 2004) is a mapping,
h:SxA— 8 x A, from the states and actions of a

base MDPM = (S, A, T, R), to an abstract model MDP
M = (8',A", T R"). To be an MDP homomorphisn,

must preserve both the reward function and some properties

of the transition probabilities af/. Specifically,h consists

of a set of mappingsy : S — S’, and for eachs € S a
mappinggs : A — A’ that recodes actions in a possibly
state-dependent way. The following properties must hold,
for all state and action pairs:

R'(f(s),9s(a)) = R(s,a))
T/(f<si)7gsz'(a)ﬂf(8j)) = Z T(si,a,sk).
skl f(s;)=F(sk)
(2)

Subgoabptions(Sutton, Precup, & Singh 1999) provide a
formalism for specifying multiple episodic subtasks within
an MDP. In addition to a reward functioR over the state
space, a subgoal option includes a termination condition
Sx A — [0, 1] which specifies the probability that the option
will terminate in any particular state. Homomorphisms for
subgoal options include one additional constraint over the
mappingh (Ravindran & Barto 2003):

B'(£(5): gs(a)) (s, a). ®3)

When a mapping can be found that is many-to-one, the
abstract MDPM' has fewer states thald. The homomor-
phism conditions mean that’ accurately tracks the transi-
tions and rewards of/ but at the resolution of blocks of

Base CMP (M)
po@pogo
v
Abstract CMP (M')
51686169
sq' Sy’ s3' Sq'
(b) Partitioned State Space, mod 8

Joo1(subtract) = a

411000

001
901 o(sublract) =ay

010

9o10(add) =24

Figure 1: Abstract model produced by the homomorphic im-
age of an integer counter (a), where the output variable is the
3rd least significant bit. Action sefadd 1, subtractil The

final reduction from 8 states to 4 is detailed in (b).

CMP Homomorphisms

A CMP is an MDP without the latter’s reward function. A
CMP with output is a CMP together with an output function
that maps its state set to a set of outputs, or observafians,

states, assuming some appropriate action recoding. EachWe think of the output function as singling out some aspect

block is a set of states thg@tmaps to the same state bf’.
These properties guarantee that policies optimalércan
be lifted to produce optimal policies of the larger MOW
(Ravindran 2004).

Several algorithms exist for finding MDP homomor-
phisms given a model of an MDP. All proceed by partition-
ing the state sef in stages. At each stage, the states and
actions are partitioned into two sets of blocks: a state (S) par-
tition { By, ... B,,} over states, and a state/action (SA) parti-
tion over (s, a) pairs, P;...P,, }. The S partition defines ah
mapping:s € B; — f(s) = s}. Similarly, the SA partition
defines the set af; mappings(s,a) € P, — g,(a) = al.

The partitioning algorithm starts with an initial SA parti-
tion that follows from Equations 1 & 3: all state/action pairs
in the same blocl; have the same expected reward and ter-
mination probability. Next, the model is repeatedly refined
in a loop that alternately updates the S and SA partitions in
order to satisfy Equation 2.

Each iteration first defines a new S partition, based on the
current SA partition: any two states ands;, are placed
the same state block; if and only if they are members of
the same set of SA blocks (i.6¢Py, Jal(s;,a) € Py <
Ja|(s;,a) € Pg). Using the new state labels defined by
f, the blocks of the SA partition are next refined to satisfy
Equation 2, and the algorithm repeats. When the blocks of
the S partition do not change from one iteration to the next,
the mapping is a homomorphism.

This version of the algorithm is taken from Ravindran
(2004), though similar examples exist in Givan, Dean, &
Greig (2003) and Boutilier, Reiter, & Price (2001).

of the CMP as being of interest for some reason. This func-
tion might be as simple as the location or color of an object
in the state. Thus, a CMP with outputis atupte A, T y),
where S, A, andT are as in an MDP, ang is the output
functiony : S x A — Y. Given any function : Y — R,

(S, A, T,roy) isan MDP whose reward function is the com-
position ofr andy. We say that this MDP isupported by

y. This means that the reward depends only on the observa-
tions, not on the complete state. The termination conditions
for the family of subgoal options supported phyhave the
formp:Y — [0, 1].

A CMP homomorphism is a mapping from a CMP
with output (S, A, T,y) to an abstract CMP with output
(8", A, T",y'). The mapping function, f, andg; are
defined as for MDP homomorphisms. The conditions that
the resulting model must satisfy in order to form a CMP
homomorphism are similar to those for an MDP, with the
constraints over the expected value of the reward for a state
(Equation 1) and termination functiofi (Equation 3) re-
placed by a single constraint over the output function:

y'(f(s),9s(a)) y(s,a). (4)

The transition function constraints (Equation 2) remain the
same. The model formed by a CMP homomorphism can be
used to learn the value function for any reward functiony

and termination functiofs o y.

Figure 1 illustrates the abstract model formed by a homo-
morphic mapping on a binary integer counter with actions
“add 1" and “subtract 1", where the output function is the
3rd least significant bit. The CMP reduces to a 4-state ab-

Algorithm 1 Decision Tree Algorithm

for t<— 1toT do
output[t] < y(s¢)
/I all states initially have the same label
nextStateLabels[}- 0

end for

tree< rootNode()

stateLabelsChanged true
while stateLabelsChangedo
repeat
/I classification with the current target
improvement— doBestSplit(tree, output, nextState-
Labels)
until (improvement threshold)
/I update the target concept
stateLabelsChanged— updateNextStateLabels(tree,
nextStateLabels)
end while

stract CMP. It is easy to see that all higher order bits are
irrelevant to the task of predicting the 3rd bit, but the final

reduction from 8 states to 4 is less clear. Consider an integer

counter with only three bits, shown in Figure 1 (b). In order
to reduce to 4 states, use the following action mapping: if
bit 2 = 0, “add” — a5 and “subtract’— a;. Ifbit2 =1,
“subtract’— as, and “add’— a; to produce the state space
partition shown.

Existing methods for finding MDP homomorphisms ap-
ply with trivial modifications to the case of a CMP with
output. The initial split on average reward must simply be

replaced by a split that clusters the states according to the

distribution of the output function.

State Splits

A

Action Splits

a=add a=add

a=add

a=sub a=sub a=sub a=sub

Figure 2: Portions of the decision tree for the counter from
Figure 1. Action feature splits are strictly below state feature
splits.

The algorithm learns a decision tree of the form shown in
Figure 2. Note that all state feature splits are strictly above
action feature splits. All states classified by the statelgaf
are members of blociB; in the S partition. Similarly, all
state/action pairs classified by state/action leare mem-
bers of SA blockP;. The parameters for the abstract CMP
for the tree can be estimated by counting observed transi-
tions between tree leaves.

The sample set consists of transitions sampled from some
large MDP. Each sample is a tugle, a, s;+1) composed of
an initial states;, action and next state ., for time step t.
The state and action feature sets may include features over
history, if the agent is in fact in a POMDP. The algorithm is
also given the output functiomover the state set.

The core of the algorithm is a decision tree algorithm with

Some supported reward functions may be representable target conceptsy(s;) for the initial state of each sam-

using a smaller abstract model. This method therefore

ple, andf(s:+1) for the next state in each sample. There are

makes a compromise between finding a model which is com- 4 |oops in the algorithm: the inner loop builds the classi-
pact and reusable, which depends on the output functions fication tree, the outer loop uses the resultihfunction to

chosen.

Decision Tree Based Algorithm

Since the goal is to build an abstract model from sample
data in time proportional to the size of the abstract model—
not the entire MDP—existing state space patrtitioning algo-
rithms are insufficient. Consider the integer counter from
Figure 1. If the output feature is the third bit of the counter,
with an optimal algorithm the agent can accurately learn the
model in the same amount of sample interactions it would
take to learn the model of a three bit counter. However, any
metho requiring a model of the entire CMP to form the map-
ping would need to explore the entire (infinite) state space.
Algorithm 1 is a decision tree based algorithm similar to
the Utree algorithm. It splits the state space using feature
splits in a decision tree, considering features from both the
action features seX 4 and state feature sé&fs. The differ-
ence is that rather than choosing splits to improve the predic-
tion of thevalueof the next state, it chooses splits to improve
the prediction of the abstract state label of the next state.

create new next state labels. The task of predicting the next
state becomes more difficult with each iteration of the outer
loop, as the tree refines the state space. The procedure stops
when the state space can predict bpth;), andy(s:41). At

this point, f does not change from one iteration of the outer
loop to the next.

Splitting Leaves (doBestSplit)

The choice of a decision tree algorithm implies certain lim-
itations that cannot be ameliorated by the choice of leaf-
splitting criteria. If two or more feature$z;...xx} €
XU X 4 produce no change in output and transition proba-
bilities when chosen individually, but do improve prediction
when selected as a group, no decision tree algorithm will se-
lect them. The abstract model formed in this case will not
satisfy Equation 4 and will not be Markov. Methods which
use an exact model of the entire CMP do not have this prob-
lem, as they compare states and actions directly rather than
splitting on features individually.

In order to form a compromise between these two meth-

ods, we will consider splits up to depth bin the tree, pro-
ceeding to splits of depthonly if there are no splits of depth
4 — 1 which are relevant.

Within these limitations the range of algorithms able to
find accurate models is wide. Any algorithm which contin-
ues splitting on features until none improve prediction ac-
curacy will find a model satisfying Equations 2 & 4 within
the limitations of the choice df. For these experiments, the
Chi Squared significance test was used to determine whether
a split made a significant difference in accuracy.

The order in which feature splits are chosen determines
the size of the decision tree. A greedy approach based on
Information Gain is commonly used in decision trees, and
is the metric we use here. For action leaves, the calculation
of Information Gain for an action feature; € X4 at ac-
tion leaf a; is simple: I, (z;) = >, H(o;) — H(o|z;),
where H(o;) is the entropy of the target concept €
{y(st), f(se+1)}, and H(o;]x;) is the conditional entropy
of the target concept after the split.

State splits split the leaves of the state classification sub-
tree, and may split several action leaves at a time. The
gain for the split must be calculated over this set of ac-
tion leaves. Ideally the gain at each action leaf would
be weighted by the probability of that leaf, however, this
probability may change as the policy changes for different
tasks. Therefore, we assume that the specific action with
the greatest gain is the most important action to improve
and use its gain measure for the state leaf. The gain for a
split on the state feature; € Xg at leafs; is therefore:

I, (z5) = max,, csuptree(s;) la, (), Wheresubtree(s;) is
the set of all action leaves with) as an ancestor.

Time Complexity

The algorithm performs at mossplits, wherd is the num-

ber of leaves. For each split(w") possible feature com-
binations are tested on each leaf, wheres the number of
feature values. In practice, it is only practical to maintain
a set of exemplar samples of a constant siz¢ each leaf,
wherec depends on the amount of data needed at a leaf for

Reward

Average reward

40 60
Time Step (X 500)

Figure 3: Average reward per time step for UTree and CMP
homomorphism abstractions, for each 500 time step interval.

State Leaves

State Leaves in Tree
4 6 8 10 12 14 16

40 60
Time Step (X 500)

Figure 4: The size of the state space used by UTree and CMP
homomorphism abstractions in the Integer Counter example.

The output function for these experiments singled out the
3rd and 4th least significant bits. The test scenario gener-
ated tasks where the agent’'s goal was a specific setting of
these bits. This setting generated a reward(oénd termi-
nated the current episode. All other transitions generated a
reward of—1. The agents were presented with 10 randomly
generated tasks in sequence, with 5000 time steps in which
to learn each task. At the start of each new task, the UTree
algorithm created a new abstraction tree.

Learning within each task proceeded in stages: every 500

this MDP. Thus, while the amount of exploration required to steps, the agent ran its respective decision tree algorithm.
gather sufficient samples for each leaf depends on the MDP, The resulting tree was then used to create a policy for the
the size of the sample set considered at each iteration of the next 500 time-step interval. Random choices were used over

algorithm is at most - [. The Information gain and Chi
squared calculations are linear in the number of samples at
a leaf, therefore, the time to process a leadigv* - ¢) and
the overall time complexity i©(1% - ¢ - w*).

Overall then, the worst case time complexity of a single
execution of the algorithm does not depend on the size of
the original MDP. The number of times the algorithm is ex-

action features that were not selected in the tree.

Each leaf of the CMP tree kept= 250 exemplar tran-
sition samples. A setting of maximum feature depth: 1
was sufficient for the CMP Tree, but a settingkof= 2 was
necessary for the UTree algorithm. We hypothesize that this
is due to the fact that UTree initially makes distinctions only
between states with distinct rewards. States in which the

ecuted depends on the number of interactions necessary toagent achieves the goal are rare and difficult to predict.

get a sufficiently large sample size.

Experiments

The first experiments shown used the integer counter CMP
with 10 bits and two actions, add 1 and subtract 1. Actions
were noisy: with probability 0.2 an add action instead did a
subtraction, and similarly for subtract.

The results, averaged over 100 runs, are shown in Fig-
ures 3 & 4. Peak performance is similar for the two algo-
rithms, although UTree typically finds slightly smaller mod-
els. UTree failed to find the correct model in a few cases,
perhaps indicating that its parameters need to be adjusted.
CMP performance dips with the start of each of the first 3 or
4 tasks, as the state set is more thoroughly explored and the
model grows. With the addition of 4 or 5 states over the size

of the UTree the CMP algorithm gains a model that can be
reused for the remainder of the tasks.

The UTree variant used here was as close as possible to
Algorithm 1, in order to clearly compare using the next state
label as the classification target to using the value of the next
state as the classification target. The Information Gain or-
dering function for splits of Algorithm 1 was replaced with
the difference in expected value, the Chi-Squared test was
replaced with the Kolmogorv-Smirnoff test with a cutoff of
0.95 and the state classification functipwas replaced with
a procedure that calculates the value of the next state for each
sample.

To avoid overfitting in the CMP homomorphism finding
algorithm, the Chi Squared measure was set quite high, to
0.99, and a cutoff of 0.1 was used on the Information Gain
measure. Selecting extra features in the CMP algorithm is
very expensive: consider what happens when the algorithm
selects bit 10 in the integer counter example. Because the
bit is now part of the state description, the algorithm tries
to predict it, using bit 9, bit 8, etc. In one case out of 100
trials, even with stringent overfitting controls, the state space
grew to 80 states. In no case did the algorithm fail to find the
necessary state splits. The optimal state set size was 16: all
of the other runs found this optimal state size.

Utree and related algorithms do not have as much of a
problem with overfitting because they predict the value of
the next state, rather than the next state label. This has the
effect of merging state leaves as the estimate of the value
function improves. If the split on bit 10 was due to noise in

the samples, as more data is gathered and the value function

estimates improve, corresponding states with the same true
value merge, in effect, since these leaves have the same th
state value labels.

One solution to this problem in the CMP algorithm might
therefore be to run the original homomorphism finding al-
gorithms on the model specified by the tree as more data is
added, labeling multiple leaves with the same abstract state
or state/action block label or pruning the tree.

Blocks World

The second environment we tested was a Blocks World en-
vironment. Each Blocks World task consisted of 3 blocks,
each of which could have one of 4 colors and be in one of 4
piles. There were 16 actions: move the top block in each of
the 4 piles to another pile.

Each episode started with a new Blocks World, consisting
of three blocks of random color stacked in random piles.
The output variable was the position (height and pile) of a
specific block—the focus block. The decision tree built a
general description of a Blocks World to predict focus block
position.

The reward functions for the tasks ranged overithpos-
sible target block positions, with a positive reward 66 for
achieving the desired focus block position and reward bf
on all other transitions.

State features were the height, pile index, and color of
the blocks. The features for the focus block were distinct
from the features for the other blocks. Features for non-
focus blocks were relational, in that splitting on a feature

€

Reward State Leaves

25

15

0 20 40 60

05

State Leaves in Tree

Average reward per time step

Time Step (X 3000)

Time Step (X 3000)

Figure 5: Average reward per time step and state space
size for UTree and CMP homomorphism abstractions in the
Blocks World example.

like “height = 2" merely indicates the existence of an ob-

ject matching that feature. Once a feature of an object has

been selected, the object description can be refined with ad-
ditional features. If, for example, the feature “height = 2”
has been selected, the tree can be further split with the linked
feature “pile Index = 1" to indicate specifically that there is

a block at height 2 in pile 1.

Action features were the index of the pile from which a
block is taken, and the index of the pile onto which the block
was deposited. If there was no block in the “from” pile, or if
the action failed (prob = 0.2) the state remained unchanged.

Learning curves are shown in Figure 5. The interval be-
tween tree learning sessions was lengthened here to 3000
time steps, with 15000 steps total on each of 5 tasks.

The optimal state description for the CMP contained 60
states. In these experiments, both algorithms used 1,
which plainly did not allow the UTree algorithm to find all
the splits necessary to perform well. Preliminary experi-
ments withk = 2 showed no improvement for UTree. The
problem seems to be with difficult tasks, in which the tar-
get block position involved stacking the focus block on top
of the two other blocks. The rewarding states in this sce-
nario are hard to reach, making samples with reward rare.
The policies and state sequences which lead to these states
are also complex. It seems that one or both of these aspects
of the task make it difficult for UTree to find an appropriate
abstraction using these state and action features.

The noise features in this case were the block colors, as
well as some action features. For the most part the algorithm
correctly ignored these features.

Related Work

This paper merges two branches of well-studied research.
Finding hidden states in POMDPs is a well-covered prob-
lem, going as far back as Whitehead & Ballard’s (1991)
work on the perceptual aliasing problem. The UTree al-
gorithm is one of the more advanced of these methods. It
has been extensively studied, both for POMDP state iden-
tification and MDP state abstraction for a fixed task, with
many variants (McCallum 1995; Jodogne & Piater 2005;
Jonsson & Barto 2001).

Partitioning the state space while preserving expected re-
ward and transition functions via various related algorithms,
all of which produce some type of homomorphism, has also

been extensively studied. The agent typically begins with
some type of model of the complete system, either an MDP
(Givan, Dean, & Greig 2003; Ravindran 2004), relational
regression model (Boutilier, Reiter, & Price 2001) or DBN
(Jonsson & Barto 2005; Ravindran 2004). Again, these
methods focus on a specific task, though the models they

build are in fact more general and could be used across tasks.

This work also shares some elements with the work of
Hengst (2002) and Jonsson & Barto (2005).. Both of these
algorithms focus on building hierarchies of tasks using out-
put variables, from which options are constructed that reach
each possible value of each variable. For output variables
with many values, it may not be appropriate to cache poli-
cies for reaching every value. The cached policies also do
not address more complex reward functions that do more
than simply seek to reach a single value of the variable.

Discussion and Future Work

The underlying framework of this algorithm, of iteratively
refining a model learned from samples to form a homomor-
phic mapping to a reusable abstract model, is general and
powerful enough to be extended beyond the implementa-
tion outlined here. The decision tree implementation pre-
sented here provides a simple and straightforward example
of this framework, appropriate for cases where the designer
has knowledge of the feature set of the domain. In practice,

real “agents” create new features as they create their models

of the world. Ideally, in future the algorithm will construct

its own feature set using samples and the output target as a

labeled feature set in a classification task.

Approximate models can be produced by terminating the
decision tree algorithm early. The approximate homomor-
phism model is the Bounded Parameter MDP model (Givan,
Leach, & Dean 2000) . The range of possible values for

each parameter under all policies are represented by upper

and lower bounds. The bounds for the model inikieiter-
ation of the outer loop of the decision tree algorithm can be
found by examining the + 1th iteration.

The structure of the tree presents some clear possibilities
for exploration policies: leaves with too few samples must
be visited before splits can be evaluated. There are some
deeper issues as well, however. Any accuracy or error mea-
surements in the tree are based upon the sampling policy
used to collect data, which determines the visitation rates
for states and actions in the underlying MDP. Different sam-
pling policies may result in smaller or larger decision trees
by changing the order of features chosen. One of the remain-
ing questions is whether an optimal sampling procedure for
determining the most compact model can be approximated
using the model at intermediate stages of the algorithm.

The clearest question this work raises, however, is: what
are the optimal output functions for a particular space of
tasks? What is the optimal trade-off between compression
and generality? It would be more satisfying if the agent
could seeN tasks, and then generafé’ << N output
functions which support the reward functions for most fu-
ture tasks. Until then, if the designer can identify a small set
of output functions which support a wide range of rewards,
it will be beneficial to the agent.

References

Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dynamic
programming for first-order mdps. Proceedings of the 17th In-
ternational Joint Conference on Atrtificial Intelligend@0-697.

Chapman, D., and Kaelbling, L. P. 1991. Input generalization in
delayed reinforcement learning: An algorithm and performance
comparisons. IfProceedings of the 12th International Joint Con-
ference on Artificial Intelligencevolume 2, 726-731.

Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-based batch
mode reinforcement learninglournal of Machine Learning Re-
search6:503-556.

Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence notions
and model minimization in markov decision procesgkdificial
Intelligencel47(1-2):163-223.

Givan, R.; Leach, S. M.; and Dean, T. 2000. Bounded-parameter
markov decision processegirtificial Intelligence122(1-2):71—
109.

Hengst, B. 2002. Discovering hierarchy in reinforcement learning
with hexg. InProceedings of the 19th International Conference
on Machine Learning243-250.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. Spudd:
Stochastic planning using decision diagrams.Pinceedings of
the 15th Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI)527-534.

Jodogne, S., and Piater, J. H. 2005. Interactive learning of map-
pings from visual percepts to actions. Rnoceedings of the 22nd
International Conference on Machine Learning

Jonsson, A., and Barto, A. 2001. Automated state abstraction
for options using the u-tree algorithm. Kdvances in Neural
Information Processing Systems, 1854—-1060.

Jonsson, A., and Barto, A. 2005. A causal approach to hierarchi-
cal decomposition of factored mdps. Pmoceedings of the 22nd
International Conference on Machine Learnjnglume 22.

Kersting, K., and Raedt, L. D. 2003. Logical markov decision
programs. InProceedings of the 20th International Conference
on Machine Learning (ICML-2003)

McCallum, A. K. 1995. Reinforcement Learning with Selective
Perception and Hidden StatPh.D. Dissertation, Rutgers Univer-
sity.

Poupart, P., and Boutilier, C. 2002. Value-directed compression of
pomdps. InAdvances in Neural Information Processing Systems
15, 1547 —1554.

Ravindran, B., and Barto, A. G. 2003. Smdp homomorphisms:
An algebraic approach to abstraction in semi markov decision
processes. liProceedings of the 18th International Joint Con-
ference on Atrtificial Intelligencel011-1016. AAAI Press.

Ravindran, B. 2004.An Algebraic Approach to Abstraction in
Reinforcement LearningPh.D. Dissertation, University of Mas-
sachusetts.

Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between mdps
and semi-mdps: A framework for temporal abstraction in rein-
forcement learningArtificial Intelligence112:181-211.

Whitehead, S., and Ballard, D. 1991. Learning to perceive and
act by trial and errorMachine Learning’:45—-83.

Wu, J.-H., and Givan, R. 2005. Feature-discovering approximate
value iteration methods. In Jean-Daniel Zucker, L. S., Ab-,
straction, Reformulation and Approximation: 6th International
Symposium

