
Defining Object Type Using MDP
Homomorphisms

Alicia Peregrin Wolfe and Andrew G. Barto
pippin@cs.umass.edu, barto@cs.umass.edu

Autonomous Learning Laboratory

Department of Computer Science

University of Massachusetts, Amherst

Object Type – p. 1/1



Outline

Introduction: Object Type

CMP Homomorphisms

Object Homomorphisms

Object Options

Subtypes

Discussion

Object Type – p. 2/1



Modeling Objects

?
=

Are green blocks the same as yellow blocks?

Could the same policy be used to move both?

Object Type – p. 3/1



Modeling Objects

?
=

Is a block the same as a plate?

Object Type – p. 3/1



Modeling Objects

?
=

Is a block the same as a plate?

Can they be stacked the same way?

Object Type – p. 3/1



Related Work

Givan, R., Dean, T., & Greig, M. Equivalence Notions and

Model Minimization in Markov Decision Processes. Artificial

Intelligence, 2003

stochastic bisimulation

Ravindran, B. & Barto, A. G. SMDP Homomorphisms: An

Algebraic Approach to Abstraction in Semi Markov Decision

Processes. IJCAI-03

MDP Homomorphisms

CMP Homomorphisms (Wolfe, Barto, AAAI 2006)

If you are going to bother to build a model, use it for

multiple tasks

Object Type – p. 4/1



Controlled Markov Processes

Controlled Markov Process: (S,A, T )

S: State set, A: Action set, T : S × A × S → [0, 1]

Object Type – p. 5/1



Controlled Markov Processes

Controlled Markov Process: (S,A, T )

S: State set, A: Action set, T : S × A × S → [0, 1]

Add output variable: (S,A, T, y)

y : S → Y

Object Type – p. 5/1



CMP Homomorphisms

Model which predicts one specific output variable

Transitions occur between abstract states

Can build policies for supported reward functions
r ◦ y

Object Type – p. 6/1



CMP Homomorphisms

Partition of state and action spaces, with constraints:

y(f(s), gs(a)) = y(s, a)

T (f(si), gs(a), f(sj)) =
∑

sk|f(sj)=f(sk)

T (si, a, sk)

ai

ak

Object Type – p. 7/1



CMP Homomorphisms

Partition of state and action spaces, with constraints:

y(f(s), gs(a)) = y(s, a)

T (f(si), gs(a), f(sj)) =
∑

sk|f(sj)=f(sk)

T (si, a, sk)

s1' s2'

ai

ak

Object Type – p. 7/1



CMP Homomorphisms

Partition of state and action spaces, with constraints:

y(f(s), gs(a)) = y(s, a)

T (f(si), gs(a), f(sj)) =
∑

sk|f(sj)=f(sk)

T (si, a, sk)

a'j

Object Type – p. 7/1



Object CMPs

Output is z ◦ wo where wo singles out object o, and z
singles out a feature

What if multiple objects have the same model for z?

Object Type – p. 8/1



Object CMPs

Output is z ◦ wo where wo singles out object o, and z
singles out a feature

What if multiple objects have the same model for z?

Object Type – p. 8/1



Generalization

Plates, blocks ∈ stackable objects type

Only have to be the same with respect to the output
variable

Object Type – p. 9/1



Generalization

Plates, blocks ∈ stackable objects type

Only have to be the same with respect to the output
variable

Object Type – p. 9/1



Generalization

Plates, blocks ∈ stackable objects type

Only have to be the same with respect to the output
variable

Object Type – p. 9/1



Lifting Policies

Policy specifies action in abstract model

Object Type – p. 10/1



Lifting Policies

Policy specifies action in abstract model

Reverse mapping to find the corresponding action in
the CMP

Object Type – p. 10/1



Object Options

Suboal option:
reward function r
termination function β

Object option: both are function of z

Only need to find policies for types, not specific
objects

Object Type – p. 11/1



Object Type: Subtypes

What if all blue and green blocks stick to blocks of
the same color, but yellow do not?

Sample states:

Object Type – p. 12/1



Object Type: Subtypes

What if all blue and green blocks stick to blocks of
the same color, but yellow do not?

Sample states:

Object Type – p. 12/1



Object Type: Subtypes

What if all blue and green blocks stick to blocks of
the same color, but yellow do not?

Sample states:

Object Type – p. 12/1



Object CMPs

Equivalence criteria:
∀ CMPs Mk

hi the reduction of Mk, z ◦ woi

∃hj,Ml, hj a reduction of Ml, z ◦ woj

Such that hi(Mk, z ◦ woi
) = hj(Ml, z ◦ woj

)

Then oj � oi under the output z

Object Type – p. 13/1



Discussion

View environment from point of view of a single
object

could be another agent

Alternate method: add "pointer" to state space
one large model over all types

HM framework does not generalize to more objects
Can’t use reduction for 3 blocks to learn about 4
Find the relations which will generalize from
examples of reductions
Build a generic reduction

Object Type – p. 14/1


