
Compact Spectral Bases for Value Function Approximation Using Kronecker
Factorization∗

Jeff Johns and Sridhar Mahadevan and Chang Wang
Computer Science Department

University of Massachusetts Amherst
Amherst, Massachusetts 01003

{johns, mahadeva, chwang}@cs.umass.edu

Abstract

A new spectral approach to value function approxima-
tion has recently been proposed to automatically con-
struct basis functions from samples. Global basis func-
tions called proto-value functions are generated by di-
agonalizing a diffusion operator, such as a reversible
random walk or the Laplacian, on a graph formed from
connecting nearby samples. This paper addresses the
challenge of scaling this approach to large domains. We
propose using Kronecker factorization coupled with the
Metropolis-Hastings algorithm to decompose reversible
transition matrices. The result is that the basis functions
can be computed on much smaller matrices and com-
bined to form the overall bases. We demonstrate that
in several continuous Markov decision processes, com-
pact basis functions can be constructed without signif-
icant loss in performance. In one domain, basis func-
tions were compressed by a factor of 36. A theoretical
analysis relates the quality of the approximation to the
spectral gap. Our approach generalizes to other basis
constructions as well.

Introduction
Value function approximation is a critical step in solving
large Markov decision processes (MDPs) (Bertsekas & Tsit-
siklis 1996). A well-studied approach is to approximate the
(action) value function V π(s) (Qπ(s, a)) of a policy π by
least-squares projection onto the linear subspace spanned by
a set of basis functions forming the columns of a matrix Φ:

V π = Φwπ Qπ = Φwπ

For approximating action-value functions, the basis function
matrix Φ is defined over state-action pairs (s, a), whereas
for approximating value functions, the matrix is defined over
states. The choice of bases is an important decision for value
function approximation. The majority of past work has typi-
cally assumed basis functions can be hand engineered. Some
popular choices include tiling, polynomials, and radial basis
functions (Sutton & Barto 1998).

∗This research was supported in part by the National Science
Foundation under grant NSF IIS-0534999.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Since manual construction of bases can be a difficult
trial-and-error process, it is natural to devise an algorith-
mic solution to the problem. Several promising approaches
have recently been proposed that suggest feature discovery
in MDPs can be automated. This paper builds on one of
those approaches: the Representation Policy Iteration (RPI)
framework (Mahadevan 2005). Basis functions in RPI are
derived from a graph formed by connecting nearby states in
the MDP. The basis functions are eigenvectors of a diffu-
sion operator (e.g. the random walk operator or the graph
Laplacian (Chung 1997)). This technique yields geometri-
cally customized, global basis functions that reflect topolog-
ical singularities such as bottlenecks and walls.

Spectral basis functions are not compact since they span
the set of samples used to construct the graph. This raises
a computational issue of whether this approach (and re-
lated approaches such as Krylov bases (Petrik 2007)) scale
to large MDPs. In this paper, we explore a technique
for making spectral bases compact. We show how a ma-
trix A (representing the random walk operator on an ar-
bitrary, weighted undirected graph) can be factorized into
two smaller stochastic matrices B and C such that the Kro-
necker product B ⊗ C ≈ A. This procedure can be called
recursively to further shrink the size of B and/or C. The
Metropolis-Hastings algorithm is used to make B and C re-
versible, which ensures their eigendecompositions contain
all real values. The result is the basis functions can be calcu-
lated from B and C rather than the original matrix A. This
is a gain in terms of both speed and memory. We demon-
strate this technique using three standard benchmark tasks:
inverted pendulum, mountain car, and Acrobot. The basis
functions in the Acrobot domain are compressed by a factor
of 36. There is little loss in performance by using the com-
pact basis functions to approximate the value function. We
also provide a theoretical analysis explaining the effective-
ness of the Kronecker factorization.

Algorithmic Framework
Figure 1 presents a generic algorithmic framework for learn-
ing representation and control in MDPs based on (Mahade-
van et al. 2006), which comprises of three phases: an initial
sample collection phase, a basis construction phase, and a
parameter estimation phase. As shown in the figure, each
phase of the overall algorithm includes optional basis spar-

Sample Collection Phase:

1. Generate a dataset D of “state-action-reward-nextstate”
transitions (st, at, rt+1, st+1) using a series of random
walks in the environment (terminated by reaching an ab-
sorbing state or some fixed maximum length).

2. Sparsification Step I: Subsample a set of transitions Ds

from D by some method (e.g. randomly or greedily).

Representation Learning Phase

3. Construct a diffusion model from Ds consisting of an
undirected graph G = (V, E, W), with edge set E and
weight matrix W . Each vertex v ∈ V corresponds to a
visited state. Edges are inserted between a pair of vertices
xi and xj if xj is among the k nearest neighbors of xi,
with weight W (i, j) = α(i)e−

d(xi,xj)

σ , where σ > 0
is a parameter, d(xi, xj) is an appropriate distance met-
ric (e.g. Euclidean ‖xi − xj‖

2
Rm), and α a specified

weight function. Symmetrize WS = (W +W T)/2. Then
A = D−1WS is the random walk operator, where D is a
diagonal matrix of row sums of WS .

4. Sparsification Step II: Reorder matrix A to cluster simi-
lar states (e.g. using a graph partitioning program). Com-
pute stochastic matrices B (size rB × cB) and C (size
rC × cC) such that B ⊗ C ≈ A (time O(r2

Br2
C)). Use

the Metropolis-Hastings algorithm to convert these matri-
ces into reversible stochastic matrices BR and CR (time
O(r2

B + r2
C)). Optional: call this step recursively.

5. Calculate the eigenvalues λi (µj) and eigenvectors xi (yj)
of BR (CR). This takes time O(r3

B + r3
C) compared to

computing A’s eigenvectors in time O(r3
Br3

C). The basis
matrix Φ could be explicitly calculated by selecting the
“smoothest” ` eigenvectors of xi ⊗ yj (corresponding to
the largest eigenvalues λiµj) as columns of Φ. However,
to take advantage of the compact nature of the Kronecker
product, Φ should not be explicitly calculated; state em-
beddings can be computed when needed by the parameter
estimation algorithm. Φ stores (rBrC`) values in mem-
ory whereas the eigenvectors of BR and CR only store
(rB · min(rB , `) + rC · min(rC , `)) values.

Control Learning Phase

6. Use a parameter estimation method such as LSPI
(Lagoudakis & Parr 2003) or Q-learning (Sutton & Barto
1998) to find the best policy π in the linear span of Φ,
where the action value functions Qπ(s, a) is approxi-
mated as Qπ ≈ Φwπ .

7. Sparsification Step III: Eliminate basis functions whose
coefficients in wπ fall below a threshold.

Figure 1: The RPI framework for learning representation
and control in MDPs.

sification steps. The main contribution of this paper is the
second sparsification step. The computational complexity of
steps 4 and 5 are shown in the figure to highlight the savings.

One of the main benefits of the Kronecker factorization is
that the basis matrix Φ does not need to be explicitly calcu-
lated (step 5 in Figure 1). The matrix is stored in a compact
form as the eigenvectors of matrices BR and CR. Param-
eter estimation algorithms, such as LSPI, require state (or

state-action) embeddings that correspond to a single row in
the matrix Φ. This row can be computed by indexing into
the appropriate eigenvectors of BR and CR. Thus, memory
requirements are reduced and can be further minimized by
recursively factorizing BR and/or CR.

Sparsifying Bases by Sampling
Spectral bases are amenable to sparsification methods in-
vestigated in the kernel methods literature including low-
rank approximation techniques as well as the Nyström in-
terpolation method (Drineas & Mahoney 2005) for extrap-
olating eigenvectors on sampled states to novel states. We
have found subsampling the states using a greedy algorithm
greatly reduces the number of samples while still capturing
the structure of the data manifold. The greedy algorithm is
simple: starting with the null set, add samples to the subset
that are not within a specified distance to any sample cur-
rently in the subset. A maximal subset is returned when no
more samples can be added. In the experiments reported in
this paper, where states are continuous vectors ∈ Rm, typi-
cally only 10% of the transitions in the random walk dataset
D are necessary to learn an adequate set of basis functions.
For example, in the mountain car task, 700 samples are suf-
ficient to form the basis functions, whereas 7,000 samples
are usually needed to learn a stable policy. Figure 2 shows
the results of the greedy subsampling algorithm on data from
this domain.

−1.4 −1 −0.6 −0.2 0.2 0.6
−0.08

−0.04

0

0.04

0.08

Position

V
el

oc
ity

(a) 7,459 samples

−1.4 −1 −0.6 −0.2 0.2 0.6
−0.08

−0.04

0

0.04

0.08

Position

V
el

oc
ity

(b) 846 subsamples

Figure 2: Greedy subsampling in the mountain car task.

Kronecker Product
The Kronecker product of a rB×cB matrix B and a rC ×cC

matrix C is equal to a matrix A of size (rBrC) × (cBcC)
with block Ai,j = B(i, j)C. Thus, every (i, j) block of A is
equal to the matrix C multiplied by the scalar B(i, j). The
equation is written A = B ⊗ C. The Kronecker product
can be used to streamline many computations in numerical
linear algebra, signal processing, and graph theory.

We focus in this paper on the case where B and C cor-
respond to stochastic matrices associated with weighted,
undirected graphs GB = (VB , EB ,WB) and GC =
(VC , EC ,WC) respectively. The graphs can be represented
as weight matrices WB and WC . We assume strictly posi-
tive edge weights. Matrix B is then formed by dividing each
row of WB by the row sum (similarly for C). B and C are
stochastic matrices representing random walks over their re-
spective graphs. The eigenvalues and eigenvectors of B and
C completely determine the eigenvalues and eigenvectors of
B ⊗ C.

Theorem 1: Let B have eigenvectors xi and eigenvalues
λi for 1 ≤ i ≤ rB . Let C have eigenvectors yj and eigenval-
ues µj for 1 ≤ j ≤ rC . Then matrix B⊗C has eigenvectors
xi ⊗ yj and eigenvalues λiµj .

Proof: Consider (B ⊗ C)(xi ⊗ yj) evaluated at vertex
(v, w) where v ∈ VB and w ∈ VC .

(B ⊗ C)(xi ⊗ yj)(v, w)

=
∑

(v,v2)∈EB

∑

(w,w2)∈EC

B(v, v2)C(w,w2)xi(v2)yj(w2)

=
∑

(v,v2)∈EB

B(v, v2)xi(v2)
∑

(w,w2)∈EC

C(w,w2)yj(w2)

= (λixi(v)) (µjyj(w)) = (λiµj) (xi(v)yj(w))

We adapted this theorem from a more general version
(Bellman 1970) that does not place constraints on the two
matrices. Note this theorem also holds if B and C are nor-
malized Laplacian matrices (Chung 1997), but it does not
hold for the combinatorial Laplacian. The Kronecker prod-
uct is an important tool because the eigendecomposition of
A = B ⊗ C can be accomplished by solving the smaller
problems on B and C individually. The computational com-
plexity is reduced from O(r3

Br3
C) to O(r3

B + r3
C).

Kronecker Product Approximation
Given the computational benefits of the Kronecker factoriza-
tion, it is natural to consider the problem of finding matrices
B and C to approximate a matrix A. Pitsianis (1997) stud-
ied this problem for arbitrary matrices. Specifically, given a
matrix A, the problem is to minimize the function

fA(B,C) = ‖A − B ⊗ C‖F , (1)

where ‖ · ‖F is the Frobenius norm. By reorganizing the
rows and columns of A, the function fA can be rewritten

fA(B,C) = ‖Ã − vec(B)vec(C)T ‖F (2)

where the vec(·) operator takes a matrix and returns a vector
by stacking the columns in order. The matrix Ã is defined

Ã =

vec(A1,1)
T

...
vec(ArB ,1)

T

...
vec(A1,cB

)T

...
vec(ArB ,cB

)T

∈ R(rBcB)×(rCcC). (3)

Equation 2 shows the Kronecker product approximation
problem is equivalent to a rank-one matrix problem. The so-
lution to a rank-one matrix problem can be computed from
the singular value decomposition (SVD) of Ã = UΣV T

(Golub & Van Loan 1996). The minimizing values are
vec(B) =

√
σ1u1 and vec(C) =

√
σ1v1 where u1 and v1

are the first columns of U and V and σ1 is the largest sin-
gular value of Ã. This is done in time O(r2

Br2
C) since only

the first singular value and singular vectors of the SVD are
required.

Pitsianis (1997) extended this idea to constrained opti-
mization problems where the matrices B and C are re-
quired to have certain properties: symmetry, orthogonality,
and stochasticity are examples. In this paper, we used the
kpa markov algorithm which finds stochastic matrices B
and C that approximate a stochastic matrix A given as input.
There are equality (row sums must equal one) and inequality
(all values must be non-negative) constraints for this prob-
lem. The kpa markov algorithm substitutes the equality
constraints into the problem formulation and ignores the
inequality constraints. One iteration of the algorithm pro-
ceeds by fixing C and updating B based on the derivative of
‖A−B ⊗C‖F ; then matrix B is held constant and C is up-
dated. Convergence is based on the change in the Frobenius
norm. The algorithm used at most 6 iterations in our ex-
periments. If the algorithm returned negative values, those
entries were replaced with zeros and the rows were rescaled
to sum to 1. More sophisticated algorithms (e.g. active set
method) could be used to directly account for the inequality
constraints if necessary.

The Kronecker product has simple semantics when the
matrices are stochastic. Matrix A is compacted into rB clus-
ters, each of size rC . Matrix B contains transitions between
clusters while matrix C contains transitions within a clus-
ter. For the block structure of the Kronecker product to be
most effective, similar states must be clustered. This can be
achieved by reordering matrix A via PAP T where P is a
permutation matrix. The problem of finding the optimal P
to minimize ‖PAP T −B⊗C‖F is NP-hard. However, there
are several options for reordering matrices including graph
partitioning and approximate minimum degree ordering. We
used the graph partitioning program METIS (Karypis & Ku-
mar 1999) to determine P . METIS combines several heuris-
tics for generating partitions, optimizing the balance of a
partition versus the number of edges going across partitions.
The algorithm first coarsens the graph, then partitions the
smaller graph, and finally uncoarsens and refines the par-
titions. METIS is a highly optimized program that parti-
tions graphs with 106 vertices in a few seconds. Figure 3(a)
shows an adjacency plot of a matrix A corresponding to a
graph connecting 1800 sample states from the Acrobot do-
main. Figure 3(b) is the same matrix but reordered accord-
ing to METIS with 60 partitions. The reordered matrix is in
a block structure more easily represented by the Kronecker
decomposition.

The stochastic matrices B and C are not necessarily re-
versible. As such, their eigenvalues can be complex. To
ensure all real values, we used the Metropolis-Hastings al-
gorithm to convert B and C into reversible stochastic matri-
ces BR and CR. The algorithm is described below where π
is a stationary probability distribution.

BR(i, j) =

B(i, j) min

(

1,
π(j)B(j, i)

π(i)B(i, j)

)

if i 6= j

B(i, j) +
∑

k

B(i, k) if i = j

×

(

1 − min

(

1,
π(k)B(k, i)

π(i)B(i, k)

))

(a) A (b) PAP T

10 20 30 40 50 60

10

20

30

40

50

60 0

0.1

0.2

0.3

0.4

0.5

(c) BR

10 20 30

10

20

30
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

(d) CR

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

E
ig

en
va

lu
e

(e) Eigenvalues of BR

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

E
ig

en
va

lu
e

(f) Eigenvalues of CR

Figure 3: (a) Adjacency plot of an 1800× 1800 matrix from
the Acrobot domain, (b) Matrix reordered using METIS, (c)
60× 60 matrix BR, (d) 30× 30 matrix CR, (e) Spectrum of
BR, and (f) Spectrum of CR.

This transformation was proven (Billera & Diaconis
2001) to minimize the distance in an L1 metric between
the original matrix B and the space of reversible stochastic
matrices with stationary distribution π. We used the power
method (Golub & Van Loan 1996) to determine the station-
ary distributions of B and C. Note these stationary distribu-
tions were unique in our experiments because B and C were
both aperiodic and irreducible although the kpa markov
algorithm does not specifically maintain these properties.
The Frobenius norm between B and BR (and between C
and CR) was small in our experiments. Figures 3(c) and 3(d)
show grayscale images of the reversible stochastic matrices
BR and CR that were computed by this algorithm to approx-
imate the matrix in Figure 3(b). As these figures suggest, the
Kronecker factorization is performing a type of state aggre-
gation. The matrix BR has the same structure as PAP T ,
whereas CR is close to a uniform block matrix except with
more weight along the diagonal. The eigenvalues of BR and
CR are displayed in Figures 3(e) and 3(f). The fact that CR

is close to a block matrix can be seen in the large gap be-
tween the first and second eigenvalues.

It is more economical to store the eigenvectors of BR and
CR than those of A. We used 90 eigenvectors for our exper-

iments in the Acrobot domain; thus, the eigenvectors of ma-
trix A in Figure 3(a) consist of 162,000 values (1800×90).
There are 3,600 values (60×60) for BR and 900 values
(30×30) for CR, yielding a compression ratio of 36.

There is an added benefit of computing the stationary
distributions. The eigendecomposition of BR (and CR) is
less robust because the matrix is unsymmetric. However,
BR is similar to a symmetric matrix BR,S by the equation
BR,S = Π0.5BRΠ−0.5 where Π is a diagonal matrix with
elements π. Matrices BR and BR,S have identical eigenval-
ues and the eigenvectors of BR can be computed by multi-
plying Π−0.5 by the eigenvectors of BR,S . Therefore, the
decomposition should always be done on BR,S .

Theoretical Analysis
This analysis attempts to shed some light on when B ⊗ C
is useful for approximating A. More specifically, we are
concerned with whether the space spanned by the top m
eigenvectors of B ⊗ C is “close” to the space spanned by
the top m eigenvectors of A. Perturbation theory can be
used to address this question because the random walk op-
erator A is self-adjoint (with respect to the invariant dis-
tribution of the random walk) on an inner product space;
therefore, theoretical results concerning A’s spectrum apply.
We assume matrices B and C are computed according to
the constrained Kronecker product approximation algorithm
discussed in the previous section. The following notation is
used in the theorem and proof:
• E = A − B ⊗ C

• X is a matrix whose columns are the top m eigenvectors
of A

• α1 is the set of top m eigenvalues of A

• α2 includes all eigenvalues of A except those in α1

• d is the eigengap between α1 and α2, i.e. d =
minλi∈α1,λj∈α2

|λi − λj |
• Y is a matrix whose columns are the top m eigenvectors

of B ⊗ C

• α̃1 is the set of top m eigenvalues of B ⊗ C

• α̃2 includes all eigenvalues of B ⊗ C except those in α̃1

• d̃ is the eigengap between α1 and α̃2

• X is the subspace spanned by X

• Y is the subspace spanned by Y

• P is the orthogonal projection onto X
• Q is the orthogonal projection onto Y

Theorem 2: Assuming B and C are defined as above
based on the SVD of Ã and if ‖E‖ ≤ 2εd/(π + 2ε), then
the distance between the space spanned by top m eigenvec-
tors of A and the space spanned by the top m eigenvectors
of B ⊗ C is at most ε.

Proof: The Kronecker factorization uses the top m eigen-
vectors of B ⊗ C to approximate the top m eigenvectors of
A (e.g. use Y to approximate X). The difference between
X and Y is defined ‖Q − P‖. [S1]

It can be shown that if A and E are bounded self-adjoint
operators on a separable Hilbert space, then the spectrum of
A+E is in the closed ‖E‖-neighborhood of the spectrum of
A (Kostrykin, Makarov, & Motovilov 2003). The authors
also prove the inequality ‖Q⊥P‖ ≤ π‖E‖/2d̃. [S2]

Matrix A has an isolated part α1 of the spectrum sepa-
rated from its remainder α2 by gap d. To guarantee A+E
also has separated spectral components, we need to assume
‖E‖ < d/2. Making this assumption, [S2] can be rewritten
‖Q⊥P‖ ≤ π‖E‖/2(d − ‖E‖). [S3]

Interchanging the roles of α1 and α2, we have the analo-
gous inequality: ‖QP⊥‖ ≤ π‖E‖/2(d − ‖E‖). [S4] Since
‖Q − P‖ = max{‖Q⊥P‖, ‖QP⊥‖} [S5], the overall in-
equality can be written ‖Q−P‖ ≤ π‖E‖/2(d−‖E‖). [S6]

Step [S6] implies that if ‖E‖ ≤ 2εd/(π + 2ε), then ‖Q−
P‖ ≤ ε. [S7]

The two important factors involved in this theorem are
‖E‖ and the eigengap of A. If ‖E‖ is small, then the space
spanned by the top m eigenvectors of B ⊗ C approximates
the space spanned by the top m eigenvectors of A well.
Also, for a given value of ‖E‖, the larger the eigengap the
better the approximation.

Experimental Results
Testbeds
Inverted Pendulum: The inverted pendulum problem re-
quires balancing a pendulum of unknown mass and length
by applying force to the cart to which the pendulum
is attached. We used the implementation described in
(Lagoudakis & Parr 2003). The state space is defined by
two variables: θ, the vertical angle of the pendulum, and θ̇,
the angular velocity of the pendulum. The three actions are
applying a force of -50, 0, or 50 Newtons. Uniform noise
from -10 and 10 is added to the chosen action. State transi-
tions are described by the following nonlinear equation

θ̈ =
g sin(θ) − αmlθ̇2 sin(2θ)/2 − α cos(θ)u

4l/3 − αml cos2(θ)
,

where u is the noisy control signal, g = 9.8m/s2 is gravity,
m = 2.0 kg is the mass of the pendulum, M = 8.0 kg is the
mass of the cart, l = 0.5 m is the length of the pendulum,
and α = 1/(m + M). The simulation time step is set to
0.1 seconds. The agent is given a reward of 0 as long as
the absolute value of the angle of the pendulum does not
exceed π/2, otherwise the episode ends with a reward of -1.
The discount factor was set to 0.9. The maximum number
of episodes the pendulum was allowed to balance was 3,000
steps.

Mountain Car: The goal of the mountain car task is to get
a simulated car to the top of a hill as quickly as possible. The
car does not have enough power to get there immediately,
and so must oscillate on the hill to build up the necessary
momentum. This is a minimum time problem, and thus the
reward is -1 per step. The state space includes the position
and velocity of the car. There are three actions: full throttle
forward (+1), full throttle reverse (-1), and zero throttle (0).

The position, xt, and velocity, ẋt, are updated by
xt+1 = bound[xt + ẋt+1]

ẋt+1 = bound[ẋt + 0.001at + −0.0025 cos(3xt)],

where the bound operation enforces −1.2 ≤ xt+1 ≤ 0.6
and −0.07 ≤ ẋt+1 ≤ 0.07. The episode ends when the car
successfully reaches the top, defined as position xt ≥ 0.5.
The discount factor was 0.99 and the maximum number of
test steps was 500.

Acrobot: The Acrobot task (Sutton & Barto 1998) is a
two-link under-actuated robot that is an idealized model of
a gymnast swinging on a highbar. The task has four con-
tinuous state variables: two joint positions and two joint ve-
locities. The only action available is a torque on the second
joint, discretized to one of three values (positive, negative,
and none). The reward is −1 for all transitions leading up
to the goal state. The detailed equations of motion are given
in (Sutton & Barto 1998). The discount factor was set to 1
and we allowed a maximum of 600 steps before terminating
without success in our experiments.

Experiments
The experiments followed the framework outlined in Figure
1. The first sparsification step was done using the greedy
subsampling procedure. Graphs were then built by connect-
ing each subsampled state to its k nearest neighbors and
edge weights were assigned using a weighted Euclidean dis-
tance metric. A weighted Euclidean distance metric was
used as opposed to an unweighted metric to make the state
space dimensions have more similar ranges. These param-
eters are given in the first three rows of Table 1. There is
one important exception for graph construction in Acrobot.
The joint angles θ1 and θ2 range from 0 to 2π; therefore,
arc length is the appropriate distance metric to ensure values
slightly greater than 0 are “close” to values slightly less than
2π. However, the fast nearest neighbor code that we used to
generate graphs required a Euclidean distance metric. To ap-
proximate arc length using Euclidean distance, angle θi was
mapped to a tuple [sin(θi), cos(θi)] for i = {1, 2}. This ap-
proximation works very well if two angles are similar (e.g.
within 30 degrees of each other) and becomes worse as the
angles are further apart. Next, matrices A, BR, and CR were
computed according to steps 4 and 5 in Figure 1. By fixing
the size of CR, the size of BR is automatically determined
(|A| = |BR| · |CR|). The last four rows of Table 1 show the
sizes of BR and CR, the number of eigenvectors used, and
the compression ratios achieved by storing the compact basis
functions. The LSPI algorithm was used to learn a policy.

The goal of our experiments was to compare the effec-
tiveness of the basis functions derived from matrix A (e.g.
the eigenvectors of the random walk operator) with the ba-
sis functions derived from matrices BR and CR. We ran
30 separate runs for each domain varying the number of
episodes. The learned policies were evaluated until the goal
was reached or the maximum number of steps exceeded.
The median test results over the 30 runs are plotted in Figure
4. Performance was consistent across the three domains: the
policy determined by LSPI achieved similar performance,

Inverted Mountain
Pendulum Car Acrobot

k 25 25 25
σ 1.5 0.5 3.0
Weight [3, 1] [1, 3] [1, 1, 0.5, 0.3]

[θ, θ̇] [xt, ẋt] [θ1, θ2, θ̇1, θ̇2]
Eigenvectors 50 50 90
Size CR 10 10 30
Size BR ≈ 35 ≈ 100 ≈ 60
Compression ≈ 13.2 ≈ 12.2 ≈ 36.0

Table 1: Parameters for the experiments.

albeit more slowly, with the BR ⊗ CR basis functions than
the basis functions from A. The variance from run to run is
relatively high (not shown to keep the plots legible), indicat-
ing the difference between the two curves is not significant.
These results show the basis functions can be made compact
without hurting performance.

Future Work
Kronecker factorization was used to speed up construction
of spectral basis functions and to store them more com-
pactly. Experiments in three continuous MDPs demonstrate
how these compact basis functions still provide a useful sub-
space for value function approximation. The formula for
the Kronecker product suggests factorization is performing
a type of state aggregation. We plan to explore this connec-
tion more formally in the future. The relationship between
the size of CR, which was determined empirically in this
work, and the other parameters will be explored. We also
plan to test this technique in larger domains.

Ongoing work includes experiments with a multilevel re-
cursive Kronecker factorization. Preliminary results have
been favorable in the inverted pendulum domain using a two
level factorization.

References
Bellman, R. 1970. Introduction to Matrix Analysis. New York,
NY: McGraw-Hill Education, 2nd edition.
Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic Program-
ming. Belmont, MA: Athena Scientific.
Billera, L., and Diaconis, P. 2001. A geometric interpretation of
the Metropolis-Hasting algorithm. Statist. Science 16:335–339.
Chung, F. 1997. Spectral Graph Theory. Number 92 in
CBMS Regional Conference Series in Mathematics. Providence,
RI: American Mathematical Society.
Drineas, P., and Mahoney, M. 2005. On the Nyström method for
approximating a Gram matrix for improved kernel-based learn-
ing. Journal of Machine Learning Research 6:2153–2175.
Golub, G., and Van Loan, C. 1996. Matrix Computations. Balti-
more, MD: Johns Hopkins University Press, 3rd edition.
Karypis, G., and Kumar, V. 1999. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing 20(1):359–392.
Kostrykin, V.; Makarov, K. A.; and Motovilov, A. K. 2003. On a
subspace perturbation problem. In Proc. of the American Mathe-
matical Society, volume 131, 1038–1044.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Number of Episodes

N
um

be
r

of
 S

te
ps

Kronecker

Full

(a) Inverted Pendulum

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

Number of Episodes

N
um

be
r

of
 S

te
ps

Kronecker

Full

(b) Mountain Car

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

Number of Episodes

N
um

be
r

of
 S

te
ps Kronecker

Full

(c) Acrobot

Figure 4: Median performance over the 30 runs using the
RPI algorithm. The basis functions are either derived from
matrix A (Full) or from matrices BR and CR (Kronecker).

Lagoudakis, M., and Parr, R. 2003. Least-Squares Policy Itera-
tion. Journal of Machine Learning Research 4:1107–1149.
Mahadevan, S.; Maggioni, M.; Ferguson, K.; and Osentoski, S.
2006. Learning representation and control in continuous Markov
decision processes. In Proc. of the 21st National Conference on
Artificial Intelligence. Menlo Park, CA: AAAI Press.
Mahadevan, S. 2005. Representation Policy Iteration. In Pro-
ceedings of the 21st Conference on Uncertainty in Artificial Intel-
ligence, 372–379. Arlington, VA: AUAI Press.
Petrik, M. 2007. An analysis of Laplacian methods for value
function approximation in MDPs. In Proc. of the 20th Interna-
tional Joint Conference on Artificial Intelligence, 2574–2579.
Pitsianis, N. 1997. The Kronecker Product in Approximation and
Fast Transform Generation. Ph.D. Dissertation, Department of
Computer Science, Cornell University, Ithaca, NY.
Sutton, R., and Barto, A. 1998. Reinforcement Learning. Cam-
bridge, MA: MIT Press.

