
Active Learning of Dynamic Bayesian Networks in
Markov Decision Processes

Anders Jonsson1 and Andrew Barto2

1 Department of Information and Communication Technologies
Universitat Pompeu Fabra

Passeig de Circumval·lació, 8
08003 Barcelona, Spain

anders.jonsson@upf.edu
2 Autonomous Learning Laboratory

Department of Computer Science
University of Massachusetts
Amherst MA 01003, USA
barto@cs.umass.edu

Abstract. Several recent techniques for solving Markov decision processes use
dynamic Bayesian networks to compactly represent tasks. The dynamic Bayesian
network representation may not be given, in which case it is necessary to learn
it if one wants to apply these techniques. We develop an algorithm for learning
dynamic Bayesian network representations of Markov decision processes using
data collected through exploration in the environment. To accelerate data collec-
tion we develop a novel scheme for active learning of the networks. We assume
that it is not possible to sample the process in arbitrary states, only along trajec-
tories, which prevents us from applying existing active learning techniques. Our
active learning scheme selects actions that maximize the total entropy of distri-
butions used to evaluate potential refinements of the networks.

1 Introduction

Existing solution techniques for Markov decision processes, or MDPs, scale poorly to
tasks with large state spaces. A major research challenge is to develop techniques that
exploit the structure of a task and reduce the size of the state space. A common type
of structure is factored state, which means that the available information belongs to
distinct categories. For example, a robot navigating through a building can usually dis-
tinguish between its location, the object it is holding, and the energy level of its battery,
instead of perceiving the current situation as a single observation. Factored MDPs use
a set of state variables to represent the state in a way that is more appropriate for tasks
of this type. Dynamic Bayesian networks, or DBNs [1], are particularly well suited for
exploiting structure in factored MDPs by capturing conditional independence between
state variables as a result of executing actions. Several researchers have developed al-
gorithms for solving factored MDPs that exploit structure expressed by DBNs [2–6].

It is unrealistic to assume that a DBN model is always available prior to solving
an MDP. We address the non-trivial problem of learning DBNs from experience. There

exist algorithms in the literature for learning the structure of Bayesian networks [7–9].
However, these algorithms assume that a data set is given, whereas solution techniques
for MDPs typically have to gather data in the form of transitions and reward through
interaction with the environment. The complexity of learning DBNs depends heavily on
the time it takes to collect data. It is possible to accelerate data collection by selecting
high-quality data instances through a process called active learning. There exist several
techniques for active learning of Bayesian networks [10–12]. These techniques perform
experiments by clamping a subset of the variables to fixed values and sampling over the
remaining variables.

A robot exploring its environment for the first time cannot transport itself to any
location instantaneously. Instead, it must wander around to try the effect of different
actions in different places. In this work, we assume that it is only possible to sample
MDPs along trajectories, not in arbitrary states. In other words, the only way to gather
information about transitions and reward is by repeatedly executing an action in the
current state. Since it is not possible to simulate the effect of actions in hypothetical
states, we cannot perform experiments by clamping a subset of the variables to fixed
values. Consequently, we cannot apply existing techniques for active learning. However,
there is still an opportunity to perform active learning of DBNs in factored MDPs.
Because the DBN model of a factored MDP consists of one DBN for each action, by
selecting an action we effectively select a DBN to collect data for. As a consequence,
we can consider policies for action selection whose aim is to gather data as quickly and
efficiently as possible. As far as we know, there exists no previous work for learning
DBN models of factored MDPs under these assumptions.

1.1 Overview of our work

We use trees to represent the conditional probabilities of the DBNs, and develop an
algorithm that implicitly learns the DBNs by growing the conditional probability trees.
Our algorithm collects data instances by executing actions and grows the trees as soon
as a minimum number of data instances correspond to each relevant value of each
split variable. The minimum number is defined by a threshold parameter, and poten-
tial refinements are evaluated as soon as the threshold is exceeded. The algorithm uses
the Bayesian Information Criterion (BIC) [13] and the likelihood-equivalent Bayesian
Dirichlet metric (BDe) [9] to evaluate potential refinements. We assume that no data is
available to begin with and develop a technique for active learning of DBNs to accel-
erate data collection. The time to collect data is minimized if the distribution of data
instances across values of each potential split variable is perfectly uniform. We use the
entropy of the distributions to measure uniformity and select actions that maximize the
total entropy of the distributions.

In some tasks, the BIC and BDe scores fail to detect most of the refinements neces-
sary to learn an accurate DBN model. This typically happens when the effect of actions
depends on many state variables. Since the BIC and BDe scores penalize trees with
many leaves, the algorithm prefers to keep the size of the trees small instead of con-
tinuing to refine the trees. This is a serious issue since algorithms that take advantage
of DBNs to solve factored MDPs depend on an accurate DBN model. We address this
issue by applying regularization [14] to the BIC score. The BIC score is composed of a

log likelihood term and a penalty term. This quantity fits nicely into the regularization
framework if we multiply the penalty term by a parameter λ. Results show that varying
λ can increase the accuracy of the learned DBN model.

Our work is related to the problem of exploration in reinforcement learning [15].
Existing exploration techniques do not learn DBN models of MDPs. Since there exist
several efficient algorithms that use DBNs to solve factored MDPs, there is a benefit
to learning this representation. Ours is an undirected approach that does not require
enumeration of the state space, as opposed to directed exploration, which maintains
relevant information for each state. Since we want to scale to large state spaces, we do
not want to store quantities whose size is proportional to the number of states.

2 Bayesian networks

Let X be a set of discrete variables, and let x be an assignment of values to the variables
in X. Let fY, Y ⊆ X, be a projection such that if x is an assignment to X, fY(x) is
x’s assignment to Y. A Bayesian network (BN) B = 〈G, θ〉 consists of a directed
acyclic graph G with one node per variable Xi ∈ X and a set of parameters θ defining
the conditional probabilities of the variables. The joint probability distribution of the
variables is given by:

P (x) =
∏

i

P (Xi = f{Xi}(x) | Pa(Xi) = fPa(Xi)(x)),

where Pa(Xi) ⊂ X is the subset of parent variables of Xi, i.e., variables with edges to
Xi in G, and the probabilities P (Xi = f{Xi}(x) | Pa(Xi) = fPa(Xi)(x)) are defined
by parameters in θ.

A dynamic Bayesian network, or DBN [1], is a Bayesian network that models the
evolution of a set of variables in a temporal process. The directed acyclic graph of a
DBN has two layers of nodes: one layer representing the current values of the variables,
and one layer representing the next values of the variables. The edges between layers
are unidirectional and always point from the current layer to the next layer. There can
also be edges between nodes within a layer.

Structure learning is the problem of finding the BN that best fits a data set D =
{x1, . . . ,xn}. A common approach is to compute the posterior probability distribution
P (B | D) over BNs and choose the BN that maximizes P (B | D). Two common
approximations of P (B | D) are the Bayesian Information Criterion (BIC) [13] and
the likelihood-equivalent Bayesian Dirichlet metric (BDe) [9]. From Bayes theorem it
follows that P (B | D) ∝ P (D | B)P (B). The BIC score makes the approximation

log[P (D | B)P (B)] ≈ L(D | B) −
|θ|

2
log |D|, (1)

where L(D | B) is the log likelihood of D given B. If the data set D contains no
missing values, the log likelihood decomposes as

L(D | B) =
∑

i

∑

j

∑

k

Nijk log θijk ,

X1

X1 X2 0 1

θ θ210 211

θθ100 101

θθ 201200

[,]

[,] [,]

a) b) c)

Fig. 1. a) Graph G of a BN with two variables; conditional probability trees for b) X1, c) X2

where Nijk is the number of data points x ∈ D such that fPa(Xi)(x) = j and
f{Xi}(x) = k, and θijk = P (Xi = k | Pa(Xi) = j). The log likelihood is maxi-
mized for θijk = Nijk/

∑
k Nijk . The BDe score makes the approximation

P (D | B)P (B) ≈
∏

i

∏

j

Γ (
∑

k N ′
ijk)

Γ (
∑

k[N ′
ijk + Nijk])

∏

k

Γ (N ′
ijk + Nijk)

Γ (N ′
ijk)

, (2)

where N ′
ijk are hyperparameters of a Dirichlet prior and Γ (x) is the Gamma function.

Finding the BN with highest BIC or BDe score is NP-complete [16]. However, both
scores decompose into a sum of terms for each variable Xi and each value j and k
(we need to take the logarithm of BDe first). The score only changes locally when we
add or remove edges between variables in G. Researchers have developed hill-climbing
algorithms that perform greedy search to find high-scoring BNs by repeatedly adding
or removing edges between variables in G [7, 9]. These algorithms have been extended
to DBNs [8].

As an example, consider a BN with two binary variables X1 and X2. Assume that
we have collected three data points (0, 0), (0, 1), and (1, 1). Also assume that the BN
has an edge from X1 to X2, and that we use trees to store the conditional probabilities of
X1 and X2. Figure 1 shows the graph G of the BN as well as the conditional probability
trees for X1 and X2. Since X1 has no parents in G, the count N100 simply indicates the
number of data points that assign 0 to X1. In this case, N100 = 2 and N101 = 1. The
log likelihood is maximized for θ100 = N100/(N100 + N101) = 2/3 and θ101 = 1/3.
One data point, (0, 0), assigns the value 0 to X1 and 0 to X2, so N200 = 1. Likewise,
N201 = 1, N210 = 0, and N211 = 1. The log likelihood is maximized for θ200 =
N200/(N200 + N201) = 1/2, θ201 = 1/2, θ210 = 0, and θ211 = 1.

The BIC score for the BN is given by the expression

∑

i

∑

j

∑

k

Nijk log θijk −
|θ|

2
log |D| =

= 2 log
2

3
+ 1 log

1

3
+ 1 log

1

2
+ 1 log

1

2
+ 0 + 1 log 1 −

6

2
log 3.

Note that each leaf of the conditional probability tree for variable Xi contributes to the
BIC score with a term

∑
k Nijk log θijk − |Dom(Xi)|

2 log |D|, where Dom(Xi) is the

domain of Xi and j is the assignment of values to the parents of Xi in G as indicated
by the path from the root to the leaf. Also note that the contribution from each leaf is
smaller than 0, and that it is maximized when all data points assign the same value to
Xi, in which case the first term equals 0. For example, the contribution from the right
leaf in the conditional probability tree for X2 is 0 + 1 log 1 − 2

2 log 3 = 0 − log 3. The
intuition is that the higher the BIC score, the more accurately we can predict the value
of Xi given the values of its parents in G.

3 Markov decision processes

A finite Markov decision process (MDP) is a tuple M = 〈S, A, Ψ, P, R〉, where S is a
finite set of states, A is a finite set of actions, Ψ ⊆ S × A is a set of admissible state-
action pairs, P is a transition probability function, and R is an expected reward function.
As a result of executing action a ∈ As ≡ {a′ ∈ A | (s, a′) ∈ Ψ} in state s ∈ S, the
process transitions to state s′ ∈ S with probability P (s′ | s, a) and receives an expected
reward R(s, a). In the discounted case, a solution to an MDP is a stochastic policy π
that, for each t > 0, maximizes the expected return Rt = E{

∑∞
k=t γk−tR(sk, ak)},

where γ ∈ (0, 1] is a discount factor, by selecting action ak with probability π(sk, ak)
in each state sk.

A factored MDP is described by a set of state variables S. We use the coffee task
[2], in which a robot has to deliver coffee to its user, as an example of a factored MDP.
The coffee task is described by six binary state variables: SL, the robot’s location (office
or coffee shop); SU, whether the robot has an umbrella; SR, whether it is raining; SW,
whether the robot is wet; SC, whether the robot has coffee; and SH, whether the user
has coffee. Let {i, i} be the values of state variable Si, where L is the office and L the
coffee shop. An example state is s = (L, U, R, W, C, H). The robot has four actions:
GO, causing its location to change and the robot to get wet if it is raining and it does not
have an umbrella; BC (buy coffee) causing it to hold coffee if it is in the coffee shop; GU
(get umbrella) causing it to hold an umbrella if it is in the office; and DC (deliver coffee)
causing the user to hold coffee if the robot has coffee and is in the office. All actions
have a chance of failing. The robot gets a reward of 0.9 when the user has coffee plus a
reward of 0.1 when it is dry.

3.1 DBN model of factored MDPs

The DBN model of a factored MDP [2] contains one DBN for each action a ∈ A. Like
the original model, we assume that the conditional probabilities of the DBNs are repre-
sented using trees as opposed to tables. This allows for a more compact representation
of the conditional probabilities. Figure 2 shows the DBN for action GO in the coffee task.
Assuming action GO is executed at time t, the DBN determines the resulting values of
state variables at time t+1. For each state variable Si, there are two nodes in the DBN:
one node St

i representing the value of Si at time t, and one node St+1
i representing its

value at time t + 1. The same is true for the expected reward R. The value of Si at time
t + 1 depends on the values of state variables that have edges to S t+1

i in the DBN. A
dashed line indicates that a state variable is unaffected by GO.

[.8, .2][0, 1]

[1, 0]

[0, 1]

t+1R

R

U

W

R

U

W

St

St

St

W

R

U

S

S

S

S

SU

R

W

C

H
t+1

t+1

t+1

t+1

t+1

SL
t+1SL

t

St
U

St
R

St
W

St
C

St
H

Rt

Fig. 2. The DBN for action GO in the coffee task

Figure 2 also illustrates the conditional probability tree associated with state vari-
able SW and action GO, which we denote T GO

W
. At each leaf, the first value represents the

probability that the robot is wet after executing GO, while the second value represents
the probability that the robot is dry. At time t, if the robot is not wet (W), it is raining
(R), and the robot does not have an umbrella (U), the conditional probability tree indi-
cates that the robot is wet at time t+1 with probability 0.8. We assume that there are no
edges between state variables at a same time step. The transition probabilities are given
by P (st+1 | s

t, a) =
∏

i Pa(St+1
i = f{St+1

i
}(s

t+1) | Pa(St+1
i) = f

Pa(St+1

i
)(s

t)),
where Pa is the joint probability distribution represented by the DBN for action a.

4 Learning a DBN model

We develop an algorithm for learning DBN models of factored MDPs through inter-
action with the environment. Our algorithm builds a tree T a

i for each pair of a state
variable Si and action a, approximating the conditional probabilities of S t+1

i as a re-
sult of executing a. The family of trees for a implicitly defines the DBN for a. There
is an edge between state variables St

j and St+1
i in the DBN if at least one node in T a

i

distinguishes between values of St
j . To build the tree T a

i , the algorithm starts with a
small tree and collects data by executing actions in the environment. Each time action
a is executed, the algorithm records a data instance consisting of the former state, the
resulting state, and the reward received. Each data instance maps to exactly one leaf of
T a

i , at which it is stored. We say that a leaf is empty if its corresponding set of data
instances is empty.

A refinement at a leaf distinguishes between values of a state variable S t
j and intro-

duces a new leaf of T a
i for each value of St

j . St
j is only considered for refinement if no

internal nodes on the path from the root to the leaf of T a
i already distinguish between

values of St
j . As we have already mentioned, the BIC and BDe scores decompose into

a local score for each leaf. Our algorithm evaluates a refinement by comparing the total

score of the new leaves with the score of the old leaf. If at least one refinement in-
creases the overall score, the algorithm retains the refinement that results in the largest
increase. Regardless of the outcome, data instances at the old leaf are discarded. Our
approach is more sophisticated than adding edges in the graph of the DBN, since trees
store conditional probabilities more compactly than tables.

Evaluating a refinement using the BIC and BDe scores really amounts to perform-
ing a statistical test to compare the posterior probabilities of two Bayesian networks
given the data. It is well known that the accuracy of statistical tests, such as Chi-square,
depends on having enough examples in each bin. At each leaf, and for each potential
split variable St

j , the algorithm maintains a distribution vector M . Each entry Mk of
the vector indicates the number of data instances at the leaf that assign the value k to
St

j . When the algorithm evaluates a refinement over St
j , the distribution vector M de-

termines how the data instances at the leaf will be distributed to the new leaves of T a
i .

We define a threshold parameter K and let our algorithm evaluate a refinement as soon
as at least K data instances map to each non-empty leaf for each split variable.

In some tasks, the BIC and BDe scores fail to detect most of the refinements nec-
essary to learn an accurate DBN model. The BIC score in Equation (1) is composed of
a log likelihood term, which measures the likelihood of the data given a network, and
a penalty term, which penalizes a network for having many parameters. The penalty
term causes the BIC score to be less sensitive to improvements to the log likelihood
since each refinement increases the number of parameters. We use regularization [14]
to address this issue. In regularization, a functional is defined as the sum of a fidelity
term and a stabilizer term. The stabilizer term is weighted by a parameter λ. We can
multiply the penalty term of the BIC score by a parameter λ to put it in the form of a
fidelity term and a stabilizer term:

log[P (D | B)P (B)] ≈ L(D | B) − λ
|θ|

2
log |D|, (3)

such that λ controls the magnitude of the penalty for having many parameters.

4.1 Active learning

Efficient data collection should gather sufficient data as quickly as possible. Since our
algorithm requires at least K data instances to map to each non-empty leaf, the distribu-
tion of data instances across potential new leaves should be as uniform as possible for
each possible refinement. The more skewed the distribution, the longer it takes to col-
lect sufficient data to evaluate refinements. We devise the following scheme for active
learning of DBNs. Before executing action a, the current state determines which leaf of
T a

i the resulting data instance will map to. When deciding which action to execute, we
look at how the distribution vectors at corresponding leaves would change as a result of
executing each action. To evaluate the change, we compute the entropy H(M) of each
distribution vector M :

H(M) = −
∑

k

θk log θk,

where θk = Mk/
∑

j Mj . H(M) is a non-negative function which is maximized when
all entries of M are equal. An increase in H(M) means that the distribution is becoming

more uniform; a decrease means that it is becoming more skewed. The change in H(M)
can be computed in constant time. In each state, the active learning scheme selects the
action with largest total increase in the value of H(M). With probability ε ∈ [0, 1], or
if no action results in an increase of H(M), the scheme selects a random action.

By maximizing the entropy, our active learning scheme maintains uniform distri-
butions at the leaves, which in turn causes evaluation to occur as quickly as possible.
However, the time it takes to collect data also depends on how often leaves are vis-
ited. The proposed scheme only implicitly affects the frequency with which leaves are
visited, and assumes that each leaf is visited relatively frequently. Our approach is mo-
tivated by the fact that we want to use local information only to guide exploration. We
believe that under this constraint, the entropy measure is best suited for the problem. By
storing global information about the frequency with which leaves have been visited, it
would be possible to try to steer exploration towards the least visited areas of the state
space, although it is unclear how the system would know how to get to these areas.

5 Results

We ran experiments with our DBN learning approach in the coffee task [2], the Taxi
task [17], and a simplified autonomous guided vehicle (AGV) task [18]. In each task,
we compared our active learning scheme with passive learning, i.e., random action se-
lection. In both cases, we used our approach for growing the conditional probability
trees to implicitly learn the DBNs. Note that because of our assumption regarding data
collection there is no meaningful way to compare our results to existing techniques for
active learning. We had access to the true DBN model of each task and knew how many
refinements of the trees were necessary to learn the true model. Figure 3 shows results
of our experiments in the coffee task. The graph shows the number of correct refine-
ments (out of 7) detected over time, averaged over 100 trials. Time is measured as the
number of actions executed, not actual computer runtime. For each tree T a

i , we used
the parameter values ε = 0.3, K = 50|Dom(Si)|, where Dom(Si) is the domain of
the state variable Si whose conditional probabilities T a

i approximates. Note that active
learning outperformed passive learning and that the BIC and BDe scores performed
almost identically.

In the Taxi task [17], a taxi agent has to deliver passengers from a pick-up loca-
tion to their destination. In this case, the BIC and BDe scores fail to detect most of
the refinements necessary to learn the true DBN model. We tested our modification to
the BIC score in Equation (3) to see if regularization can improve the accuracy of the
learned DBN model. Figure 4 shows results of the experiments in the Taxi task, aver-
aged over 25 trials. In the Taxi task, the true DBN model requires 21 refinements. We
used ε = 0.6, K = 50|Dom(Si)|, and report results of the BIC score for λ = 0.1 and
λ = 1. The BDe score performed identically to the BIC score for λ = 1. Note that
active and passive learning using the original BIC score (λ = 1) failed to detect many
of the refinements of the true DBN model. With λ = 0.1, active and passive learning
detected all of the refinements, with the active learning scheme being faster. We tested
for values of λ between 0 and 1 in increments of 0.05, and λ = 0.1 gave the best results
empirically, although we did not perform any sensitivity analysis.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

1

2

3

4

5

6

7

8

Time steps

A
ve

ra
ge

 c
or

re
ct

 r
ef

in
em

en
ts

Active BIC
Passive BIC
Active BDe
Passive BDe

Fig. 3. Results in the coffee task

In the AGV task [18], an autonomous guided vehicle has to transport parts between
machines in a manufacturing workshop. We simplified the task by reducing the number
of machines to 2 and made it fully observable by setting the processing time of machines
to 0. The resulting task has 75,000 states and 6 actions, and the true DBN model requires
162 refinements. Figure 4 shows results of the experiments in the AGV task, averaged
over 5 trials. We used ε = 0.6, K = 50|Dom(Si)|, and report results of the BIC score
for λ = 0.1 and λ = 1. There are several interesting things to notice. First, learning
was very slow. We collected data for 200,000,000 time steps, and it is not clear that
the graphs even converged. The learned DBN model did not come close to the true
model, even for λ = 0.1. Also, passive learning actually outperformed active learning
in the AGV task. We believe this is due to the fact that our active learning scheme
selects actions based on local information, which we elaborate on in the conclusion.
The results of the experiments in the AGV task indicate that learning DBN models of
factored MDPs is a challenging problem, even using state-of-the-art metrics such as the
BIC and BDe scores.

6 Conclusion

We have presented an algorithm for active learning of dynamic Bayesian networks in
factored MDPs. Our approach is to learn DBNs by growing trees that represent the con-
ditional probabilities of the DBNs. The algorithm stops to evaluate possible refinements

0 2 4 6 8 10 12

x 10
5

0

5

10

15

20

Time steps

A
ve

ra
ge

 c
or

re
ct

 r
ef

in
em

en
ts

Active BIC, λ=.1
Passive BIC, λ=.1
Active BIC, λ=1.0
Passive BIC, λ=1.0

Fig. 4. Results in the Taxi task

of the trees as soon as a minimum number of data instances map to each relevant value
of each potential split variable. To learn DBNs quickly, the distributions of data in-
stances over values of each potential split variable should be uniform. We developed an
active learning scheme that selects actions with the goal of maintaining the distributions
as uniform as possible.

Our active learning scheme selects actions based on local information, i.e., how
the distributions change locally as a result of executing actions. This works well in
tasks with limited size when all states are visited relatively frequently. However, in
large tasks our scheme may fail to explore large regions of the state space, prefering
to maintain uniformity in the current region. We believe this accounts for the results in
the AGV task. To ensure that most or all of the state space is visited it is necessary to
select actions based on global information. If global information is stored using trees
its size is proportional to the number of leaves of the trees, not to the number of states,
facilitating scaling. Reaching a specific region of the state space is difficult when we
can only sample the current trajectory since we may not know which actions will get us
there. Temporally-extended actions may provide a useful tool to achieve this. Although
our work is an important first step, it needs to combine with further research to achieve
accurate learning of DBNs in factored MDPs.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
8

0

10

20

30

40

50

60

70

Time steps

A
ve

ra
ge

 c
or

re
ct

 r
ef

in
em

en
ts

Active BIC, λ=.1
Passive BIC, λ=.1
Active BIC, λ=1.0
Passive BIC, λ=1.0

Fig. 5. Results in the AGV task

Acknowledgements This work was partially funded by NSF grants ECS-0218125 and
CCF-0432143. Any opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

1. Dean, T., and Kanazawa, K. (1989) A model for reasoning about persistence and causation.
Computational Intelligence, 5(3): 142–150.

2. Boutilier, C., Dearden, R., and Goldszmidt, M. (1995) Exploiting structure in policy con-
struction. Proceedings of the International Joint Conference on Artificial Intelligence, 14:
1104–1113.

3. Feng, Z., Hansen, E., and Zilberstein, Z. (2003) Symbolic Generalization for On-line Plan-
ning. Proceedings of Uncertainty in Artificial Intelligence, 19: 209–216.

4. Guestrin, C., Koller, D., and Parr, R. (2001) Max-norm Projections for Factored MDPs. Pro-
ceedings of the International Joint Conference on Artificial Intelligence, 17: 673–680.

5. Jonsson, A., and Barto, A. (2006) Causal Graph Based Decomposition of Factored MDPs.
Journal of Machine Learning Research, 7: 2259–2301.

6. Kearns, M., and Koller, D. (1999) Efficient Reinforcement Learning in Factored MDPs. Pro-
ceedings of the International Joint Conference on Artificial Intelligence, 16: 740–747.

7. Buntime, W. (1991) Theory refinement on Bayesian networks. Proceedings of Uncertainty in
Artificial Intelligence, 7: 52–60.

8. Friedman, N., Murphy, K., and Russell, S. (1998) Learning the structure of dynamic proba-
bilistic networks. Proceedings of Uncertainty in Artificial Intelligence, 14: 139–147.

9. Heckerman, D., Geiger, D., and Chickering, D. (1995) Learning Bayesian networks: The com-
bination of knowledge and statistical data. Machine Learning, 20: 197–243.

10. Murphy, K. (2001) Active learning of causal Bayes net structure. Technical report, Computer
Science Division, University of Berkeley.

11. Steck, H, and Jaakkola, T. (2002) Unsupervised active learning in large domains. Proceed-
ings of Uncertainty in Artificial Intelligence, 18: 469–476.

12. Tong, S., and Koller, D. (2001) Active learning for structure in Bayesian networks. Proceed-
ings of the International Joint Conference on Artificial Intelligence, 17: 863–869.

13. Schwartz, G. (1978) Estimating the dimension of a model. Annals of Statistics, 6: 461–464.
14. Poggio, T., and Girosi, F. (1990) Regularization Algorithms for Learning that are Equivalent

to Multilayer Networks. Science, 247: 978–982.
15. Sutton, R., and Barto, A. (1998) Reinforcement Learning: An Introduction. MIT Press, Cam-

bridge, USA.
16. Chickering, D., Geiger, D., and Heckerman, D. (1995) Learning Bayesian networks: search

methods and experimental results. Proceedings of Artificial Intelligence and Statistics, 5: 112–
128.

17. Dietterich, T. (2000) Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research, 13: 227–303.

18. Ghavamzadeh, M., and Mahadevan, S. (2001) Continuous-Time Hierarchical Reinforcement
Learning. Proceedings of the International Conference on Machine Learning, 18: 186–193.

