
Adaptive Mesh Compression in 3D Computer Graphics using
Multiscale Manifold Learning

Sridhar Mahadevan mahadeva@cs.umass.edu
Department of Computer Science, University of Massachusetts, Amherst, MA 01003USA

Abstract

This paper investigates compression of 3D
objects in computer graphics using mani-
fold learning. Spectral compressionuses the
eigenvectors of the graph Laplacian of an ob-
ject's topology to adaptively compress 3D ob-
jects. 3D compression is a challenging ap-
plication domain: object models can have
> 105 vertices, and reliably computing the
basis functions on large graphs is numeri-
cally challenging. In this paper, we intro-
duce a novel multiscale manifold learning ap-
proach to 3D mesh compression usingdi�u-
sion wavelets, a general extension of wavelets
to graphs with arbitrary topology. Unlike the
\global" nature of Laplacian bases, di�usion
wavelet bases are compact, and multiscale in
nature. We decompose large graphs using a
fast graph partitioning method, and combine
local multiscale wavelet bases computed on
each subgraph. We present results showing
that multiscale di�usion wavelets bases are
superior to the Laplacian bases for adaptive
compression of large 3D objects.

1. Introduction

JPEG compression is widely used to capture, store,
and distribute images (Wallace, 1991). Formally,
JPEG uses the discrete cosine transform to convert
images from a \spatial" basis to a Fourier basis, where
much of the image \energy" is concentrated in the low
frequency eigenvectors (Amhed et al., 1974). However,
DCT assumes a �xed 2D topology and cannot be di-
rectly applied to compress 3D objects in computer an-
imation and graphics. Consequently, the problem of
compression of 3D objects is of much interest in com-

Appearing in Proceedings of the 24th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

puter graphics (Taubin, 1995).

(Karni & Gotsman, 2000) introduced an adaptivespec-
tral compression method, where the compression is
customized to speci�c 3D objects by deriving basis
functions from the object's known graph topology.
This approach is a natural generalization of \Fourier"
analysis to discrete graphs, in particular the eigenvec-
tors of the graph Laplacianare essentially Fourier bases
on graphs (Chung, 1997). The graph Laplacian has
started to play an increasingly prominent role in ma-
chine learning in the areas of spectral clustering, non-
linear dimensionality reduction, semi-supervised learn-
ing, and basis construction in reinforcement learning,
as well as applications such as segmentation in com-
puter vision (Shi & Malik, 2000; Ng et al., 2002; Belkin
& Niyogi, 2004; Meila & Shi, 2001; Mahadevan & Mag-
gioni, 2006). The set of instances is represented by
vertices of a graph, where an edge is used to connect
instances x and y using a \local" distance measure,
such as if y is among the k-nearest neighbors ofx.
The weight of the edge is speci�ed typically using the

heat kernel e� k x � y k 2

2 � 2 . Given such an undirected graph
G, the graph Laplacian operator can be de�ned in a
number of ways, including the combinatorial Lapla-
cian L = D � W , where W is the weight matrix, and
D is a diagonal \valency" matrix of the row-sums of
W . Several recent theoretical studies have shown that
the graph Laplacian asymptotically converges to the
Laplace-Beltrami operator on the underlying manifold
under certain conditions on the sampling distribution
(Belkin & Niyogi, 2004; Singer, 2006).

However, compression of 3D objects is a challeng-
ing problem for current techniques from manifold and
spectral learning. 3D objects can be very large, result-
ing in graphs with 105 or more vertices, and millions
of edges. Existing algorithms for regression on graphs
(Niyogi et al., 2003), as well as semi-supervised learn-
ing on graphs (Belkin & Niyogi, 2004; Zhu & Ghahra-
mani, 2002) typically involve inversion of the graph
Laplacian matrix on either the whole graph, which

Adaptive 3D Object Compression using Multiscale Manifold Learning

is O(jV j3), or on the subgraph de�ned by the unla-
beled examples, which is typically much larger than
the set of labeled examples. A similar worst-case anal-
ysis holds for approaches that use the eigenvectors of
the graph Laplacian as bases (Mahadevan & Maggioni,
2006). Direct application of diagonalization or inver-
sion methods to Laplacian matrices of size 105 seem
infeasible, even if in many cases, these matrices are
quite sparse.

In this paper, we introduce a novel framework for the
adaptive mesh compression of 3D objects. Our ap-
proach, �rst and foremost, addresses the limitations
of existing Fourier methods which are based on global
eigenvector representations. Classically, the limitation
of Fourier bases are well-known and led to the develop-
ment of wavelets (Mallat, 1989): Fourier basis vectors
are global, they do not provide a multiresolution analy-
sis, and poorly capture \transients" and \local discon-
tinuities". As Figure 1 illustrates, these limitations
have tangible consequences: it is hard to e�ciently
approximate piecewise smooth mesh geometries, such
as the nonlinearities represented by \horns". We build
on the framework of multiscale di�usion wavelet bases
(Coifman & Maggioni, 2006; Mahadevan & Maggioni,
2006). To deal with the challenge of large graphs, we
use the \divide-and-conquer" approach suggested in
(Karni & Gotsman, 2000) of decomposing large graphs
into a set of subgraphs, and compute local basis func-
tions on each subgraph.

2. Spectral Mesh Compression: Fourier
vs Wavelet Bases

Figure 1. Spectral approximation of the mesh geometry of
a 3D object using Laplacian eigenvectors (left) versus dif-
fusion wavelet bases (right). Laplacian eigenvectors poorly
reconstruct local nonlinearities represented by the \horns"
or the \nose", which are rendered with much higher �delity
by di�usion wavelet bases. This object has 1107 vertices,
which were partitioned into 10 subgraphs, and 20 basis
functions were used to approximate the mesh geometry on
each subgraph. Colors indicate partitions of the object on
which both basis functions were computed.

The problem of compression of 3D objects has long
been of interest in computer graphics (Taubin, 1995).
(Karni & Gotsman, 2000) introduced an adaptivespec-
tral compression method, where the compression is
customized to speci�c 3D objects by deriving basis
functions from the object's known graph topology.
Figure 1 illustrates their approach, the picture on
the left showing that Laplacian eigenvectors provide
an e�cient basis for compression of mesh geometry.
However, they observed that their results on smooth
models were signi�cantly better than those on mod-
els \containing sharp edges and folds... due to the
very high frequencies present..." (Karni & Gotsman,
2000). Figure 1 clearly illustrates these problems. In
this paper, we apply a powerful new class of nonlinear
function approximation techniques termed di�usion
wavelets (Coifman & Maggioni, 2006), which gener-
alize classical wavelets to graphs and manifolds. They
are named di�usion wavelets, because they are asso-
ciated with a di�usion process (similar to the graph
Laplacian) that de�nes the di�erent scales. As Fig-
ure 1 shows, they handily outperform Laplacian eigen-
vectors in mesh approximation, reconstructing local
discontinuities almost perfectly even with a low num-
ber of basis functions. Figure 2 illustrates some sample
multiscale di�usion bases.

Figure 2. Di�usion wavelet bases are able to capture \se-
mantic" regions of objects. This �gure shows sample basis
functions for a \cowhead" model where the basis functions
are shown darkly shaded over the set of vertices from level
5 of the di�usion wavelet hierarchy: top left shows a basis
function de�ned over the left \horn"; top right shows a ba-
sis function de�ned over the left \eye"; and bottom shows
a basis function over the left \ear".

Adaptive 3D Object Compression using Multiscale Manifold Learning

3. Approximation of Mesh Geometry
using Laplacian Bases

The problem of mesh compression is to approximate
the 3D coordinate functions mapping each vertex to its
3D position V ! R 3. More speci�cally, a 3D object is
speci�ed by a graph G = (V; E; W; M), where the 3D
mesh coordinatesM (v) 2 R 3. The weight matrix W is
a set of weights on each edgee 2 E. In our experiments
below, we used binary weights so thatW (i; j) = 1 if
(i; j) 2 E . The problem is to approximate the mesh
coordinates using a set of basis functions that are not
precomputed or stored, but instead adaptively learned
from the topology of the graph. More precisely, let
vx ; vy ; vz be the coordinates of a vertexv 2 G. Each
of these coordinate functions can be approximated by
projecting them on the subspace spanned by some or-
thogonal basis set, namely either a Fourier (Laplacian)
or a (di�usion) wavelet basis set.

Let us de�ne x � y to mean an edge betweenx and y,
and the degree ofx to be d(x) =

P
x � y w(x; y). D will

denote the diagonal matrix de�ned by D xx = d(x),
and W the matrix de�ned by Wxy = w(x; y) =
w(y; x). The L 2 norm of a function on G is jj f jj2

2 =P
x 2 G jf (x)j2d(x). The gradient of a function is

r f (i; j) = w(i; j)(f (i) � f (j)) if there is an edge e
connecting i to j , 0 otherwise. The smoothnessof a
function on a graph, can be measured by the Sobolev
norm

jj f jj2
H 2 = jj f jj2

2 + jjr f jj2
2 (1)

=
X

x

jf (x)j2d(x) +
X

x � y

jf (x) � f (y)j2w(x; y) : (2)

The �rst term in this norm controls the size (in terms
of L 2-norm) for the function f , and the second term
controls the size of the gradient. The smallerjj f jjH 2 ,
the smoother is f . We will assume that the func-
tions we consider have smallH 2 norms, except at a
few points, where the gradient may be large. Figure 1
illustrates this typical variability in smoothness, where
the mesh geometry is smooth in some areas (face), but
highly nonsmooth in other areas (horns).

3.1. Global Laplacian Eigenfunctions

Global basis functions can be constructed on a graph
G = (V; E; W) by diagonalizing the combinatorial
graph Laplacian L (Chung, 1997), which is de�ned as

Lf (x) =
X

y � x

w(x; y)(f (x) � f (y)) = (D � W)f (3)

These basis functions are of sizejV j = n, which can
be problematic if n is large. To address this, we will

actually compute the Laplacian bases on subgraphs
of much smaller size. In our experiments, we used
the normalized Laplacian L = D � 1

2 (D � W)D � 1
2

which has spectrum in [0; 2]. Th normalized Lapla-
cian is related to the notion of smoothness as above,
sincehf; L f i =

P
x f (x) Lf (x) =

P
x;y w(x; y)(f (x) �

f (y))2 = jjr f jj2
2, which should be compared with (2).

The Spectral Theorem can be applied toL (or L),
yielding a discrete set of eigenvalues 0� � 0 � � 1 �
: : : � i � : : : and a corresponding orthonormal basis
of eigenfunctions f � i gi � 0, solutions to the eigenvalue
problem L � i = � i � i . The eigenfunctions of the Lapla-
cian can be viewed as an orthonormal basis of global
Fourier smooth functions that can be used for approx-
imating any value function on a graph. Observe that
� i satis�es jjr � i jj2

2 = � i . In fact, the variational char-
acterization of eigenvectors shows that� i is the nor-
malized function orthogonal to � 0; : : : ; � i � 1 with min-
imal jjr � i jj2. Hence the projection of a function f
on S onto the top k eigenvectors of the Laplacian is
the smoothest approximation to f , in the sense of the
norm in H 2. A potential drawback of Laplacian ap-
proximation is that it detects only global smoothness,
and may poorly approximate a function which is not
globally smooth but only piecewise smooth, or with
di�erent smoothness in di�erent regions (as in Fig-
ure 1). Di�usion wavelets were primarily designed to
address these drawbacks.

4. Beyond Eigenvectors: Multiscale
Di�usion Wavelets

Di�usion wavelets generalize wavelet analysis to func-
tions on manifolds and graphs (Coifman & Maggioni,
2006; Bremer et al., 2006; Mahadevan & Maggioni,
2006). The input to the algorithm is a \precision"
parameter � > 0, and a weighted graph (G; E; W).
The construction is based on using the natural random
walk P = D � 1W on a graph and its powers to \dilate",
or \di�use" functions on the graph, and then de�ning
an associated coarse-graining of the graph. We sym-
metrize P by conjugation and take powers to obtain

H t = D
1
2 P t D � 1

2 =
X

i � 0

(1 � � i)t � i (�)� i (�) (4)

where f � i g and f � i g are the eigenvalues and eigen-
functions of the Laplacian as above. Hence the eigen-
functions of H t are again � i and the i th eigenvalue is
(1 � � i)t . We assume thatH 1 is a sparse matrix, and
that the spectrum of H 1 has rapid decay.

A di�usion wavelet tree consist of orthogonal di�usion
scaling functions � j that are smooth bump functions,
with some oscillations, at scale roughly 2j (measured

Adaptive 3D Object Compression using Multiscale Manifold Learning

DiffusionWaveletTree (H 0 ; � 0 ; J; �):

// H 0 : symmetric conjugate to random walk matrix,
represented on the basis � 0

// � 0 : initial basis (usually Dirac's � -function basis),
one function per column
// J : number of levels to compute
// � : precision

for j from 0 to J do ,

1. Determine sparse factorization H j � � Qj R j , with
Qj orthogonal.

2. Compute the scaling function bases by setting
� j +1 Qj = H j R � 1

j and [H 2j

0]
� j +1
� j +1

� j�

H j +1 R j R �
j .

3. Compute sparse factorization I � � j +1 � �
j +1 =

Q0
j R0

j , with Q0
j orthogonal.

4. Compute the wavelet bases 	 j +1 Q0
j .

end

Figure 3. Pseudo-code for building a Di�usion Wavelet
Tree.

with respect to geodesic distance, for smallj), and
orthogonal wavelets 	 j that are smooth localized os-
cillatory functions at the same scale. The scaling func-
tions � j span a subspaceVj , with the property that
Vj +1 � Vj , and the span of 	 j +1 , Wj , is the orthog-
onal complement ofVj into Vj +1 . This is achieved by
using the dyadic powersH 2j

as \dilations", to cre-
ate smoother and wider (always in a geodesic sense)
\bump" functions (which represent densities for the
symmetrized random walk after 2j steps), and orthog-
onalizing and downsampling appropriately to trans-
form sets of \bumps" into orthonormal scaling func-
tions.

The algorithm is described in Figure 3. We start with
the basis � 0 = I and the matrix H0 := H 1, which we
assume is sparse, and construct an orthonormal ba-
sis of well-localized functions for its range (the space
spanned by the columns), up to precision� , through
a variation of the Gram-Schmidt orthonormalization
scheme, described in (Coifman & Maggioni, 2006). In
matrix form, this is a sparse factorization H0 � � Q0R0,
with Q0 orthonormal. Notice that H0 is jGj � j Gj, but
in generalQ0 is jGj � j G(1) j and R0 is jG(1) j � j Gj, with
jG(1) j � j Gj. In fact jG(1) j is approximately equal to
the number of singular values ofH0 larger than � . The
columns ofQ0 are an orthonormal basis of scaling func-
tions � 1 for the range of H0, written as a linear com-
bination of the initial basis � 0. We can now write H 2

0
on the basis � 1: H1 := [H 2]� 1

� 1
= Q�

0H0H0Q0 = R0R�
0,

where we usedH0 = H �
0 . This is a compressed rep-

resentation of H 2
0 acting on the range of H0, and it

is a jG(1) j � j G(1) j matrix. We proceed by induction:
at scale j we have an orthonormal basis �j for the
rank of H 2j � 1 up to precision j� , represented as a
linear combination of elements in � j � 1. This basis
contains jG(j) j functions, where jG(j) j is comparable
with the number of eigenvalues � j of H0 such that

� 2j � 1
j � � . We have the operator H 2j

0 represented on
� j by a jG(j) j � j G(j) j matrix H j , up to precision j� .
We compute a sparse decomposition ofH j � � Qj Rj ,
and obtain the next basis � j +1 = Qj = H j R� 1

j and

represent H 2j +1
on this basis by the matrix H j +1 :=

[H 2j
]� j +1

� j +1
= Q�

j H j H j Qj = Rj R�
j : Wavelet bases for

the spacesWj can be built analogously by factorizing
I Vj � Qj +1 Q�

j +1 , which is the orthogonal projection on
the complement of Vj +1 into Vj . The spaces can be
further split to obtain wavelet packets (Bremer et al.,
2006). A Fast Di�usion Wavelet Transform allows ex-
panding in O(n) (where n is the number of vertices)
computations any function in the wavelet, or wavelet
packet, basis, and e�ciently search for the most suit-
able basis set.

5. Scaling to Large Graphs

We now address scaling the approach of adaptive mesh
compression using di�usion wavelet bases to deal with
large graphs.

5.1. Graph Partitioning

A natural divide-and-conquer strategy suggested by
(Karni & Gotsman, 2000) is to decompose the origi-
nal graph into subgraphs, and then compute local ba-
sis functions on each subgraph. A number of graph
partitioning methods are available, including spectral
methods that use the low-order eigenvectors of the
Laplacian to decompose graphs (Meila & Shi, 2001),
as well as hybrid methods that combine spectral anal-
ysis with other techniques. We used the METIS sys-
tem (Karypis & Kumar, 1998), which is a fast graph
partitioning algorithm that can decompose even very
graphs on the order of 106 vertices. METIS uses amul-
tiscale approach to graph partitioning, where the orig-
inal graph is \coarsened" by collapsing vertices (and
their associated edges) to produce a series of smaller
graphs, which are successively partitioned followed by
uncoarsening steps mapping the partitions found back
to the lower-level graphs.

Adaptive 3D Object Compression using Multiscale Manifold Learning

5.2. Fast Inversion of Di�usion Matrices

Di�usion wavelets compress large powers of the di�u-
sion operator since these often have low-rank. This
property can be combined with a principle called
Schultz's expansionto do a fast inversion of theGreen's
function (I � T) � 1, where T is a di�usion operator
whose large powers have low-rank (Coifman & Mag-
gioni, 2006; Maggioni & Mahadevan, 2006). Figure 4
contrasts the di�erence in time between computing the
direct inverse of the Laplacian, used in the algorithms
proposed in (Niyogi et al., 2003; Zhu & Ghahramani,
2002), vs. doing the inverse using the di�usion wavelet
tree. The results are shown for the \pig" model illus-
trated in Figure 7, which has jV j = 3820 vertices. As
the number of vertices grows (smaller number of parti-
tions), the time required to compute the direct inverse
grows much more quickly than the time required for
fast inversion using the di�usion wavelet tree.1

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Partition Size

R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

DWT vs. Direct Inversion on Pig Model

DWT
Direct

Figure 4. This �gure compares the time required to di-
rectly invert the Laplacian matrix (top curve) using the
pseudo-inverse routine pinv in MATLAB vs. computing
the inverse using the multiscale di�usion wavelet tree (bot-
tom curve).

5.3. Computing Local Basis Functions

Once a graphG = (V; E; W) has been partitioned into
a set ofk partitions Gi = (Vi ; E i ; Wi), we compute set
of basis functions on each subgraph, either using the
eigenvectors of the Laplacian on subgraphs, or com-
puting multiscale local di�usion wavelet bases. One
subtle issue is the boundary e�ects that can result from
the fact that there are vertices that lie in the intersec-
tion of two or more subgraphs. In practice, we have
found that boundary e�ects are not signi�cant enough
to cause a problem, although more work is needed to

1Although other inversion techniques such as cgs could
be used to invert larger matrices, their numerical precision
is quite poor compared to pinv .

address this issue.

6. Experimental Results

In this section, we present a series of detailed experi-
ments, evaluating our multiscale approach to adaptive
compression of 3D objects. To compare the e�ectivess
of mesh geometry reconstruction by projection onto a
set of Laplacian or di�usion wavelet bases, we need
to de�ne some notion of error. The most straightfor-
ward method is to compare the di�erence between the
predicted mesh coordinates ^v with the true mesh co-
ordinates v, that is the geometric error between two
modelsM 1 and M 2 is de�ned as

kM 1 � M 2kg =
X

v2 V

X

i 2 (x;y;z)

(v̂i � vi)2 (5)

where for example v̂x gives the approximated x co-
ordinate and vx is the exact known x coordinate of
vertex v. Unfortunately, geometric error by itself is
not su�cient, since it is possible that a model may be
close geometrically, and yet provide a poor \visual" re-
construction. (Karni & Gotsman, 2000) introduced a
second metric, called thegeometric Laplacian, de�ned
as follows:

GL(vi) = vi �

P
j 2 n (i) l � 1

ij vj
P

j 2 n (v) l � 1
ij

(6)

where n(v) is the set of neighbors of vertexv, and vi

again is the i th index of the mesh coordinate geom-
etry (for i = x; y; z). This term intuitively measures
the di�erence between the prediction made by simply
averaging the coordinates of the neighbors of a vertex
versus the actual prediction. The �nal error in approx-
imation is then de�ned as the sum of the normalized
geometric Laplacian error and the geometric error:

kM 1 � M 2k =
1

2n

kM 1 � M 2kg +
X

v2 V

X

i

GL(vi)

!

(7)

6.1. Compression of Small Objects

We �rst compare the mesh compression of global
Laplacian eigenvectors against multiscale di�usion
wavelet bases for \small" 3D objects, where by \small"
we mean objects with mesh graphs of size< 5000 ver-
tices. Note that these are actually fairly large graphs
comparable in size to the standard data set sizes in pre-
vious work in manifold or spectral learning (e.g. the
\Swissroll" or \Two-Moons" manifolds, or digit recog-
nition). Figure 5, Figure 6, Figure 7, and Figure 8
compare the performance on a \cow", \camel", \pig",

Adaptive 3D Object Compression using Multiscale Manifold Learning

and \Max Planck" model, respectively. Each experi-
ment was carried out using the same set of parameters.
The overall graph was partitioned into 50 subgraphs,
and then a varying number of basis functions were
constructed on each subgraph. The errors introduced
in each local subgraph mesh aprpoximation were then
added together to produce the �nal plots shown. In
each graph, the horizontal axes measures the number
of basis functions, and the vertical axes measures the
sum of the geometric error and the geometric Lapla-
cian error, as de�ned above. In each graph, the bot-
tom curve represents multiscale di�usion bases, and
the top curve represents Laplacian bases. It is clear
that the multiscale di�usion wavelet bases consistently
performs better than the partitioned Laplacian eigen-
vector bases. The running times shown are the average
time for a speci�c number of bases.2

1 1.5 2 2.5 3 3.5 4
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Numbers of bases in Multiples of 5

Ge
om

et
ric

 +
 L

ap
lac

ian
 E

rro
r

Object File: cow.obj Vertices: 2904 Partitions: 50

Laplacian Bases: 3.19 seconds
DWT Bases: 5.46 seconds

Figure 5. Comparison of Laplacian (top left) and di�usion
wavelet (top right) approximation of a 3D \cow" model
with jV j = 2904 vertices.

6.2. Partition Size vs. Error

The divide-and-conquer approach seems a natural way
to make the adaptive spectral compression problem
more tractable, but it comes at a price. As the num-
ber of partitions grows, the error is likely to increase
due to boundary e�ects, but the running time reduces.
We explore this tradeo� for the \pig" model analyzed
above. Figure 9 displays the change in error and run-
ning times vs. partition size for the \pig" model. The

2Unlike the eigs package in MATLAB for computing
eigenvectors, the di�usion wavelet code is not yet highly
optimized, but a faster implementation is currently under-
way.

1 1.5 2 2.5 3 3.5 4
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Numbers of bases in Multiples of 5

Ge
om

et
ric

 +
 L

ap
lac

ian
 E

rro
r

Object File: camel.obj Vertices: 2443 Partitions: 50

Laplacian Bases: 2.72 seconds
DWT Bases: 4.08 seconds

Figure 6. Comparison of Laplacian (top left) and di�usion
wavelet (top right) approximation of a 3D \camel" model
with jV j = 2443 vertices.

�gure plots the results only for multiscale di�usion
bases. The increase in error turns out to depend on
the smoothness of the model: the camel exhibits the
worst increase in error whereas the pig exhibits the
least. As shown in the �gure, the error increase is at
beast linear, but the running time shows a signi�cant
superlinear decrease.

6.3. Compression of Large Objects

In this section, we compare the performance of multi-
scale di�usion bases against Laplacian bases on larger
3D objects, where the number of verticesjV j > 104.
Speci�cally, Figure 10 compares multiscale di�usion
wavelet bases vs. global Laplacian bases on an \Ele-
phant" model. The colors indicate the partitions on
which local basis functions were computed. As in the
earlier \cow" model, sharp features such as the tusks
are rendered with much higher �delity by the di�u-
sion wavelet bases. Figure 11 plots the results for the
\Stanford Bunny", a standard benchmark problem in
computer graphics.

7. Future Work

Some extensions of this research are briey summa-
rized. 3D models are sometimes specifed by point sets
2 R n , and can be handled by adding a graph construc-
tion phase. The multiscale di�usion bases can also
be modi�ed to yield geometry-aware bases (Sorkine

Adaptive 3D Object Compression using Multiscale Manifold Learning

1 1.5 2 2.5 3 3.5 4
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Numbers of bases in Multiples of 5

Ge
om

et
ric

 +
 L

ap
lac

ian
 E

rro
r

Object File: pig.obj Vertices: 3820 Partitions: 50

Laplacian Bases: 3.88 seconds
DWT Bases: 8.58 seconds

Figure 7. Comparison of Laplacian (top left) and di�usion
wavelet (top right) approximation of a 3D \pig" model with
jV j = 3820 vertices.

et al., 2005), where the coordinate function being ap-
proximated can inuence the bases constructed. An-
other open problem is to compresstensor information
stored at each vertex, such as a matrix of illumina-
tion or texture values. One strategy is to use homoge-
neous graphs, de�ned by a group operator, over which
the vibrational Laplacian can be constructed (Chung,
1997). Finally, a theoretical analysis of the stability
of Laplacian and di�usion wavelet bases under graph
partitioning is ongoing.

Acknowledgments

The author thanks Rui Wang for providing some of
the models and 3D display software, and Mauro Mag-
gioni for the di�usion wavelet code. This research was
supported in part by the National Science Foundation
under grant IIS-0534999.

References

Amhed, N., Natarajan, T., & Rao, K. (1974). On
image processing and a discrete cosine transform.
IEEE Transactions on Computers, C-23, 90{93.

Belkin, M., & Niyogi, P. (2004). Semi-supervised
learning on Riemannian manifolds.Machine Learn-
ing, 56, 209{239.

Bremer, J. C., Coifman, R. R., Maggioni, M., & Szlam,

1 1.5 2 2.5 3 3.5 4
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Numbers of bases in Multiples of 5

Ge
om

et
ric

 +
 L

ap
lac

ian
 E

rro
r

Object File: max2knew.obj Vertices: 2527 Partitions: 50

Laplacian Bases: 2.66 seconds
DWT Bases: 4.25 seconds

Figure 8. Comparison of Laplacian (top left) and di�usion
wavelet (top right) approximation of a 3D model of Max
Planck with jV j = 2527 vertices.

A. D. (2006). Di�usion wavelet packets. Applied and
Computational Harmonic Analysis, 21, 95{112.

Chung, F. (1997). Spectral graph theory. No. 92. Amer-
ican Mathematical Society.

Coifman, R. R., & Maggioni, M. (2006). Di�usion
wavelets. Applied and Computational Harmonic
Analysis, 21, 53{94.

Karni, Z., & Gotsman, C. (2000). Spectral compres-
sion of mesh geometry. SIGGRAPH '00: Proceed-
ings of the 27th annual conference on Computer
graphics and interactive techniques(pp. 279{286).

1 2 3 4 5
1

2

3

4

5

6

7
x 10

-6

DWT Approximation Error
vs. Partition Size

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90
DWT Time vs. Partition Size

pig

pig

Figure 9. Comparison of average error and running times
(seconds) over di�erent partition sizes, showing error in-
creases sublinearly, but running time reduces superlinearly
as number of partitions increase.

Adaptive 3D Object Compression using Multiscale Manifold Learning

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Numbers of bases in Multiples of 5

G
eo

m
et

ric
 +

 L
ap

la
ci

an
 E

rr
or

Object File: ea4.obj Vertices: 19753 Partitions: 300

Laplacian Bases: 21.19 seconds
DWT Bases: 40.23 seconds

Figure 10. Results for an \Elephant" model, a 3D object
with 19 ; 753 vertices and 59; 053 edges.

New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co.

Karypis, G., & Kumar, V. (1998). A fast and high
quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput. , 20, 359{392.

Maggioni, M., & Mahadevan, S. (2006). Fast di-
rect policy evaluation using multiscale analysis of
markov di�usion processes. ICML '06: Proceed-
ings of the 23rd international conference on Machine
learning (pp. 601{608). New York, NY, USA: ACM
Press.

Mahadevan, S., & Maggioni, M. (2006). Value function
approximation with di�usion wavelets and laplacian
eigenfunctions. Proceedings of the Neural Informa-
tion Processing Systems (NIPS). MIT Press.

Mallat, S. G. (1989). A theory for multiresolution
signal decomposition: The wavelet representation.
IEEE Trans. Pattern Anal. Mach. Intell. , 11, 674{
693.

Meila, M., & Shi, J. (2001). Learning segmentation by
random walks. NIPS.

Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral
clustering: Analysis and an algorithm. Proceedings
of the Conference on Neural Information Processing
Systems (NIPS).

1 2 3 4 5 6 7 8 9
0

0.005

0.01

0.015

0.02

0.025

Numbers of bases in Multiples of 5

G
eo

m
et

ric
 +

 L
ap

la
ci

an
 E

rr
or

Object File: bunny.obj Vertices: 34834 Partitions: 500

Laplacian Bases: 39.78 seconds
DWT Bases: 78.60 seconds

Figure 11. Results for \Stanford Bunny", a 3D object with
34; 834 vertices and 104; 288 edges.

Niyogi, P., Matveeva, I., & Belkin, M. (2003). Regres-
sion and regularization on large graphs(Technical
Report). University of Chicago.

Shi, J., & Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Tran PAMI , 22, 888{905.

Singer, A. (2006). From graph to manifold Laplacian:
The convergence rate. Appl. Comp. Harm. Anal. ,
21, 128{134.

Sorkine, O., Cohen-Or, D., Irony, D., & Toledo, S.
(2005). Geometry-aware bases for shape approxi-
mation. IEEE Transactions on Visualization and
Computer Graphics, 11, 171{180.

Taubin, G. (1995). A signal processing approach to
fair surface design.SIGGRAPH '95: Proceedings of
the 22nd annual conference on Computer graphics
and interactive techniques(pp. 351{358). New York,
NY, USA: ACM Press.

Wallace, G. (1991). The JPEG still picture compres-
sion standard. Communications of the ACM, 34,
30{44.

Zhu, X., & Ghahramani, Z. (2002). Learning from
labeled and unlabeled data with label propagation
(Technical Report CMU-CALD-02-107). Carnegie
Mellon University.

