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Outline

• Learning Representations 
– Harmonic analysis on graphs
– Fourier and wavelet bases on graph

• Least squares methods for solving MDPs
– Bellman residual and fixpoint approaches
– Least-squares policy iteration

• Algorithms
– Representation Policy Iteration (Mahadevan, UAI 2005)
– Fast Policy Evaluation (Maggioni and Mahadevan, ICML 

2006)

• Experimental Results
• Future Directions
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Credit Assignment Problem 
(Minsky, Steps Toward AI, 1960)
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Challenge: Need a unified approach 
to the credit assignment problem
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Learning Representations:
The Hidden Dimension

Domains

Clustering

Classification

Reinforcement
Learning

Regression

Problems/TechniquesLearning a Basis

Fourier

Wavelet
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Combining Reward-Specific and 
Reward-Independent Learning

Task-Independent
Learning

Task-Specific
Learning

Global value 
functions
(TD-Gammon,
Tesauro, 1992)

Proto-value functions
(Mahadevan, 2005)

Global
Rewards

Local value
functions

(Dietterich, 2000)

Pseudo-
rewards,
shapingBottlenecks,

symmetries

Diffusion wavelets
(Coifman and Maggioni, 2006)
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How to find a good basis?
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Goal

Any function on this graph
is a vector in R7

The question we want to ask is
how to construct a basis set for
approximating functions on this graph

Solution 1:  use the unit basis
Solution 2: use polynomials or RBFs

Neither of these exploit geometry
e1 = [1, …, 0]
ei = [0, …, i, …,0]
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Polynomial Bases
(Samuel, 1959; Koller and Parr, UAI 2000)
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Parametric VFA Can Easily Fail!
(Dayan, Neural Comp, 1993; Drummond, JAIR 2003)
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environment

G These approaches measure distances
in ambient space, not on the manifold!
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Fourie
r

Acrobot
Samples from random walk
on manifold in state space

Wavelets
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Eigenfunctions of
Laplacian on state
space: global basis 
functions

Dilations of
diffusion operator:
local multiscale basis 
functions

Learning Representation and Behavior
(Mahadevan, AAAI,ICML,UAI 2005; Mahadevan & Maggioni, NIPS 2005;

Maggioni and Mahadevan, ICML 2006)
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Least-Squares Projection

f

Φ

Theory of least-squares tells
us how to find the closest
vector in a subspace to a
given vector

What is an optimal subspace Φ
for approximating f on a graph?

Standard bases
(polynomials, RBFs)
don’t exploit geometry
of graph
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Fourier Analysis on Graphs
(Fiedler, 1973; Cvetkovic et al, 1980; Chung, 1997)
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Laplacian Matrix = D - A 
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One-Dimensional Chain
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Eigenvectors of Graph Laplacian: 
Discrete and Continuous Domains

Inverted pendulum
Mountain Car ProblemThree rooms with bottlenecks
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Matrix Decompositions

• Spectral Theorem: Φ = U Λ UT

– U is an orthonormal basis of eigenvectors

• Singular value decomposition: Φ = U Σ VT

– U is an orthonormal basis of eigenvectors of Φ ΦT

– V is an orthonormal basis of eigenvectors of ΦT Φ

• Gram-Schmidt: Φ = Q R 
– Q is an orthonormal basis, R is a lower triangular matrix

• Linear system Φ x = u
– Krylov space: [u, Φ u, Φ2 u, …, Φn u]
– Useful for reward-specific bases [Petrik, IJCAI 2007]
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Graph Laplacian = Inverse Covariance

• The Laplacian is positive semidefinite

– The Laplacian for this graph is [1 -1; -1 1]
– Observe that fT L f = (f1 – f2)2

• Generalizing, the Laplacian of a weighted graph G 
= (V, E, W) has the property 

<f, Lf> = fT L f = Σ wu,v (fu – fv)2 

• Laplacian can be viewed as inverse covariance, 
inducing a distribution on functions on a graph

P(f) = 1/Z e- (β fT L f)
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Manifold and Spectral Learning

• Spectral methods are based on computing 
eigenvectors of a normalized “affinity” matrix
– [Shi and Malik, IEEE PAMI 1997]
– [Ng, Jordan, and Weiss, NIPS 2001] 
– PageRank [Page, Brin, Motwani, Winograd, 1998]

• Manifold methods model the local geometry of 
the data by constructing a graph
– [Roweis and Saul; Tenenbaum, de Silva, Langford, 

Science 2000]
– [Belkin and Niyogi, MLJ 2004]
– [Weinberger, Sha, Saul, ICML 2004]

• These methods are closely related to kernel PCA
– [Scholkopff, Smola and Muller, 2001]
– [Bengio et al, Neural Computation, 2004]
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Manifolds

: Set that looks “locally” Euclidean

Tp Mk : tangent space
(affine subspace

of Rn)

Mk

φ(t): R→Mk (curve)

f: Mk → R

f(φ(t)): R→ R
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Nonlinear dimensionality reduction
(LLE, ISOMAP, Laplacian Eigenmaps)

Embedding should preserve “locality”
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Graph Embedding
• Consider the following optimization 

problem mapping, where yi ∈ R is a 
mapping of the ith vertex to the real line

Miny ∑i,j (yi – yj)2 wi,j s.t. yT D y = 1
• The best mapping is found by solving the 

generalized eigenvector problem
W φ = λ D φ

• If the graph is connected, this can be written as

D-1 W φ = λ φ
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Range of Laplacian Operators
• Random walk: P = D-1 W

• Discrete Laplacian:  Ld = I – D-1W

• Normalized Laplacian: L = D-1/2 (D – W) D-1/2

• Directed Combinatorial Laplacian: μ is the Perron vector

L = μ – (μ P + PT μ)/2

• Directed Normalized Laplacian: μ is the Perron vector

L = I – (μ1/2 P μ-1/2 + μ-1/2 PT μ1/2)/2
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Normalized Graph Laplacian 
and Random Walks

• Given an undirected weighted graph G = (V, E, 
W), the random walk on the graph is defined by 
the transition matrix

P = D-1W
– Random walk matrix is not symmetric

• Normalized Graph Laplacian
L = D-1/2 (D - W) D-1/2 = I - D-1/2 W D-1/2

• The random walk matrix has the same 
eigenvalues as (I - L ) 

D-1W = D-1/2 (D-1/2 W D-1/2) D1/2 = D-1/2 (I - L ) D1/2
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Operators on Graphs
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Optimality of Bases
• Under what conditions is a given basis “optimal”? 

– MSE: A basis Φ is optimal for a distribution D over Rn if
MSE = ED((X - YΦ,k)2) 

is the lowest over all other basis choices
– PCA: Choose highest order eigenvectors of covariance matrix C 
– PCA basis can be computed on a finite sample using SVD

• For points distributed on X ∈ R or ∈ R2 resulting in a valid 
chain graph (1D) or a mesh graph (2D):
– Fourier (Laplacian) basis is optimal (under some conditions)
– Covariance C is given by the inverse of the Laplacian [Ben-Chen 

and Gotsman, ACM Trans. On Graphics, 2005]

• Since the Laplacian is the inverse of covariance, we choose 
its lowest order eigenvectors 
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Multiresolution Manifold Learning

• Fourier methods, like Laplacian manifold or 
spectral learning, rely on eigenvectors
– Eigenvectors are useful in analyzing long-term global 

behavior of a system (e.g, PageRank)
– They are rather poor at short or medium term transient 

analysis (or locally discontinuities)

• Wavelet methods [Daubechies, Mallat]
– Inherently multi-resolution analysis
– Local basis functions with compact support

• Diffusion wavelets [Coifman and Maggioni, 2004]
– Extend classical wavelets to graphs and manifolds
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Diffusion Wavelets
(Coifman and Maggioni, ACHA, 2006 ;Maggioni and 

Mahadevan, U.Mass TR, 2006)
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DWT Algorithm
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Multiscale DWT Bases: 3D Objects

Level 4

Level 10Level 5 Level 8

Level 9
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Fast Inversion of Random Walks
(Maggioni and Mahadevan, ICML 2006)
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Representation Policy Iteration
(Mahadevan, UAI 2005)

Trajectories
Representation

Learner

“Greedy”
Policy

Policy
improvement

Policy
evaluation

“Actor”

“Critic” Laplacian/wavelet bases 
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Bellman Residual Method
(Munos, ICML 03; Lagoudakis and Parr, JMLR 03)

• Let us write the Bellman equation in 
matrix form as 

Φ wπ ≈ Rπ + γ Pπ Φ wπ

• Collecting the terms, we rewrite this as
(Φ - γ Pπ Φ) wπ ≈ Rπ

• The least-squares solution is 
wπ = [(Φ - γ Pπ Φ)T (Φ - γ Pπ Φ)]-1 (Φ - γ Pπ Φ)T Rπ
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Bellman Fixpoint Method

• Another way to obtain a least-squares 
solution is to project the backed-up value 
function Tπ(Vπ)

P = Φ (ΦT Φ)-1 ΦT

• The least-squares projected weights then 
becomes

Wπ = (ΦT Φ)-1 ΦT [Rπ + γ Pπ Vπ]
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VFA using Least-Squares Projection
(Boyan, Bradtke and Barto, Bertsekas and Nedic, Lagoudakis and Parr)

∑=
i

ii wssV )()(ˆ φ

Subspace Φ
(Laplacian and 
DWT bases)

))(ˆ( sVT π

Minimize Projected Resid
ual
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Least-Squares Policy Iteration
(Lagoudakis and Parr, JMLR 2003)

Initial random walk: D = (st, at, r, st’)
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Graph Construction

• The graph is constructed 
using a similarity metric
– In discrete spaces, 

connect state s to s’ if an 
action led the agent from 
s → s’

– Action respecting 
embedding [Bowling, ICML 
2005]

• Other distance metrics:
– Nearest neighbor: connect 

an edge from s to s’ if s’ is 
one of k nearest neighbors 
of s

– Heat kernel: connect s to 
s’ if | s –s’|2 < ε with 
weight w(s,s’)= e-| s – s’|2/2
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Value Function Approximation 
using Laplacian and Wavelet Bases

(Mahadevan and Maggioni, NIPS 2005)
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RPI in Continuous State Spaces
(Mahadevan, Maggioni, Ferguson, Osentoski, AAAI 2006)

• RPI in continuous state spaces
– The Nystrom extension interpolates 

eigenfunctions from sample points to new 
points

• Many practical issues are involved
– How many samples to use to build the graph?
– Local distance metric: Gaussian distance, k-NN
– Graph operator: Normalized Laplacian, 

Combinatorial Laplacian, Random Walk, …
– Type of graph: Undirected, directed, state-

action graph
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Sampling from a Continuous Manifold
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Out of Sample Extension

• The testing of a learned policy requires 
computing the basis in novel states

• The Nystrom extension is a classical method 
developed in the solution of integral equations

φm(x) = 1/λm ∑j wj k(x,sj) φm(sj)
• Other approaches: 

– Nearest neighbor averaging (diffusion 
wavelets)

– Smoothness-sensitive interpolation
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The Nystrom method
(Williams and Seeger, NIPS 2001)

• The Nystrom approximation was developed in the 
context of solving integral equations

∫D K(t,s) Φ(s) ds = λ Φ(t), t ∈ D

• A quadrature approximation of the integral: 
∫D K(t,s) Φ(s) ds = ∑j wj k(x,s) φ(sj)

leads to the following equation
∑j wj k(x,s) φ(sj) = λ φ(x) 

• which rewritten gives the Nystrom extension
φm(x) = 1/λm ∑j wj k(x,s) φm(sj)
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Laplacian Bases:Inverted Pendulum
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Laplacian Bases: Mountain Car
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RPI in Continuous Domains
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Acrobot Results
(Johns, 2006)
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Scaling to Large Factored MDPs: 
Blockers Domain

(Sallans and Hinton, JMLR 2003)
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Kronecker Sum Graphs
• The Kronecker sum of two graphs G = G1 ⊕ G2

is the graph with vertex set V = V1 × V2 and 
adjacency matrix A = A1 ⊗ I2 + I2 ⊗ A1

– The Kronecker sum graph G has an edge 
between vertices (u,v) and (u’,v’) if and only if 
(u,u’) ∈ E1 and v=v’ or (u=u’) and (v,v’) ∈ E2

⊕ =
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Laplacian of Kronecker Graphs

• If L1, L2 be the combinatorial Laplacians of graphs 
G1, G2, then the spectral structure of the 
combinatorial Laplacian of the Kronecker sum of 
these graphs G = G1 ⊕ G2 is specified as

σ(L), X(L))  = {λi + μj, li ⊗ kj } 

• where λi is the ith eigenvalue of L(G1) with 
associated eigenvector li and μj is the jth
eigenvalue of L(G2) with associated eigenvector 
kj. 
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Embedding of Structured Spaces
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Large Factored MDP: Blockers Domain
(Mahadevan, 2006)
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Discovery of Factored Bases

• Given a weight matrix W (or Laplacian L), find 
matrices Wa and Wb (or La and Lb) such that 

W  ≈ Wa ⊕ Wb

L ≈ La ⊕ Lb

• There exists a rearrangement of W (or L) such 
that the best rank-k factorization can be 
discovered using a SVD of W’ or L’ [Pitsianis and van 
Loan, 93]

W’ = UW ΣW VW
T

L’ = UL ΣL VL
T
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Decomposing Arbitrary Graphs

• Graph partitioning (Karypis and Kumar, SIAM 1998)

– Coarsening: |V0| > |V1| > … |Vm| 
– Partitioning:  Divide Vm into two parts
– Uncoarsening: Project Pm back to original 

graph Laplacian Wavelet
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Diffusion Policy Evaluation: Fast Inversion
(Maggioni and Mahadevan, ICML 2006)

• Two approaches to policy evaluation:
– DIRECT: inverting the matrix takes O(|S|3)
– ITERATIVE: successive approximation in O(|S|2)

• New faster approach to policy evaluation:
– Construct  a diffusion wavelet tree from the transition 

matrix to invert the Green’s function
– Use the Schultz expansion to do the inversion
– Results in a significantly faster method ≈ O(|S|)

• Precomputation phase: task-independent 

• Inversion step: reward-specific
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Spectra of Powers of
Diffusion Operator

Bases

S
pe

ct
ra

If the transition matrix P is such that each random walk step takes the agent
to only a few nearby states, Pk δx is a smooth probability cloud centered around state x, 

And P is contractive (has norm bounded by 1).

Weyl’s theorem shows that the natural random walk on a 
smooth compact Riemannian manifold of dimension d has a spectral structure
where the eigenvalues of powers of P decay rapidly 
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Schultz Expansion for
Diffusion Semi-Groups

• We can model the random 
walk operator T as a semi-
group, where the powers Tk

satisfy the following 
conditions
– T0 = I
– Tk+l = Tk Tl

• To compute the Green’s 
function (I – T)-1 associated 
with any diffusion semi-
group, we use the Schultz 
expansion formula

• As a special case, we can 
apply this approach to policy 
evaluation, where T is 
represented by γP
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Schultz Expansion
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Policy Evaluation Results
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Related Work on Representation 
Learning in  Markov Decision Processes

• Policy and reward-specific basis functions
– “Laplacian and Krylov Basis Functions for MDPs”, Petrik (IJCAI 

2007)
– “Automatic Basis Function Construction for Approximate 

Dynamic Programming and RL”, Keller, Mannor, Precup (ICML 
2006)

– Limited to a basis for a specific policy (or value function Vπ)
• Parametric bases for linear programming

– “Learning Basis functions in Hybrid Domains”, Kveton and 
Hauskrecht (AAAI 2006)

– The shape of the basis functions is human engineered
• Much ongoing research: 

– Stanford (Ng), Edinburgh (Vijaykumar), Brown (Jenkins), 
McGill (Precup/Mannor), Washington Univ (Smart), Texas 
(Stone), Duke (Parr, Carin) Rutgers (Littman), …
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Krylov vs. Eigenvector Bases
of Laplacian
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Laplacian Eigenspace vs.  Krylov bases

Eigenspace
KrylovRand
KrylovReward

L = D-1/2 (D-W) D-1/2

Eigenvector Basis: {x: Lx = λ x}

Krylov Basis: {u, Lu, …, Ln u}

f ~  ∑i ∈ I <f, φi> φi
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Krylov vs. Eigenvector Bases
of Laplacian

L = D-1/2 (D-W) D-1/2

Eigenvector Basis: {x: Lx = λ x}

Krylov Basis: {u, Lu, …, L^n u}
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Krylov vs. Diffusion Wavelet Bases
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Directed Two-Room Environment
(Johns, 2006)

This domain was used to compare the 
bases functions from the undirected 
Laplacian vs. the directed Laplacian

Two 10x10 rooms with two directed 
edges (all other edges are 
undirected)
Four stochastic actions, zero reward 
unless in goal state (+100)
Discount factor of 0.9

G
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Directed vs. Undirected Laplacian

• The first eigenvector of the normalized Laplacian 
shows the difference directionality makes on the 
steady-state distribution

Directed Undirected
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Results:  Directed vs. Unidrected Laplacian
(Johns, 2006)

• The undirected Laplacian results in a poorer 
approximation because it ignores directionality

Exact VF Undirected Dir. Combinatorial
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Comparison of Undirected vs. 
Directed Laplacians
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Ongoing Extensions

• Approximation over temporally extended actions
– Sarah Osentoski

• Laplacian bases on directed graphs
– Jeff Johns

• Transfer of basis functions across domains
– Kim Ferguson (ICML Workshop, 2006)

• Discovery of temporally extended actions
– Andrew Stout

• Combining Laplacian and Krylov basis functions
– Marek Petrik  (IJCAI 2007)
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Challenges and Future Directions

• Large-scale applications
– Fourier and wavelet bases for high-dimensional 

continuous control tasks (e.g. humanoid robots)
– Applications to graphics: compression, watermarking, 

animation
• Convergence and theoretical analysis

– Can Laplacian and DWT bases be shown to be “optimal”
in some interesting sense? [Ben-Chien and Gotsman, 2005]

– Convergence of RPI

• Application of this approach to related problems
– POMDPs: value function is highly compressible!
– PSRs: low-rank approximation of dynamical systems
– Relational and factored MDPs: exploit group structure of 

underlying graphs
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Factored and Relational MDPs

• Much work on factored and relational 
MDPs and RL
– [Koller and Parr, UAI 2000; Guestrin et al, 

IJCAI 2003; JAIR 2003 ]
– [Fern, Yoon, and Givans, NIPS 2003]
– ICML 2004 workshop on relational RL 

• Fourier and wavelet bases over relational 
representations
– Symmetries and group automorphisms
– Non-commutative harmonic analysis
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Further Reading
(www.cs.umass.edu/~mahadeva)

• Fourier bases (Laplacian eigenfunctions)
– Sridhar Mahadevan, "Samuel Meets Amarel: Automating Value Function 

Approximation using Global State Space Analysis" , Proceedings of the National 
Conference on Artificial Intelligence (AAAI-2005), Pittsburgh, PA, July 9-13, 
2005. 

– Sridhar Mahadevan, "Representation Policy Iteration" , Proceedings of the 21st 
Conference on Uncertainty in AI (UAI-2005), Edinburgh, Scotland, July 26-29, 
2005. 

– Sridhar Mahadevan, "Proto-Value Functions: Developmental Reinforcement 
Learning" , Proceedings of the International Conference on Machine Learning 
(ICML-2005), Bonn, Germany, August 7-13, 2005. 

• Wavelet bases 
– Sridhar Mahadevan and Mauro Maggioni, "Value Function Approximation using 

Diffusion Wavelets and Laplacian Eigenfunctions" , Neural Information Processing 
Systems (NIPS) conference, Vancouver, December, 2005. 

• Fast policy evaluation
– Mauro Maggioni and Sridhar Mahadevan, "Fast Direct Policy Evaluation 

Using Multiscale Markov Diffusion Processes" , University of 
Massachusetts, Department of Computer Science Technical Report TR-
2005-39, 2005 (also accepted to ICML 2006)


