

Polynomial Bases (Samuel, 1959; Koller and Parr, UAI 2000)								
One basis function applied to all states Φ								
All → basis functions applied to one state	1		1	1	1	1	1	
	1		4	8	16	32	64	
	1		9	27	81	243	729	
	1		16	64	256	1024	4096	
	1		25	125	625	3125	15625	
	1		36	216	1296	7776	46656	
	1		49	343	2401	16807	117649	
	i^0	i	i ²	i ³	i ⁴	i ⁵	i ⁶	
January 6 ^a , 2007 UCAI 2007 Tutorial								

Normalized Graph Laplacian and Random Walks

 Given an undirected weighted graph G = (V, E, W), the random walk on the graph is defined by the transition matrix

 $P = D^{-1}W$

- Random walk matrix is not symmetricNormalized Graph Laplacian
- $\mathcal{L} = D^{-1/2} (D W) D^{-1/2} = I D^{-1/2} W D^{-1/2}$ • The random walk matrix has the same
- eigenvalues as (I L)

 $D^{-1}W = D^{-1/2} (D^{-1/2} W D^{-1/2}) D^{1/2} = D^{-1/2} (I - L) D^{1/2}$

IJCAI 2007 Tutorial

January 6th, 2007

Operators on Graphs

Operator	Spectrum
Adjacency = A	Real, $ \lambda \leq d_v$
C. Laplacian $= D - A$	PSD, $\lambda \ge 0$
N. Laplacian = $I - D^{-1/2}AD^{-1/2}$	PSD, $\lambda \in (0,2)$
Random Walk = $D^{-1}A$	$\lambda \in \mathcal{R}$
DWT = T	$\sigma(T^k)$ decays fast

January 6th, 2007 IJCAI 2007 Tutorial

IJCAI 2007 Tutorial

January 6th, 2007

Further Reading (www.cs.umass.edu/~mahadeva)

- Fourier bases (Laplacian eigenfunctions)
 Sridhar Mahadevan, "Samuel Meets Amarei: Automating Value Function Approximation using Global State Space Analysis", Proceedings of the National Conference on Artificial Intelligence (AAAI-2005), Pittsburgh, PA, July 9-13, 2005.
 Sridhar Mahadevan, "<u>Representation Policy Heration</u>", Proceedings of the 21st Conference on Uncertainty in AI (UAI-2005), Edinburgh, Scotland, July 26-29, 2005.
 Sridhar Mahadevan, "<u>Representation Policy Heration</u>", Proceedings of the 21st Conference on Uncertainty in AI (UAI-2005), Edinburgh, Scotland, July 26-29, 2005.
 Sridhar Mahadevan, "<u>Proto-Value Functions: Developmental Reinforcement learning</u>", Proceedings of the International Conference on Machine Learning (ICML-2005), Bonn, Germany, August 7-13, 2005.
 Wavelet bases
- (ICML-2005), Bonn, Germany, August 7-13, 2002.
 Wavelet bases
 Sridhar Mahadevan and Mauro Maggioni, <u>"Value Function Approximation using</u> Diffusion Wavelets and Laplacian Eigenfunctions", Neural Information Processing Systems (NIPS) conference, Vancouver, December, 2005.
 Fast policy evaluation
 Mauro Maggioni and Sridhar Mahadevan, <u>"Fast Direct Policy Evaluation Using Multiscale Markov Diffusion Processes"</u>, University of Massachusetts, Department of Computer Science Technical Report TR-2005-39, 2005 (also accepted to ICML 2006)

January 6th, 2007 IJCAI 2007 Tutorial