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Abstract

This paper summarizes research on a new emerging
framework for learning to plan using the Markov de-
cision process model (MDP). In this paradigm, two
approaches to learning to plan have traditionally been
studied: the indirect model-based approach infers the
state transition matrix and reward function from sam-
ples, and then solves the Bellman equation to find the
optimal (action) value function; the direct model-free
approach, most notably Q-learning, estimates the action
value function directly. This paper describes a new har-
monic analysis framework for planning based on esti-
mating adiffusion modelthat captures information flow
on a graph (discrete state space) or a manifold (con-
tinuous state space) using the Laplace heat equation.
Diffusion models are significantly easier to learn than
transition models, and yet provide similar speedups in
performance over model-free methods. Two methods
for constructing novel plan representations from diffu-
sion models are described: Fourier methods diagonal-
ize a symmetric diffusion operator called the Laplacian;
Wavelet methods dilate unit basis functions progres-
sively using powers of the diffusion operator. A new
variant of policy iteration – called representation pol-
icy iteration – is described consisting of an outer loop
that estimates new basis functions by diagonalization or
dilation, and an inner loop that learns the best policy
representable within the linear span of the current basis
functions. Results from continuous and discrete MDPs
are provided to illustrate the new approach.

Overview of The Framework
This paper summarizes research on an emerging novel
framework for planning under uncertainty where both the
underlyingrepresentationfor encoding plans as well as the
plans themselves aresimultaneouslylearned. Two broad ap-
proaches to learning to plan can be discerned from the liter-
ature on planning using Markov decision processes (MDPs)
(Puterman 1994). In the firstindirect approach, the un-
derlying transition matrixP a

ss′ governing the system dy-
namics is learned, which describes for each actiona the
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probability of transitioning from states to s′. In addi-
tion, the corresponding reward functionRa

ss′ , which de-
scribes the resulting payoff, is also inferred. The desired
plan is then learned by solving a nonlinear system ofBell-
manequations (Puterman 1994) for the (approximately) op-
timal policy. In the seconddirect approach to learning to
plan, the action value functionQπ(s, a) is directly esti-
mated from sample transitions and payoffs, using techniques
from reinforcement learning (Bertsekas & Tsitsiklis 1996;
Sutton & Barto 1998) such as Q-learning. In this paradigm,
which is referred to as “model-free”, the transition matrix
never needs to be estimated.

This paper provides an overview of recent research on a
new harmonic analysisapproach to learning to plan (Ma-
hadevan 2005c; 2005a; 2005b), which is neither strictly
model-based or model-free in the above sense. Harmonic
analysis is a subfield of mathematics that includesFourier
and waveletanalysis. Central to the new approach is the
notion of learning adiffusion model, which captures infor-
mation flow on a graph (discrete state space) or a manifold
(continuous state spaces). In the simplest setting, a diffu-
sion model corresponds to a random walk on an undirected
graph, where the edges connect states that are “adjacent”
to each other. In discrete spaces, adjacency can be defined
through actions, but in more general continuous spaces, ad-
jacency can be defined through any reasonable (Euclidean)
distance metric. Central to the strength of this approach is
that diffusion models are considerably easier to learn than
transition models: one transition from a states to s′ is suf-
ficient to infer an edge or dependency between these two
states. Figure 1 illustrates a simple example of a diffusion
model.

Transition matrices combined with rewards yield value
functions. Diffusion models instead are analyzed using the
tools ofspectral graph theory(Chung 1997) to yieldproto-
value functions(PVFs) (Mahadevan 2005a). Like value
functions, proto-value functions map each state to a real
number. Unlike value functions, proto-value functions are
reward independent. It can be formally shown that any value
function can be expressed as a linear combination of proto-
value functions, which form anorthogonalbasis for repre-
senting any function on a graph.

In the Fourier paradigm, PVFs are constructed bydiag-
onalizinga diffusion operator, that is finding its eigenvec-
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Figure 1: Top: A simplediffusion modelgiven by an undi-
rected unweighted graph connecting each state to neighbors
that are reachable using a single (reversible) action. Bottom:
first three rows of the random walk matrixPr = D−1W . Pr

is not symmetric, but it has real eigenvalues and eigenvec-
tors since it is spectrally similar to the symmetric normalized
graph Laplacian.

tors. A simple example of a diffusion operator is the random
walk operatorPr = D−1W , whereW is a symmetrized
weight matrix, andD is a diagonal matrix whose entries
are the row sums ofW . Part of the random walk diffusion
matrix for a simple grid world is shown in Figure 1. Inter-
estingly,Pr is not a symmetric matrix, which might suggest
that its spectral analysis would require dealing with complex
numbers. Fortunately, it can be shown thatPr is closely re-
lated to a symmetric matrix called thenormalized Laplacian
L = D− 1

2 (D−W )D− 1

2 (Chung 1997). Figure 2 shows the
first four eigenvectors of the normalized graph Laplacian for
a discrete MDP consisting of two “rooms” connected by a
door. Note the eigenvectors clearly reveals the two room
structure defined by the door, which acts as a bottleneck.

The similarity between value functions and proto-value
functions can be remarkable, leading to a highly compact
encoding (measured in terms of the number of basis func-
tions needed to encode a value function). PVFs can be used
in conjunction with a standard “black box” parameter esti-
mation method, such as Q-learning (Watkins 1989) or least-
squares policy iteration (LSPI) (Lagoudakis & Parr 2003)
to find the best policy representable within the space of the
chosen basis functions. Proto-value functions both reflect
the large-scale geometry of a state space, as well as pro-
vide asystematicorganization of the space of functions on
a graph. Indeed, it is easy to show that PVFs are far su-
perior to parametric architectures like radial basis functions
(RBFs) at approximating nonlinear value functions even in
simple MDPs (see Figure 3 for a simple example).

One hallmark of Fourier analysis is that the basis func-
tions are localized in frequency, but not in time (or space).
Hence, the eigenvectors of the graph Laplacian are localized
in frequency by being associated with a specific eigenvalue
λ, but their support is in general the whole graph. An al-
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Figure 2: In the Fourier paradigm, proto-value functions are
formed by diagonalizing a diffusion model. Shown here
are four “smoothest” eigenvectors of the normalized graph
Laplacian in a two-room MDP of100 states.

ternative way to construct proto-value functions is to use
wavelets(Mallat 1989), which are compact multiscale ba-
sis functions. Investigated mainly in Euclidean spaces, they
have recently been extended to graphs and other discrete
spaces.Diffusion waveletsprovide a general way to con-
struct multiscale proto-value functions (Mahadevan & Mag-
gioni 2006). Diffusion wavelets are constructed not by diag-
onalization, but bydilation. Figure 4 illustrates a series of
multiscale diffusion wavelet PVFs for the same two-room
grid world MDP. At the bottom-most level, the diffusion
wavelet basis is just the unit vector basis set (which is essen-
tially “table-lookup”). At each succeeding level, diffusion
wavelet bases are produced by using (dyadic) powers of the
random walk diffusion operator (e.g. the random walk oper-
atorPr or the normalized LaplacianLd). Figure 4 illustrate
diffusion wavelet PVFs at levels 4 and 7. At higher levels,
these bases start to resemble eigenvectors, becoming pro-
gressively more global.

The remainder of the paper elaborates on the above frame-
work, introducing a new class of algorithms that combine the
learning of plan representations as well as plans, providesa
deeper mathematical explanation of the ideas, and summa-
rizes recent extensions.

Learning Representation and Behavior
This section summarizes a new class of planning algorithms
called genericallyRepresentation Policy Iteration(RPI)
(Mahadevan 2005b), because theysimultaneouslylearn plan
representations along with plans. Figure 5 sketches the
overall algorithmic framework. There are three main com-
ponents: sample collection, basis construction, and policy
learning. Sample collection requires a task specification,
which comprises of a domain simulator (or alternatively a
physically embodied agent like a robot), and an initial pol-
icy. In the simplest case, the initial policy can be a random
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Figure 3: Approximation using20 PVFs of the optimal
value function for a two-room grid MDP of100 states. Stan-
dard parametric bases such as polynomials or radial basis
functions approximate such nonlinear value functions very
poorly.

Figure 4: In the wavelet paradigm, PVFs are formed by di-
lating unit vectors using powers of the diffusion operator.
Left: a diffusion wavelet PVF at level 1 for the two-room
grid world MDP. Middle: a diffusion wavelet PVF at level 4
Right: a diffusion wavelet PVF at level 7.

walk, although it can also reflect a more informative hand-
coded policy. The second phase involves constructing the
bases from the collected samples using a diffusion model,
such as an undirected (or directed) graph. This process in-
volves finding the eigenvectors of a symmetrized graph op-
erator such as the graph Laplacian. The final phase involves
estimating the “best” policy representable in the span of the
basis functions constructed (we are primarily restrictingour
attention to linear architectures, where the value function is
a weighted linear combination of the bases). The entire pro-
cess can then be iterated.

The results of running the algorithm on a100 state “two-
room” MDP are shown in Figure 3. This result with the
following specific parameter choices.

• 4051 samples were collected using off-policy sampling
from a random walk of50 episodes, each of length100
(or terminating early when the absorbing goal state was
reached, which was the upper right hand state in Room 2).
Four actions (compass direction movements) were possi-
ble from each state. Actions were stochastic. If a move-

RPI (πm, T, N, ε, k,O, µ,D):

// πm: Policy at the beginning of trialm
// T : Number of initial random walk trials
// N : Maximum length of each trial
// ε : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// µ: Parameter for basis adaptation
// D: Initial set of samples

Sample Collection Phase

1. Off-policy or on-policy sampling: Collect a data set
of samplesDm = {(si, ai, si+1, ri), . . .} by either ran-
domly choosing actions (off-policy) or using the supplied
initial policy (on-policy) for a set ofT trials, each of maxi-
mumN steps (terminating earlier if it results in an absorb-
ing goal state), and add these transitions to the complete
data setD.

2. (Optional) Subsampling step: Form a subset of sam-
plesDs ⊆ D by some subsampling method such as ran-
dom subsampling or trajectory subsampling. For episodic
tasks, optionally prune the trajectories stored inDs so that
only those that reach the absorbing goal state are retained.

Representation Learning Phase

3. Build a diffusion model from the data inDs. In the
simplest case of discrete MDPs, construct an undirected
weighted graphG from D by connecting statei to state
j if the pair(i, j) form temporally successive states∈ S.
Compute the operatorO on graphG, for example the nor-
malized LaplacianL = D−

1

2 (D − W )D−
1

2 .

4. Compute thek smoothest eigenvectors ofO on the graph
G. Collect them as columns of the basis function matrix
Φ, a |S| × k matrix. The state action basesφ(s, a) can
be generated from rows of this matrix by duplicating the
state basesφ(s) |A| times, and setting all the elements of
this vector to0 except for the ones corresponding to the
chosen action.a

Control Learning Phase

5. Using a standard parameter estimation method (e.g. Q-
learning or LSPI), find anε-optimal policyπ that maxi-
mizes the action value functionQπ = Φwπ within the
linear span of the basesΦ using the training data inD.

6. Optional: Set the initial policyπm+1 to π and call
RPI (πm+1, T, N, ε, k,O, µ,D).

aIn large continuous and discrete MDPs, the basis matrix
Φ need not be explicitly formed and the featuresφ(s, a) can
be computed “on demand”.

Figure 5: This figure shows a generic algorithm that com-
bines the learning of plan representation from harmonic
analysis of diffusion models as well as plans (policies).



ment was possible, it succeeded with probability0.9. Oth-
erwise, the agent remained in the same state.

• An undirected graph was constructed from the sample
transitions, where the weight matrixW is simply the ad-
jacency (0, 1) matrix. The normalized LaplacianL =

D− 1

2 (D − W )D− 1

2 is then computed.

• 20 eigenvectors corresponding to the smallest eigenvalues
of L (multiplied by4, one set for each action) are chosen
as the columns of the state action basis matrixΦ. For
example, the first four eigenvectors are shown in Figure 2.
Note how the eigenvectors reveal the geometric structure
of the overall environment (e.g. the second eigenvector
allows partitioning the two rooms since it is negative for
all states in the first room, and positive for states in the
second room).

• The parameter estimation method used was LSPI, with
γ = 0.8.

Diffusion Analysis
We now present a deeper analysis of the graph Laplacian,
specifically motivating its connection to spectral analysis of
Markov decision processes. We begin with a brief overview
of MDPs, and then introduce the spectral analysis of (diag-
onalizable) stochastic transition matrices. Diffusion models
are then viewed as providing a “surrogate” model that leads
to useful plan representations. It is possible to model non-
symmetric actions and policies using more sophisticated
symmetrization procedures (Chung 2005), and this exten-
sion is discussed below.

Brief Overview of MDPs
A discrete Markov decision process (MDP)M =
(S,A, P a

ss′ , Ra
ss′) is defined by a finite set of discrete states

S, a finite set of actionsA, a transition modelP a
ss′ speci-

fying the distribution over future statess′ when an actiona
is performed in states, and a corresponding reward model
Ra

ss′ specifying a scalar cost or reward (Puterman 1994).
In continuous Markov decision processes, the set of states
⊆ R

d. Abstractly, a value function is a mappingS → R or
equivalently (in discrete MDPs) a vector∈ R

|S|. Given a
policy π : S → A mapping states to actions, its correspond-
ing value functionV π specifies the expected long-term dis-
counted sum of rewards received by the agent in any given
states when actions are chosen using the policy. Any opti-
mal policyπ∗ defines the same unique optimal value func-
tion V ∗ which satisfies the nonlinear constraints

V
∗

(s) = max
a

(

Rsa + γ
∑

s′∈S

P a
ss′V ∗(s′)

)

whereRsa =
∑

s′∈s P a
ss′Ra

ss′ is the expected immediate
reward. The expected long-term discounted sum of rewards
at each state is called a value function, defined by a fixed
(deterministic) policyπ as

V
π

(s) = Rsπ(s) + γ
∑

s′∈S

P
π(s)
ss′ V π(s′) (1)

A value function in an MDP can be viewed as the result of
rewards “ diffusing” through the state space, governed by the
underlying system dynamics. LetPπ represent an|S| × |S|
transition matrix of a (deterministic) policyπ : S → A
mapping each states ∈ S to a desired actiona = π(s).
Let Rπ be a (column) vector of size|S| of rewards. The
value function associated with policyπ satisfies the Bellman
equation:

V π = (I − γPπ)−1Rπ =
(

I + γPπ + γ2(Pπ)2 + . . .
)

Rπ

(2)
Value functions represent thelong-termaccumulation of

rewards at each state, modulated by the transition process
Pπ. Value functions in addition satisfy two key proper-
ties: they are typicallysmooth, 1 and they usually reflect
the geometry of the environment (as illustrated in Figure 3).
Smoothness derives from the fact that the value at a given
stateV π(s) is always a function of values at “neighboring”
states. Consequently, it is entirely natural to construct basis
functions for approximating value functions that share the
same two properties. In addition, basis functions that are
derived from a large-time scale analysis of an environment
might be especially suitable for approximating value func-
tions.

Let us define a set ofbasis functionsΦ = {φ1, . . . , φk},
where each basis function represents a “feature”φi : S →
R. The basis function matrixΦ is an|S| × k matrix, where
each column is a particular basis function evaluated over the
state space, and each row is the set of all possible basis func-
tions evaluated on a particular state. Approximating a value
function using the matrixΦ can be viewed as projecting the
value function onto the column space spanned by the basis
functionsφi,

V π ≈ Φwπ =
∑

i

wπ
i φi

Spectral Analysis of Transition Matrices
In this paper, basis functions are constructed using aspectral
approach, that is diagonalizing a diffusion matrix by finding
its eigenvectors. This approach can be motivated by first as-
suming that the eigenvectors are constructed directly froma
(known) state transition matrixPπ, and then introduce the
concept of diffusion matrices that will be used instead. One
subclass of diagonalizable transition matrices are those cor-
responding toreversibleMarkov chains. Although transition
matrices for general MDPs arenotreversible, and their spec-
tral analysis is more delicate, it will still be a useful start-
ing point to understand diffusion matrices such as the graph
Laplacian. If the transition matrixPπ is diagonalizable,
there is a complete set of eigenvectorsΦπ = (φπ

1 , . . . φπ
n)

that provides a change of basis in which the transition ma-
trix Pπ is representable as a diagonal matrix. For the sub-
class of diagonalizable transition matrices represented by re-
versible Markov chains, the transition matrix is not only di-
agonalizable, but there is also an orthonormal basis. In other

1It is possible to quantify the notion of smooth functions on
graphs using the Sobolev norm (Mahadevan & Maggioni 2006).



words, using a standard result from linear algebra, we have

Pπ = ΦπΛπ(Φπ)T

whereΛπ is a diagonal matrix ofeigenvalues. Another way
to express the above property is to write the transition matrix
as a sum ofprojection matricesassociated with each eigen-
value:

Pπ =
n
∑

i=1

λπ
i φπ

i (φπ
i )T

where the eigenvectorsφπ
i form a complete orthogonal ba-

sis (i.e. ‖ φπ
i ‖2= 1 and〈φπ

i , φπ
j 〉 = 0, i 6= j). It readily

follows that powers ofPπ have the same eigenvectors, but
the eigenvalues are raised to the corresponding power (i.e.,
(Pπ)tφπ

i = (λπ
i )tφπ

i ). Since the basis matrixΦ spans all
vectors on the state spaceS, we can express the reward vec-
tor Rπ in terms of this basis as

Rπ = Φπαπ

whereαπ is a vector of scalar weights. For high powers
of the transition matrix, the projection matrices correspond-
ing to the largest eigenvalues will dominate the expansion.
Combining the above equation with Equation 2, we get

V π =
∞
∑

i=0

(γPπ)iΦπαπ

=

n
∑

k=1

∞
∑

i=0

γi(Pπ)iφπ
kαπ

k

=

n
∑

k=1

∞
∑

i=0

γi(λπ
k )iφπ

kαπ
k

=

n
∑

k=1

1

1 − γλπ
k

φπ
kαπ

k =

n
∑

k=1

βkφπ
k

where we used the property that(Pπ)iφπ
j = (λπ

j )iφπ
j . Es-

sentially, we have now expressed the value functionPπ as
a linear combination of eigenvectors of the transition ma-
trix. In order to provide the most efficient approximation, we
can truncate the summation by choosing some small number
m < n of the eigenvectors, preferably those for whomβk

is large. Of course, since the reward function is not known,
it might be difficult to pick a priori those eigenvectors that
result in the largest coefficients. A simpler strategy instead
is to focus on those eigenvectors for whom the coefficients

1
1−γλπ

k

are the largest. In other words, the eigenvectors cor-
responding to thelargesteigenvalues of the transition ma-
trix Pπ should be selected (since the spectral radius is1, the
eigenvalues closest to1 will dominate the smaller ones).

V π ≈
m
∑

k=1

1

1 − γλπ
k

φπ
kαπ

k (3)

where the eigenvalues are ordered in non-increasing order,
soλπ

1 is the largest eigenvalue . If the transition matrixPπ

of a given policyπ is known, one can of course construct ba-
sis functions by diagonalizing this matrix (see (Petrik 2007)

for a discussion of this approach). However, dealing directly
with the transition matrixPπ is problematic for several rea-
sons. One, the transition matrixPπ cannot be assumed to
be symmetric, in which case one has to deal with complex
eigenvalues (and eigenvectors). Second, the transition ma-
trix may not be known. Of course, one can always use
samples of the underlying MDP generated by exploration
to estimate the transition matrix, but the number of samples
needed may be large. Finally, in control learning, the policy
keeps changing, causing one to have to reestimate the transi-
tion matrix. Fortunately, these limitations can be overcome
by usingdiffusion models, which are fairly easy to learn, are
diagonalizable, and the resulting eigenvectors provide anef-
ficient representation to approximate value functions.

From Transition Matrices to Diffusion Models

In the simplest setting, a diffusion model is just an un-
weighted adjacency matrixW connecting two statesi and
j if it is possible to reach statei from j. Note the random
walk matrix Pr = D−1W is not symmetric. To facilitate
the spectral analysis of diffusion models, it is convenient
to “symmetrize” them, exploiting the property from linear
algebra that symmetric matrices have real eigenvalues, and
more importantly, the resulting eigenvectors are orthonor-
mal (“perpendicular”) and form a complete basis for the set
of all functions on the graphG. The random walk matrix
Pr = D−1W is called adiffusion modelbecause given any
function f on the underlying graphG, the powers ofP t

rf
determine how quickly the random walk will “mix” and con-
verge to the long term distribution (Chung 1997). It can be
shown that a random walk on an undirected graphs defines
a reversible Markov chain whose stationary distribution at
a given vertex is given byP (v) = dv

vol(G) , wheredv is the
degree of vertexv and the “volume”vol(G) =

∑

v∈g dv.
Since the random walk matrixP is not symmetric, it is
convenient to find a symmetrized diffusion model which is
closely related to it spectrally. This is essentially the graph
Laplacian matrix, which is introduced next.

The Graph Laplacian

For simplicity, assume the underlying state space is repre-
sented as an undirected graphG = (V,E,W ), whereV is
the set of vertices,E is the set of edges where(u, v) ∈ E
denotes an undirected edge from vertexu to vertexv. The
more general case of directed graphs is discussed below. The
combinatorial LaplacianL is defined as the operator

L = D − W ,

where D is a diagonal matrix called thevalencymatrix
whose entries are row sums of the weight matrixW . The
normalized Laplacian is defined as

L = D− 1

2 LD− 1

2

To see the connection between the normalized Laplacian
and the random walk matrixPr = D−1W , note the follow-
ing identities:



L = D− 1

2 LD− 1

2 (4)

= I − D− 1

2 WD− 1

2 (5)

I − L = D− 1

2 WD− 1

2 (6)

D− 1

2 (I − L)D
1

2 = D−1W (7)

Hence, the random walk operatorD−1W is similar to
I − L, so both have the same eigenvalues, and the eigen-
vectors of the random walk operator are the eigenvectors
of I − L point-wise multiplied byD− 1

2 . One rationale for
choosing the eigenvectors of the Laplacian as basis functions
can now be provided. In particular, ifλi is an eigenvalue of
the random walk transition matrixPr, then1 − λi is the
corresponding eigenvalue ofL. Consequently, in the expan-
sion given by Equation 3, the eigenvectors of the normalized
graph Laplacian corresponding to thesmallesteigenvalues
would be selected.

There are other reasons for choosing the low-order eigen-
vectors of the Laplacian as well. A fundamental prop-
erty of the graph Laplacian is that projections of func-
tions on the eigenspace of the Laplacian produce globally
the smoothest approximation, which respects the underlying
manifold. The LaplacianL also acts as adifferenceoperator
on a functionf on a graph, that is

Lf(u) =
1√
du

∑

v∼u

(

f(u)√
du

− f(v)√
dv

)

wuv . (8)

Extensions
Many extensions of the framework proposed in this paper
are being actively explored, and these extensions are briefly
summarized.

Continuous MDPs

The RPI algorithm described earlier can be straightfor-
wardly generalized to continuous MDPs, where states are
elements ofRn. Given a set of points inRn from a series of
random walks, a nearest neighbor method using Euclidean
distance is used to construct a diffusion model. One chal-
lenge in dealing with continuous MDPs is that PVFs are only
known on sampled points, and must be extended to novel
points during testing. One approach to such out-of-sample
extensions is to use theNystr̈ommethod, which is described
in (Mahadevanet al. 2006). Figure 6 shows results from a
two-dimensional control task called the inverted pendulum,
a standard benchmark task. Here, states are represented as
tuples(θ, θ̇), whereθ is the angle of the pole, anḋθ is the
angular velocity. PVFs outperform published results with
LSPI using RBFs (Lagoudakis & Parr 2003) by several or-
ders of magnitude on this task.

Proto-Value Functions From Directed Graphs

The construction of PVFs can be extended to more elab-
orate diffusion models which capture non-directionality of
actions usingdirectedgraphs. In particular, PVFs can be
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Figure 6: Performance of PVFs on the inverted pendulum
continuous MDP, showing rapid learning within a few hun-
dred steps. The plot shows median-averaged number of
steps the pole was balanced over100 learning runs. Each
episode usually takes around10 steps, and is based on exe-
cuting a random policy till the pole falls over.

constructed by diagonalizing the directed graph Laplacian
(Chung 2005), which is defined as

LD = Dφ − DφP + PT Dφ

2
whereDφ is a diagonal matrix whose entries are given by
φ(v), the Perron vector or leading eigenvector associated
with the spectral radius of the transition matrixP specify-
ing the directed random walk onG. For a strongly con-
nected directed graphG, the Perron-Frobenius theorem can
be applied to show that the transition matrix is irreducible
and non-negative, and consequently the leading eigenvector
associated with the largest (real) eigenvalue must have all
positive componentsφ(v) > 0. In an initial study (Johns
& Mahadevan 2007), it was found that the directed graph
Laplacian can result in significant improvement in some dis-
crete and continuous MDPs. For example, in a modified
two-room task where there are two “one-way” doors lead-
ing from one room to the other, PVFs constructed from
the directed Laplacian significantly outperformed the non-
directional PVFs constructed from undirected graphs for
certain locations of the goal state (e.g. near one of the one-
way doors). Directed PVFs also appeared to yield improve-
ments in some continuous control tasks, such as the inverted
pendulum.

Scaling PVFs by Kronecker Product Factorization
Proto-value functions can be made more compact using a
variety of sparsification methods. One specific approach is
based on Kronecker product matrix factorization (Van Loan
& Pitsianis 1993). This approach has recently been imple-
mented for continuous MDPs with promising results (Johns,
Mahadevan, & Wang 2007). A random walk weight matrix
Pr = D−1W can be approximated by a Kronecker product
of two smaller stochastic matricesPa andPb, such that the
following cost function is minimized



f(Pa, Pb) = min (‖Pr − Pa ⊗ Pb‖2)

The approach specified in (Van Loan & Pitsianis 1993)
shows how to construct two smaller stochastic matrices
whose Kronecker product approximates the original random
walk matrixPr. To ensure that the decomposed matrices are
not only stochastic, but also diagonalizable, which the Kro-
necker factorization procedure does not guarantee, an addi-
tional step using the Metropolis Hastings algorithm (Billera
& Diaconis 2001) is needed to make the smaller matrices
Pa andPb reversible. Then, the PVFs for the original ran-
dom walk matrixPr can be approximated as the Kronecker
product of the PVFs of the factorized smaller reversible ma-
tricesP r

a andP r
b (since the smaller matrices are reversible,

they can also be symmetrized using the normalized Lapla-
cian, which makes the numerical task of computing their
eigenvectors much simpler). A preliminary study (Johns,
Mahadevan, & Wang 2007), has shown that it is possible
to significantly reduce the size of the random walk weight
matrices for the inverted pendulum, mountain car, and the
Acrobot tasks with minimal loss in performance compared
to the full matrix. For example, in a four-dimensional con-
tinuous control problem called the Acrobot task, the original
basis matrix is compressed by a factor of36 : 1, which re-
sulted in almost as good a policy as the original larger basis
matrix.

Multiscale Diffusion Wavelet Bases
One well-known limitation of global Fourier bases is that
they are poor at representing piecewise linear (value) func-
tions. Locally compact multiscale PVFs can be learned
using the recently proposeddiffusion waveletframework
(Coifman & Maggioni 2006; Bremeret al. 2006). Dif-
fusion wavelets encapsulate all the traditional advantages
of wavelets (Mallat 1989): basis functions have compact
support, and the representation is inherently hierarchical
since it is based on multi-resolution modeling of processes
at different spatial and temporal scales. The performance
of diffusion wavelet bases and Laplacian bases on a vari-
ety of simple MDPs is compared in (Mahadevan & Mag-
gioni 2006). An efficient direct method for policy evalua-
tion is presented in (Maggioni & Mahadevan 2006) which
uses multiscale diffusion bases to invert the Bellman policy
equationI − γPπ.

Learning State-Action Basis Functions
In our paper, the basis functionsφ(s) are originally defined
over states, and then extended to state-action pairsφ(s, a)
by duplicating the state embedding|A| times and “zeroing”
out elements of the state-action embedding corresponding
to actions not taken. That is,φ(s, a) = φ(s) ⊗ Ia where
Ia is a vector indicator function for actiona (all elements of
Ia are0 except for the chosen action). This construction is
somewhat wasteful, especially in domains where the number
of actions can vary significantly from one state to another.
PVFs can be learned instead onstate-actiongraphs, where
vertices represent state-action pairs. Thus, the pair(s, a) is
connected by an edge to the pair(s′, a′) if actiona in states

resulted in states′ from which actiona′ was next attempted.
State-action graphs are naturally highly directional, andthe
directed Laplacian is used to compute basis functions over
state action graphs. A preliminary analysis (Osentoski &
Mahadevan 2007) shows that state-action bases can signifi-
cantly improve the performance of PVFs in discrete MDPs.

Proto-Value Functions for Semi-Markov Decision
Processes
Proto-value functions provide a broad framework for au-
tomating hierarchical reinforcement learning (Barto & Ma-
hadevan 2003). These include the question of decomposing
the overall state space by finding bottlenecks (Hengst 2002;
Simsek & Barto 2004) and symmetries (Ravindran & Barto
2003). Another interesting direction is to construct PVFs
for temporally extended actions, such as “exiting a room”.
These temporally extended actions result in “longer” edges
connecting non-adjacent vertices (such as the vertices corre-
sponding to interior states in a room with those representing
the “door” state. An initial study (Osentoski & Mahadevan
2007) suggest that constructing PVFs using temporally ex-
tended actions in semi-Markov decision processes can sig-
nificantly improve the performance over state-based PVFs
constructed over only primitive actions.

Transfer Across Tasks
Proto-value functions are learned not from rewards, but from
the topology of the underlying state space (in the “off-
policy” case). Consequently, they suggest a solution to the
well-known problem of transfer in reinforcement learning
(Mahadevan 1992; Sherstov & Stone 2005). One key advan-
tage of proto-value functions is that they provide a theoreti-
cally principled approach to transfer, which respects the un-
derlying state (action) space manifold.Proto-transferlearn-
ing is a new framework that explores the transfer of learned
representations from one task to another (in contrast to trans-
ferring learned policies) (Ferguson & Mahadevan 2006).

Policy and Reward-Sensitive Basis Functions
In the PVF framework presented above, basis functions are
constructed in anoff-policymanner without taking rewards
into account. This restriction is not intrinsic to the approach,
and reward or policy information when available can easily
be incorporated into the construction of PVFs. One recent
approach proposed in (Petrik 2007) assumes that the reward
functionRπ and policy transition matrixPπ are known, and
combines Laplacian PVF bases withKrlyov bases. This ap-
proach is restricted topolicy evaluation, which consists of
solving an equation in the the well-studied formAx = b,
and Krylov bases are used extensively in the solution of
such linear systems of equations. Another way to incorpo-
rate reward-sensitive information into PVFs is to modify the
weight matrixW to take into account thegradient of the
value function to be approximated.

Theoretical Analysis
Theoretical guarantees on the efficiency of proto-value func-
tions in approximating value functions are being investi-
gated. The approximation produced by projecting a given



function on a graph to the smallestk proto-value functions
producesglobally the smoothest approximation (Mahadevan
& Maggioni 2006). (Belkin & Niyogi 2005) show that un-
der uniform sampling conditions, the graph Laplacian (con-
structed in a certain way) converges to the Laplace-Beltrami
operator on the underlying manifold. Another interesting di-
rection is to investigate the stability of the subspaces defined
by proto-value functions using the tools of matrix perturba-
tion theory (Stewart & Sun 1990).

Summary
This paper describes a unified framework for learning plan
representations and plans in Markov decision processes us-
ing harmonic analysis of diffusion models. In the Fourier
paradigm, proto-value functions are constructed by diag-
onalization of a symmetric diffusion operator on samples
collecting during a random walk of the underlying state
space. In the wavelet paradigm, proto-value functions are
constructed by dilating the unit vector bases using powers
of the diffusion operator. A general algorithmic framework
called representation policy iteration (RPI) was presented
consisting of three components: sample collection, basis
function construction, and control learning. Several direc-
tions for scaling the approach were described.
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