
ABSTRACT
We describe a computational model that focuses on decision making based on evolving 

sensory representation. When selecting a goal-directed movement, we often consider our 
current state, possibly including a representation of target. Under most accounts of this 
process, a decision must be made based on the current representation of state; the state rep-
resentation does not evolve without the learner interacting with the environment. However, 
sensory information takes time to process. Assuming it evolves from a crude estimate to a 
more precise one, it may be advantageous to make a quick decision - possibly suboptimal 
for the actual task - based on the crude estimate rather than wait for a more precise estimate.

Our model explicitly includes sensory information which evolves from a crude 
estimate to a more precise one over time (independent of any decision made). The model 
builds on a multiple controller scheme [1, cf. 2,3], based on biological studies, in which a 
Planner controller makes reasonable decisions based on fully resolved state information. 
Simpler controllers, which require training but less computational resources, learn to assume 
control under appropriate circumstances and can select movements based on crude state 
information. 

In this poster, we apply the model to a simple decision-making task in which a learning 
agent must execute a series of actions (analogous to movement selection) to hit a designated 
spatial location (target). Targets are presented randomly from a small set. Target representa-
tion evolves from a probability distribution over all possible locations - built through experi-
ence - to a more precise one in which only the current target is represented. Through rein-
forcement learning and Hebbian learning, simpler controllers learn to select actions based on 
crude sensory information. We discuss model behavior and implications to motor control. 

ENVIRONMENT and TASK

planning areas•

with repetition, simpler controllers are engaged•

repeat same decisions and movements enough times, 
use simplest scheme possible: motor skill

•

takes goal into account when planning

requires attention, thought, and time

planning and cognitive areas of cortex

-

-

-

learn how “valuable” each movement taken in each context is

requires less resources

less cognitive areas of cortex and BG

-

-

-

sensory information elicits movement (similar to SR mapping), goal not represented

requires least resources

thalamus to striatum?

-

-

-

MULTIPLE CONTROLLER MODEL

Planner (P)

Value-based (Q)

Automatic (W)

use AI algorithm (A*) to calculate best actions for a target
excites decision neurons strongly
requires fully resolved target belief (b

targ
 = 1)

•
•
•

environment is a “grid-world,” learning agent is in location (l)
agent must choose an action (a) to navigate towards a target (targ)
each action taken incurs a context-dependent reward (r)

•
•
•

agent has an estimate, Q(s,a), of how valuable each a is for each s [4]•

W(l,a),  weight from l to a, is strengthened for each (l,a) experienced
W(l,a) for all actions not taken is weakened

•
•

Wq excites decision neuron array (noise allows for exploration)

Wq grows from weak connections (no decision neuron wins WTA) to stronger connections

-

-

Connectionist model
action taken when action neuron is 
excited past threshold

P and Q excite decision neurons, which 
excite action neurons

WTA in decision neuron array

W excites action neurons directly

-

-

-

-

Arbitration scheme: W is faster than Q, which is faster than P
W is engaged earliest
if no action is selected, Q is engaged next
if no action is selected, P is engaged

•
•
•
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STATE REPRESENTATION
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State: location and target
s: location l and target targ ; N

states
 = N

locations
 X N

targets
 

state vector (s
l
): N

targets
-element vector corresponding to location l

•
•

early trials:
initial target belief equal

over all locations

late trials:
initial target belief based on 
actual targets experienced
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Decisions (d)

Plant / Evironment

(WTA)

(targ)

(l)

(targ)

(l)

Actions (a)

Planner (P)

(l)

Value (Q)

...

...

qW

Target (targ)

Location (l)

Q used to train Wq•

all Q(s
l,t 

,a
t
) updated, weighted by b

t
-

HYPOTHESES
Model Behavior

During early trials, the model will wait until b is resolved enough to move. 
During later trials, the model will use simpler controllers to move right away 
towards the intermediate target.

•

Learning with Fully-Resolved Targets
This will bias the agent toward taking the most direct route. However, if 
presented with an evolving target representation, it will have to wait a few 
steps before moving.

•

MODEL BEHAVIOR

P dominates control and it 
must wait until b is fully 
resolved. 
Eventually, Q and W are 
trained enough to make some 
decisions. 

•

•

P isn’t used at all and the 
model makes movements 
right away. 
Eventually, it develops an 
MS to move straight toward 
the intermediate target. 

•

•

LEARNING WITH 
FULLY-RESOLVED TARGETS

goal: reach target with maximum reward-

element i: belief that target i is the actual target (sum(b) = 1)
b

i
 increases with time if i is the actual target

•
•

Location of agent is known, but target location is uncertain
each element of s

l
 corresponds to a possible target-

all other b
i
’s decrease-

How does evolving target belief affect decision-making?

target belief evolution occurs independent of any decisions made•
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Training:
at first trial, b is uniform distribution over all locations
at each trial, one of the three target locations is selected randomly

•
•

multiple controller model is used to select actions to move agent from initial location to 
selected target location

as trial progresses, b evolves to represent actual target with belief of 1

-

-

as training progresses,•

initial b approaches uniform distribution over only the three targets presented to the model

simpler controllers are engaged

-

-
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Presence of Planner aids in early trials•
compared performance with planner 
versus decision making based on picking 
highest Q-value (W still active)

the latter needs to explore a lot before it 
finds the target

at areas of (s,a)-space where agent has 
little experience, P ensures reasonable 
performance

-

-

-
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agent takes most 
direct route and forms 
appropriate MS’s

•

How does this training and behavior affect Q-values?

Model trained with a fully resolved b at the start of each trial

to better assess Q-values, MS’s were turned “off” (W set to 0)
the trained model was presented with an evolving b
b was initialized to uniform distribution over only the three targets

•
•
•

agent must  wait several steps before making movement
in many cases, makes bad decisions (not shown)

•
•

Performance suffered

Model trained with an evolving b was able to act reasonably 
well when presented with a fully resolved b at the start of a trial

DISCUSSION
Much research on motor control and decision-making investigates how goal specifica-

tion and environmental attributes (e.g., dynamics, kinematics, perturbations) affect behavior. 
In this poster, we focused on how an evolving sensory representation affects decision-
making and motor skill development. We show that, rather than wait for the sensory repre-
sentation to resolve, the agent instead chooses to move immediately toward an intermediate 
target. The results of our modeling work agrees, on a qualitative level, with recent experi-
mental work investigating movement selection under an evolving sensory representation:

Battaglia and Schrater [5] show that human subjects, presented with crude target infor-
mtaion that becomes more precise during a trial, will reach for the perceived target based on 
crude information in order to allow them time to make an accurate movement. An explicit 
trade-off between perception quality and movement accuracy was observed. Hudson et al. 
[6] devised a reaching task in which human subjects were presented with a probability dis-
tribution over possible targets; only after the subject completed part of the movement did the 
target information become fully resolved. They showed that the subjects’ initial direction of 
movement was based on the initial probability distribution and that direction deviated toward 
the target after the fully-resolved target information was provided. 

obstacles

Early trials: Late trials:

Discrepancy of behavior between the two training methods:
due to use of MS’s (W)
if models were trained without MS’s, Q-values (and 
thus behavior) were very similar (not shown)

•
•

suggests possible behavioral experiments to elucidate learning and use of motor skills-

Target belief vector (b): N
targets

-element vector:

legend

(these are results for just one target, but 
results for the other targets are similar)


