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ABSTRACT

BIOLOGICALLY-BASED FUNCTIONAL MECHANISMS
OF MOTOR SKILL ACQUISITION

SEPTEMBER 2008

ASHVIN SHAH

B.A., WESLEYAN UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

The adage practice makes perfect makes for sound advice when learning a novel

motor skill. Be it typing a new password or hitting a forehand in tennis, proficiency

increases with experience. Behavioral changes associated with motor skill acquisition

can be broken down into three broad categories: 1) movements are executed faster

and become more coordinated, 2) they come to rely on sensory information gained

while executing the task, rather than just sensory information used during initial

stages of learning the task, and 3) they seem to be executed with less conscious

thought and attention. In addition, neural activity changes: many imaging and

neural recording studies suggest that with experience, control is transferred from

cortical planning areas to the basal ganglia. The two areas are thought to employ

different learning and control schemes. In general, planning can quickly take new

information into account to make reasonable decisions, but its control mechanisms

have large computational requirements. The basal ganglia use a simpler and less
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computationally expensive control scheme, but they require much experience before

they can produce reasonable behavior.

In this thesis, I contribute to answering the question, “what goes on during prac-

tice?” More formally, I am interested in the mechanisms by which motor skills are

acquired. I take a theoretical approach in that I hypothesize a multiple controller

scheme, based on the learning and control mechanisms of cortical planning areas and

the basal ganglia, and test it with simulations designed emulate generic motor skill

tasks. Because skill proficiency increases with experience, I am particularly interested

in the role of the experience-dependent mechanisms of the basal ganglia in motor skill

acquisition. Thus, learning mechanisms attributed to cortical areas are artificially re-

stricted so that any change in model behavior is attributed to the learning mechanisms

of the basal ganglia.

Model behaviors exhibit characteristics indicative of motor skills, supporting the

plausibility of the multiple controller scheme as one used by our nervous system

and suggesting that the learning mechanisms of the basal ganglia can contribute to

developing most characteristics. In addition, I show how the strategies developed by

the models are functionally advantageous, providing a reason why such a scheme may

be used.
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CHAPTER 1

INTRODUCTION

The adage practice makes perfect makes for sound advice when learning a novel

motor skill. The purpose of a motor skill (or any type of skill) is to accomplish some

task in a proficient manner. For learning purposes, a task is often decomposed into

a sequence of coarsely-defined subtasks. For example, in learning how to throw a

baseball, it is helpful if the process is described as a sequence similar to the following:

grasp ball, pull arm back, pivot body, accelerate elbow forward, allow wrist to extend

back, snap wrist forward, release ball. “Step-by-step” instructions are used to describe

many types of complex tasks. A description of a subtask is coarse in that it may

specify the subtask goal on one spatial level (e.g., pull arm back), but it does not

specify other variables needed to achieve the goal (e.g., the ideal configuration of the

arm and upper body, the stiffness of the joints to accommodate the force of the ball,

etc.). There is coarseness in the temporal domain as well: there is not a specification

of subtasks to account for each moment in time. Because of the coarse description of

subtasks, the learner must “fill in the blanks” by actually executing the movements

required to accomplish the subtasks. “Practice” is the act of repeatedly solving the

sequence of subtasks in order to attain proficiency in solving the overall task.

In this thesis, I contribute to answering the question “what goes on during prac-

tice?” More formally, I am interested in the computational mechanisms animals

employ in acquiring motor skills. I approach this problem with the methods of com-

putational, or theoretical, neuroscience in which I hypothesize computational mech-

anisms animals use in motor skill acquisition. I focus on functional aspects in that
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I attempt to elucidate what functional purposes they serve. The mechanisms are

biologically-based in that they are based on mechanisms attributable to brain areas,

as evidenced by literature in neuroscience encompassing a wide range of experimen-

tal techniques. In particular, because proficiency increases with practice, I focus on

experiential learning, which occurs when interacting with the environment.

The rest of this Introduction is devoted to an overview of motor skills, what types

of problems must be solved in their acquisition, and a brief discussion of theoretical

neuroscience.

1.1 Motor skills

Many books on human motor control devote some discussion to what is meant by

the term motor skill (cf. Kelso 1982, Chapter 2; Schmidt 1982, Chapter 3; Rosenbaum

1991, Chapter 3). Most researchers agree with Schmidt’s broad definition that skills

are movements that are learned and “dependent on practice and experience for their

execution, as opposed to being genetically defined” (Schmidt 1982, pg. 20). Most

researchers also agree that a skill refers to the ability to achieve some goal with

proficiency, i.e., in a way that approaches optimality as defined by the task. The

concept of proficiency is also used in Kelso (1982), which makes a distinction between

control and skill. Control refers to the assignment of values to variables, e.g., the

levels (values) at which to activate muscles (variables). A skill requires not merely

that a goal be achieved, which can be accomplished in many ways, but that “the

optimal value be assigned to the controller variables” (Kelso 1982, pg. 28). Inherent

in the study of motor skills are the concepts of redundancy and optimal control.

Though helpful as general descriptions, the terms “learned” and “optimal” apply

to many types of movements. Thus, the scope of behaviors that can be described as

“motor skills” is broad to the point of being cumbersome (cf. Newell 1991). Rosen-

baum et al. (2001) define a skill as “an ability that allows a goal to be achieved within
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some domain with increasing likelihood as a result of practice.” “Optimal” in this

case, refers to reliability. Kelso (1982, Chapter 2), on the other hand, suggests that

some of the most important characteristics of skills depend on the actual movements:

they are accurate and precise in space and time (e.g., the tennis racquet head is

positioned so that the ball hits its center at the right time), they are adaptable (a

skilled tennis player can achieve space-time accuracy for a large variety of incoming

ball trajectories), and the movements are consistent (the movements the player uses

vary little given a particular incoming ball trajectory). Kelso notes that these char-

acteristics are “far from inclusive” (pg. 23) and goes on to discuss how “optimal” can

mean very different things depending on the task (e.g., a long-distance run versus a

short sprint).

It is thus warranted to provide here a more constrained description of the types

of movements on which this thesis focuses. Schmidt (1982, Chapter 3) discusses two

broad dimensions under which movements can be classified: 1) discrete-continuous,

and 2) open-closed. The first dimension deals with the structure of the movements.

A discrete movement has a well-defined beginning and end, e.g., pressing a key on

a keyboard. A continuous movement, e.g., walking or riding a bicycle, does not.

Schmidt goes on to describe serial movements as “made up of a series of discrete

[movements] strung together in time to make some ’whole,”’ and that “[s]erial tasks

can be thought of as a number of discrete [sub]tasks strung together...” (pg. 54).

I focus on serial tasks in this thesis. The open-closed dimension deals with the

predictability of the environment during movement execution. Open skills are used

in unpredictable environments and thus depend greatly on sensory feedback to guide

movements, e.g., catching a ball on a windy day. Closed skills, on the other hand,

are used in relatively predictable environments, e.g., typing on a keyboard. Sensory

feedback is not needed to the same extent to execute the skill. I focus on tasks

in predictable environments, and thus closed skills, in this thesis. (Also note that
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motor
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sensory
information

controllersubtask 1

subtask 2

Figure 1.1. Schematic of two subtasks, where each subtask is accomplished by some
controller generating motor commands based on sensory information.

the terms “open” and “closed” as used in this paragraph are different than as used

in control theory, where “open loop” control refers to generating commands in the

absence of feedback, while “closed loop” control refers to generating commands based

on feedback.)

1.2 Redundancy

As discussed in the beginning of this thesis, the specification of subtasks composing

a motor skill is usually on a coarse level. It is very difficult, usually impossible, to

offer a detailed description of all variables that must be controlled. Thus, the subtasks

are often expressed in terms of goals that are clearly described and assumed to be

solvable — at least to a reasonable extent — without further instruction. Also, the

values of variables to be controlled may be different for different people. For example,

a child, because he is small and not very strong, would hit a tennis ball so that a

large proportion of its velocity is in the upward direction. An experienced adult, on

the other hand, would direct more energy towards the horizontal direction.

The coarse specification results in redundancy in how each subtask is accom-

plished. Figure 1.1 is a schematic of a task decomposed into two subtasks. The

process through which a subtask is accomplished can be divided into three parts: 1)

motor commands, 2) controller, and 3) sensory information. A controller uses sen-
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sory information to determine what motor commands to generate. In a sense, there

is redundancy in each of the three parts:

Motor command There is redundancy in both the motor commands used to pro-

duce movement and the types of movements that accomplish a subtask. For

example, many different patterns of muscle activity can produce the same torque

on a joint, many different arm configurations can place the hand at a particular

point in space, and the hand can take many different paths in moving from one

spatial point to another.

Controller Different types of control mechanisms can produce the same motor com-

mand. For example, one can swing a tennis racquet using sensory feedback

mechanisms to track a ball. Alternatively, one can swing the tennis racquet in

a very similar way through a purely feedforward control mechanism, without

any reference to the actual position of the ball. (In the case of tennis, which

requires open skills, such a control strategy is ill-advised. Nevertheless, it is

available.)

Sensory information Different types of sensory information can be used to guide

movements. For example, when learning how to drive a manual transmission

car, you might use the visual information provided by the tachometer to sig-

nal when to shift gears. However, after you gain some experience, you might

use auditory information instead, allowing your visual resources to be directed

towards the road.

Subtasks are usually devised and described so that, given our cognitive and plan-

ning abilities, we can accomplish them with little or no experience. However, the

initial solution is rarely proficient enough to be considered a “skill.” Redundancy in

motor commands, controller type, and sensory information can be exploited to in-

crease proficiency in the overall task. Exploitation of redundancy presents a problem

5



the nervous system must solve. Resulting behavior defines what a motor skill is. The

process by which redundancy is exploited is the process of motor skill acquisition. In

this thesis, I view motor skill acquisition as a decision-making problem: how does our

nervous system, with practice, settle upon particular choices in motor commands,

controller, and sensory information, and why are such choices advantageous? To

address these questions, I turn to the methods of theoretical neuroscience.

1.3 Theoretical neuroscience

Good experimental analayses discuss data within the context of some theoretical

framework: Do the results support or contradict the theory? How do they modify

the theory or provide further insights? Why did the results come out the way they

did? Theoretical analyses attempt to formalize the theory, couched in the language of

mathematics, and explore its consequences in detail (editorial, Nature Neuroscience,

v. 12, pg. 1627, 2005). As the preface of the book Theoretical Neuroscience (Dayan

and Abbott, 2001) explains, “[t]heoretcial analysis and computational modeling are

important tools for characterizing what nervous systems do, determining how they

function, and understanding why they operate in particular ways.” The authors

further suggest that the models, mathematical formulations of the systems to be

analyzed and theories to be implemented, fall under three general types:

1. descriptive, in which data is described mathematically, addressing the what

question described above,

2. mechanistic, in which the computational mechanisms thought to be used by the

nervous system are implemented, addressing the how, and

3. interpretive, in which theoretical principles are used to address the why.

The types of models are not defined by the systems they study, but rather by the

questions they ask. Models of each type can be used in examining behavior of ion
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channels, parts of neurons, whole neurons, small networks of neurons, systems of

neurons, and so on all the way up to gross movements and decision making. Since I

am interested in the how and why of motor skill acquisition, the work presented in

this thesis uses a combination of mechanistic and interpretive modeling techniques.

Since I focus on movements and how those movements are learned and executed, I

model neural systems and how they control movement or make decisions.

One of the recognized founders of the field of computational neuroscience, David

Marr, suggested that, when viewing the brain as a computational problem solver, the

problem can be decomposed into three levels (Marr, 1982):

1. computational problem: what is being computed and why

2. algorithmic problem: how it is being computed

3. implementation problem: where in the brain it is being computed

(despite the similarity in language, the three levels are not meant to parallel the three

types of models described in Dayan and Abbott 2001). Although the three levels

can be viewed independently, they seldom are. In fact, in applying computational

techniques to neuroscience, they must all be considered. At which level one “starts,”

though, reveals yet another dimension across which models vary. Top-down models

focus on the functional mechanisms that explain behavior; the problems they address

fall under the computational and algorithmic levels. Bottom-up models, on the other

hand, focus on what types of behavior can be produced by the interaction of low level

elements; the problems they address fall under the implementation and algorithmic

levels.

Again, because I am interested in how and why motor skills are acquired, I use a

top-down approach. I attempt to explain by what functional mechanisms motor skills

can be acquired and why. The computational problem the nervous system solves is to

find the motor commands, control method, and sensory information that produces the
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most proficient sequence of movements in solving a sequence of subtasks. I hypoth-

esize how this problem is solved (the algorithmic problem). The hypothesis is based

on known anatomical and physiological characteristics of the brain. Hence, I address

the algorithmic problem by using the current best answers to the implementation

problem.

1.4 Overview

The functional mechanisms I implement are biologically-based. Chapter 2 of this

thesis provides a broad review of the neural mechanisms of motor control. The ex-

perimental work cited describes brain areas thought to be involved and what types

of computations they can implement, providing us with a set of computational tools.

In brief, cortical mechanisms can implement a general control method that is used to

provide reasonable solutions to subtasks. Cortical mechanisms can also implement

sophisticated planning techniques to provide even better solutions. In fact, many

proposed solutions to the redundancy problem rely on such techniques, disregarding

the contributions of other brain areas.

Because of the importance of practice in motor skill acquisition, brain areas that

learn primarily through interaction with the environment — actually executing move-

ments — can participate in solving the redundancy problem as well. Repetition is

required, but it is provided by practice. There is evidence that as a motor skill is

acquired, control is transferred from cortical planning areas to the basal ganglia (BG),

which are thought to implement an experiential learning method. Chapter 2 describes

the BG in detail, including what computations they are thought to employ, how they

might participate in motor skill acquisition, and evidence that they are important for

motor skill acquisition.

I then discuss how the functional mechanisms are used in acquiring motor skills.

Briefly, early in learning, cortical planning mechanisms provide a reasonable solu-
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tion to solving each subtask. As experience is gained through practice, control is

transferred to the BG. One advantage of the theoretical approach is that certain as-

sumptions or scenarios can be explicitly implemented. To show that the learning

mechanisms of the BG can contribute in developing most behavioral characteristics

indicative of motor skills, I artificially restrict the learning capabilities of cortical ar-

eas. Thus, any change in behavior is due to the learning and control mechanisms of

the BG.

I further harness the flexibility and control afforded by the theoretical approach

in the next three chapters, where I construct simulated environments, systems, and

tasks that allow me to focus on the use of motor commands, controller type, and

sensory information separately.

Chapter 3 is dedicated to examining how redundancy in motor commands is ex-

ploited. This is done with the use of a simulated redundant “arm” that must hit a

series of spatial goals (i.e., accomplish a sequence of subtasks). The arm is redundant

in that it has more degrees of freedom to control than are necessary for the task: there

are many ways the arm can hit each goal. Chapters 4 and 5 dispense with the arm

as they do not focus on redundancy in motor commands. Rather, Chapter 4 uses a

simple sequential decision task where decisions can be made by one of three different

controllers that range from flexible yet computationally expensive to inflexible but

computationally cheaper. The focus of Chapter 4 is on the circumstances under which

each controller is advantageous. A similar task and model are used in Chapter 5, but

different types of sensory information are available. Like the controllers of Chapter 4,

the different types of sensory information have advantages and disadvantages, namely

that some require more time or are costly, but deliver a precise estimate of the current

situation. Others require less time or are less costly, but deliver a rather imprecise

estimate.
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Since most topics in the research of motor control began with an examination of

pure behavior (as opposed to the biology that generates such behavior), behavioral

characteristics are used to determine if and how redundancy is exploited. Exploita-

tion of motor commands leads to behavior described as coarticulation. The use of the

simplest possible controller where appropriate leads to behavior described as automa-

tization. I use the term sensory exploitation to refer to the exploitation of redundancy

in sensory information (but am open to better terms).

The main contributions of this thesis are in the areas of neuroscience and psychol-

ogy. First and foremost, this thesis describes a general framework by which motor

skills are acquired. It also shows that, because of practice, the learning mechanisms

of the BG (which require experience) can contribute to developing the behavioral

characteristics of motor skills. In contrast, most accounts focus on how planning

mechanisms attributable to cortical areas develop behavioral characteristics. I also

discuss how the solutions devised by the BG are functionally advantageous for the

task for which it practiced.

A theoretical approach is not meant to merely validate a particular theory through

simulation; it should focus on how behavior resulting from that theory differs from

behavior due to other theories. In addition, it should suggest behavioral and/or

neural predictions under certain experimental conditions. In each chapter, I discuss

such predictions and why they might arise. A long-term goal of the work initiated in

this thesis is to better understand how and why motor skills are acquired. A better

understanding of the brain areas involved, and how damage to them affects behavior,

can aid in the diagnosis and treatment of neural damage (Shadmehr and Krakauer,

2008). Finally, Chapter 6 provides a discussion of the general techniques used in each

of the previous chapters and directions for extending those techniques.
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CHAPTER 2

BACKGROUND

Considering that most, if not all, measurable behavior manifests itself in the form

of movement, it is not surprising that the functional anatomy of motor control is

complex. Current research continues to shape and modify our understanding of how

movement is controlled and controversy persists at all levels of research. Voluntary

movement is accomplished by the cooperation of three gross pathways: direct cortical

control, cerebellar control, and basal ganglionic control. In this chapter I outline our

current understanding of the functions of these brain areas as they relate to motor

skill acquisition. While an exhaustive description of every aspect of motor control is

beyond the scope of this thesis, a review of our current understanding is helpful in

assessing the capabilities of biological systems.

2.1 Overview of the cortex and cerebellum

Cortex

Cortical control of behavior, i.e., what movements to execute and abstract decision-

making in general, involves many areas. Research over the past decade or so has

shown that primate behavior is similar to that predicted by Bayesian decision theory

(Kording and Wolpert, 2006) and game theory (Glimcher, 2002), which involve in-

corporating statistics such as uncertainty and expected outcome. Many variables are

represented in cortical areas (Yoshida and Ishii, 2006; Glimcher, 2002; Rangel et al.,

2008), providing biological evidence supporting their inclusion in decision-making. In

general, cortical areas caudal of the central sulcus mediate the processing of sensory
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information and cortical areas rostral of the central sulcus mediate motor control

(though this is not a hard segregation, e.g., Battaglia-Mayer et al. 2003).

As we move from the central sulcus towards the rostral end of the brain, cortical

areas exhibit activity related to more abstract representations of behavior, such as

a goal to be reached rather than muscle activity. This information can be used in

planning, perhaps the single most human attribute. Planning, by definition, involves

predicting future outcomes and making decisions based on those predictions. The

area most associated with planning, the prefrontal cortex (PFC), lies at the most

rostral part of the cortex. It is one of the phylogenetically youngest areas of the brain

and plays a larger role in the control of behavior in primates than in other animals

(which exhibit far less flexible behavior). Lesion and neuropsychiatric studies show

that improper functioning of the PFC leads to inappropriate behavior and cognitive

deficits (Goldman-Rakic and Selemon, 1997; Fuster, 1997). Areas of the PFC have

extensive connections with higher order cortical areas involved with sensory, sensory

association, and motor functions, making it able to represent both sensory signals

and motor responses (Passingham et al., 2000; Barbas and Pandya, 1989) and affect

behavior based on a task-relevant processed perception (Fuster, 2000; Duncan, 2001;

Alexander et al., 1986). In addition, the PFC and the orbitofrontal cortex, often con-

sidered a part of the PFC, have connections with limbic regions (Rushworth et al.,

2004; Tremblay and Schultz, 1999), the information of which can be used to evaluate

behavior and signify the relevance of sensory information. To relate temporally sepa-

rated information, the PFC demonstrates working memory capabilities illustrated by

sustained neural activity (Goldman-Rakic, 1995).

The results of several studies support the role of the PFC in planning (for reviews,

see Miller and Cohen 2001; Tanji and Hoshi 2008). For example, in a multi-step path

planning task, the PFC represented short-term and long-term goals and actions (Saito

et al., 2005; Muchiake et al., 2001), including sequential order (Shima et al., 2007)).
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Tanaka et al. (2004) shows that the PFC represents expected future rewards and

Hampton et al. (2006) uses imaging to show that the PFC represents a model of the

overall task rather than just immediate decisions.

Other cortical areas aid in making decisions and executing movements. As we

move towards the central sulcus, cortical areas tend to represent activity more di-

rectly related to movement. The supplementary motor area (SMA) and preSMA are

involved in the learning and execution of sequential movements (Tanji, 2001). Premo-

tor areas (PMAs), including the ventral and dorsal premotor cortex (PMv and PMd,

respectively), exhibit activity related to abstract representations of movement. Tra-

ditionally, the primary motor cortex (MI) has been implicated as the conduit through

which the cortex controls movement. This is because MI neurons represent movement

on a concrete level (such as muscle activity) as well as a more abstract level (such as

direction of movement) (Kakei et al., 1999) and have direct connections with areas of

brain stem and spinal cord. However, recent evidence complicates the matter. Other

motor areas, such as PMv, PMd, and SMA, also have direct connections to brain

stem and spinal cord (Dum and Strick, 2002), allowing for parallel control.

Each of the different cortical areas may participate in various aspects of motor

learning such as motor skill acquisition and adaptation to novel environments (Sanes,

2003). For example, recent evidence shows that MI represent learned sequences of

movements (Matsuzaka et al., 2007; Hatsopoulos et al., 2003). In short, cortical con-

trol of behavior and movement is a complex process, but the complexity allows cortical

areas to process information and control movement in a variety of ways (Carson and

Kelso, 2004).

Cerebellum

Cortical areas project to the cerebellum as well. Much of the input that the cere-

bellum receives is sensory-related, and the cerebellum projects mainly to motor areas
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of the cortex, brain stem, thalamus, and spinal cord. Signals are sent to the cerebellar

cortex through two main pathways. In the first, nuclei in the spinal cord and brain

stem send mossy fibers to the cerebellar cortex. These axons terminate on granule

cells, which give rise to parallel fibers, which project parallel to the surface of the cere-

bellar cortex and make weak contacts on the dendrites of many Purkinje cells. This

pathway is thought to carry sensory information from the peripheral nervous system

and cortex. In the second pathway, more abstract sensory information, arising from

the cortex, is sent to the inferior olivary nucleus (IO). The IO sends climbing fibers

up to terminate on the soma of the Purkinje cells. Unlike parallel fibers, a climbing

fiber makes strong contacts on a small number of Purkinje cells. Purkinje cells send

inhibitory projections to deep cerebellar nuclei, which send excitatory connections to

the thalamus. The regular architecture and synaptic plasticity of the cerebellum led

Marr (1969) and Albus (1971) to suggest that it can be trained to participate in con-

trolling movement after learning to recognize patterns of input. Berthier et al. (1993)

presents a model which uses climbing fiber input to train the response of Purkinje

cells to a particular pattern of parallel fiber activation. In addition, Kawato (1999)

suggests that the cerebellum aids in motor control by creating an internal model to

be used for predictions.

Lesion studies show that disruption of the cerebellum leads to awkward, uncoor-

dinated movement, and the inability to adapt to dynamic environments. Seidler et al.

(2002) show that the cerebellum may not be used in the learning of sequences in a

serial reaction time (SRT) task, but may be used to aid in the execution of move-

ments in the SRT and other tasks. Other recordings show that neural activity in the

cerebellar cortex represents intended movement and error between actual movement

and the goal (Kitazawa et al., 1998). These, and other aspects of its anatomy and

physiology, lead some to suggest that the cerebellum plays a role in movement cor-

rection or supervised learning (Doya, 1999). However, the role of the cerebellum in
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motor control and learning continues to be a topic of current research and debate (for

reviews, see Schweighofer et al. 2004, Garwicz 2002, Ito 2000, and Houk et al. 1996).

Functional role

Overall, the cortex and cerebellum participate in controlling and learning move-

ment through complex distributed pathways and new research is always refining our

view of these areas. Because I focus on the decision-making aspects of motor skill

acquisition in this thesis, the functional mechanisms of cortical areas serve two main

purposes: 1) to provide a representation of relevant sensory information from which

to make decisions, and 2) to act as a general planner with which to make decisions.

For similar reasons, the role of the cerebellum in my models is not to make decisions,

but rather to ensure that decisions made by other areas (e.g., to hit a particular goal)

are implemented. Thus, in the event that a movement does not accomplish the sub-

task for which it was selected, as may be the case in a stochastic environment or if a

novel exploratory movement is chosen, the cerebellum aids in controlling movement

to accomplish the subtask.

These simplifications are not meant to suggest that the cortex and cerebellum play

minor roles in motor skill acquisition. On the contrary, decision-making in motor skill

acquisition is manifested as movements, and many functions of cortical areas and the

cerebellum serve to properly execute those movements. They play important roles

and can account for many types of behaviors characteristic of motor skills. However,

in this thesis, I claim that with practice the learning mechanisms of the basal ganglia

can account for characteristics often attributed to cortical or cerebellar mechanisms.

To show this, I artificially restrict the capabilities of the cortex and cerebellum to

the general functions described in the previous paragraph in models presented in this

thesis. The next section describes the architecture and physiology of the BG.
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2.2 Anatomy and physiology of the basal ganglia

Pathways

The basal ganglia are a set of forebrain nuclei (see figure 2.1) that participate

in motor control through multiple pathways and mechanisms (for reviews, see Bar-

Gad et al. 2003, Mink 1996, Bolam et al. 2000, Graybiel and Kimura 1995, Graybiel

1998, and Graybiel 2005). The BG communicate with most areas of the cortex and

motor areas of the thalamus and brain stem through cortico-ganglio-thalamic loops

(Middleton and Strick, 2000; Hoover and Strick, 1993; Kelly and Strick, 2004), which

I shall discuss in detail later. The striatum (consisting of the caudate, putamen, and

nucleus accumbens) receives excitatory projections from cortex and thalamus and is

considered to be the main input nucleus of the BG. Some corticostriatal projections

are branches from corticothalamic and corticospinal projections (Zheng and Wilson,

2002), suggesting a mechanism by which the BG can receive an efference copy of motor

commands generated by cortical areas. The striatum projects to other nuclei of the

BG, including the substantia nigra pars compacta (SNpc), the external segment of

the globus pallidus (GPe), and the internal segment of the globus pallidus (GPi). The

GPi and another nucleus, the substantia nigra pars reticulata (SNpr), are typically

grouped together because they share similar characteristics and compose the output

nuclei of the BG. GPi/SNpr send inhibitory projections to areas of the thalamus

and brain stem. Thus, the BG ultimately control movement through disinhibition of

thalamic and brain stem areas.

The projection neurons of the striatum are called medium spiny neurons because

of their size and the presence of spines on their dendrites. Medium spiny neurons

are GABAergic — they send inhibitory projections to their targets. In addition to

projection neurons, the striatum contains several types of inhibitory interneurons

which may mediate lateral inhibition in the striatum. The most studied type are
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Figure 2.1. Gross representation of major pathways involved with movement. Basal
ganglia nuclei are in shaded boxes. Excitatory connections are in unfilled closed ar-
rows, inhibitory connections are in filled closed arrows, and mixed connections are in
open arrows. Thin lines represent ascending connections for clarity. The “(+)” or
“(-)” signs following the direct, indirect, and hyperdirect pathway labels indicated the
individual pathway’s affect on on movement. (+), disinhibits movement, (-), inhibits
movement. SNpc, substantia nigra pars compacta; DA, dopamine, D1R, D1-type DA
receptor; D2R, D2-type DA receptor; GPe, globus pallidus external segment; GPi,
globus pallidus internal segment; SNpr, substantia nigra pars reticulata; STN, sub-
thalamic nucleus; IO, inferior olivary nucleus; PCs, Purkinje cells of the cerebellum;
DCN, deep cerebellar nuclei.
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called tonically active interneurons (TANS) and, as the name suggests, exert a tonic

inhibitory influence on spiny neurons.

The BG project to the thalamus and brain stem through three main pathways,

described as follows (⊕ means that the connection has an excitatory effect and 	

means that the connection has an inhibitory effect):

	Hyperdirect Pathway: [Cortex → ⊕ STN → ⊕GPi/SNpr→ 	movement]

The cortex has direct excitatory connection to the subthalamic nucleus (STN)

of the BG. The STN, in turn has excitatory connections to the GPi/SNpr, which

inhibits movement. Faster than direct or indirect.

⊕Direct Pathway [Cortex → ⊕ Striatum → 	 GPi/SNpr→ 	movement]

This “direct pathway” excites movement by disinhibiting it. The cortex ex-

cites the striatum, which inhibits the GPi/SNpr, which inhibits brainstem and

thalamus circuits.

	Indirect Pathway [Cortex→ ⊕ Striatum→ 	 GPe→ 	 STN→ ⊕ GPi/SNpr→

	movement]

This “indirect pathway” enhances inhibition of movement by disinhibiting the

STN, which , in turn has excitatory connections to the GPi/SNpr, which inhibits

movement.

Movement is controlled by the BG through a balance between the three pathways.

In addition to the nuclei already mentioned, the BG include the substantia nigra

pars campacta (SNpc), which consist of dopaminergic neurons and is adjacent to other

groups of midbrain dopaminergic neurons. The striatum sends inhibitory projections

to the SNpc, and the SNpc and midbrain dopaminergic neurons send projections

that terminate on the striatum, including on corticostriatal synapses. Dopamine

(DA) is part of the brain’s reward processing system. However, DA also may have a

more direct effect on BG activity. Striatal projection neurons contain either D1-like
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receptors (excitatory DA receptors) or D2-like receptors (inhibitory). D1R containing

striatal neurons typically project through the direct pathway, while D2R containing

striatal neurons typically project through the indirect pathway (Gerfen et al., 1990;

Aubert et al., 2000). Thus, DA has a net effect of providing excitation to brain

stem and thalamus. This effect partially explains the symptoms of the BG-associated

movement disorders Parkinson’s disease and Huntington’s disease (Boraud et al.,

2002; Obeso et al., 2002). Parkinson’s disease is due to a degeneration of DA neurons

in the SNpc. The decrease in DA to the striatum results in greater BG inhibition

of the thalamus and brain stem and hence the hypokinetic symptoms of Parkinson’s.

Huntington’s disease is accompanied by an overproduction of DA and hence a decrease

of BG inhibition of the thalamus and brain stem, resulting in hyperkinetic symptoms.

The available research on the characteristics of the remaining nuclei of the BG

is not as in depth as that of the striatum, and hence their descriptions are brief.

The GPe sends inhibitory projections to non-TANS interneurons in the striatum,

another nucleus of the BG called the subthalmic nucleus (STN), and GPi/SNpr, as

well as to excitatory projection neurons of the STN. GPe neurons tend to exhibit

high frequency activity interspersed with pauses in that activity. The STN neurons

are excitatory and are tonically active, except during movement, when they fire short

bursts. STN projections to GPi/SNpr have been characterized as diffuse (Parent

and Hazrati, 1995; Gurney et al., 2001). The GPi/SNpr neurons are inhibitory and

exhibit high frequency activity with no or few pauses.

In the following subsections, I describe in more detail characteristics of the stria-

tum and pathways germane to motor skill acquisition.

Cortico-ganglio-thalamic loops

The pathways through the BG include cortex→ BG→ thalamus→ cortex. Most

parts of the cortex communicate with the BG through these cortico-ganglio-thalamic
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loops (Middleton and Strick, 2000; Hoover and Strick, 1993; Kelly and Strick, 2004;

Alexander et al., 1986; Alexander and Crutcher, 1990), enabling the BG to use the

different types of information available through the highly processed representation

of information in cortex. Many argue that these loops are segregated to a large degree

— one part of the cortex typically does not communicate with another part of the

cortex in a direct or nearly direct way (Takada et al., 1998; Tokuno et al., 1999;

Parent and Hazrati, 1995; Hoover and Strick, 1993; Middleton and Strick, 2000).

For instance, sensory areas of the cortex project mainly to the dorsolateral striatum,

associative areas project to the central striatum (caudate), and limbic areas project

to the ventromedial striatum (including the nucleus accumbens). Some experiments

suggest that there is also little or no overlap between higher motor and executive

motor information in the striatum (Takada et al., 2001).

The results of other studies suggest that there is some communication between the

loops through overlapping corticostriatal projections. It has been shown that each

striatal spiny neuron receives projections from thousands of cortical neurons (Bolam

et al., 1993), and some striatal neurons respond to stimulation of multiple cortical

areas (Nambu et al., 2002; Kimura et al., 1996; Yoshida et al., 1993). Parts of cortex

that communicate with each other may provide overlapping inputs to the striatum.

Graybiel showed that by stimulating an area of cortex, several non-contiguous patches

in striatum were activated (Graybiel et al., 1994; Graybiel and Kimura, 1995). Fla-

herty and Graybiel (1991) show that there may be some overlap between MI and SI

projections onto striatal neurons. In addition to convergence of cortical information

to striatal spiny neurons, Ramanathan et al. (2002) shows that there is some conver-

gence of MI and SI projections onto striatal interneurons, suggesting that intrinsic

connections may also shape striatal spiny neuron activity.

There is also evidence for indirect communication between loops (Haber, 2003;

McFarland and Haber, 2002). Connections from striatum to GPi/SNpr diverge to
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some degree; cortical areas receive information generated from other cortical areas

in an indirect way. In addition, the dopaminergic pathways may provide a means

by which different loops communicate with each other (Joel and Weiner, 1994, 2000;

Haber et al., 2000).

The properties described in this section indicate that while the loops are segregated

to a large degree, there is likely some communication between them. If we equate

activity of a loop with a particular movement, then the segregation allows for two

(or more) movements to be executed concurrently, while the communication allows

for the movements to be modified to some degree to take into account preceding,

concurrent, or subsequent movements.

Exploration

The inhibitory nature of the output nuclei of the BG allow them mediate move-

ment exploration by selecting from and/or modifying motor commands as suggested

by other brain areas. Many motor-related areas of the brain send excitatory projec-

tions to brain stem and thalamus circuits, leading to a convergence of movement-

related excitation (Mink, 1996). The patterns of activation may not be consonant

— different brain areas may elicit different motor commands. Without some form

of inhibition, such a confluence would result in ataxic movements (Gurney et al.,

2001; Mink, 1996). One role of the BG may be to provide the inhibition necessary to

damp the existing motor signals so that only one set, or some combination of sets, of

motor commands is used to generate movement. I refer to this as a form of directed

exploration because movements are modified through the influence of other motor

commands. In addition, through noise in neural activity (possibly mediated by the

excitatory effects of DA), the BG may be able to mediate a form of undirected explo-

ration — elicit novel motor commands based on those elicited by other motor areas

of the brain, but modified based on noise rather than the influence of other motor
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commands. In both directed and undirected exploration, the BG is not faced with

the task of generating motor commands; instead, they mediate the relatively easier

problem of modifying existing motor commands.

There is evidence of weak proximal (short-range) lateral inhibition in striatum

spiny and interneurons (Bolam et al., 2000; Wilson and Oorschot, 2000). Lateral in-

hibition may enable activity selection mechanisms such as a “winner take all” system,

in which the most active of neurons in a pool of active neurons eventually remains as

the only active neuron. The weak nature of the lateral inhibition may allow for a softer

competition, such as a softmax distribution, in which stronger activity patterns are

selected with a higher probability than weaker activity patterns, or a “winner share

all” mechanism, in which several patterns are allowed (Fukai and Tanaka, 1997). The

proximal nature of the lateral inhibition prevents distant groups of spiny neurons

from inhibiting each other, allowing for concurrent activation of multiple movements.

Dopamine and learning in the BG

Synaptic plasticity at the corticostriatal synapses can mediate evaluation of the

exploratory processes described in the previous subsection and thus learning. Cortical

and DA projections to the striatum form asymmetric synapses on the spines of spiny

neurons (Schultz, 1998). Corticostriatal plasticity is dependent on DA (Centonze

et al., 2001; Wickens et al., 2003) and occurs in the form of both long term potentiation

(LTP) and long term depression (LTD), though the exact circumstances that elicit

one or the other has not yet been determined. We can model synaptic plasticity

on an abstract level as a three factored Hebbian form: activity of the striatal cell,

activity of the cortical cell, and presence of DA. Some form of plasticity may also

occur at the STN→pallidal synapses (Hanson and Jaeger, 2002), while the stability

of synapses in the GPi may be dependent on DA (Ingham et al., 1997; Whone et al.,

2003). However, these latter processes are not understood in great detail as of yet.
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A widely accepted computational role of the DA signal is that of reward prediction

error (Schultz 1998, but see also Niv et al. 2005), in which the activity of the DA

neurons (in the SNpc or the ventral tegmental area, VTA) is approximated by the

difference between the reward received and the reward expected. For example, if

a reward occurred as expected, the DA neuron activity would be baseline. If the

reward was higher than expected, it would be above baseline, and if it was lower than

expected, it would be below baseline. Plasticity, and hence learning, only occurs if

the reward is not as expected.

Reward-related learning may also mediate other forms of learning. Tonically ac-

tive interneurons (TANS) in the striatum change their activity according to reward-

predicting cues. In an operant conditioning task, when a rat is presented a cue that

predicts a reward, some TANS decrease in firing (Aosaki et al., 1994b,a). This re-

moves the tonic inhibition to the striatal neurons, allowing them to disinhibit motor

commands. The tonic firing of TANS can also be easily modified by extrastriatal

sources (Aosaki et al., 1994b).

The parallel control of motor output by the direct and indirect pathways may

allow for different types of learning to occur. Striatal neurons in the indirect path-

way express D2Rs and MAPK (Gerfen et al., 2002), which is implicated in synaptic

plasticity (Thomas and Huganir, 2004; Sharma and Carew, 2004). One possible con-

sequence of this is that long term learning (e.g., skill formation) may be modulated

through the indirect pathway, but short term control is modulated through the direct

pathway (Gerfen, 2004).

Finally, dopamine neurons have been shown to signal not just reward or reward

prediction error, but also salient sensory events, such as unexpected or highly intense

sensations (Horvitz, 2000, 2002). Through DA-mediated learning, the BG may also

play a role in detecting novel or previously unattended stimuli.
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Influence of the thalamus

Although BG activity is influenced strongly by corticostriatal projections, thala-

mostriatal projections may also affect the BG (Smith et al., 2004). The thalamus

has been traditionally thought of as an active conduit through which the cortex com-

municates with lower brain areas. It gaits and shapes ascending sensory information

to the cortex and mediates descending motor information from the cortex, BG, and

cerebellum. The thalamus is composed of many nuclei, some of which project to

distinct areas of cortex and mediate specific functions. The ventral motor areas of

the thalamus are thought to convey motor information from the BG and cerebellum

to cortical motor areas, while the ventral sensory areas convey sensory information

to cortical sensory areas. The exact functions of many thalamic nuclei are not well

understood; the nuclei seem to project diffusely to cortex. For example, a set of nuclei

called the intralaminar nuclei receive projections from subcortical areas of the brain

and cerebellum and project to limbic areas of the cortex and the BG. Intrathalamic

connections help shape and integrate activity in the thalamus as well.

Thalamic activity represents processed information as well as direct information.

The centre médian (CM) and parafascicular nucleus (Pf) intralaminar nuclei of the

thalamus convey behaviorally significant sensory information to striatum, including

unexpected sensory stimuli (Matsumoto et al., 2001). Neural response was found to

be reward-independent yet necessary for the responses of TANS to rewarded stimuli

in the striatum. Matsumoto et al. (2001) suggest that the CM-Pf complex aid in

activating learned responses of striatal neurons; it is degenerated in Parkinson’s and

Huntington’s disease patients (Henderson et al., 2000; Smith et al., 2004), further

supporting its connection to proper BG functioning.
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Bistability of striatal neurons

Some striatal spiny neurons exhibit sustained activity Hikosaka et al. (1989) and

most exhibit bistable behavior (Wilson and Groves, 1981; Nicola et al., 2000; Wilson,

2008). In a “down” state, in which the resting potential is hyperpolarized, a spiny

neuron will not be excited by weak inputs. In an “up” state, in which the resting

potential is more depolarized, weak inputs may excite it. While controversy persists

over whether bistability is a characteristic inherent to spiny neurons or the result of

cortical inputs (Wilson, 2008; Kasanetz et al., 2006), the observed bistability allows

for the influence of weak inputs to be diminished or amplified depending on what state

the spiny neuron is in. The bistable properties may be modulated by DA (according

to a modeling study by Gruber et al. 2003) or extrinsic connections (Wickens and

Wilson, 1998).

Functional role

The anatomical and physiological characteristics of the BG enable them to facil-

itate several types of functional roles (Graybiel, 2005; Gurney et al., 2004), includ-

ing pattern recognition (Shadmehr and Wise, 2005; Houk and Wise, 1995; Graybiel,

1998), dimensionality reduction (Bar-Gad et al., 2003; Joel et al., 2002), preparation

for movement (Hikosaka et al., 2000), focused selection of motor activity (Hikosaka

et al., 2000), and efficient mediation between competing decisions (Bogacz and Gur-

ney, 2007).

Perhaps the most accepted role of the BG involves reward-related learning due to

the rich DA projections to the striatum and DA-dependent plasticity at corticostriatal

synapses. Cortical areas provide for a representation of relevant sensory information

from which to select a movement, and, through the planning processes described

in the earlier section, Cortex, motor commands to accomplish a particular subtask.
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Through exploration and reward-mediated learning, the BG can learn to execute

those or possibly better movements.

The DA signal combined with DA-dependent plasticity may allow the BG to learn

in ways similar to the algorithms of Reinforcement Learning (RL, Sutton and Barto

1998), a computational formulation of learning from the consequences of decisions

executed, referred to as actions in the RL literature. In essence, if an action is

followed by a favorable outcome (e.g., a reward greater than the expected reward)

the tendency to select that action is increased (cf. Thorndike 1911; in the language

of psychology, that action is reinforced). Expected reward of actions has been shown

to be represented in the activity of striatal neurons (Samejima et al., 2005).

One attractive feature of RL is that, unlike planning, a model of the environment

is not necessarily required. Thus, learning is done by interacting with the environment

— executing an action and observing the resulting change in environment. I discuss

RL in greater detail in later sections of this chapter. Houk et al. (1995) and Barto

(1995) present models of how the BG might implement RL, and Doya (2007) reviews

further connections between RL and behavior. I discuss RL in more detail later in

this chapter.

In addition, thalamostriatal projections may provide the BG with a representation

of sensory information that is less processed and presumably occurs earlier in time

than that of cortical areas. If such projections are weak, the bistable properties of

striatal neurons would enable those projections to elicit movements selectively. Thus,

a more efficient form of movement execution is possible with the machinery of the

BG. In the next section, I review evidence that the BG and DA are important in

motor skill acquisition.
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2.3 BG in Motor Skill Acquisition

The previous section described aspects of anatomy and physiology that enable the

BG to perform functions useful in motor skill acquisition. In this section, I describe

experimental evidence that the BG does, in fact, play a role in motor skill acquisition.

Descriptions are grouped by methodology.

Lesion and neural recording

An unlearned form of motor skill, termed a “syntatic chain” (Berridge et al., 1987)

is expressed as a set sequence of grooming actions in rodents. Once the first part is

initiated, the rest of the actions can be predicted with 85% accuracy. Lesion studies

suggest that the striatum recruits and coordinates circuits involved with syntatic

chains (Berridge and Fentress, 1987; Berridge, 1989a; Berridge and Whishaw, 1992;

Cromwell and Berridge, 1996). Recording studies show that neurons in the striatum

respond differently to grooming actions in isolation versus the same actions in the

context of a syntatic chain (Aldridge et al., 1993; Aldridge and Berridge, 1998). Thus,

the BG may be involved with this unlearned form of sequenced behavior.

The role of the BG in acquiring motor skills can be studied by training an animal

to perform novel tasks. Lesion studies show that the striatum is important in learning

complex visual stimulus response tasks (Reading et al., 1991), but not necessarily in

simple unlearned movements (Aldridge et al., 1997). Neural recording studies also

show that the BG are involved with learned behavior. When trained to perform

movements at the onset of a cue, striatal and pallidal neurons have been shown to be

selective for the cue signal in the context of the task, but not out of context (Gdowski

et al., 2001; Kimura, 1986, 1990; Schultz and Romo, 1992; Romo et al., 1992; Gardiner

and Kitai, 1992) or even if presented redundantly within context (Kermadi et al., 1993;

Kemardi and Joseph, 1995). Similarly, striatal and pallidal neural activity responds

to a movement during one task differently than the same movement during another

27



task or outside of any task (Schultz and Romo, 1992; Romo et al., 1992; Gardiner

and Kitai, 1992; Brotchie et al., 1991; Kimura et al., 1992). The context-specific

behavior of BG neurons indicate that they participate in motor control not by merely

controlling a specific movement, but by controlling that movement as part of a motor

skill.

BG activity evolves as a task is learned as well. In learning a multi-stage task,

the proportion of striatal neurons in rat that display task-related activity increases

as the rat learns the task (Jog et al., 1999). Some neurons became responsive to cue

aspects of the task, while others became responsive to movement aspects of the task.

Imaging

Human imaging studies show that the BG play a role in the learning and execution

of motor skills (Grafton et al., 1992; Hazeltine et al., 1997; Jenkins et al., 1994;

Jueptner et al., 1997; Toni et al., 1998). Boecker et al. (1998) use positron emission

tomography (PET) to show that regional cerebral blood flow (rCBF) in the anterior

globus pallidus in humans increases as task complexity (e.g., number of movements to

be made) increases. Grafton et al. (1995) had human subjects perform an SRT task

under two conditions: as a single task or in conjunction with another, “distractor,”

task. Using PET imaging, they showed that different cortical areas were activated

during the different conditions. One distinction was that the SMA was involved with

the dual task condition and the PFC and PMAs were involved with the single task

condition. In both conditions, the BG were activated, indicating that they play a

role in learning and execution in SRT tasks. The cortical results suggest that when

one can devote full attention to the task, as with the single task condition, planning

areas are involved. Under the dual task condition, more automatic systems are used

to perform the task.
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Puttemans et al. (2005) used functional magnetic resonance imaging (fMRI) to

show that the anterior cerebellum and putamen were the only brain structures they

measured which increased in metabolic activity during the entire progression of a hu-

man learning a bimanual coordination task. Doyon and Benali (2005) review imaging

evidence suggesting that, when a skill is well learned, the representation of the se-

quence is transferred from cortical areas of the brain to the corticostriatal synapses.

Rauch et al. (1998) measured a decrease in metabolic activity in the thalamus during

early learning stages of a sequential task. This may represent an increase in neural

activity in the thalamus due to a decrease in GPi/SNpr inhibitory projections to the

thalamus.

Disorders of the BG

Studying humans with disorders of the BG also helps us understand the BG’s role

in motor skill acquisition and performance. Parkinson’s disease (PD) and Hunting-

ton’s disease (HD) are the most common type of disorders studied. While the exact

mechanisms by which PD and HD affect movement is not fully understood, they both

involve degeneration of parts of the BG and thus impairments in moving.

In a sequential button pushing task, normal subjects were able to execute a learned

sequence faster than novel sequences, but patients with PD and HD did not perform

any better on a repeated sequence (Jackson et al., 1995; Knopman and Nissen, 1991).

PD patients performed worse than controls on other types of movement sequence

tasks, including performing worse as the movement sequence grew longer and more

complicated (Agostino et al., 1992) and in speaking tasks (Volkmann et al., 1992).

PD inhibited performance on well-known tasks as well. In performing a sequence of

two simple movements, PD patients performed each movement longer in the sequence

than separately (Benecke et al., 1987) and also had problems performing two simple

movement simultaneously (Benecke et al., 1986). Benecke and colleagues suggested
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that PD interfered with the ability to switch from one motor program to another

efficiently and to perform two motor programs concurrently. Tyrone et al. (1999)

studied the behavior of sign language users with PD versus normal sign language users

in a finger spelling task. They found that the movements used by PD patients were

less smooth and coordinated. Tyrone et al. (1999) hypothesized that PD patients

adopted the strategy of reducing the motor demand by executing each movement

separately, without taking into account the overall task.

BG in exploitation of sensory redundancy

The strong link between the BG and movement convinces most that, if the BG

does participate in motor skill acquisition, it aids in exploiting redundancy in motor

commands. The transfer of control as suggested by the imaging studies above suggest

that they may play a role in redundancy in control as well. I discuss further evidence

in Chapters 3 and 4. However, the role of the BG in the exploitation of sensory

redundancy is not as obvious. In this section I review evidence suggesting that the

BG play a role in using sensory information in movement tasks. Since the behavioral

experiments that elucidate this exploitation are complex, such evidence is in the form

of brain imaging results with human subjects and performance of normal human

subjects compared with those who suffer from diseases of the basal ganglia.

Debaere et al. (2003) had subjects make periodic hand movements with both

hands, with a 90◦ phase difference between the hands. This phase shift is typically

difficult to learn and is halfway between easily-learned phases shifts of 0◦ and 180◦.

In addition, the subjects made the movements with either normal visual feedback

or augmented visual feedback, in the form of Lissajous figures which plot the dis-

placement of one hand versus another. fMRI shows that with the augmented visual

feedback, the rCBF in the BG is less than that without the augmented visual feed-

back. In a similar task, Verschueren et al. (1997) shows that normal subjects perform

30



better than PD patients without the augmented visual feedback, but that PD patients

perform similar to normals with the augmented visual feedback. In addition, without

augmented visual feedback, poor performance by PD patients differed from that of

normal subjects. PD patients would revert to the more intuitive phase difference of

0◦, in which the hands are synchronized, while normals would tend toward a phase

difference of 180◦, in which the hands are in antiphase. Normals would not revert to

previously learned phase differences as much as PD patients would in general. These

results demonstrate that the BG are important in learning novel complex movements

and establishing a stable motor skill which relies on internal cues, which must be

learned to some degree (as opposed to sensory information provided by the task).

However, with appropriate external feedback, the role of the BG is not as prevalent.

Two other studies support the notion that the BG are involved with learning to

initiate or control motor skills with internal cues. Taniwaki et al. (2003) used fMRI

to show that, in a sequential finger movement task with human subjects, the cortico-

ganglio-thalamic loop was used in self-paced, but not externally paced movements.

In a “connect the dots” type of task, subjects connected a sequence of squares on a

screen with a stylus (with no immediate feedback such as an ink trail). After learning

the task, the subjects were asked to execute the same movements but without the

visual feedback of the squares on the screen. Normal subjects performed better than

PD patients, showing that PD patients were not able to rely on internal cues like

normal subjects were (Martin et al., 1994).

The BG may also be responsible for mediating the control of movement by sub-

liminal external sensory cues. Aron et al. (2003) developed a task in which a cue on a

computer screen indicated which direction a human subject should point. Before the

trigger cue, a subliminal cue (presented for 32 msec) of the same type was presented.

If the subliminal cue was compatible (the same as the trigger cue), and the interstim-

ulus interval (ISI) was short, the cue resulted in decreased reaction time after the
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trigger, but if the ISI was longer, the compatible subliminal cue resulted in a longer

reaction time. The opposite was the case if the subliminal cue is incompatible. These

results support the theory discussed in Mink (1996), which stated that the BG aids

in inhibiting motor programs. If the human subject subliminally inhibited the motor

response indicated by the cue during the long ISI trials, then reaction time when

presented with that cue as a trigger would be longer. Likewise, if the competing mo-

tor program was inhibited, as is the case when the subliminal cue was incompatible,

then the reaction time would be shorter. fMRI scans during this task show that the

caudate and thalamus may mediate this effect. Also, the behavior of HD patients

deviated from that of normal subjects.

Dopamine in motor skill acquisition

Neurochemical analyses show that DA is important for the learning and execution

of motor skills. 6-hydroxydopamine (6OHDA), which destroys nigrostriatal projec-

tions, in the striatum disrupts the ability to complete a learned motor skill in the

rat (Sabol et al., 1985). DA antagonists or 6OHDA in the striatum also decrease the

percentage of completed syntatic chain grooming behavior in the rat (Berridge and

Fentress, 1987; Berridge, 1989a,b). Targeted mutation studies show that D1R activa-

tion aids in completion of grooming behavior, while D2R activation disrupts grooming

behavior (Bolivar et al., 1996; Cromwell et al., 1998; Berridge and Aldridge, 2000a,b).

Cocaine and amphetamine (DA agonists), injected intraperitoneally (Canales and

Graybiel, 2000) or directly into the striatum (Dickson et al., 1994), induced stereo-

typy, a behavior described by repetitive movements or sequences of movements. From

the studies described in this paragraph, we can postulate that DA, though D1R’s, is

necessary for the maintenance and completion of motor skills. D2R’s, on the other

hand, may prevent the maintenance of inappropriate motor skills.
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A study by Matsumoto et al. (1999) investigated the role of DA in the development

and execution of learned motor skills. The authors infused 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) into the monkey striatum (unilaterally), to destroy the

nigrostriatal DA projections to that area either before or after the monkey learned a

sequential three button pushing task. After training, normal monkeys were able to

quickly push the three buttons; monkeys treated with MPTP prior to learning exhib-

ited slower movements than normals. Monkeys treated with MPTP after learning also

exhibited slower movements than normals, but the affect was less than that of mon-

keys treated with MPTP prior to learning. In another permutation of the task, when

reward was given after the second button push (after the monkey was trained with

reward after the third button push), monkeys treated with MPTP quickly learned

to not press the third button. Normal monkeys kept pressing the third button for

a number of trials even though it wasn’t necessary, showing that DA in the monkey

striatum aided in encoding the sequence of movements necessary to push the three

buttons as one motor skill.

Neurochemical studies also show that an optimal level of DA in striatum is impor-

tant for the selection or exploration of appropriate behaviors (Graybiel and Rauch,

2000). DA antagonists disrupted the rats’ ability to explore — try out different motor

skills without being cued to do so — if the current one was not accomplishing the

task (Cools, 1980). DA antagonists also resulted in inappropriate behavior selection

in the rat (Pellis et al., 1993).

Summary

In this section, I reviewed experimental evidence using a range of techniques:

neural recordings in animals, chemical and physical lesion in animals, neurochemical

manipulations in animals, and brain imaging studies in humans with and without

disorders of the BG. All studies coupled techniques with behavioral tasks. While the
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studies are not conclusive, partly due to the necessary lack of precision of some of the

techniques, their conglomerate results strongly support the notion that the BG and

DA play an intimate role in motor skill acquisition.

2.4 Functional Mechanisms

In the previous sections, I outlined anatomical and physiological properties which

provide the cortex, BG, and related motor areas with tools that aid in the acquisition

of motor skills. I have also described experimental studies showing that the BG

and DA are critical in the learning and execution of motor skills. In this section,

I discuss, on a conceptual level, how these functional mechanisms are used in this

thesis. What immediately follows is a description of a generic motor skill acquisition

task; the description also illustrates the general level of abstraction I use in this

thesis. Following that, I discuss how the brain areas described earlier can be used to

accomplish the task.

Generic task

As discussed in the introduction, the type of motor skills I investigate in this thesis

involve solving a task that can decomposed into a sequence of discrete subtasks. Thus,

the learner, or agent, must solve a sequential decision problem in that it must make

a sequence of decisions to accomplish the a task. What decision the agent makes

depends on the environmental situation, or state, it is in. When it executes a decision,

it may be transported to another state. Because decisions affect state, decisions are

often referred to as actions. When the agent selects an action, it receives an immediate

numerical reward that may be dependent on the action selected and state it winds

up in. A reward can be considered analogous to the amount of effort and/or time

required to make a movement. The typical task is for the agent to move to a goal

state while maximizing reward.
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Consider, as a simple example, a grid of squares (like a checkerboard). This grid

comprises the state space, the space of all states (S). s corresponds to one of the

squares and from each state, it must choose an action, a, from a set of available

actions, A, that move it to another state. For example, A can consist of four actions:

each moves the agent one square in one of the four cardinal directions (north, east,

south, and west). (In some tasks, the set of available actions depends on state, i.e.,

some actions are available in only certain states.) Every time the agent selects an

action, it receives a reward of −1; when it happens upon the square in the top right

corner (the goal state), it also receives a reward of +100. Since it’s goal is to maximize

reward, the agent must learn to move towards the top right corner in as few steps as

possible.

In this example, since there is only one goal, state is simply the position, or

square, the agent is in. However, in other tasks, there may be more than one possible

goal. In order to select the best action, the agent must have some representation

of both position and goal; thus, both may be used to define state. As described

under the functional roles of the cortex and cerebellum (page 15), one role of cortical

mechanisms is to provide a representation of state, including position and goal from

the checkerboard example. In addition, as described under functional roles of the

basal ganglia (page 25), the thalamus may also provide a less rich representation,

such as simply position in the checkerboard example. This distinction is examined in

Chapter 4.

Planning and error correction

As described in the earlier section, Overview of cortex and cerebellum, cortical

planning mechanisms can select actions through a planning process. In order to plan

well, an accurate representation of the entire state space (e.g., the entire checker-

board), goal (e.g., which goal must be reached to accomplish a task, if there is more

35



than one possible goal), and characteristics of the goal (e.g., at which specific square

on the checkerboard the goal is located). Planning mechanisms can then search

through possible trajectories of states so as to select the best action from the current

state to achieve a particular goal. This type of planning is described in greater detail

in Chapter 4 and used in both Chapters 4 and 5.

Error correction, on the other hand, involves selecting actions to transition to the

intended state. For example, if the agent intended to move to a particular square,

but for some reason ended up in a nearby square, an error corrector can calculate the

appropriate action to take to transition to the intended square. An error corrector

serves much the same function as a planner in the checkerboard example. However,

in environments where position is continuous (rather than a discrete square), an error

corrector can be used to ensure the agent reaches the intended position. Again, a

model of the environment is required (so as to be able to predict the effects of actions)

as is an explicit representation of the intended state. An error corrector is described

in greater detail and used in Chapter 3.

Although there is a distinction between planning and error correction, the two

mechanisms serve the same general purpose in this thesis: given sufficient compu-

tational and representational resources, they can generate a reasonable solution to

a particular subtask or task. Thus, they are useful for selecting actions (or making

more complicated movements) during early exposure to a task.

Reinforcement Learning

As described under functional roles of the basal ganglia (page 25), the BG are

thought to learn how valuable each action is in each state through reward-related

learning mechanisms similar to those used in Reinforcement Learning (RL, Sutton

and Barto 1998). An action is selected by comparing the relative values of each

action from the current state. To behave “greedily,” the agent selects the action
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corresponding to the highest value. To learn the values of other actions, the agent

selects another action once in a while. The latter process is termed exploration and

is essential for finding the best action for a task.

In terms of the generic task described above, the value of an action from a par-

ticular state is the sum of expected future rewards received when taking that action

from that state and selecting the best possible actions — based on its current value

estimates — after that. In the checkerboard example, if the current position of the

agent was one square south of the goal, then the value of taking action north from

that square would be −1 + 100 = 99. Similarly, if the agent was two squares south of

the goal, the value of action north is 98.

The value of each action is learned through experience — trying out different

actions, visiting different states, and observing the consequences. If the consequences

are greater than expected (the current value), the value is increased; if less, the value

is decreased. Thus, the values represent the predicted consequences. In Chapter 3, the

consequence of an action is calculated by summing the rewards for each action taken

for a task. If Q(s, a) represents the value of action a taken from state s, then Q(s, a)

is updated by
∑
ri, where ri is the reward recieved at step i. This form of update is

often referred to as Monte Carlo update. In Chapters 4 and 5, the consequence of

an action is calculated by the immediate reward recieved and and value of the next

action taken: Q(s, a) is updated by r + Q(s′, a′), where r is the immediate reward

recieved and Q(s′, a′) is the value of the next action taken from the next state visited.

This general form of update, in which values are updated by other values, is referred

to as bootstrapping. Sutton and Barto (1998) describe other types of algorithms for

learning values. I describe the algorithms I use in more detail in their respective

chapters.

Unlike the planning and error correction mechanisms described in the previous

section, actions are selected through the relatively cheap (computationally) process of

37



comparing the values of actions. In addition, since there is no planning or calculation

of best action based on the environment or position of the goal, a model of the

environment is not needed. Thus, the computational and representational resources

required are less than those for planning and error correction.

On the other hand, RL mechanisms are not as useful for early learning of a

task. The values of actions are typically initialized to some equal number or random

numbers; thus, during early exposure to a task, even greedy actions result in poor

performance. Exploration and practice — solving the task many times — is required

to properly learn the values. Because proficiency in motor skill execution requires

practice, there is an opportunity for the learning and control mechanisms of the BG

to participate motor skill acquisition.

Transfer of control

As discussed in the previous two sections, planning and error correction mecha-

nisms are useful during early exposure to a task, but RL mechanisms have advantages

after experience is gained. Experimental evidence cited in the earlier section BG in

Motor Skill Acquisition show that as the animal repeatedly accomplishes the task, the

role of the BG is more prominent. In addition, some imaging data suggest that the

role cortical planning areas decrease as the animal repeatedly accomplishes the task.

other studies show how important the BG is for the learning and execution of motor

skills. These data combined suggest that control mechanisms associated with corti-

cal planning areas dominate control early in learning a motor skill, but mechanisms

associated with the BG dominate control later.

The learning mechanisms of the BG require experience; cortical planning mecha-

nisms provide experience early in learning in the form of reasonable behavior. Thus,

after the values of actions are learned to some degree, the BG can take over control

in a more efficient manner than cortical planning mechanisms. In addition, as dis-
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cussed under the section Exploration (page 21), the BG can try out different actions

or movements and use reward-related learning to evaluate them. Such exploration

can lead to behavior indicative of motor skills.

The transfer just described corresponds to the “three stages of skill learning” the-

ory of Fitts and Posner (1967). The first, cognitive, stage occurs early in learning

and corresponds to the subject merely trying to ascertain the goal of the task. In my

formulation, this information is given to a large degree and cortical planning mech-

anisms, associated with cognitive aspects of behavior, control behavior. During the

associative stage, performance (e.g., speed of movements) increases due to adjust-

ments made to the initial solution, including finding better motor commands and

sensory information. In addition, explicit representations of the task exert less influ-

ence, suggesting that the subject is less “aware” of the intricacies of the movements.

Most of this thesis focuses on changes in behavior that could be described as part

of the associative phase. Finally, the autonomous stage is the result of much prac-

tice and describes behavior executed with very little conscious control. The results

presented in Chapter 4 of my thesis can be applied to this phase.
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CHAPTER 3

COARTICULATION

3.1 Redundancy

In the context of motor control, most animals, including humans, work with a

redundant system. There are many joint configurations that enable one’s hand to

grasp an object, there are many patterns of muscle activity that will produce the

same joint movements, there are many ways to accomplish a task, and so forth.

There are many more degrees of freedom (DOFs) to be controlled than are required

for most tasks. Our central nervous system must solve an ill-posed problem in that

there is rarely a unique solution.

A single task

While the “degrees of freedom problem” (Bernstein, 1967) makes control difficult,

it also affords us the opportunity to maximize secondary objectives when accomplish-

ing a task. In Figure 3.1A, the task is to move from the rectangle labeled Start to the

ellipse in one movement, represented by an arrow. The fastest movement is repre-

sented by the arrow labeled Fastest. However, what if there were noise in the system

so that the actual outcome of the movement is drawn from a probability distribu-

tion centered around the expected outcome? In this case, the solution labeled Most

Conservative might be selected as deviations from its intended outcome would more

likely result in the task being accomplished than that of other solutions.

Maximization of secondary objectives may lead to a unique solution. Stereo-

typical patterns at all levels of control (i.e., neural activity, muscle activity, joint
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Figure 3.1. Schematic illustrating movement strategies in a two-dimensional space.
Each ellipse and circle represents the set of possible movements that satisfy the pri-
mary objective of a subtask. Movements are represented by arrows.

movements, etc.), both within and across subjects, leads many researchers to believe

that secondary objectives are maximized when we accomplish a task. Examples are

numerous (cf. Flash and Sejnowski 2001; Engelbrecht 2001) and include minimization

of muscular effort (Fagg et al., 2002; Pedotti et al., 1978; Collins, 1995; Mussa-Ivaldi

et al., 1988; Bizzi et al., 1991), minimization of derivatives of control and kinematic

variables (Flash and Hogan, 1985; Uno et al., 1989), and minimization of movement

variability (Bays and Wolpert, 2007; Todorov, 2002; Harris and Wolpert, 1998). By

comparing the solution generated by a model that maximizes one or more objec-

tives with that of human and animal behavior, we can ascertain how prominent the

objectives are. Each study referenced had successes and limitations.

A sequence of tasks

When there is an ordered sequence of tasks to be accomplished, additional ob-

jectives may be based on the entire sequence rather than just each individual task.

(To minimize ambiguity, henceforth I will refer to each individual task as a subtask

and the entire sequence as the overall task.) The influence of the overall task is seen

by observing how each subtask is accomplished. Figures 3.1B and 3.1C each depict
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two sequences: 1) move from the Start rectangle to the ellipse labeled subtask 1, and

from there to the circle labeled subtask 2a, and 2) from Start to subtask 1 to subtask

2b. In Figure 3.1B, the solution set that achieves subtask 1 intersects with that for

subtasks 2a and 2b. For simplicity, we will only consider minimizing path length in

Figure 3.1. The grey arrows depict solutions that are recursively optimal (Dietterich,

2000) in that only each subtask, not the overall task, is considered. The black arrows

depict hierarchically optimal solutions in that the overall task is considered.

Two differences between the recursively optimal and hierarchically optimal so-

lutions are readily apparent: 1) in the recursively optimal solution, the solution to

subtask 1 is the same for both overall tasks, whereas they’re different in the hierarchi-

cally optimal solution; and 2) with the hierarchically optimal solution, the solution to

subtask 1 is actually suboptimal when taking only subtask 1 into account. However,

the sacrifice made in accomplishing subtask 1 pays off when accomplishing the sec-

ond subtask. When humans and animals accomplish a sequence of subtasks, skilled

behavior exhibits characteristics of hierarchical optimality, suggesting that evalua-

tive feedback from the overall task is used in selecting movements. In the motor

control literature, such behavior is described as coarticulation; below I review some

behavioral examples.

3.2 Behavioral Examples of Coarticulation

The term coarticulation derives from studies of human speech production. Briefly,

an allophone is a particular speech sound, a phoneme is a set of allophones that serve

the same linguistic function (e.g., all allophones that signify an “n”), and articulation

is the act of producing an allophone. The same phoneme, and in some cases the same

allophone, can be produced through many different types of movements associated

with speech organs (such as the tongue, lips, throat, and lungs); the organs producing
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allophones

articulation
phoneme

Figure 3.2. Schematic illustrating sound as two-dimensional points or sets of points.
Allophones correspond to specific sounds and are shown as black circles. A phonemes
corresponds to a set of sounds that serve some linguistic function and is shown as the
amorphous shape. Articulations, which produce sounds, are shown as arrows.

the sound are called articulators. Figure 3.2 illustrates these concepts in a manner

analogous to Figure 3.1.

The redundancy in phonemes and articulation leads to characteristics similar to

those seen in hierarchical optimization: the particular allophone of a phoneme and

how it is articulated depends on context — the preceding and subsequent phonemes

to be articulated (Kent and Minifie, 1977; Abbs et al., 1984). For example, the “k”

phoneme in “keep” and “cool” are different allophones, selected because of the subse-

quent phonemes of “ee” and “oo,” respectively. In addition, because the “k” phoneme

is articulated mostly by the throat, and the “ee” and “oo” phonemes are articulated

mostly by shaping the lips and mouth, we activate both articulators at the same time

for the different phonemes — coarticulation. Strictly speaking, coarticulation refers

to the scenario seen in Figure 3.1B, where two tasks can be accomplished at once, and

is a special case of phonetic influence, where phonemes and articulators are modified

by context, such as the scenario in Figure 3.1C. Because of the similarities between

the control of speech and the control of other sequential motor tasks, researchers

have adopted the term coarticulation to describe the modification of movement based

on context (Figure 3.1C) and the special case of accomplishing two tasks with one

movement (Figure 3.1B).
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Coarticulation can be seen at the levels of joint configuration and hand trajectory

when tracking a known trajectory of targets in three-dimensional space (Breteler

et al., 2003). Similar to the examples in Figure 3.1, the first target was the same but

subsequent targets differed. Coarticulation was more pronounced with three targets

than with two, suggesting that behavior shows more coarticulation effects when the

task demands are greater. Similarly, when there are more DOFs with which to work

(allowing for greater flexibility and presenting a more demanding control problem),

coarticulation may be more pronounced. Jerde et al. (2003) examined the finger

and hand movements of sign language users as they performed finger spelling tasks.

Sign language exploits the many DOFs of the hand to create clearly distinguished

hand postures. They found that, like movements used in speech production, how

one finger-spells a letter depends greatly on context (the preceding and subsequent

letters).

Some types of behavior described as coarticulation can also be described as prospec-

tive coding or anticipatory activity in that the way a movement is executed may

indicate what subsequent movements may be. For example, the way an object is

grasped may indicate how one plans to use it (Johnson and Grafton, 2003; Cohen

and Rosenbaum, 2004).

Coarticulation is also seen in how discrete effectors, such as fingers, are recruited.

When a pianist plays an eight-note ascending scale, he plays the first three notes

with his thumb, index, and middle fingers (in that order), and then crosses his thumb

underneath the palm to play the fourth note with the thumb, using the index, middle,

ring, and pinky fingers to play the remaining four notes. If the sequence was only

four notes long, he likely would play the fourth note with his ring finger. Engel et al.

(1997) describe in detail how a piano player plays a fixed sequence of keys differently

depending on context; similar effects are seen in how violinists (Baader et al., 2005)

and typists (Soechting and Flanders, 1992) recruit their fingers.
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In the previous examples, coarticulation referred to how one accomplishes a sub-

task depending on context, analogous to Figure 3.1C. In some cases, two or more

subtasks can be accomplished concurrently, as depicted in figure 3.1B. When learn-

ing to reach for an object with the intention of grasping it, a subject learns to open

his hand while transporting it to the object. This act is referred to as preshaping

or prehension (Hoff and Arbib, 1993; Jeannerod, 1981) and can be generalized to

describe the behavior of some form of movement i + 1 occurring concurrently with

movement i. A similar behavior is seen in bimanual coordination. Wiesendanger and

Serrien (2001) review their studies in which a subject must open, and hold open, a

drawer with one hand while reaching into it to manipulate a small object with the

other hand. The subject learns to transport the object-manipulating hand along with

the drawer-opening hand such that both hands reach the drawer at almost the same

time. In these examples, the weak coupling of the degrees of freedom used in the two

movements allow for them to be executed simultaneously.

3.3 Search Strategies

What strategies does the brain use to search for movements from the possibly

infinite set of movements than can accomplish a task or sequence of subtasks? Below

I discuss three theoretical studies that specifically investigate coarticulation.

Rosenbaum and colleagues (Rosenbaum et al., 1993, 1995, 1999) developed a se-

ries of models in which solutions are created from a linear combination of stored

solutions, weighted by their error terms (based on a weighted sum of accuracy and

specified secondary objectives). I refer to this set of models as the Rosenbaum model.

For a sequence of movements, Rosenbaum et al. (1995) suggest that one plans the

entire sequence of movements explicitly before movement onset. In reaching for two

sequential goals, their model finds the least cost configuration that reaches the second

goal from the starting configuration, and then finds the configuration for the first goal
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that minimizes the cost it takes to move from the staring configuration and then to

the second goal. The first goal is subordinate to the second goal. Rosenbaum et al.

(1999) modified the model by creating new configurations based on a noisy version of

a stored one deemed best for the task. Crucial to their model is the ability to store

many candidate configurations, evaluate them off-line based on some error term, and

linearly combine them based on their errors for each goal. Although an overall task

evaluation is not specified, such an evaluation could be easily integrated into their

model.

Jordan and Rumelhart (Jordan, 1992; Jordan and Rumelhart, 1992; Jordan, 1990,

1988) used supervised learning neural network models to study the effects of secondary

objectives on movement selection when hitting a sequence of goals. I refer to this set of

models as the Jordan model. The error term includes a smoothness objective (Jordan,

1988), defined as the Euclidean distance between joint configuration at time t with

the configuration at t+1. In addition, the model allows some configuration variables

to be “flexible,” depending on the current goal. Some variables were allowed to take

on any value, be within a certain range of values, or be below or above a certain

value for a particular subtask. The supervised learning algorithm exploits the added

redundancy to set that variable up so that it was positioned to best accomplish the

task for which it was needed. Both the smoothness objective and the flexibility of

some variables resulted in behavior described as coarticulation.

Guenther (1995) developed a model of speech production in which phonemes were

represented as target regions in articulation space (analogous to joint configuration

space). I refer to this model as the Guenther model. The transition from one phoneme

to the next takes place along the shortest path. Because phonemes are sets of sounds,

if the next phoneme does not require any change in a subset of articulatory vari-

ables (e.g., lip formation), that subset will not be changed. This leads to behavior

described as coarticulation in the strictest sense. Another effect of using the shortest
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path is that the articulation of the current phoneme depends on the articulation of the

preceding phoneme, an influence sometimes referred to as carry-over coarticulation.

Anticipatory coarticulation, in which subsequent phonemes influence the current one,

is produced by a planning process in which articulation of the current phoneme is

restricted to coincide with the range of variables used in subsequent phonemes. An-

ticipatory coarticulation is produced by a different process than carry-over or strict

coarticulation.

In all three models, movements are modified through the direct influence of sur-

rounding movements — they are explicitly “blended” together, an understandable

strategy considering the behavioral characteristics of coarticulation. I use the term

directed search to refer to searching for better movements using knowledge of other

movements and subtasks. However, the neural mechanisms that allow for blending

have not been discussed in the models mentioned above. Do we explicitly blend

movements together, or can a more general form of search contribute to the observed

behavior?

A more general form of search and evaluation may have advantages over blending;

blending assumes that the most similar movements result in the best solutions. Such

a strategy is understandable when speed is important. However, Jerde et al. (2003)

bring up an interesting point in their analysis of finger spelling: not all motor tasks

have the same goal. In the case of sign language, speed is not the only, or even

the primary, objective. The letters and concepts indicated by the hand and finger

configuration must be distinguishable. Thus, if similar hand and finger configurations

indicate two different letters, signing those letters in similar ways to enable a smooth

transition is not desirable. Rather, one would want to augment the difference between

the two letters and thus choose dissimilar hand and finger postures. These effects were

seen in Jerde et al. (2003).
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Action Modification

Because the neural mechanisms of blending are not understood, and because a

more general search may have advantages, I suggest that the behavioral characteristics

of coarticulation can arise from undirected search, in which search is not confined to

directions dictated by knowledge of other movements or subtasks. In the rest of this

chapter I use the term action to refer to movement to keep terminology within this

thesis harmonious.

To implement undirected search, actions can be modified by varying the current

best action in any direction (as opposed to a subset of directions, as would be the

case in directed search) and, if the result is better, setting that as the best action.

I define here a reward function as a function over all possible actions such that its

value is the reward for executing that action. Action Modification may lead to an

optimal solution if the reward function is of a fairly simple form, such as the convex

function in Figure 3.3A. The search for the best action is analogous to “climbing

the hill” to reach the peak of the reward function. Figure 3.3B is a bird’s eye view

of part of the hill and illustrates the concept of Action Modification. Thick arrows

indicate modifications that result in better actions, while thin arrows indicate those

that do not. Knowledge of the shape of the reward function would enable a much

more efficient search in that all modifications could be directed toward the peak, as

would be used in directed search. However, in many cases, such knowledge is not

available. The search strategies discussed in the previous section substitute another

function (e.g., the inverse of an error function based on some objective) for the true

reward function. While directed search efficiently climbs the substitute function, it

may not climb the true reward function. Because undirected search is not confined

to search in directions dictated by a substitute function, and actions are evaluated

based on reward, it may be able to find the peak of the true reward function. In

addition, because motor skill acquisition requires repeatedly accomplishing a task
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Figure 3.3. A,B,D, and E: examples reward functions. The higher the function /
lighter the color, the greater the reward. B: Schematic of Action Modification. Thick
arrows represent modifications that result in greater rewards, thin arrows represents
modifications that do not. C: follows same conventions as those in Figure 3.1.

(i.e., practicing), the opportunity exists for undirected search to participate in finding

better actions. A model described in Rosenstein and Barto (2001) and Rosenstein

(2003) uses a search process similar to that described in this section to show that

unexpected solutions can be found by undirected search.

Ensuring subtask accomplishment

When searching for actions that best accomplish the overall task, we do not have

to consider actions that do not accomplish the required subtasks. Some non-biological

models of motor control, computer science, and robotics explicitly restrict search to

solutions that do not interfere with the primary objective of the task. Examples

include restricting exploration or modification to directions that bring the system
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closer to achieving the primary objective (Perkins and Barto, 2001; Perkins, 2002;

Torres and Zipser, 2004), maximizing secondary objectives only if they don’t interfere

with the primary objective (Coelho and Grupen, 1997; Rohanimanesh et al., 2004),

and explicitly projecting the actions for secondary objectives into the null space of the

primary objective (Platt et al., 2002). (The term null space has a strict mathematical

definition, but for our purposes, we can think of a null space of a goal as the space

of all movements that accomplish that goal.) The exploration theory of Mink (1996)

can be interpreted as the BG exploring only within the space of motor commands

that achieve the goal. However, Mink does not explicitly suggest this and there is no

non-speculative reason to think this restriction exists. While restrictive exploration

can be useful, non-restrictive exploration cannot be ruled out. With the aid of the

cortical and cerebellar functions (pg. 15), a mechanism does exist to ensure that the

goal of the subtask is accomplished even if the exploration is not explicitly restricted

to the null space.

In the context of Action Modification, the cortex and cerebellum can act as an

error corrector, an abstract representation of which finds the shortest path from a

point to the goal. Consider Figure 3.3C: the grey arrow represents the current best

action, and the black arrow represents an exploratory action (such as those illustrated

in Figure 3.3B). Since the exploratory action did not accomplish the goal, an error

corrector is recruited to find a path toward the goal. A set of models by Fagg and

colleagues (Fagg et al., 1997a,b, 1998), described in Chapter 6, uses such an error

correction mechanism. The combination of undirected search and error correction, in

effect, searches the null space of a task

Action Selection

If the reward function is complicated, action modification alone may not be suf-

ficient to find the highest reward. Such is the case when the reward function is
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“bumpy,” i.e., there are many points at which the second derivative is zero. Figure

3.3D illustrates an example of such a case. If variability was high enough, Action

Modification alone may be enough to discover the highest peak in the reward func-

tion. The scenario in Figure 3.3E, though, presents an even more complicated reward

function such that the variability in Action Modification would have to be very high

to discover the optimal solution. Such a high variability may result in many poor

actions.

A complicated reward function is readily apparent when multiple discrete effectors

can accomplish a task, e.g., when the task calls for the selection of one of several fingers

or one of two hands. The use of each effector can be modified to make it better, but it

is unlikely that modification of one effector would smoothly lead to the use of another.

Rather than rely solely on the modification of one action, several actions can be kept

track of, e.g., the use of each effector. Each action undergoes its own modification

and the learning agent selects from them. Thus, search occurs on more than one level.

It is likely that for some tasks, one effector may have two radically different locally

optimal solutions so that a multi-level action search is necessary to find the globally

optimal solution. For the purpose of this chapter, though, I define Action Selection

as the selection of one effector from a set.

3.4 Hypotheses

In light of preceding discussion, I present two hypotheses

1. Undirected search, evaluated by overall task performance, can account for learned

behavior described as coarticulation. Undirected search contrasts with previous

theories, in which actions are modified through the influence of other actions

or a planning process (directed search). In undirected search, the influence of

other subtasks is felt by using only overall task performance as evaluation, a

form of hierarchical optimization.
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Figure 3.4. Schematic of “robot” used in simulations. Robot is planar and has a
total of 10 DOFs. The base is mobile and can move vertically and horizontally. Each
arm has four rotational joints, and no joint limits are imposed. Each arm link is one
unit in length, and the base is a rectangular box which is one unit wide and 0.2 units
high. This design is inspired by designs used in Jordan (1992); Jordan and Rumelhart
(1992); Jordan (1990, 1988).

2. For some tasks, a multi-level exploration strategy, Action Modification and

Action Selection, finds better solutions than either alone.

I investigate these hypotheses by implementing Action Modification and Action Se-

lection with a simulated “robot.” The model is described next.

3.5 Model

I investigate how behavior described as coarticulation can occur with a simulated

redundant system: a planar kinematic “robot” with two 4 DOF arms attached to a 2

DOF base (Figure 3.4). The arm DOFs are rotational joints and the base DOFs are

translational joints. The overall task for the robot is to hit a series of goals with one

of the two end-effectors (henceforth referred to as “hands” for brevity). Completion

of the overall task constitutes a trial. Hitting each goal is referred to as a subtask,

and the locations and order of the goals are known. Each goal is a circle of fixed

radius (0.1) centered on its defined location, which is represented as an (x, y) pair of
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coordinates. The goal is referred to as g and its location is xg. The robot design was

chosen for the following reasons:

Redundancy: The redundancy allows it to display characteristics of coarticulation,

both in how an arm is used and which arm is used to hit a goal.

Simplicity: The simplicity of the robot design allows us to avoid distractions which

may accompany a more complicated system.

Similarity to Animals: While the robot design is simple, we can draw analogies

between its design and behavior to that of animals.

Similarity to Other Models: This design is based on that of the Jordan model.

Movement

The 10 DOFs of the robot are represented by its joint configuration, q, a 10-

element vector of which each element specifies the value of the corresponding joint.

The robot’s starting joint configuration is q0; it must choose a new joint configuration,

qg, to which to move to hit goal g. Thus, for a sequence of three goals, the robot

must take three actions to move from q0 → q1 → q2 → q3. The robot moves from

one configuration to the next in a step-wise manner:

q← q +m
qg − q

||qg − q|| ,

where || · || refers to the Euclidean norm and m is a scalar, set to 0.01. The robot

moves in the direction of (qg − q) with a magnitude of m at each step of movement.

For the sake of convenience, the number of steps the robot takes to make a movement

is analogous to the amount of time the robot takes to make that movement, and the

robot moves with a “constant velocity.”
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The learning agent chooses a hand by selecting an action, a, and target joint con-

figuration (qg) for goal g. Movement begins and continues until one of two conditions

are met:

1. the extrinsic position of the chosen hand (xa), calculated at each step via for-

ward kinematics of q, reaches its expected extrinsic position (E[xa]), calculated

via forward kinematics of qg:

||xa − E[xa]|| ≤ θa,

where θa is the level of accuracy it must achieve and is set to 0.1 in the following

simulations.

2. the extrinsic position of the chosen hand reaches the current goal:

||xa − xg|| ≤ θg,

where θg is the level of accuracy the agent must achieve, i.e., the radius of the

goal, and is also set to 0.1.

The movement process described in this section is referred to as Move(q,qg, a,xg).

Planner

The Planner, A, provides a mechanism by which a subtask can be accomplished

from any joint configuration, but it does not take into account the overall task. As

implemented in these simulations, A calculates a joint configuration based on the

positional error between the chosen hand and the current goal. The error in extrinsic

space is converted to a target joint configuration via an iterative process using a

linear approximation (the Jacobian matrix), summarized in Table 3.1. The solution

54



xa ← F (qa) calculate xa

while ||xa − xg|| > θg compare xa with goal position
qa ← qa + αJa(xg − xa) modify qa to decrease ||xa − xg||
xa ← F (qa) calculate xa again, with new qa

Table 3.1. F (qa) returns xa via forward kinematics, J refers to the Jacobian matrix,
the superscript a indicates that only elements related to the base and the chosen
hand are considered (i.e., the four elements of q dealing with the other hand are not
modified at all), and α is a small positive number (set to 0.05 in these simulations).

found by A is akin to taking the shortest route to a goal in extrinsic space, a form

of recursive optimality. Although the transformation is non-linear, using a linear

approximation in small increments allows us to find a target joint configuration such

that ||xa − xg|| ≤ θg. This iterative process is denoted as A(q, a,xg) and is used to

find an initial set of joint configurations and to corrections if necessary.

Value-based controller

The Value-based controller, B, executes three processes: Action Selection, Action

Modification, and Updates the actions accordingly. These processes are described

below and are summarized in Table 3.2.

Action Selection

Action Selection is analogous to discrete decision-making used in Reinforcement

Learning. A look-up table is kept which specifies how valuable each action is in each

state. The table is referred to as the Q-table and is ‖S‖×‖A‖, where S is the set of all

states and A is the set of all actions. In these simulations, there are only two actions:

use the left hand or use the right hand. State can be as simple as just the current

goal, but for tasks which use both hands, I use s = (g, ag−1), where g is the goal to

be hit and ag−1 is the action (hand) used for the previous goal. This representation

is useful as the configuration of the robot when it uses its left hand to hit a goal will
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be very different than its configuration when it uses its right hand. Including the

hand used to hit the previous goal captures much of the distinction without having

to represent the actual configuration. Also, it only increases the state space from ‖G‖

to ‖A‖‖G‖ − (‖A‖ − 1) (the state for the first goal does not include ag−1). For the

experiments I run, no further detail in state representation is required.

Each element in the Q-table, Q(s, a), is the highest reward associated with se-

lecting action a from state s. I adopt the typical ε-greedy exploration, in which the

selected action is the argmaxaQ(s, a) (1 − ε) proportion of the time, and a random

action ε proportion of the time. (0 ≤ ε ≤ 1 and is small. I use ε = 0.2 in my

simulations.)

Action Modification

Along with the Q-table is an ‖S‖ × ‖A‖ configuration table that stores q∗(s, a),

the current best configuration for each state and action. When action a is chosen

from state s, the robot uses a modified form of q∗(s, a) to attempt to hit the goal.

Actions are modified according to the general scheme illustrated in Figure 3.3C —

noise is added to the variables of the chosen configuration: q̃ = q∗(s, a) + ησ, where

ησ is a vector where each element is randomly chosen from a zero-mean Gaussian

distribution with standard deviation of σ = 0.05 in these simulations. The robot

moves from q toward q̃ via Move(q, q̃, a,xg). If, upon completion of movement, q

does not result in the selected hand hitting the goal, a corrective movement is made

via A(q, a,xg). The final configuration is denoted q′(s, a).

Update

The sum of the rewards incurred for making all movements necessary to accomplish

the entire task, r, is recorded. For each state-action pair, (s, a), visited, if r > Q(s, a),

then Q(s, a) ← r and q∗(s, a) ← q′(s, a). Thus, actions are modified in a way best
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q← q0 set the initial values of q, r, and a
r = 0
a← ∅

For g = 1, ..., ||G||

ag−1 ← a
s← (g, ag−1) determine the state

a← argmaxaQ(s, a) ε-greedily Action Selection
q̃← q∗(s, a) + ησ Action Modification

q←Move(q, q̃, a,xg) Move
r ← r + rmove record reward of movement

if ||xa − xg|| > θg Make correction if necessary
qc ← A(q, a,xg)
q←Move(q,qc, a,xg)
r ← r + rmove

q′(s, a)← q record final configuration

For each (s, a) visited Update
if r > Q(s, a)

Q(s, a)← r
q∗(s, a)← q′(s, a)

Table 3.2. Summary of Value-based controller.

for the overall task, and the inclusion of A constrains search to movements that

accomplish the subtasks.

3.6 Action Modification

The robot must hit a sequence of three goals with just its right hand (hence, there

is no Action Selection). The starting configuration (q0) of the robot has its base

centered at (0, 0) and its right arm extended toward the right. The sequence of three

goals are aligned vertically. In one simulation, the goals are ascending : (6, 0.1), (6, 2),
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Figure 3.5. Illustration of joint configurations used to hit each goal. The order in
which each goal is to be hit is indicated by a number above the goal. The reward for
each movement is indicated to the right of each goal. The dashed lines meet at the
point (0, 0).

and (6, 4), in that order. In another simulation, the goals are descending : (6, 0.1),

(6,−2), and (6,−4). The position of the first goal, (6, 0.1), is the same for both cases.

For both sequences of goals (ascending and descending), the Planner, A, was

used to find the initial set of joint configurations to satisfy the overall task. The

configurations are plotted on the left graphs of Figure 3.5, where the top graphs plot

the solutions to the ascending task and the bottom graphs plot the solutions to the

descending task. For each goal, g, the reward incurred for moving from qg−1 to qg

is noted; the sum of these is the total reward. The right graphs of Figure 3.5 show

the set of joint configurations for the two tasks after Action Modification (for 5000
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trials). These results are taken from one sample run; all other runs exhibited very

similar results (not shown).

The rewards for each movement and for the overall task are indicated in Figure

3.5. For both tasks, Action Modification yields a better set of joint configurations

than A alone did. The learned strategy used a q1 that was suboptimal in isolation

but was better for the overall task. In addition, although the first goal was the same

for both tasks, the joint configuration the robot used to hit the first goal differed

between tasks — how the subtask was accomplished depended on context. Thus, the

robot’s behavior displayed characteristics of coarticulation, supporting hypothesis 1.

Comparison with other strategies

In this section, q0
g denotes the configuration used to hit goal g as specified by the

initial solution, and qg denotes that as specified by the learned solution. The learned

q1 could be interpreted, on a qualitative level, as a “blending” of the initial solutions:

q0
1, q0

2, and q0
3. Such behavior results from the specification of the reward signal to

be the negative of the number of times steps each movement took.

In the Rosenbaum, Jordan, and Guenther models, configurations used for one goal

were modified based on configurations used for other goals: blending was explicit.

In contrast, my model does not explicitly impose such guidance. Rather, similar

effects are the result of hierarchical optimization — using an evaluative signal based

only on the overall task. In addition, the only constraint my model uses to modify

movements is that each subtask is accomplished; the other three models limit search

to directions toward configurations used for other subtasks. The lack of limitations

used in my model may allow it to develop solutions that cannot be specified by explicit

blending. In the next few subsections, I compare strategies developed by my model

with strategies as suggested by the Rosenbaum, Jordan, and Guenther models.
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Solutions as non-negative linear combinations of past solutions

When given a set of initial solutions for each goal, q0
g, blending could be interpreted

as modifying each qg toward some additive combination of every q0
g. In other words,

blending suggests that the learned solution for goal g, qg, is a non-negative linear

combination of all initial solutions:

qg =
∑

g∈G

cgq
0
g,

such that each cg ≥ 0. To determine if my model follows such a strategy,
∑

g∈G cgq
0
g

was fit to each qg for the ascending task (Figure 3.5, top right) as learned by my

model. Coefficients were found by minimizing the following error function under the

constraint that each coefficient is ≥ 0:

∥∥∥∥∥∥
qg −

∑

g∈G

cgq
0
g

∥∥∥∥∥∥

2

.

The fitting procedure ran for 300,000 iterations, or until the coefficients ceased to

change at all, with a step-size of 0.001. Best fit results are displayed in Figure 3.6.

For clarity, results are separated by goal. q0
g for each goal is displayed in each graph

in light grey; the best fit qg is displayed in black with markers at each arm joint; the

qg as learned by my model is displayed without markers. Also plotted as bar graphs

for each goal is ∆q, the element-by-element difference between the learned solution

and the fitted solution; ‖∆q‖ is indicated as well.

Immediately apparent is the large difference between the learned solution for goal

1, q1, and the best fit configuration. This is because, with the initial solutions, the

arm only curled upwards; however, in q1, the arm curled downward. The constraint

that the coefficients be non-negative cannot capture the downward curl (the elements

of q1 corresponding to the arm did not lie in the range of elements as specified by the

initial solutions).
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Figure 3.6. Illustration of the joint configurations used to accomplish the Ascending
task. For each graph, the initial solution is drawn in light grey, the learned solution
(Figure 3.5, top right) is drawn in black without markers at the joints, and the best
fit solution (see text) is drawn in black with markers at the joints. The bar charts
show the difference (∆q) between the learned solution and the best fit configuration
by joint variable. “0” indicates no difference. The four arm joint variables start
proximally (shoulder) and end distally.

The Rosenbaum model modified earlier configurations based on later ones; such a

modification would result in little or no change in q3. However, ‖∆q‖ for the first and

third goals was almost double that for the second goal, indicating that the strategy

developed by my model does not coincide with that of the Rosenbaum model.

The coefficients, cg, were constrained to be non-negative so as to preserve the

strategy of modifying one configuration toward another. Rosenbaum et al. (1999) used

such a strategy in obstacle avoidance, in which movement was toward (1−κ)qg +κq′,

where q′ was a configuration that avoided an obstacle. κ varied over the course

of the movement, depending on when the obstacle was expected to be encountered.

However, it is conceivable that configurations may be modified toward an unrestricted

linear combination of the initial solutions. Such a case yields best-fit configurations

closely matching learned configurations: ‖∆q‖ = 0.067, 0.127, and 0.110 for the

three goals, respectively (best-fit configurations were visually very similar to learned

configurations and thus were not plotted). Interestingly, ‖∆q‖ for the first goal was

the lowest, further disagreeing with the strategy employed by Rosenbaum.
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Figure 3.7. A: Representation of vectors in configuration space. For clarity, the
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starting configuration. The circles represent subsets of joint configuration in which
the end-effector hits the indicated goal. B through G: bar graphs indicating the
Euclidean distance between vectors (see titles of graphs and text) for configurations
corresponding to each goal. g = 1, light grey, g = 2, medium grey, g = 3, dark grey.
A and E: stacked bar graphs.

Strategies represented by changes in joint configurations

Choosing configurations from the non-negative linear combination of initial solu-

tions may impose overly stringent restrictions (though allowing negative coefficients

expands the search space greatly). However, the general strategies suggested by the

Rosenbaum, Jordan, and Guenther models can be employed without such restric-

tions. Rosenbaum modified earlier configurations according to later configurations,

suggesting that learned solutions for goals early in the sequence would differ more

from initial solutions than those for goals later in the sequence. In other words,
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∥∥∥q0
g−1 − qg−1

∥∥∥ >
∥∥∥q0

g − qg

∥∥∥

for all goals. Jordan imposed a secondary objective maximizing similarity between

consecutive configurations. In other words, the objective was to minimize

‖qg−1 − qg‖

for all goals. The Guenther model, through a planning process, followed a similar

strategy. It is helpful to assign names to these difference vectors: for goal g,

ag = qg−1 − qg

bg = q0
g−1 − q0

g

cg = q0
g − qg.

These vectors are schematized in the Figure 3.7A. The large circles indicate the sub-

sets of configuration space that accomplish goals g− 1 (bottom center) and g (upper

right).

The Jordan strategy is expressed as:
∑

g∈G ‖bg‖ >
∑

g∈G ‖ag‖. The Rosenbaum

strategy is expressed as: ‖cg−1‖ > ‖cg‖. These quantities are plotted as bar graphs

(Figures 3.7B and C) for each goal for the ascending task. The learned configurations

are more similar, overall, than the configurations of the initial solution (Figure 3.7B),

supporting Jordan’s strategy. This is not surprising as movement in my model is a

step-by-step transition from qg−1 to qg: the more similar qg−1 and qg are, the less

time the movement takes. Rosenbaum’s strategy is also supported: ‖c‖g decreases

from g = 1 to 2 to 3 (Figure 3.7C). The learned configuration for the last goal is more

similar to the initial solution than that for the earlier goals.

“Movement direction” can be interpreted as the change in joint variables from

one configuration to the next, represented by vectors ag (for the learned solution)
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and bg (for the initial solution). If movement direction for later goals changes less

than movement direction for earlier goals, ‖bg−1 − ag−1‖ > ‖bg − ag‖. Figure 3.7D

plots this quantity for each goal for the ascending task; it is lowest for goal 2, not

goal 3.

The Jordan and Rosenbaum strategies are supported by my model for the ascend-

ing task. However, the three goals, which proceed from bottom to middle to top,

possess a spatiotemporal pattern that may lend itself to such strategies. Such might

not be the case if the temporal sequence of the goals was reordered to be bottom,

top, middle. Figure 3.8 displays the initial (left) and learned (right) solutions for the

reordered task, and the bottom row of bar graphs in Figure 3.7 refers to the reordered

task. Again, and not surprisingly, the learned solution has more similarity than the

initial solution (Figure 3.7E). However, the learned configuration for the last goal de-

viates from the initial solution more than that for the other two goals (Figure 3.7F),

contradicting Rosenbaum’s strategy. Also, the movement direction for the last goal

is of greater magnitude than that of the other two goals (Figure 3.7G).

The analyses presented in this section shows that the undirected search used in

my model generates configurations that follow a strategy different than that of the

Rosenbaum model. On the other hand, the learned configurations from my model

and the Jordan model follow similar strategies. Such a similarity may result from

the similarity between the reward function I use and the the error function used

in the Jordan model. Finally, as illustrated in the beginning of this section, the

configurations found by my model cannot be generated by an additive blending of

initial solutions.

3.7 Action Selection Experiments

In these experiments, the robot must hit a sequence of four goals using either hand

for each goal. Because both hands are available, I refer to these tasks as Biarticulate
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Figure 3.8. Follows the same conventions as in Figure 3.5.

Tasks. The availability of a second hand allows us to investigate three types of

exploration, described briefly here and in detail in the following subsections.

Action Modification alone An action (hand) is not chosen by random ε propor-

tion of time. Rather, because Action Modification changes the entire joint con-

figuration of the robot, the hand closest to the next goal is chosen ε proportion

of time. Action argmaxaQ(s, a) is chosen the other (1− ε) proportion.

Action Modification and Action Selection This follows the scheme outlined in

the section describing the Value-based controller, except that the arm not chosen

for a goal undergoes no modification.

Leverage Redundant DOFs This does allow the arm not chosen for a goal to

undergo modification.

Comparison of the three conditions illustrates the utility of the different types of

exploration. Graphs displaying the robot’s configurations in this section use the

following convention: the right arm is drawn in black, the left arm is drawn in grey,

and the arm of the hand chosen to hit a goal is indicated with markers on its four

joints. Also, the starting configuration is all grey with no markers and the base is not

colored in.
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Action Modification alone

The starting configuration of the robot has its base centered at (0, 0) and both

arms extended upward, tilted slightly medial so that the end-effectors occupy the

same extrinsic location (to form a steeple-like pose,
∧

). It must use either hand to hit

the following sequence of four goals: (1, 3.7), (5, 3.7), (6, 2), and (7, 3.7) (Biarticulate

Task 1 ). In addition, the base is not allowed to move vertically. The Planner was

used to hit the series of goals with just its right hand and then with just its left hand.

The right hand resulted in a more rewarding sequence of movements; thus, the initial

solution used those configurations (top left of Figure 3.9).

Action Modification changes the joint configuration the robot uses to hit a goal;

such modification results in a change in end-effector location. To allow each hand

to be chosen with a non-zero probability, the hand closest to the next goal is chosen

ε-proportion of the time (this specification was used in the Jordan model). (This

does not necessarily guarantee that each hand will be used at some point during the

simulations; rather, it guarantees that each hand will be used if the simulations ran

forever.) The other (1 − ε) proportion of time, action argmaxaQ(s, a) was chosen.

Because the robot’s hands occupy the same location at the starting configuration,

each hand is chosen with equal probability ε-proportion of the time. The bottom

four graphs of Figure 3.9 display selected learned solutions (from 20 different runs; in

each run, the simulation ran for 10,000 trials). For some runs, the robot used its left

hand to hit one of the goals. Not surprisingly, in all cases Action Modification alone

resulted in better solutions than the initial solution.

Although the left hand was chosen to hit each goal at different points during each

run, the agent used just the right hand 9 runs out of 20 (lower right of Figure 3.9).

On other runs, the agent did use the left hand for one of the goals. Starting from the

most rewarding strategy to the least rewarding, the hand recruitment strategies are
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Figure 3.9. Follows similar conventions as in Figure 3.5. The right arm is drawn
in black; the left arm is drawn in grey. The arm used to hit a goal is drawn with
markers at the joints. Rewards for hitting each goal are indicated above the goal.
The hand recruitment strategy (i.e., which hand was used to hit which target) is
indicated by the box centered near point (1, 2). The top two graphs indicate initial
solutions using two different sequences of hand recruitment. The bottom four graphs
indicated learned solutions using Action Modification alone (see text). Note that in
some graphs (e.g., bottom right), because the robot did move very much from one
configuration to the next, the arms for one of the configurations are hard to see.
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to use the left hand for g = 3 (middle left), g = 1 (middle right), and g = 2 (bottom

left). In no runs did the agent use the left hand for the last goal.

The strategy of using just the right hand is worse than the other three strate-

gies. However, Action Modification alone does not produce enough exploration to

frequently place the left hand closer to the next goal. Because the Gaussian noise has

no limits, the robot in my model can eventually stumble upon the best recruitment

of hands. However, variability in real movements is not unlimited.

Is there a better hand recruitment strategy than the best found by Action Mod-

ification alone? Simply using the Planner to try out all possible sequences of hand

recruitment reveals that using hands left, right, left, right (LRLR, plotted in Figure

3.9, top right) for the four goals results in a much higher reward than the strategy of

just using the right hand. This suggests that explicitly trying out different hands for

the goals — Action Selection — may find a better solution.

Action Modification and Action Selection

In this section, Action Modification alters just the joint variables of the base and

the chosen hand; the joint variables of the other arm, referred to as excess DOFs, are

not altered at all. I discuss the effects of leveraging the excess DOFs with Action

Selection in the next section.

With Action Selection, in which a random action (hand) is chosen ε-proportion of

the time, a better solution is found than with just Action Modification alone. Starting

with the same initial solution as that in the previous section (use just the right hand

for all four goals), the learned solution adopts the strategy of alternating hands,

LRLR, in all 20 runs (Figure 3.10, left). The configurations of the learned solution

are visually very similar to those found by using just the Planner with the same hand

recruitment pattern (Figure 3.9, top right). Action Modification, though, alters the

configurations enough to find a much better set of configurations. Thus, hypothesis
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Figure 3.10. Follows the same conventions as in Figure 3.9.

2 is supported: Action Selection and Action Modification finds better solutions than

Action Modification alone.

The same strategy of hand recruitment can be found by simply trying out all

possible sequences of hand recruitment with the Planner, an easy proposition with a

small number of subtasks and actions. In a different type of task, Action Modification

can alter the strategy of hand recruitment. In Biarticulate Task 2, the starting

configuration of the robot and goals are similar to that for the Ascending task (Figure

3.5, top two graphs): the base is centered at (0, 0) and its right arm is extended toward

the right. However, the left arm is also extended toward the right, and the task is to

hit the following sequence of four goals: (6, 0.1), (5.375, 1.6), (6, 2), and (6, 4), using

either hand for each goal. Unlike Biarticulate Task 1, there are no restrictions on

the joint variables. The Planner was used to hit the series of goals for every possible

sequence of hand recruitment; the best initial solution used the right hand for each

of the four goals (Figure 3.11, top left), while the second best strategy was to use

RLRR ((Figure 3.11, top right).

After 20 runs of 10,000 trials each, two strategies were found: 1) use the right

hand for all four goals (Figure 3.11, bottom left), which was the same as the strategy

of the best initial solution, and 2) use the left hand for the second goal (Figure
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Figure 3.11. Follows the same conventions as in Figure 3.9. However, the reward for
each movement is indicated to the right of the goals, as in Figure 3.5. Dashed lines
separate three sets of solutions. The top set indicates initial solutions for two different
sequences of hand recruitment. The bottom left set indicates learned solutions in
which excess DOFs are not leveraged (see text). The bottom right set indicates
learned solutions in which excess DOFs are leveraged.
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3.11, middle left), which was the same as the strategy of the second best initial

solution. However, all 20 runs only used the best initial solution (RRRR) as a starting

point. Strategy 1 occurred 11 times, with a mean reward (± standard deviation) of

−352.7(±2.1). Strategy 2 occurred 9 times, with a mean reward of −350(±4.2).

Even though the difference in reward is small, it is significant (two-tailed unpaired

bootstrap test, p < 0.05, Cohen 1995). Thus, the combination of Action Selection

and Action Modification resulted in a novel strategy of hand recruitment in just less

than half the runs in this task; such a strategy was better than that of the best initial

solution.

Leverage excess DOFs

In the experiments from the previous section, the joint variables of the arm that

wasn’t chosen for a goal were not modified: qg(o) = qg−1(o), where o is the set of

indices of joint variables corresponding to the arm not chosen for goal g. However,

as evidenced by behavioral studies of tasks that use multiple discrete end-effectors

(Engel et al., 1997; Baader et al., 2005; Soechting and Flanders, 1992; Hoff and Arbib,

1993; Jeannerod, 1981; Wiesendanger and Serrien, 2001), the effector(s) not used for

the current subtask can be positioned to better accomplish future subtasks. As with

theories on single-effector coarticulation (e.g., the Rosenbaum, Jordan, and Guenther

models), it is reasonable to suggest that some form of future movements influence

how the DOFs of the other effectors are used.

In this section, Action Modification is used to modify all joint variables, including

those of the arm not used to hit the current goal. Resulting strategies are illustrated

in Figures 3.10, right (Biarticulate Task 1), and 3.11, bottom right and middle right

(Biarticulate Task 2). In Biarticulate Task 1, the strategy of hand recruitment re-

mained unchanged; in Biarticulate Task 2, allowing the other arm to move resulted in

yet another strategy of hand recruitment: RLLR (Figure 3.11, lower right). In both
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tions and tasks presented in this section. The particular strategy of hand recruitment
is indicated on each bar. Unlabeled dark bars: mean of all rewards within an explo-
ration condition, including all sets of hand recruitment patterns. If different patterns
of hand recruitment were found within an exploration condition, the separate patterns
are drawn with light bars. The higher the bar is, the more rewarding the strategy.

cases, it appears as if the use of the other arm was influenced by its configuration in

hitting future goals. Excess DOFs were recruited by a supervised learning or plan-

ning process in the Jordan and Guenther models, respectively. However, this strategy

was not explicitly implemented in my model; rather, it was the result of undirected

exploration and hierarchical optimization.

Summary of Action Selection strategies

Figure 3.12 charts the mean rewards of the three exploration conditions, hand

recruitment strategies, and tasks discussed in this section. Dark bars indicate the

mean reward for a particular exploration condition, while light bars show the differ-

ent strategies of hand recruitment found. (For Biarticulate Task 1, the combination

of Action Modification and Action Selection led to the same strategy of hand recruit-

ment, LRLR, for all runs. Hence, the mean reward is represented by a dark bar.) The

bar charts clearly show the effects of different exploration conditions: Action Mod-

ification alone does improve upon an initial solution, but it cannot be relied upon

to find the best strategy of hand recruitment. Action Selection tries out different
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hands some proportion of the time, even if they’re not considered a valuable choice.

However, by choosing them, and with Action Modification, a better strategy of hand

recruitment may be found. Finally, leveraging excess DOFs by positioning the arm

not used for a goal into a configuration useful for subsequent goals results in even

better solutions and possibly different strategies of hand recruitment.

3.8 Discussion

The results presented in this chapter show that undirected exploration can produce

behavior described as coarticulation. Crucial to this result is the use of hierarchical

optimization, implemented here with performance evaluation based only on the overall

task. The undirected search used in my model is a more general way to search for

solutions than (very reasonable) types of directed search, such as blending actions

together, restricting search to directions optimizing specific secondary objectives, or

planning. Two advantages of undirected search and hierarchical optimization are

readily apparent.

Advantage 1) The best solutions might not lie in the direction dictated by directed

search. The learned solutions of the Ascending task in the first set of experiments

were not a non-negative linear combination of initial solutions. Planning requires an

intimate knowledge of the system, environment, and task, and requires computational

resources. In some cases, it might be better to simply try different variations out and

observe the results. Also, while most instances of coarticulation can be described by

directed search to some degree, there may be subtle differences. Preshaping (Hoff and

Arbib, 1993; Jeannerod, 1981), mentioned at the beginning of this chapter, describes

the act of opening one’s hand while transporting it to an object to be grasped. How

the hand opens during transport is different than how it opens if it was already at

the object; coarticulation, in this case, it not simply initiating a subsequent action

while executing the current one.
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Advantage 2) Different tasks might have different objectives. Specification of

secondary objectives may aid in search, but good learned performance requires that

such specification is accurate. As discussed in Jerde et al. (2003), different secondary

objectives seem to be optimized, depending on the task. A more general performance

evaluation, such as the reward used in my model, can capture the different task

demands.

A form of undirected search with hierarchical optimality was previously imple-

mented on a three-link dynamic “weight lifting” robot arm (Rosenstein, 2003; Rosen-

stein and Barto, 2001). As with my model, initial solutions were generated and then

allowed to vary depending on reward for the overall task. The robot found different

types of learned solutions, and the learned solutions deviated greatly from initial so-

lutions. In addition, solutions found for one weight were different than those found

for another weight. Dynamics complicates the task significantly and makes planning

or specification of secondary objectives a much harder problem.

There are, of course, some disadvantages. Although undirected search may be able

to find solutions directed search cannot, it also looks for solutions in poor regions of

action space. It is likely that some combination of directed search and undirected

search is employed by our nervous system. The trade-off between directed search and

undirected search is similar to the exploitation-exploration problem of Reinforcement

Learning (Sutton and Barto, 1998; Barto and Dietterich, 2004). The values of ac-

tions must be estimated through experience — the agent must explore by trying out

different actions in order to find the best one. However, such exploration will yield

poor performance on some trials as the agent will inevitably try out poor actions. To

avoid worse performance, the agent should exploit the knowledge it already has by

selecting actions it estimates are the most valuable. Of course, then it cannot find

potentially better actions.
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An action selected from a particular state can be more rewarding than other

actions through one of two ways: 1) in context of other actions selected in other

states, as in biarticulate task 1 (Figures 3.9 and 3.10). The best strategy of hand

recruitment as found in the learned solution (Figure 3.10) was the same as that found

when the Planner was allowed to try out every possible strategy of hand recruitment

(Figure 3.9, top right). 2) With the addition of Action Modification, where actions

are modified and become more valuable, as in biarticulate task 2 (Figure 3.11). The

best strategy of hand recruitment found in the learned solution was different than

that found by the Planner. An action (hand) was modified to be more valuable than

other actions, even within the same context.

I know of no other study in motor control which investigates the interplay between

Action Modification and Action Selection. A similar interplay, though, is investigated

in studies of hierarchical Reinforcement Learning, a field that studies the use of

abstraction and hierarchy to better learn in large and complicated environments (cf.,

Barto and Mahadevan 2003). In this discussion, I essentially equate two types of

hierarchy: 1) options (Precup et al., 1998; Sutton et al., 1999; Precup, 2000) and 2)

task decomposition (Dietterich, 2000). While there are differences, such differences

are beyond the scope of this discussion.

An option is a policy defined over a subset of the state space in which actions

are selected to accomplish some subtask. For example, if the entire state space was

all positions in a building which included a set of rooms, an option recruited from

room 1 could be “move to the door.” Rather than make a decision at each and every

position encountered in the building, when the agent recruits an option, it makes one

decision (e.g., move to the door) and executes that option’s policy until the goal of the

option has been achieved (e.g., the door is reached) before making another decision.

Options are similar to actions. In task decomposition, a task is decomposed into a
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hierarchical set of subtasks. A decision to accomplish a particular subtask is similar

to a decision to recruit a particular option.

An option or subtask is analogous to an action in my model, which is a specifi-

cation of a joint configuration to which to move. Action Modification is analogous

to modifying the policy used in the option or subtask. An action/option/subtask

may not be considered valuable at first. However, modification may result in a better

way to execute the action/option/subtask, resulting in an increase in its value. We

see this effect in Figure 3.11, which shows how Action Modification leads to different

recruitment of hands.
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CHAPTER 4

AUTOMATIZATION

4.1 Automatic Behavior

We all have some concept of what “automatic movements” are. Anecdotal exam-

ples include typing a frequently-used password or even driving to work. The subjective

feeling of executing a sequence of movements automatically is distinct from that of

non-automatic movements, so much so that we are fairly certain that such a distinc-

tion exists in fact as well as in feeling. Automatic movements have been a subject of

great study since the days when psychology used methods based more in philosophy

than empirical science. According to most theories, the main characteristic of auto-

matic movements is that they are executed involuntarily. They are elicited directly

from sensation in a manner similar to the Cartesian reflex (Treatise on Man, Renè

Descarte). In his seminal work, The Principles of Psychology, William James (James,

1890) described an automatic movement (or, a habit) as “mechanically, nothing but

a reflex discharge” and suggested that “the most complex habits ... [are] nothing

but concatenated discharges in the nerve-centres.” The learned reflex description led

to the theory of stimulus-response (SR) learning (Thorndike, 1911; Washburn, 1916;

Watson, 1920), in which an action (response) is directly elicited by a stimulus (sensory

cue).

The link between automatic movements and volition (or, lack thereof) is so strong

that the existence of automatic movements was used in philosophical discussions of

consciousness. For example, in his theory of dualism, Descartes (in Meditations on

First Philosophy) suggests that the mind and body are distinct entities. The mind is a
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non-physical entity and responsible for volitional behavior, the body a physical entity

and responsible for automatic behavior. In the first two chapters of The Principles of

Psychology, where James discusses what psychology is and what the brain’s functions

are, James frequently discusses the relationship between automatic behavior and con-

sciousness. Because volition and consciousness are such vague concepts, “an outside

observer, unable to perceive the accompanying consciousness, might be wholly at a

loss to discriminate between the automatic acts and those which volition escorted”

(James, 1890). In short, automatic behavior is easy to perceive subjectively, so we

assume it exists. Its existence has profound ramifications on our understanding of

the mind. Unfortunately, its existence is hard to show and describe objectively. How-

ever, even if we constrain characterization to observable behavior, interesting traits

associated with automatic movements can be gleaned.

Speed

Many of the behavioral studies use a type of task called the serial reaction time

(SRT) task, used to assess capacity for learning sequences (Nissen and Bullemer,

1987; Keele et al., 2003; Matsuzaka et al., 2007). In a typical task, a subject must

execute a specific action (e.g., press button 1) in response to a stimulus (e.g., the

visual presentation of the numeral 1). The stimuli were presented randomly or in a set

sequence. After training, the subject executed actions faster for the set sequence than

for the random sequences, even if they were not aware of the set sequence. In some

cases, reaction times were negative, i.e., the subject began the next action before he

was cued to do so. Some of the increase in speed could be due to coarticulation effects

(although Matsuzaka et al. 2007 reported no difference in movement kinematics) and

the use of different sensory information (to be discussed in later chapters). However,

the effects of automatization cannot be ruled out.
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Interdependency

In automatic movements there is an interdependency between actions: observation

of one action predicts another with great accuracy. Muchiake et al. (2001) trained

monkeys to navigate a maze on a computer screen by using hand movements to

move a cursor to a goal; shorter paths were rewarded more. Goal location varied

between trials, but the starting point of the cursor was fixed. Some monkeys adopted

a strategy of using “sub-goals:” if there were points common to the paths toward

several goals, and alternate routes provided no advantage, the monkey would often

follow points along the common path.

In a sequential button pushing task, Matsumoto et al. (1999) trained a monkey to

execute a series of three button pushes in a set sequence on a 3x3 grid. After the task

was well learned, the monkey was tested with “random trials,” in which the third

button in the sequence was located in one of three random locations. For several

trials, the monkeys would continue to push the third button of the learned sequence

even though another button was lit, and then push the lit button. This suggests that

the original three-button sequence was executed as a integrated unit.

Berridge and colleagues investigated a type of grooming behavior in rodents,

termed syntactic chains (SCs, Berridge et al. 1987), related to learned automatic

movements. The SC consists of four phases of grooming: 1) the rat uses forelimb

strokes to groom its vibrissae, 2) eyes, 3) ears, and 4) then licks its body. Within an

SC, these actions occur in a set order, or sequence, with a probability 13, 000 times

greater than chance. However, the same individual actions can occur outside an SC,

and they appear in rodent behavior before development of the SCs, indicating that

the SC is an integration of existing actions. Once the first part is initiated, the rest of

the sequence can be predicted with 85% accuracy, suggesting that an SC is recruited

as an integrated unit.
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If the sequence of actions is learned as a unit, then the order of the actions is

learned. However, if, instead, the transition probabilities of the elements are learned,

then order is not important. For example, in both sequences, “ABAC” and “ACAB,”

the probabilities of B and C following A are 0.5 each. If, in an SRT task, a subject

was trained on one sequence and tested on the other, there should be no difference

in performance if only the transitions between adjacent elements is learned. Jackson

et al. (1995) showed that the order, not the transition probabilities, is learned.

Goal independency

We associate the execution of a sequence of actions automatically as executing

them without conscious thought. Another way to say this is that there is no decision-

making process involved once the skill is initiated – the sequence of actions is executed

without evaluating each action to decide how appropriate it is. In the previous section,

I used the Matsumoto et al. (1999) study to support the claim that, when executed

automatically, a sequence of actions is executed as a single unit. Part of the reasoning

behind this is that the three button pushes were executed regardless of how useful

they were — decision-making is eliminated from the process.

Dickinson (1985) explores this issue more directly with rats in an instrumental

conditioning task. Dickinson trained rats to hit one of two levers in order to receive a

reward, but he later devalued the stimuli used for the reward by, in a different context,

decreasing the rats’ motivation for them, pairing them with unpleasant stimuli, or

other manipulations. After goal devaluation, the rats were placed in the original

context and presented with the two levers. Rats that were trained for a long time on

the original task continued to press the same lever, thus obtaining the (now devalued)

“reward.” After a few trials the rat learned to change its behavior. Rats that were

trained for a shorter time on the original task immediately changed behavior. In the

former case, the action was considered automatic (or, in Dickinson’s terms, a habit or
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response). In the latter case, the action was elicited as a result of cognitive processes

the explicitly paired the action with the reward. Yin and Knowlton (2006) review

many manipulations and provide evidence that the basal ganglia are critical in the

development of habits.

4.2 Theoretical account of automatization

Sequence learning

The second characteristic of automatic movements, the interdependency of ac-

tions, is so prominent that many theoretical accounts of automatic movements focus

on the problem of sequence learning, in which one can predict an entire ordered se-

quence of elements given only the first few elements (cf. Dominey 2002). Most neural

network or connectionist models of sequence learning use recurrent connections, in

which some neurons’ outputs also serve as their own inputs (directly or indirectly, cf.

Doya 2002). They capture aspects of the history of the network, providing a form of

context. Even before computational models of neural networks were developed, re-

current connections were thought to be responsible for automatic movements. James

(1890) suggested that automatic movements are

due to the presence [in the brain] of systems of reflex paths, so organized

as to wake each other up successively - the impression produced by one

muscular contraction serving as a stimulus to provoke the next, until a

final impression inhibits the process and closes the chain.

While a simple stimulus-response chain (SR chain) may account for simple se-

quences of movements, many models exploit another property of some types of recur-

rent connections: internally-generated dynamics, in which the recurrent connections

cause the activation levels of neurons of the network to change over time without any

external influence (cf., Vogels et al. 2005; Guigon et al. 2002). For networks that use

neurons whose activation levels decay without excitatory input, internally-generated
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dynamics are also responsible for sustained activity, in which a neuron’s activation

level reaches a stable non-resting value.

By using the context and internally-generated dynamics afforded by recurrent

connections, neural networks are able to reproduce a variety of sequences. Most

models represent sequences in one of two ways. First, the output of the neural network

changes over time to represent the elements of the sequence in order (e.g., Dominey

1995; Berns and Sejnowski 1998). A network of this type essentially represents an

SR-chain: the activation levels of the inputs (stimuli) change and the network is

trained to produce the correct outputs (responses). Second, the temporal order of

the sequence (or possible sequences) is represented as a spatial pattern of activation

of the output units (e.g., Hopfield 1982; Beiser and Houk 1998). A network of this

type relies on internally generated dynamics so that its activity evolves over time

to settle on the correct representation. If trained properly, the network forms an

attractor state, a pattern of activity that the network will evolve to even if faced with

degraded initial inputs or externally applied perturbations.

Some neural network models are able to produce behavior more complicated than

reproducing specific sequences. Botvinick and Plaut (Botvinick and Plaut, 2004,

2006, 2002) present a three-layered network model in which context is represented by

internally-generated dynamics due to recurrent connections confined to the middle

(or hidden) layer. The output layer represented actions, which are communicated

to an environment, and the resulting change in environment is communicated to the

input layer. The Botvinick model differs from the previously cited models in two

ways: 1) the output layer only projects to the environment; no recurrent connections

emanate from it, and 2) it is trained over several sequences, each one a solution to the

same task. This flexibility is hard to capture with some architectures. The Botvinick

model is able to learn that several sequences are equivalent; each sequence is used to
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accomplish the task at different trials. Most other models would treat each sequence

as entirely separate entities.

Advantages of automatization

The models cited above show that simple computational mechanisms can learn

sequences. However, their functional advantages are not immediately obvious and are

not discussed in the presentation of the models (nor were they meant to be; the models

focused on how sequence learning might be accomplished, not why such learning is

advantageous). The implicit advantage is that simple computational mechanisms,

rather than more complicated ones, are used to reproduce a learned sequence.

Below I discuss the advantages of the use of simple computational mechanisms. I

also discuss how, and under what circumstances, simple computational mechanisms

can be trained.

Historical perspective

The three observable characteristics of automatized movements are an increase

in speed, interdependency of actions, and goal independency. While the functional

advantage of speed is obvious, there are no functional advantages of the other two

in of themselves (when considering execution of the sequence of actions in isolation

of a greater context). Rather, these characteristics may emerge from the use of

a mechanism to execute automatic movements that is simpler than that of non-

automatic movements. It is the use of a simpler mechanism that has advantages.

James (1890) suggests that a habit “diminishes fatigue” and “the conscious attention

with which our acts are performed,” and that “our lower centres know the order of

these movements,... But our higher thought-centres know hardly anything about the

matter.” James further surmises that

A strictly voluntary act has to be guided by idea, perception, and voli-

tion, throughout its whole course. In an habitual action, mere sensation
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is a sufficient guide, and the upper regions of brain and mind are set

comparatively free.

In essence, “conscious thought” takes effort, and without automatic movements,

we could not accomplish everyday tasks as each little act, like tying our

shoes or dressing ourselves, would require so much conscious effort that

we will be exhausted. ... The more of the details of our daily life we can

hand over to the effortless custody of automatism, the more our higher

powers of mind will be set free for their own proper work. There is no

more miserable human being than one in whom nothing is habitual but

indecision, and for whom the lighting of every cigar, the drinking of every

cup, the time of rising and going to bed every day, and the beginning of

every bit of work, are subjects of express volitional deliberation.

Again, James’ arguments depend on some concept of volition and consciousness.

Rather than try to define these concepts and that of “thoughtful effort,” I focus in-

stead on the computational resources a control mechanism requires to make a decision

(e.g., to select an action).

Conceptual model

Consider the following task: a learning agent starts off in position pt=0 and must

reach a goal position, pg. From each position, the agent can select one of several

actions, a, which transports it to another position. Thus, the agent experiences the

following chain of positions and actions:

pt=0 → at=0 → pt+1 → at+1...→ pt+n → at+n...→ pg.

By what mechanism does the agent select an action? Figure 4.1 illustrates, on a con-

ceptual level, three possible control mechanisms. The starting representation (cor-

responding to position pt=0), referred to as a state in the figure, is depicted as a
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Compare values
(Value−based,     )B

Cache policy
(Automatic,     )C

Plan
(Planner,     )A

Decisions

(e.g., actions)

Representations

(e.g., states)

Expected consequences

(e.g., predictions, forward models)

Possible outcomes

(e.g., goals, terminal states)

desired
outcome

(e.g., goal)

(e.g., goal position)
outcome

of desired
characteristics

(e.g., position)
immediate
sensations

Figure 4.1. Illustration of three types of controllers (labels on left). Each controller
uses some representation to select an action (arrows). The large circle (bottom right)
indicates representation: the smaller circles within it label features of representation.
Dashed circles and lines, used by the Planner (top), indicate expected representations
and actions encountered. Solid circles used by the Planner (top right) indicate final
possible consequences. The thick arrows (and thick dashed circles and lines) indicate
best actions and consequences.
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solid-lined circle on the left. The small circles within the larger circle represent im-

mediate sensations (e.g., position, dark circle), a label for the desired outcome (e.g.,

goal, grey circle), and characteristics of the desired outcome (e.g., goal position, un-

filled circle). From there, actions (arrows) can be selected.

A high level planning controller, depicted in the top part of Figure 4.1, explicitly

considers the long-term consequences of selecting each possible action. The conse-

quences include what the expected next position would be for each action, what

action it would select from those positions, and so on until it reaches the goal. The

consequences are depicted as dashed lines and circles. In order to plan, some repre-

sentation of the current position, the goal, and the position of the goal must exist;

hence, the state includes all three. The goal is the thick-lined circle at the right of the

diagram, the best expected consequences are drawn with a thicker dashed line, and

thus the best action is the thick arrow. Crucial to the planner’s success is a model of

the environment (i.e., all states, actions, transition probabilities, possible outcomes,

etc). If the goal (and hence the task) changes frequently, the planner is very useful

as it can adapt immediately. Each decision it makes is based on predicting its conse-

quences; if those consequences change, so do the decisions. However, it also requires

much computation, a rich representation, and an intimate knowledge of environment.

If, on the other hand, a particular goal is frequently encountered, use of the

planner requires unnecessary computational and representational resources. Rather

than predicting the consequences of each action, a simpler controller can keep track

of how “valuable” each action is from each state. (As used in this description, “value”

is intentionally vague so as to encompass any measure of what it means to achieve a

goal optimally. As used in typical RL applications, value is the expected cumulative

sum of rewards.) Value estimates are gained through experience; such experience

can be generated by the planner, selecting actions via some reasonable initial policy,

or even randomly selecting actions. Over time, the estimated value of each action
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from each state may be accurate enough to enable a value-based controller to select

appropriate actions by comparing the estimated values of each action (middle part of

Figure 4.1). The computational requirements are much less than those of the planner

as the consequences of each action are not determined. In addition, the agent does not

need a model of the environment; the value estimates are the only basis of comparison.

Nor does the agent need a representation of the characteristics of the goal (e.g., goal

position). However, it does require some minimal representation of goal, as the values

of actions for one goal may be different than those for another. Thus, state includes

current position and label for the goal. Finally, a representation of each action in

each state is required as the agent compares the values of each action.

If the same action is selected in response to the same immediate sensation most

of the time, regardless of goal, that policy (a mapping from sensation to action)

can simply be cached, or “hard-coded” (bottom part of Figure 4.1). This controller

requires the least computation as no alternative actions are even considered and uses a

simpler state representation (position, but no representation of goal). The savings in

representational and computational resources can be directed toward other tasks. A

similar scheme has been suggested by Logan (1988) (see also Logan et al. 1999), who

refers to complicated controllers as algorithmic and simpler controllers as memory-

based.

The use of all three controllers, with the lower ones requiring more training, can

enable an agent to accomplish a task immediately (assuming the planner has knowl-

edge of the environment), but use simpler controllers as they are trained. The simplest

controller produces behavior characteristic of automatized movements:

• If we assume that the fewer resources a controller needs to select an action, the

less time it takes to execute that action, then simpler controllers select actions

faster than more complicated ones.

87



• Because, by design, the goal is not represented with the simplest controller,

when the same action is elicited in response to the same immediate sensations,

trajectories common to multiple tasks will be cached.

• Also, again because goal is not represented, if the task changed, the mechanism

in Figure 4.1C would select the same action even if it is no longer appropriate

to do so.

I thus refer to the last controller as an automatic controller.

As opposed to most sequence learning accounts of automatization, which focus

on how one type of controller can learn a given sequence, this model focuses on how

different types of controllers are recruited to select the same actions. As a result,

the model determines what actions can be controlled by the automatic controller —

the sequences are developed, not given as training examples to be learned and then

reproduced.

4.3 Hypotheses

I implement the conceptual model described in the previous section with a com-

putational model, described in the next section. To keep the focus of the model on

decision-making and to avoid complications that may arise with more realistic envi-

ronments, the model is tested in a simple discrete-state discrete-action environment

in which executing an action causes a transition from one state to another. Such

environments can be represented in different ways. I use the “grid-world” represen-

tation common in the computational Reinforcement Learning literature (Sutton and

Barto, 1998), shown in Figure 4.2. Although this representation suggests a maze to

test navigational abilities, it is misleading to think of the grid-world in this way. It

merely provides a visually-accessible representation of an abstract sequential decision

task.
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available
actions

reward: −1 for each action taken
 

task: move from starting position
to goal while maximizing reward

(minimize number of steps)

← starting position

goal 3 →

goal 2 →

goal 1 →

obstacles →

N

E

S

W

Figure 4.2. Representation of the “grid world” task used in the model. Each small
square is a position; obstacles (solid grey squares), goals, and starting position are
labeled. The effect of each action is illustrated in the top left mini-grid: N, north; S,
south; E, east; W, west.

89



The underlying environment is a Markov decision process with states (p, g); the

state space is factored into positions p ∈ P (immediate sensations) and goals g ∈ G

(desired outcome). The characteristic of a goal is a particular position. The agent

has available to it actions a ∈ A, which deterministically cause transitions from (p, g)

to (p′, g). No action causing a transition across the goal dimension exists.

At the start of each trial, the agent is in the starting position (labeled highlighted

square on the left of the grid) and the goal for that trial is chosen randomly from a

set of three (labeled highlighted squares on the right side). The four cardinal actions

(north, south, east, and west) are available to the agent at each state (the effect of

each action is shown in Figure 4.2). When the agent chooses action a, it incurs an

immediate cost, represented as a negative numerical reward, r = −1. If the agent

chooses an action that would cause a transition into an obstacle or off the grid, it

receives the cost of the selected action and does not change positions. A trial ends

when the agent reaches the position of the selected goal, at which point it receives

reward r = Rg (set to +100 in the first set of simulations, but I explore the effect of Rg

on behavior later in the Results). The agent’s objective is to maximize the cumulative

reward over each trial by reaching the chosen goal with the smallest number of actions.

I hypothesize that the model will produce behaviors characteristic of automatic

behavior. The relative “speed” of each controller is a design of the model in that

it is assumed that simpler controllers select actions faster than more complicated

controllers. In addition, if a contiguous sequence of actions as selected by the au-

tomatic controller is available, by design there will be an interdependency between

them. Thus, I test the following two characteristics:

1. Interdependency : The automatic controller will select actions at positions at

which the same actions are repeatedly selected by more complicated controllers,

including where the same actions are selected for all three goals (as seen in

Muchiake et al. 2001.
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2. Goal independency : If a contiguous sequence of actions as selected by the au-

tomatic controller is available, it may still be recruited even if it results in a

suboptimal strategy. However, such an availability will aid in learning a task,

demonstrating the usefulness of the motor skill.

4.4 Model

As discussed in Chapter 2 of this thesis, the Planner, A, represents cortical

planning mechanisms; the Value-based controller, B, represents the reward-mediated

learning functions of the basal ganglia, and the Automatic controller, C, may be im-

plemented by the thalamostriatal pathway. With experience, control is transferred

from A to B to, if appropriate, C. Below I describe in detail the multiple controller

model implementing these concepts.

The multiple controller model is implemented with a connectionist-style model

(Figure 4.3). Current position is represented by a ||P ||-element array of Position

neurons where element pi, corresponding to the current position, is 1 and all other

pj 6=i are zero. State is represented by a ||P || × ||G||-element array of State neurons;

each neuron is labeled by (pi, gj). The activation of the State neurons is determined

by K(p,b), where p is a vector of the excitation levels of the Position neurons, b is

a ||G||-element goal vector, where bi = 1 if gi is the goal and all bj 6=i are zero, and K

returns the outer product of its arguments. Thus, the state neuron corresponding to

the current position and goal is 1 while all others are zero.

Actions are represented by an ||A||-element array of Action neurons. When Action

neuron ai is excited to or beyond a threshold, θ (set to 5), the action corresponding

to ai is executed. Each Action neuron has an activation function of

fa(x) =





y if x < θ

θ otherwise,

91



Evironment

D

Action (a)

Decision (d)

Position (p)

State (p,g)

U

Reward (   )

Value (B)

~
Q

K

Planner (A)

Automatic (C)

ra

W

b

Figure 4.3. Architecture of the connectionist-style model. Unfilled closed arrows
indicate excitatory connections, filled closed arrows indicate inhibitory connections,
and open arrows indicate unrestricted connections. For clarity, ascending projections
are shown with dashed lines. Arrays of neurons are represented by boxes with rounded
corners and labeled with italics.
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where x is the input and y is the resting activation level of the Action neurons, based

on the bistable properties of striatal neurons (as discussed in Chapter 2, pg. 25).

The striatal neurons can be in either an upstate (y = 2.5 in my implementation) or a

downstate (y = 0). I discuss the ramifications of this later in the model description.

How the Action neurons are excited depends on the controller. The Automatic

controller excites them directly; the Planner and Value-based controller excite them

by exciting an ||A||-element array of Decision neurons. Excitation of Decision neuron

di corresponds to a decision to take the action represented by ai. Each Decision

neuron has an activation function of:

fd(x) =





0 if x < 0

x otherwise.

The Decision neuron array constitutes a winner-take-all (WTA) network with the

connection matrix U: for all i 6= j, uij = −1/||A||, while each uii = 1. The Decision

neurons project to the Action neurons via connections D, which is merely the identity

matrix in this implementation. When an action is taken (i.e., some ai > θ), the

activation levels of the Decision neurons are set to zero (via inhibition from the

Action neurons). Below I describe the three controllers.

Planner (A)

The Planner uses the current position, chosen goal, and goal position to select an

action via the well-known heuristic search algorithm A* (Hart et al., 1968). Briefly,

A* searches through possible positions (p′) reachable from the current position (p).

For each p′, the cost incurred traveling from p to p′ and the heuristic function of p′

are calculated. The heuristic function I use is the negative of the Euclidean distance

between p′ and goal position (hence, the characteristics of the goal — its position —

is required for the Planner). By searching through the “best” positions first (where
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the “best” positions are the ones for which the sum of the cost incurred and cost

estimated by the heuristic function is least), A* finds the optimal trajectory from one

position to another (assuming one exists) without spending too much time searching

through more costly trajectories. The action moving the agent from p to the best

next position is selected; in the case of ties, an action is chosen randomly from the set

of best actions. This is not meant to be a realistic representation of cortical planning

mechanisms. However, it captures the functional properties I wish to implement in

A: provided a model of the environment, explicit knowledge of goal position, and

sufficient computational resources, it suggests a reasonable action without any prior

experience. When A selects an action, it excites the corresponding Decision neuron

di to an excitation of θ, resulting in an excitation of Action neuron ai to θ. The action

is executed.

Value-based Controller (B)

The Value-based controller uses the current position and chosen goal to select

an action (but the goal’s position is not used). To do so, a Q-table, of dimensions

||P || × ||G|| × ||A||, is used in which element Q(p, g, a) estimates how valuable action

a is in state (p, g). In this case, value refers to the expected cumulative reward

received by taking action a from position p in order to reach goal g. The values are

learned through direct experience. Q(p, g, a) is updated via the Sarsa algorithm of

Reinforcement Learning (state-action-reward-state-action, Rummery and Niranjan

1994; Sutton and Barto 1998): en route to goal g, when action a is taken from

position p, and then action a′ is taken from the next position p′,

Q(p, g, a)← Q(p, g, a) + α (r + γQ(p′, g, a′)−Q(p, g, a)) , (4.1)

where α is a learning rate (set to 0.01) and γ is a discount factor (set to 1). Q is

initialized to 0 (bold capital letters indicated matrices or multi-dimensional tables).
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The Value-based controller is implemented as an excitatory mapping, Q̃, from

State neurons to Decision neurons. Q̃ is initialized to 0 and is trained to represent

the information contained in the Q-table — the values of each action from each state.

I discuss why the Q-table is not used directly at the end of the description of the

model. First, the Q-values are transformed into positive numbers normalized across

actions via a soft-max-like function: for state (p, g) and all actions,

ψ(p, g, a) =
eQ(p,g,a)/τ

∑
a∈A

eQ(p,g,a)/τ
(4.2)

Ψ(p, g, ·) = fΨ (ψ(p, g, ·)) (4.3)

where τ is the temperature (set to 5), fΨ is a vector-valued function that sets each

element of its argument vector to be the maximum of that element and 0.034 and

then normalizes the vector, and Ψ(p, g, ·) and ψ(p, g, ·) are ||A||-element vectors,

the elements of which correspond to the actions for state (p, g). Thus, after the

normalization step, no element of Ψ is less than 0.03; other than that constraint,

Ψ(p, g, ·) behaves similar to a soft-max in that the higher Q(p, g, ai) is relative to

Q(p, g, aj 6=i), the higher Ψ(p, g, ai) is.

Ψ is used to update the values of Q̃: when the agent is in position p, for state

(p, g) and all actions,

Q̃(p, g, a)← fd

(
Q̃(p, g, a) + α

q

(
Ψ(p, g, a)− Q̃(p, g, a)

))
, (4.4)

where α
q

is a learning rate (set to 0.005) and fd is defined as before. Note that Q̃ is

not explicitly constrained to be normalized across the actions. In fact, it is initialized

to 0 and its elements increase at a slow rate; thus, it isn’t normalized during early

stages of learning.
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tU = 0

Calculate each d̃i for i = 1, ..., ||A||
while all ai < θ and tU < tmax

U

tU = tU + 1

each di(tU)← fd

(
d̃i +

∑||A||
j Uij d̃j(tU − 1)

)

each ai = fa(di).

Table 4.1. The winner-take-all (WTA) circuit that comprises the Decision neuron
array. tU is the time step within the WTA, tmax

U is the maximum number of steps,
and all other symbols are defined in the text.

Each Decision neuron is excited by the State neurons as follows:

d̃ = fd


∑

p∈P

∑

g∈G

[(p, g)] Q̃(p, g, a) + ησ


 , (4.5)

where [(p, g)] is the activation level of State neuron (p, g), a is the action to which the

Decision neuron corresponds, and ησ is random number from a zero-mean Gaussian

distribution with standard deviation σ (set to 0.15). (Note that d̃ can also be written

simple as fd(Q̃(p, g, a) + ησ) when the agent is in state (p, g).) The notation d̃,

as opposed to d, explicitly denotes the inclusion of ησ. The WTA comprising the

Decision neuron array is outlined in Table 4.1; I discuss its ramifications later in the

description of the model.

The WTA circuit runs until an Action neuron is activated (some a ≥ θ) or a

step number limit (tmax
U , set to 60) is reached (note that tU , the time step within the

WTA, is distinct from t, which is the time step in a trial). The use of ησ causes the

excitation of the Decision neurons to behave similar to a soft-max function in which

the probability that action a is selected increases as the value of a relative to the

other actions increases.
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Because the values of Q̃ are initialized to 0 and are increased slowly, no ai is

excited to θ via B during early trials. Only after the values of Q̃ corresponding to

state (p, g) are high enough to excite some ai to θ is that action selected via B.

Automatic Controller (C)

C selects actions based only on the current position and does not incorporate any

representation of the goal. C is trained from experience generated by actions selected

via B. When the agent is in position p and action a is selected via B, the weight of

the association between p and a, W (p, a), is modified according to a Hebbian-style

(Hebb, 1949) learning rule as follows:

W (p, a)← W (p, a) +





α
+

if a is the action taken

α
−

for all actions not taken
,

where α
+

is a small positive number (0.005) and α
−

is a small negative number

(−0.003). The elements of W are floored at zero and have a maximum value of

Wmax (set to 2.5 here). Also, if p is the goal position for that trial, the value of

W (p, a) is decreased by α
−
. C selects actions via a simple mapping: a = fa(Wp+y),

where p and a are vectors representing the excitation levels of the Position and Action

neurons, respectively.

The setting of Wmax to 2.5 and the bistable properties of striatal neurons gives the

model a mechanism for “turning off” C. If the striatal neurons are in the down state

(y = 0), the elements of W are not high enough to select an action. (See discussion

in Chapter 2, pg. 25).

Arbitration

I suggest that at states for which the agent has little experience, B and C are not

trained enough to select actions; thus A is used at these states. One could implement

such an arbitration scheme by keeping count of the number of times the agent has
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visited each state; once a threshold is reached, B is enabled at that state. Similarly,

when a higher threshold is reached, C is enabled. However, doing so requires some

higher level “decision-maker” to explicitly choose which controller to use at each state.

(Such a decision-maker would likely not be considered a high level cognitive process,

but rather a tool to serve as a place holder for some other arbitration method not

explicitly modeled.)

Rather than a higher level decision-maker, the arbitration scheme emerges from

network architecture, network dynamics, and the WTA of the Decision neuron ar-

ray. Because the C bypasses the Decision neuron array, and excites Action neurons

directly, it will select an action first if W (p, a) is strong enough. If not, B excites the

Decision neuron array through Q̃. If the Decision neurons are not excited enough

so that some Action neuron is not excited beyond θ within the time limit, only then

does A select an action. It is assumed that, to perform the necessary computations,

A takes longer than the time limit of the WTA.

Thus, incorporated in the model design is the assumption that the simplest con-

troller selects an action fastest, provided it is trained enough to do so. The arbitration

scheme is summarized as follows:

1. C attempts to select an action.

2. If no Action neuron is excited enough to implement the action, B is used.

3. If no Action neuron is excited enough to implement the action, A is used.

Further Details

Initialization of the Q-table

Most of the Q-values are initialized to zero. Those corresponding to a goal (i.e.,

where p is the position of goal g) are given a value of positive value, representing a

reward for reaching a goal. This reward is denoted Rg and is discussed in detail in
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the next section.. Because a trial is terminated when the goal is reached, these values

do not change. The choice of Rg may result in a pessimistic initialization in that the

initial Q-values are less than their accurate values. Thus, as A selects action a from

position p in order to reach goal g, B will learn to place a higher value on Q(p, g, a)

than that of the other actions. When B is trained enough to select actions, it will

be biased to choose actions selected by A when it is first engaged. In contrast, with

optimistic initialization, where Q-values are initialized to be more than their likely

accurate values, Q-values will only decrease with experience and B will be biased to

choose actions not selected previously. If performance while learning is not a factor,

and there is plenty of time to explore all possibilities, optimistic initialization has

advantages as it encourages exploration early in learning. However, these qualifiers

are seldom met. Thus, for the first set of results presented later, I use a pessimistic

initialization for the first set of results I present in the next section.

Why the Q-table is not used directly

Q̃ is trained by Ψ, a soft-max-like function of the Q-values. The Q-values are

not used directly because they can potentially vary across a large range, include both

positive and negative numbers, and will change drastically depending on the task

and size of the environment. The Q-values capture experience (especially with a

pessimistic initialization), but the weights within the WTA network would have to

be tuned carefully. Ψ transforms the Q-values into values between 0 and 1, but, by

definition, they are normalized across the actions — experience is not represented.

Thus, I use Ψ to train Q̃, which represents experience with values between 0 and 1.

4.5 Development

As a reminder, the agent’s task is to move from the starting position to one of

three goals (chosen randomly at each trial) while maximizing reward (see Figure 4.2).
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Figure 4.4. Proportion of actions chosen by each control for a given trial, presented
in a manner similar to a stacked-bar graph (thus, each “bar” is of height 1). Black,
A; dark grey, B; light grey, C. As training (trials) increases, control is shifted from
A to B to, where appropriate, C.

The model was used to accomplish the task for 6000 trials over 20 independent runs.

A trial ends when the agent reaches the chosen goal or if the agent has taken 1680

(||P || × ||A||) steps without reaching the goal (because of A, this rarely happens).

In the first set of results, the Q-values corresponding to goal positions are Rg =

100, resulting in pessimistic initialization. Periodically, three “test” trials — one for

each goal — are performed sequentially. All exploration and learning parameters

are set to zero (“freezing” the system) and the agent’s behavior is recorded. The

graphs illustrating behavior are taken from these test trials. 14 out of the 20 runs

displayed the behavior similar to the behavior to be described. Thus, presentation

and discussion is restricted to just one run. Later, I discuss other types of behavior.

In the graphs to follow, selected actions are illustrated with an arrow pointing

in the direction of movement. Actions specified by A are indicated by wedges (>

for east), actions specified by B are indicated by a double arrow (⇒), and actions

specified by C are indicated by a single arrow (→).

Progression of controller recruitment

Figure 4.4 illustrates, in a manner similar to stacked bar graphs, the proportion

of actions selected by each controller the agent uses to reach each of the three goals

as a function of trial for the sample run. In accordance with model design, A (black)
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Figure 4.5. Examples, at different points in learning, of actions selected en route
to goal 3. The controller that selected an action is indicated by the symbol used to
represent that action: A, > (east); B, ⇒; C →. Starting position and positions of
goals 2 and 3 are highlighted by squares drawn with thick lines. Positions referred to
in the text are highlighted with dark grey dashed ellipses. Only the lower portion of
the grid is displayed for visual brevity.

dominates control during early trials, B (medium grey) selects a large portion of the

actions during middle trials, and C (light grey) dominates control during later trials.

The transfer of control from A to B to C occurs much quicker for goal 2; this result

is unsurprising as there is only one optimal path from the starting position to goal 2,

while there are many for goals 1 and 3. Therefore, B and C are trained quickly for

goal 2.

Figure 4.5 illustrates model behavior at different trials for goal 3 (the bottom goal,

only the bottom portion of the grid is displayed for visual brevity; behavior for the

first goal follows a similar progression). During early trials (e.g., trial 10), because
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neither B nor C have been trained enough to select actions, A selects actions at all

positions visited. B begins to select some actions at positions for which it has some

experience (trials 633 and 1683, see highlighted regions). However, at positions for

which it has little experience, A still selects actions (trial 993). As the agent gains

more experience, C begins to select some actions at positions for which the same

action is frequently selected by B (trial 1863, highlighted regions).

The effect of actions selected via C on other actions is profound. For example,

at trial 2463, A (at the highlighted position) selects action S. The result is a few

“zig-zags” toward goal 3, using the lower doorway. However, at trial 2613, A selects

E at the same position. Due to C selecting actions all the way to goal 2, the effect

of E at the highlighted position is to move directly to goal 2. The single difference

in decision (actions S and E) at same position results in radically different behavior

towards goal 3.

By trial 3183, C is used to select action E at every position from the starting

position to goal 2. This is because this path is along the optimal path to all three

goals; hence, those positions are visited more frequently than most others and action

E is chosen more frequently from those positions than other actions. At the goal 2

position, B is used to select either N (for goal 1) or S (for goal 3). At this point in

learning, the agent has little experience with positions along the path from goal 2 to

goal 3. At trial 2613, A is used to select actions; at trial 3183, B is used; finally, at

trial 4803, C is used. The lack of experience the agent has at these positions is because

it is very unlikely the agent will visit these positions by chance while maneuvering to

goal 3. At almost every position in the environment, there are two equally optimal

actions toward goal 3: E and S. For the agent to maneuver to goal 3 via goal 2, it

would have to select action E at every position to goal 2. The recruitment of C to

reach goal 2 forces the agent to use this path eventually.
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Chunks

If C is trained enough to select actions at a contiguous sequence of positions (e.g.,

from the starting position to the second goal position), that sequence of actions is

considered to be one “habit” or automatic sequence of actions. I refer to a contiguous

sequence of actions chosen by C as a chunk (Graybiel 1998 used this term in a

neuroscience paper on the basal ganglia, but it has a long history of use in the

psychology literature). Figure 4.6 displays the chunks developed in this run. The

central chunk, from the starting position to the position of the goal 2, is common

along an optimal path to all three goals, supporting hypothesis 1. The other chunks

were developed and used primarily in service to goals 1 or 3, but most could be used

for all three goals if the agent happened to be in a position to use them (e.g., if the

agent was in the lower half of the grid but trying to move toward goals 1 or 2). The

only chunks that could not be used for all three goals are the two emanating from

goal 2.

Figure 4.7 displays, by color, when C was recruited to select an action at each

position (compare to Figure 4.6, positions at which C was not recruited are not

marked). The lighter the color, the later the trial at which C was recruited. The

earliest recorded trial at which C was recruited was at trial 1681 (labeled in Figure

4.7), at the center doorway position. The latest recorded trial was at trial 4891

(labeled), at the position just north of goal 2.

The general pattern of when C is recruited is similar to the pattern of when the

relative Q-values for a particular state are accurate in RL. For a chunk leading to a

goal, C is recruited at positions near the goal earlier than at positions further from

the goal. C is also recruited earlier at doorway positions in the environment I use.

Finally, the late learning of C at positions along the path from goal 2 to the other

two goals is very clear in Figure 4.7. This model predicts that, early in learning, the

agent will move towards each goal along routes that may be suboptimal for other
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Figure 4.6. Chunks (contiguous sequence of actions selected by C) from a typical
run. Initiation positions are highlighted by a dark grey open circle. An example of
an entire chunk is indicated with a dashed ellipse (upper right). The overall pattern
of chunks is an example of a type 1 chunk (see text, page 109).
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at trial 1681

at trial 4891

Figure 4.7. Points during learning that C was trained enough to select an action
(compare to Figure 4.6) at different positions. Positions at which C was trained early
are indicated by darker squares; those at which C was trained late are indicated by
lighter squares. The earliest trial at which C was trained occurred at trial 1681; the
latest at trial 4891 (labeled in the figure).
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goals (e.g., by taking action S from the starting positions). Only later in learning,

as chunks are developed (influenced in part by moving to other goals), will the agent

change strategy and use those chunks. Such changes in behavior may be drastic.

Effect of reward and exploration parameters on chunk development

Q(p, g, a) is the expected sum of rewards received if the agent selects action a from

position p en route to goal g. Because all Q-values are initialized to zero, the choice

of Rg, the reward received when a goal is reached, affects how B explores different

actions when it is trained enough to select actions (as discussed earlier, pg. 98). If

Rg = 0, the accurate Q-value at every position are negative because each selected

action is accompanied by a reward of r = −1. Thus, Q-values will only decrease

with experience. B will be biased to choose actions not previously selected, a form of

optimistic initialization because the Q-values are initialized to be greater than their

accurate values. If Rg is much greater, the Q-values will be initialized pessimistically

and thus B will be biased to follow select actions chosen by A. Because the exploration

mechanism my model employs is similar to a soft-max selection, the more pessimistic

the initial Q-values are, the less likely the agent will explore actions other than the

ones with the highest Q-value.

Exploration may have an effect on chunk development. In my model, exploration

is affected by three parameters:

1. Rg, as previously discussed

2. τ , the temperature of the soft-max (see equation 4.2)

3. σ, the width of the Gaussian noise applied to the Decision neurons (see equation

4.5)

To assess how chunk development is affected by exploration, the model was trained

over the task for 6000 trials for 20 runs with each combination of the following pa-
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Figure 4.8. Examples of types 2 and 3 chunks. See text. Dashed circles and ellipses
indicate positions at which B must be used, referred to in the text.
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(dark grey) and 3 (light grey).
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rameter values: Rg : 0, 25, 50, 100, 150; τ : 1, 5, 10; and σ : 0.075, 0.15. For each run,

overall chunk development fell under one of three categories:

type 1 chunks: En route to a goal, C was used to select an action at every position

except for the position of goal 2, at which point B was used for goals 1 and

3. B is never used for goal 2 as the first chunk leads directly to it. These are

depicted in Figure 4.6.

type 2 chunks: En route to a goal, C was used to select an action at every position

except for one, at which point B was used. For type 2 chunks, B was used even

for goal 2. An example of type 2 chunks for Rg = +100 is illustrated in Figure

4.8, top left.

type 3 chunks: B was used to select an action at more than one position en route

to a goal. An example of type 3 chunks for Rg = +100 is illustrated in Figure

4.8, top right.

Figure 4.9 shows, as stacked bar graphs, the number of runs that used each type of

chunk for each parameter combination after training for 6000 trials. Bars correspond-

ing to a particular combination of τ and σ are grouped together (organized by Rg).

Bars for type 1 runs are drawn in black; dark grey for type 2; light grey for type 3.

The top center group in Figure 4.9 corresponds to τ = 5 and σ = 0.15, used

for the previous results, and is annotated. For Rg = 0,+25, and +50, most of the

chunks developed were of type 3. Examples of type 3 chunks for Rg = 0 and +50

are illustrated in Figure 4.8, bottom. For Rg = +100 and +150, most of the chunks

developed were of type 1 and some were of types 2 and 3. As Rg increased, so did

the likelihood that type 1 chunks will be developed within 6000 trials. If the model

was allowed to run for longer trials, models trained with a low reward eventually

develop type 1 chunks (not shown). A similar relationship to Rg is seen for τ = 10

and σ = 0.15.
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For lower levels of τ and σ, though, the relationship to Rg is different. In none

of the other four combinations of τ and σ did an Rg of +100 or +150 result in more

type 1 chunks than lower values of Rg. High values of Rg were accompanied with a

large proportion of type 2 chunks; hence, they were still accompanied with a small

proportion of type 1 chunks.

A general trend can be gleaned. When exploration early in learning is high (due

to low values of Rg), type 1 chunks are more likely to be developed for low values

of trial-independent exploration parameters (σ and τ) within 6000 trials. For high

trial-independent parameters, type 1 chunks will eventually be developed (if learning

progressed for more trials). When exploration early in learning is discouraged (due

to high values of Rg), trial-independent exploration parameters must be high for type

1 chunks to be developed. For low parameter values, type 2 chunks are more likely

to be developed. This suggests that C is trained too quickly for type 1 chunks to be

developed.

Because C is used for the greatest proportion of action selection in type 1 chunks,

I chose parameters that would produce type 1 chunks most of the time for the simula-

tions presented previously. I chose Rg = +100 because I felt that B should be biased

to select actions chosen by A when it is trained enough to do so. Higher values of Rg

did not increase the proportion of type 1 chunks by much. I chose τ = 5, as opposed

to τ = 10, for the same reason. In addition, very high values might overshadow the

effects of other parameters and mechanisms. I chose σ = 0.15 because, simply, the

lower value produced much fewer type 1 chunks.

Finally, although the biological equivalent of τ and σ are difficult to determine,

the magnitude of the reward Rg for reaching a goal can be manipulated to some

degree in experimental paradigms. This analysis shows that the value of Rg has a

large effect on the types of chunks developed for all levels of τ and σ tested.
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4.6 Chunk Use

Figure 4.6 shows the chunks developed after 6000 trials. Most theories of autom-

atized movements suggest that they are recruited as a single integrated sequence of

actions (Graybiel, 1998; Keele et al., 1995; Koch and Hoffman, 2000; Smith, 1999);

the automatized movement can only be recruited at the beginning of the sequence.

The bistable properties of striatal neurons provide a mechanism for this constraint

(see Chapter 2, pg. 25). Effectiveness of C, as I have defined it, depends on Action

neurons (representing striatal neurons) being in the upstate. If so, weak thalam-

ostriatal projections, representing just position in my model, can elicit an action if

the projection is strong enough. However, if the neurons are in a downstate, they

are not strong enough and higher controllers, B or A, must select actions. Thus, C

is effectively turned off when Action neurons are in a downstate. Recruitment of a

chunk occurs when the stimulus for which the beginning of the chunk is trained is

recognized, referred to as the initiation position (highlighted in Figure 4.6). If Action

neurons are put in the upstate in the initiation position, the chunk is recruited. At

the end of the chunk, the neurons transition to the downstate.

In the next set of experiments, I investigate how previously developed chunks are

used. Figure 4.10 illustrates the new task, which deviates from the old one in the

following ways:

• The starting position and position of goal 1 are slightly modified (indicated in

Figure 4.10). This modification makes the upper doorway the best option for

goal 1.

• The agent is pretrained with two chunks (indicated in Figure 4.10). It can only

recruit the chunks at their initiation positions (grey circles). C is not trained

any further.
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indicated in Figure 4.2.
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• The resting activation level (y) of the Action neurons is 0. At every position,

the agent can choose one of the four cardinal actions. In addition, at positions

bordering the initiation positions of the chunks, the agent has another action:

transition into the initiation position of the chunk and put the Action neurons

in the upstate, thus recruiting that chunk. E.g., at the starting position, the

agent has five actions available to it: N,S,E,W, and Sc, where Sc is an action

to move south and put the Action neurons in the upstate. At the end of the

chunk, the Action neurons are returned to the downstate.

• The WTA implementation of B is abandoned (described below).

• There is only one goal, but the agent does not know what its position is a priori.

Because A requires goal position, it is disabled (described below).

The lack of A is not a realistic scenario, but it is conceivable that if the agent does

not know where the goal is, or if there even is a goal, it would “wander around.”

Such behavior occurs without A and an untrained B. In addition, while planning

mechanisms are well-developed in humans, they are much less so in other animals.

Thus, controllers similar to B play a more dominant role in learning and behavior.

Finally, most theoretical research on the learning mechanisms used by B (in Rein-

forcement Learning, Sutton and Barto 1998) do not include a planning controller such

as A. The exclusion of A allows for connections to be made between my model and

some aspects of animal behavior and that of theoretical models; also, it allows us to

focus on how chunks may aid in learning a task when no goal information is known

beforehand.

To further focus the experiments on chunk use, the WTA implementation of the

Decision neurons is abandoned. B selects actions ε-greedily: (1 − ε) proportion of

the time, the argmaxaQ(p, a) is chosen (g is not included as there is only one goal),
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Figure 4.11. Mean rewards for conditions with chunks available (black) and without
chunks (grey). Dots indicate points at which one was significantly greater than the
other (see text). Insets: standard deviation, maximum mean reward.

otherwise a random action is chosen (0 ≤ ε ≤ 1 and is 0.1 in these experiments). Q

is updated as follows:

Q(p, a)← Q(p, a) + α (R + γQ(p′, a′)−Q(p, a)) ,

where p is the position at which B selects action a, p′ is the position at which B was

next used to select an action (a′), and R is the total cumulative reward received while

moving from p to p′. In other words, only the values of actions selected via B are

updated. The Q-values of the visited positions and actions while a chunk is executed

are not updated.
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The agent accomplished the new task for 1000 trials. 50 runs each of two con-

ditions were performed: with and without chunks available. In every run in which

chunks were available, the agent adopted the strategy of using both chunks en route

to the goal, even though such a strategy is suboptimal (the center doorway was used).

Every 15 trials, all exploration and learning parameters were set to zero and behavior

for that trial was recorded.

Figure 4.11 plots the mean reward (and standard deviation and maximum mean

reward) for the two conditions (black: with chunks; grey: without chunks). Points at

which the difference between the mean rewards was significantly different (two-tailed

unpaired bootstrap test, p < 0.05, Cohen 1995) are indicated with small circular

markers, colored in with the color of the condition for which the mean reward was

higher. During early trials, use of the chunks resulted in much better performance:

the agent found a very good route to the goal. However, during later trials, the agent’s

dependence on the chunks prevented it from finding the better route: through the

upper doorway. Thus, the use of chunks aided during early learning — solving the

task — but led to suboptimal solutions; these results support hypothesis 2.

Effect of update rules on behavior

Types of update rules

In the previous simulation, Q-values were only updated if B was used to select

an action. Such an assumption is reasonable; if the chunk is executed as a single

contained unit, the actions within the chunk may not be evaluated. However, such

an assumption is based on speculation rather than experimental data (of which there

is none). To elucidate what, if any, effect on behavior the form of evaluating a chunk

and actions chosen by C have, I have implemented alternative forms of updates in a

modified task.
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Figure 4.12. Schematics of the four update rules. Each circle represents a state.
Thick open arrows: actions selected by B. Thin open arrows: actions selected by C.
Closed arrows: updates.

Figure 4.12 schematizes four update rules for the following generic sequence of

states and actions:

• at state s1, the agent, via B, chooses action a1 and receives an immediate reward

r1. Action a1 recruits a chunk by moving to state s2 and placing the Action

neurons in an upstate.

• The chunk is: s2 → a2 → s3 → a3 → s4 → s4. Rewards of r2, r3, and r4 are

received while the chunk is executed.

• The chunk ends at state s5, from which B is used to select action a5 and the

reward r5 is received.

Thick open arrows represent actions selected via B, thin open arrows represent actions

selected via C, and closed arrows indicate from which Q(s′, a′) a Q(s, a) is updated.

Update rule 1 illustrates the rule that I used in the previous section for the case in
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which chunks are available; update rule 3 illustrates the rule for which chunks are

unavailable (but the same sequence of states and actions are visited).

In update rule 2, Q(s1, a1) is updated by Q(s5, a5) and the sum of rewards received

while transitioning from s1 to s5; this is the same as in update rule 1. However, the Q-

values for the (s, a)’s visited while the chunk is executed are also updated, according

to the next (s, a) visited. In other words, even though the value of the chunk is

updated according to the next action selected by B, the agent learns the values of

the actions executed during the chunk.

In update rule 4, chunks are available, but each Q(s, a) is updated according to

the value of the next (s, a) visited, regardless of which controller was used to select

the action. The only effect a chunk has is to change the exploratory behavior of the

system — no exploratory actions are taken while the chunk is executed.

The value of the chunk (a1) as updated according to rules 1 and 2 is updated

more quickly than that as updated according to rule 4. This is because, under rule

4, Q(s1, a1) is updated towards r1+Q(s2, a2), while under rules 1 and 2, Q(s1, a1) is up-

dated towards
∑4

i=1 ri+Q(s5, a5). With rule 4, the values ofQ(s2, a2), Q(s3, a3), Q(s4, a4),

and Q(s5, a5) must be accurate before Q(s1, a1) can be accurate; under rules 1 and

2, only Q(s5, a5) must be accurate. Hence, behavior under update rules 1 and 2 may

include greater chunk usage than behavior under update rule 4.

Results

To assess behavior, the model accomplished the task under each update rule con-

dition for 50 runs each, where each run consisted of 3000 trials. For trials 1 to 1000,

chunks were available; for trials 1001 to 2000, chunks were unavailable; for trials 2001

to 3000, chunks were available again. Such an experimental paradigm helps, at least

within the confines of this model, to assess the effect on behavior chunks and how

they are updated have.
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Figure 4.13. Mean rewards under each of the four update rule conditions (similar
to Figure 4.11). The top rows of dots indicate at which trials the mean reward under
each rule was significantly greater than that under the other rules. If such was the
case, the dot corresponding to the other rule was plotted. Update rule 1, thick black
line and large black dot; rule 2, thin black line and small black dot; rule 3, thick grey
line and large grey dot; rule 4, thin grey line and small grey dot (indicated in legend
in lower right). Chunks were unavailable during trials 1001 to 2000.

118



Figure 4.13 plots the mean reward for each condition. As in Figure 4.11, the mean

reward under update rule 1 is drawn with a thick black line and that under update

rule 3 is drawn with a thick grey line. In fact, the mean rewards are the same as that

for Figure 4.11 for trials 1 to 1000 and update rules 1 and 3. In addition, the mean

reward under update rule 2 is drawn with a thin black line and that under update

rule 4 is drawn with a thin grey line. The top part of the figure indicates trials

for which the mean reward for a condition was significantly different than that for

another condition (two-tailed unpaired bootstrap test, Cohen 1995). Each condition

is labeled by a closed circle (as indicated in the figure): large black circle for update

rule 1; small black circle for rule 2; large grey circle for rule 3; and small grey circle

for rule 4. For each rule, if its mean at a particular trial was greater than the mean

for another rule, and the difference between the two was significant, the circle for the

other rule is plotted. For example, the mean reward for rule 1 is significantly greater

than the mean rewards for rules 3 and 4 during the first few hundred trials.

The mean rewards under update rules 1 and 2 were much greater than those for

rules 3 and 4 during early trials. However, between trials ≈ 300 (where “≈” indicates

“approximately”) and 1000, the mean rewards under rules 3 and 4 were greater.

If we assume that behavior under rules 1 and 2 are more likely to recruit chunks,

these results show that, although chunks helped in early performance, they led to a

suboptimal strategy (as in Figure 4.11).

While further behavioral characteristics can be inferred from studying the mean

rewards, it is easier to directly observe such behavior. Figure 4.14 plots, as a function

of trial, the proportion of runs under each condition that used the center doorway

(left), chunk 1 (middle) and chunk 2 (right). (Aside from possibly early trials, the

proportion of runs that used the upper doorway was 1− the proportion that used

the center doorway.) The inference that behavior under rules 1 and 2 used chunks

is confirmed by Figure 4.14 as almost all of the runs under these conditions used
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Figure 4.14. Proportion of runs, per trial, under each of the four update rules
that used the center doorway (left), used chunk 1 (center), and used chunk 2 (right).
Chunks were unavailable during trials 1001 to 2000. That of runs corresponding to a
particular rule are labeled by line color and thickness (see legend in upper left; same
convention as in Figure 4.13.

the center doorway and both chunks by trial 1000. Less than 1/4 of the runs under

rule 4 used the center doorway, none used chunk 1, and less than 1/4 used chunk 2.

Interestingly, although the agent under rule 4 did not use chunk 1 for any of the runs

by trial 1000, about 1/4 of the runs did for the first few dozen trials. This likely led

to the agent using the center doorway for some runs.

When chunks were no longer available (after trial 1000), performance under rules

1 and 2 suffered, though to different degrees. Mean reward under rule 1 dipped to

early learning levels; the increase in mean reward (and behavior) under rule 1 for

trials ≈ 1000 to 1300 was similar to that of rule 3 for trials ≈ 0 to 300 (Figure 4.15).

This suggests that, under rule 1, the experience the agent gained for 1000 trials using

the chunks had almost no effect when chunks were unavailable. The agent had to

start learning from scratch, which is not surprising as the values for the vast majority

of the actions the agent took were not updated under rule 1.

Mean reward under rule 2 just after trial 1000, on the other hand, did not dip as

drastically as that of rule 1, likely because the Q-values of the actions taken while
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Figure 4.15. Comparison of mean rewards (left) and proportion of runs using the
center doorway (right) under rule 1 during trials 1036 to 1306 (black) with that
under rule 3 during trials 31 to 301 (grey, color of the trial number labels at bottom
of graph correspond to the two rules). Mean rewards and behavior during the first
30 trials of each range were erratic and thus discarded. Dots, actual mean rewards
and proportions; lines, best-fit curves of equations y = 1 − e−a(x−t) (mean rewards)
and y = ea(x+b) (proportion) where x is trial. Because the fitting process was done
to compare the shapes of the curves (quantified by the parameters a and b) under
the two rules, mean trial numbers were transformed to be between 0 and 1; mean
rewards were also transformed to be between 0 and 1 (they were scaled by the same
amount). The fitting process ran for 1, 000, 000 iterations and the sum of errors for
each curve was < 0.035. Before plotting, the best-fit curves for the mean rewards
were transformed so as to be of the same scale as the actual mean rewards. These
graphs show that proportion using center doorway and increase in reward for the two
rules are similar.
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chunk 1 was executed were updated; the experience the agent gained while executing

chunk 1 did allow it to find a path toward the goal fairly quickly after chunks were

unavailable. However, that strategy is suboptimal. Where as behavior under update

rule 1 eventually (by trial 1300) abandoned the center doorway, over half of the runs

under update rule 2 continued to use the center doorway. The difference in strategy

is reflected by the mean rewards: the mean reward for rule 1 was greater than that of

rule 2 for trials ≈ 1300 to 2000, as were the mean rewards for rules 3 and 4. Where as

the agent under rule 1 was able to find the better route (through the upper doorway),

the agent under rule 2 was not for most runs.

Finally, the removal of chunks during trials 1001 to 2000 had an effect on behavior

after trial 2000, when chunks were available again. The proportion of runs under rule

2 that used the center doorway remained the same (over half), but about 3/4 of the

runs under rule 1 reverted to using the center doorway again, (using both chunks).

The same cannot be said for behavior under rule 2, as the proportion using the center

doorway, chunk 1, and chunk 2 did not match on a per trial basis as it did for rule

1. The decrease in proportion of runs using the chunks and center doorway for rule

1 is reflected in the mean rewards: compared to the latter 2/3 of the first 1000 trials,

there are less trials during the latter 2/3 of the last 1000 trials for which the mean

reward under rule 1 is significantly less than that of the other rules.

The results from this section show that not only does the availability of chunks

have an effect on behavior, but behavior changes depending on how the experience

gained while executing a chunk is used. In the next set of simulations, I show that

the value of Rg also has an effect on behavior.

Effect of Rg on behavior

The simulations just described were run again with various values of Rg: 0, +25,

+50, +150. Mean rewards and behavior for the four conditions are shown in Figures
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4.16 and 4.17, which follow the same conventions as those in Figures 4.13 and 4.14,

respectively. (For visual brevity, the y-axis for the graphs in Figure 4.16 was cutoff

at −300 and annotation for both figures was decreased.) In general, as Rg increases,

so does the effect of chunks on mean rewards and behavior.

Of particular note, when Rg = 0, the availability of chunks had very little effect

(top left of Figures 4.16 and 4.17): chunks were not used. As explained in section 4.5

(page 106), as Rg decreases, exploration early in learning is increased. Thus, although

the chunks do provide for a reasonable, easy to find, trajectory toward the goal, the

values of the chunks are less than the values of actions not yet experienced early

in learning. The agent is biased to explore other actions and thus finds the upper

doorway.

For higher values of Rg, chunk availability does have an effect. The early increase

in mean rewards due to chunks is greater as Rg increases. Figure 4.18 plots, as a

function of Rg, the number of trials until mean reward is within 10 of the maximum

mean reward for each of the four update rules for the first 1000 trials. The earlier this

occurs, the higher the rate of increase in mean reward. For update rules 1 and 2, as

Rg increases, so does the rate of increase in mean rewards (compare to Figure 4.16).

The effect was greater for rule 1 than for rule 2. For rules 3 and 4, the rate does not

increase appreciably as Rg increases, suggesting that the value of Rg has little, if any,

effect.

As with chunk development, gross behavioral changes occur when Rg is manipu-

lated and chunks are available for recruitment. Such manipulation may be possible

within experimental paradigms. In particular, one can infer if chunks are used and

how experience gained while executing a chunk is used by observing the behavioral

changes.
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Figure 4.16. Mean rewards under each of the four rules for different values of Rg

(indicated in each graph). Follows same conventions as in Figure 4.13. Graphs cutoff
at mean reward = −300 for visual brevity.
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4.7 Discussion

Automatic movements are executed quickly and with little thought or attention.

They display the following behavioral characteristics: an increase in speed (relative

to non-automatic movements), an interdependency between actions, and an inde-

pendency from goal. However, the underlying mechanisms of their development are

difficult to ascertain. Are the changes in behavior due to subtle changes in movement

parameters, as in coarticulation, or changes in the decision-making process — select-

ing actions? One advantage of computational models is that a specific theory can be

implemented and resulting behavior can be analyzed and compared to experimental

data.

In this chapter, I examined the decision-making aspect of automaticity and pre-

sented a multiple controller model that does account for some of the behavioral char-

acteristics of automatic movements. The model implements the following scheme:

early in learning a task, the Planner, A, which requires high computational and rep-

resentational resources, selects actions based on planning. As the task is repeated,

the Value-based controller, B, learns to place a high value on actions selected by A.

B has lower computational and representational requirements as it selects actions by
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comparing the values of the available actions. Because of the lower requirements, B is

assumed to select actions faster than A if it is trained enough to do so; thus, control is

transferred. Finally, the Automatic controller, C, which has the least computational

and representational requirements, caches the actions chosen frequently by B and

selects actions faster than B. Actions chosen by C represent automatic behavior. I

refer to a contiguous sequence of actions chosen by C as a chunk.

I examined two behavioral aspects of chunks: 1) the conditions under which they

are developed. One approach I used that has not been studied in great detail in other

models or experimental paradigms is the effect of training over more than one task

in chunk development. Such training was crucial to types of chunks developed in the

model. 2) The behavioral effect of the availability of chunks on solving a task. I

also investigated different ways the experience gained while executing a chunk is used

and the effects those had on behavior. One of the difficulties in studying automatic

behavior is that different theories lead to very similar types of behavior. However,

as evidenced by the results presented in this chapter, many of the experimental ma-

nipulations had a radical effect on behavior (e.g., the use of the doorways, rate of

performance increase). Although the tasks and manipulations are unrealistic as pre-

sented in this chapter, they may be able to suggest experimental paradigms to further

study the phenomenon of automaticity.

Relation to theoretical models

B uses learning mechanisms based on the algorithms of Reinforcement Learning

(RL). Much of the RL literature includes theoretical analysis that may be applied to

B. Also, the availability of chunks creates an additional hierarchical layer of actions;

such hierarchy has also been studied in the RL literature in the form of options (Pre-

cup et al., 1998; Sutton et al., 1999; Precup, 2000), briefly discussed in the previous

chapter. Rather than a “one-step” action, such as north or east, an option is a multi-
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step action designed to achieve a particular subgoal. For example, if the environment

consisted of multiple rooms, an option might be to navigate toward a doorway.

The option is similar to a chunk in that, once learned, the multi-step behavior is

recruited as a single entity and aids in learning and performance. The development

of an option may also be similar to chunk development. Many chunks (Figure 4.6)

were sequences of actions useful for all three goals. Such development is similar to

the method of using diverse density to develop an option (McGovern and Barto,

2001; McGovern, 2002), in which the subgoal of an option was a state that different

(diverse) trajectories visited frequently (dense).

Controllers B and C were trained in part according to actions selected via another

controller, considered a form of off-policy learning (e.g., Sutton et al. 1998; Precup

et al. 2000; Watkins 1989; Watkins and Dayan 1992). In most other examples of off-

policy learning, actions taken while following one policy (e.g., en route to goal 1) are

also evaluated in terms of another policy (e.g., en route to goal 2). For example, in

intra-option learning (Sutton et al., 1998), the values for the option are updated for

states and actions visited even if the option itself isn’t recruited. Such a scheme can be

helpful as any experience gained is used to improve different policies. However, there

can be drawbacks under some circumstances. Some of the update rules I examined in

section 4.6 (page 115) are similar to intra-option learning (though they’re opposite:

B updates it values according to actions selected by C). In those simulations, an

on-policy only rule (type 1) was able to find a better strategy when chunks were

removed, while an off-policy rule (type 2) was not.

Relation to similar multiple controller models

While some accounts automatic behavior focus on sequence learning (reviewed in

section 4.2), other theories also suggest that different types of control mechanisms
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are used (cf., Logan 1988; Schall 2001). Below I review two models that share some

similarities with the multiple controller model presented in this chapter.

Daw et al. (2005) present a computational model (henceforth referred to as the

Daw model) in which a Tree-search controller, similar to A, and a Cached-values

controller, similar to B, represent control mechanisms of the prefrontal cortex and

striatum, respectively. Arbitration between the two controllers was based on the rela-

tive level of uncertainty of each controller — the controller with the least uncertainty

selected actions. The uncertainty of their Tree-search controller decreased faster but

had a higher lower limit than that of their Cached-values controller. Thus, similar

to my model, the Tree-search controller dominated control early in learning, but the

Cached-values controller dominated later. They showed that their model explained

behavior seen in instrumental conditioning tasks with goal-devaluation.

The main difference between the Daw model and mine lies in the arbitration

scheme. The scheme used in the Daw model makes functional sense as the controller

with less uncertainty is the controller that better represents the environment and task.

Uncertainty must be explicitly computed and a higher level decision-maker uses it to

arbitrate between the two controllers. The scheme I use, on the other hand, arises

naturally from the assumption that simpler controllers select actions faster than more

complicated ones. B is able to select actions when it is able to excite Decision neurons

enough for one of them to win a WTA. No higher level decision-maker is required.

However, since only experience is required to train it enough to select actions, it is

possible that B may make poor decisions when it begins to select actions. The use of

A, the pessimistic initialization, the slow learning rate of B, and the relative simplicity

of the task and environment I use (actions have deterministic consequences) prevents

this from happening, but there is no inherent mechanism to prevent it under other

circumstances. The scheme used in the Daw model does prevent their Cached-values

controller from taking over inappropriately.
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The experience-dependent and uncertainty-dependent arbitration schemes can be

combined. According the Sarsa algorithm (equation 4.1, section 4.4), Q(p, g, a) is

updated to estimate r+Q(p′, g, a′). The error between these two terms is referred to

as the temporal difference error, δ (Sutton, 1988). If Q(p, g, a) is not accurate, δ is

high. In my model, the Q-values are used to train Q̃ (equation 4.4), with a constant

learning rate of α
q
. If the learning rate instead incorporated δ, such as α

q
/f(δ) (where

f(δ) returns the minimum of 1 or |δ|), then Q-values would have to be accurate to

some degree before the corresponding values of Q̃ could increase enough to allow B

to select actions. In this chapter, I chose not to include δ as it made little difference

in behavior (results not shown) for the task and environment I use. However, I revisit

this issue in the next chapter.

Ashby et al. (2007) also attribute different processing capabilities to cortical areas

and the basal ganglia, but in their model (referred to here as the Ashby model), a

cortical pathway (functionally similar to C) learns to cache decisions made by the

basal ganglia (BG, similar to B). (In addition, the Ashby model focuses on different

types of behavior and tasks than the model I implemented.) In contrast, I attribute

C to the thalamostriatal pathway (see Chapter 2). The two theories are not mutually

exclusive as Hebbian-style learning is thought to mediate synaptic plasticity in many

areas of the brain. Despite the differences in interpretation, the functional mech-

anisms of both the Ashby model and my model are similar. One controller learns

the values of several actions via Reinforcement Learning and, through some compe-

tition mechanism, selects the action with the highest value more often than those of

a lower value. The actions selected are cached by a simpler controller which directly

selects the action without considering alternatives. In my model, I assume B takes

longer to select an action than C because of the competition between actions. In the

Ashby model, actions selected via the basal ganglia must traverse several synapses
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before that action is executed; the cortical pathway bypasses the BG, traverses fewer

synapses, and thus executes the action faster.

Problems with simple controllers

Simple control mechanisms, such as that employed by C or recurrent networks, can

account for many types of sequential behavior. However, many argue that they cannot

account for more complicated types of behavior (Lashley, 1951; Balleine and Ostlund,

2007; Cooper and Shallice, 2006; Houghton and Hartley, 1995). (Some arguments use

examples from reading, writing, and linguistics to illustrate objections, but the overall

arguments often translate to other types of tasks.)

One of the main arguments against a simple control mechanism is that elements

in a sequence often have associations with representational features other than im-

mediate sensations. The phoneme used to pronounce a letter depends on the entire

word it is in and even the language of origin of the word. The meaning of a word

in a sentence often depends on the entire sentence, paragraph, or even higher hierar-

chical levels of context. The choice of actions for a given task may also depend on

the greater context: late at night, one might choose to drive along a main road to

go home, but during rush hour, one might choose back roads. These arguments do

not argue against a simple control mechanism; rather, they argue against a simple

representation. As discussed earlier (section 4.2), neural network architectures can

provide for a much richer representation than is usually assumed, suggesting that

simpler control mechanisms can generate more complicated behavior than is usually

assumed.

Other aspects of some sequential behavior lead to the suggestion that selected

actions are the result of a hierarchical control mechanism, in which a controller ac-

complishes a task by recruiting controllers that accomplish particular subtasks nec-

essary to accomplish the overall task. Those subtasks, in turn, are accomplished by
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recruiting controllers that accomplish lower levels of subtasks, and so on (e.g., Sutton

et al. 1999; Dietterich 2000; Cooper and Shallice 2006; see Botvinick 2008; Barto and

Mahadevan 2003 for reviews). Such structure is attractive as it allows a complicated

task to be decomposed into simpler parts and thus easier to understand and mimic.

In some theories of hierarchical control, the high level controller, sometimes called a

schema (Arbib, 2002; Cooper and Shallice, 2006), includes abstract features of the

task to be executed. For example, the task of typing the word “look” may be imple-

mented by a schema that includes some representation of a repeated letter. Such a

schema accounts for the typo “lokk;” similarly, a schema with abstract features may

account for the typo “wrapid writing.” As further evidence for a hierarchical scheme,

Lashley (1951) notes the ability of a bilingual speaker to directly translate a sentence

from one language to another, observing the proper grammar and idiosyncrasies of

each language. The thought communicated by the sentence, not the order of words,

is the schema that dictates the structure of the sentence.

Hierarchical control is used in the multiple controller model presented in this

chapter in the form of chunks. However, while we likely use hierarchical control

in solving tasks, a single-level controller can account for some behavior normally

attributed to hierarchical control. The Botvinick model (section 4.2, Botvinick and

Plaut 2004, 2006) does not incorporate hierarchy, but the behavior it produces can

be described in hierarchical terms. In addition, hierarchical representations may

be difficult to map onto brain architecture (but see Botvinick 2008), while the link

between neural network models and brain architecture is more apparent.

Finally, in the implementations presented in this chapter, the actions selected by

C are “hard-coded.” This is unrealistic as most examples of automatic movements

can be modified or even abandoned: habits can be “broken” (with substantial effort

in some cases). Indeed, when the goal is devalued in an instrumental learning task

(Dickinson, 1985; Yin and Knowlton, 2006), the animal quickly learns to select an-

132



other action. In one sense, such behavior can be explained by a controller similar to

B, as B modifies Q-values while controlling behavior. However, in the case of goal

devaluation, behavior changes very quickly. Such behavior may be better explained

by recognizing that the action selected by C or B is no longer rewarding and “shifting

control up” to A, which explicitly predicts the consequences of each action. Also, al-

though I do not explore it in this thesis, the bistable properties of the Action neurons,

which C excites directly, allows chunks to be modified. Control can be shifted up to

B (by putting the Action neurons in the downstate) and, while B selects actions, W

can be modified.

Summary

As evidenced by the discussions in this chapter, it is difficult to define what auto-

matic behavior is and to prove (or disprove) its existence. Behavioral characteristics

ascribed to automaticity can be generated by different control schemes (e.g., hier-

archical versus non-hierarchical). Also, there is controversy over what behavior is

considered automatic. Some suggest that behavior explained by controller like B is

automatic (Daw et al., 2005; Yin and Knowlton, 2006), while others suggest that

behavior explained by a controller like C is automatic (the model I present in this

chapter, Ashby et al. 2007; Logan 1988).

Rather than base my theories purely on behavioral and physiological experiments,

which at this point are inconclusive, I added another another dimension: functional

advantage. In particular, I suggest that the simplest possible control scheme is used

to select actions as it uses less computational and representational resources. In this

chapter, I investigated under what circumstances simpler controllers are developed

and recruited. I also provided examples of how behavior might change in measurable

ways if the brain does use a multiple controller scheme similar to that presented in

this chapter.
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CHAPTER 5

SENSORY EXPLOITATION

5.1 Sensation, Perception, and State

According to the formalization of motor skills I used in this thesis, actions are

selected based on state. In the previous two chapters state was delivered instanta-

neously with certainty (an agent knew exactly in which state it was at any time).

However, state is a mental construct, a convenient interpretation of physical stimuli

(e.g., electromagnetic waves or changes in air pressure) meant to represent aspects of

the environment relevant to the current problem from which we can make decisions.

Specialized cells (sensory receptors, e.g., rods and cones of the eye or cochlea of the

ear) detect those physical stimuli, a process termed sensation. Those detections are

communicated to other areas of the nervous system (e.g., visual or auditory cortex),

which interpret them, and from there to even more areas (e.g., association cortices),

which combine those interpretations. The separate process of interpreting sensations

is called perception. Perception, along with memory of past perceptions, can lead to

a representation of state.

The process by which state is estimated is (highly) schematized in Figure 5.1.

Although a general review of sensation and perception is beyond the scope of this

thesis, I highlight here some relevant considerations. First, a sensation can be of one

of several modalities, the so-called “five” senses: vision, somatic, auditory, taste, and

smell, though most researchers include balance as a sixth. Second, the type of physical

stimuli available differentially affects the following characteristics of each modality:

134



physical
stimuli

stateperceptionsensation

Figure 5.1. Schematic of how state is constructed from sensation and perception.
The circles under “sensation” represent sensory receptors; the amorphous shape and
circles under “perception” represent nervous system structures involved in perception;
the circles under “state” represent possible states.

• intensity: the magnitude of sensory receptor responses and corresponding per-

ception,

• timing: how fast sensation and perception occurs (also affected by intensity),

• precision and accuracy: how well state can be estimated.

Because of these effects, different modalities (and their combinations) may be better

suited for estimating state for different tasks and even different stages of learning a

task.

In this chapter, I focus on the general characteristics of intensity, timing, and

precision in state estimation. In particular, since sensation and perception take time

to process, state estimation evolves over time from imprecise to precise, a process I

term sensory evolution. Also, in many cases, the set of modalities used to estimate

state changes over time; I refer to this process as sensory transfer. Below I describe

behavioral evidence for both processes.

Sensory evolution

In most accounts of skill acquisition, it is assumed that the sensory information

indicating the goal of a task is known a priori. However, it may take time to process
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sensory information to determine what the actual goal is with enough confidence to

make a decision, particularly if the learner is trained over several goals. Sensory rep-

resentation evolves over time. For tasks in which an animal (or human subject) has

only one opportunity to achieve the goal, action is often delayed while the represen-

tation evolves to some degree of certainty. I refer to these types of tasks as one-step

tasks. The most well-known example is the “moving dots task” of Britten et al.

(1992) , where a subject (often a non-human primate) is presented with a number of

moving dots on a computer screen. Some percentage of the dots move in the same

direction (the goal direction; as the percentage increases, so does the coherence of the

stimulus). The subject must look in the goal direction to receive a reward. As coher-

ence decreased, goal direction was harder to ascertain; response time increased and

accuracy decreased (a review of several studies involving this task is found in Opris

and Bruce 2005). The implication of these results is that as the stimulus is harder

perceive, the longer it takes to process it; the results of two other studies have similar

implications: Archerfish presented with a low-contrast prey stimulus take longer to

initiate movement than archerfish presented with a high-contrast stimulus (Schlegel

and Schuster, 2008). Battaglia and Schrater (2007) conduct a goal-directed reaching

experiment in which there is an explicit trade-off between perceptual certainty and

movement accuracy. The actual goal location is not known, but rather must be es-

timated by the presence of dots drawn from a distribution centered on it. As time

increases, more dots appear, and thus goal location can be estimated with greater

certainty. However, movement must be made within a short time period – the cost of

the decrease in perceptual uncertainty is a decrease in time allowed to make the move-

ment, resulting in a less accurate one. Battaglia and Schrater (2007) show that the

time point at which humans tend to initiate movement conforms with that predicted

by statistical decision theory.
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If, on the other hand, the task requires longer movements or more than one de-

cision, there are opportunities to adjust the movements or make corrections after

responding begins. In these multi-step tasks, it may make sense to act quickly even

under significant uncertainty. For example, Ledoux (1998) discusses how, when we

encounter a snake-like object (such as a stick) while on a walk, we may jump back

immediately rather than wait to let our sensory processing better discriminate the

object’s identity. In the laboratory setting, Hudson et al. (2007) forced subjects to

act under a fixed level of uncertainty in a goal-directed reaching task. Subjects began

their reaches based on a given probability distribution over all possible goals; after

one-third of the distance was traversed, the true goal was revealed. The initial direc-

tion of the subjects’ movements was towards the mean of the probability distribution

and then veered to the goal. This strategy shows that subjects make decisions that

take the evolving sensory representation into account rather than waiting for it to

resolve to an acceptable level of certainty.

Sensory transfer

The results of several studies show that using sensations of different modalities,

and their combination, aids in motor control. Messier et al. (2003) suggest that, when

performing movements, the central nervous system uses proprioceptive information

to learn a forward model of the interaction forces generated when making multijoint

movements. The model helps in producing appropriate muscle torques in anticipa-

tion of interaction forces to come. Deafferented patients avoid multijoint interaction

torques at high speeds by freezing degrees of freedom (e.g., by locking the elbow joint)

when possible. Tunik et al. (2003) suggest that vestibulospinal information aids in

creating a model as well. In the absence of visual information, allowing the finger to

touch the target increases accuracy of pointing to a target in a stable environment

(Rao and Gordon, 2001). In a more complicated scenario (Lackner and DiZio, 2002,
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1998), the environment was a rotating room, subjecting the participant to Coriolis

forces, and the target was an LED under a clear table top. Thus, the subject, in

absence of visual feedback, did not know if his reach was accurate even when he

touched the table top. The Coriolis forces caused a deviation in the subjects reach,

resulting in inaccurate movements. However, he was able to improve his accuracy

substantially within a short number of trials. Improvement was greatly diminished if

the subject was not allowed to touch the table top. The proprioceptive and tactile

information gained when touching the table in the presence of the Coriolis forces may

have enabled the subject to construct a model of the environment, and thus anticipate

the error the forces caused. Sober and Sabes (2003) provide evidence that planning a

movement trajectory involves visual information, while planing for the joint forces to

implement that trajectory involves proprioceptive information. Ernst and Bulthoff

(2004) review other studies that suggest that information from different modalities is

combined in movement tasks.

Several studies, primarily from the lab of O. Hikosaka (Hikosaka et al., 1995),

provide behavioral evidence that the brain learns a motor skill through two parallel

control mechanisms - one in a spatial coordinate system (such as direction of move-

ment) and one in a motor coordinate system (such as muscle activation). The former

mechanism is general, robust, and can be used to control different effectors – either

arm can be used to hit the sequence of buttons. The latter mechanism is specific to

an effector – the learning cannot be transferred from one arm to the other. The task

common to most of these studies is a sequential button pushing task, termed the “2x5

task,” in which a monkey was presented with a 4x4 grid of LED buttons, two of which

were lit. The monkey learned to push the buttons in the correct order, after which

a second pair of buttons were presented, and so on until five pairs were presented.

An ordered set of five of these two button sequences constitutes a “hyperset.” As the

monkeys practiced, performance, as measured by accuracy and speed, increased. The
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hyperset, although consisting of five pairs of two button sequences, was learned as one

motor skill — when presented with the hyperset in reverse order, performance was

similar to that of a novel hyperset (Rand et al., 1998). When tested with the opposite

hand for a well trained hyperset (15 days of training), performance was similar to that

of a novel hyperset (Rand et al., 1998), but when tested with the opposite hand for a

moderately well trained hyperset (one day of training), performance was better than

that of a novel hyperset (Rand et al., 2000). That learning was able to be transferred

to the opposite hand during early learning, but not late learning, stages supports the

hypothesis that early learning occurs in an abstract space, but with practice the skill

is transferred to an intrinsic space (Hikosaka et al., 1999; Nakahara et al., 2001).

5.2 Using Sensory Information

As discussed in the previous section, uncertainty in state depends in part on

the type of sensory modality used to estimate state. Learning under conditions of

uncertainty is usually attributed to cortical planning systems. This is because such

behavior is well-described by statistical decision-theoretic models that explicitly take

uncertainty into account (e.g., Bayesian decision theory, Kording and Wolpert 2006;

game theory, Glimcher 2002). For example, Wolpert (2007) reviews evidence that

humans integrate information from different sensory modalities in a way similar to

that suggested by the Kalman filter (Kalman, 1960), a control theory method for

optimally (under certain conditions) combining information from different sources

(e.g., sensory modalities) based on their relative precisions. Such integration leads

to a more precise estimate. In addition, studies show that some a priori expectation

of state (the prior distribution) is combined with immediate sensory information to

influence state estimate (Tassinari et al., 2006; Kording and Wolpert, 2006). Besides

behavioral evidence supporting the use of such models, many variables are represented

in cortical areas (Yoshida and Ishii, 2006; Glimcher, 2002).

139



There are other ways the existence of multiple sensory modalities can be used

to increase task performance in general. Consider the anecdotal example task of

driving a manual transmission car (described in terms of the abstract discrete-state

discrete-action tasks used in this thesis). Early in learning, the visual information

of the tachometer is often used to estimate the revolutions per minute (RPM’s) of

the engine, the state from which an action (shift or don’t shift) is selected. The

visual modality is good for learning as it is intense (in that the visual reading is very

clear and does not have to be learned), precise, accurate, and easily described by an

instructor. However, it requires time in that the driver must divert his gaze from

the road to the position of the display, and from there locate the needle and read

the numbers. As experience with the task is gained, other modalities are used to

estimate state: as RPM’s increase, the whine of the engine increases in frequency

(auditory modality), as do the vibrations of the car (somatic modality). These lead

to a quicker state estimate in that the driver does not have to divert his gaze, but

they must be learned: it is hard for an instructor to describe these perceptions, and

they might be different for different cars. In addition, the precision in state estimate

may be relatively low. However, in this task, a precise state estimate is not needed:

shifting within a range of RPM’s (e.g., 2000 to 3000) has very similar results, and the

advantage of an earlier state estimate (to say nothing of not having to divert gaze)

more than makes up for the lack of precision.

Lack of precision in task-irrelevant dimensions is seen in human behavior (Scholz

and Schöner, 1999; Li et al., 1998; Todorov and Jordan, 2002). For example, Li et al.

(1998) asked subjects to use their fingers to maintain a constant net force on a single

pad. There was more variability in the force produced by each finger than there was

in net force. Scholz and Schöner (1999) termed the dimensions in which variance was

allowed to accumulate the uncontrolled manifold, and Todorov and Jordan (2002)
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use control theoretic methods to show how this strategy allows for more accuracy in

dimensions relevant to the task.

The statistical decision and control theoretic methods described in the previous

paragraphs can take all of these variables — intensity, timing, and precision — into

account to plan for the optimal use of sensory information, and most researchers

discuss behavior in terms of cortical planning areas. However, the efficacy with which

they deal with uncertainty does not necessarily preclude the basal ganglia (BG) from

contributing to behavior under such conditions. This is especially true during skill

acquisition, where the task is accomplished repeatedly. Such repetition enables the

experiential learning mechanisms of the BG to participate in learning. Theoretical

research in Reinforcement Learning supports this assertion. Kaelbling et al. (1998)

describe how uncertainty in state can be incorporated through the use of a belief

state. A belief state is a probability distribution over all possible states, b, such that

b(s) is the belief that state s is the actual state; Littman et al. (1995) review several

learning algorithms based on b rather than s.

Though they may require cortical areas to calculate, Bayesian statistics can be

incorporated into the estimation of the values of actions to influence exploration

(Dearden et al., 1998) and into the estimate of the values of states (Mannor et al.,

2004). Thus, learning mechanisms of the BG may be able to deal with uncertainty

as well.

5.3 Hypotheses

Rather than speculate on how different sensory modalities estimate state, I focus

on their effect on state, specifically how decisions are made under varying conditions

of timing and precision of state. Intensity is considered in how it affects timing and

precision. In the discrete-state discrete-action tasks I use in this thesis, state (p, g) is
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factored into two dimensions: position p and goal g; uncertainty and timing in each

dimension is investigated separately.

First, following the discussion under sensory evolution, an agent using a variant

of the multiple controller model is presented with an evolving state representation

in which precision across the goal dimension evolves over the course of a trial from

imprecise to precise. There is a trade-off between time and precision in the goal

dimension. Second, following the discussion under sensory transfer, an agent can

choose to execute an action based on an imprecise state estimate or a precise one.

However, precision comes with a cost, as the immediate reward incurred decreases

with precision. There is a trade-off between reward and precision in the position

dimension.

I describe the tasks and modifications of the multiple controller model of the

previous chapter in more detail in subsequent sections. As described in the previous

section, behavior under uncertainty is typically attributed to cortical planning areas.

I hypothesize that the learning mechanisms of the BG can produce similar behavior.

Specifically,

1. When presented with an evolving sensory representation, the agent will learn

to move immediately in a direction appropriate for the belief state and task (an

example such behavior is seen in Hudson et al. 2007).

2. When enabled to trade reward with precision at every decision, an agent will

produce behavior similar to that seen in humans: use precise but costly state

estimates in areas where precision is required, but imprecise and less costly state

estimates elsewhere.

In addition to testing these hypotheses, I describe model behavior under different

conditions of each task and discuss behavioral implications.
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Figure 5.2. Representation of the “grid-world,” a 21 × 9 grid of positions.

5.4 Sensory Evolution

Environment and Task

The task used is illustrated in Figure 5.2 and differs from those presented in

the previous Chapter in that there are 9 actions from which to choose (the cardinal

actions, diagonal actions, and a null action, which results in no movement), there are

no obstacles, and the dimensions of the environment differ, including spatial positions

of goals (of which there are five). Each trial begins with the agent in a fixed starting

position (the same for every trial, indicated in Figure 5.2); the goal for that trial is

chosen randomly from a fixed distribution (referred to as the prior distribution). I

refer to the goal chosen for the trial as the true goal, g∗. When the agent chooses

action a, it receives an immediate action-dependent cost (ra = −
√

2 for the four

diagonal actions and = −1 for all other actions, including the null action).

The agent’s knowledge of goal is represented as a probability mass function over

all possible goals, referred to as the goal belief vector, b, with each component b(g),

specifying the agent’s belief that goal g is the true goal and whose components sum

to one. Over the course of a trial, b evolves such that b(g∗) increases while all other

b(g) decrease; when b(g∗) = 1, goal belief evolution stops.

Importantly, goal belief evolution occurs independently of any action that the

agent chooses and is assumed to occur through unmodeled sensory processing mecha-

nisms. b is in the form of a hand-made distribution, in contrast to the agent creating
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b through some other method such as sampling. I do not attempt to investigate how

sensory information is processed or evidence is accumulated. Rather, I present the

agent with a simple form of an evolving goal belief and investigate how the agent

makes decisions based on such a representation.

Types of Sensory Evolution

Learning agents accomplished the task under different prior distributions and

types of goal belief evolution. I examine behavior under three types of prior distri-

butions:

1. flat, where the probability of each of the five goals being the true goal is 0.2,

2. biased, where the probabilities of goals 1 through 3 being the true goal are each

0.1, that of goal 4 is 0.2, and that of goal 5 is 0.5,

3. and two goal, where the probabilities of goals 1 and 5 being the true goal are

each 0.5 and those of the others are zero.

For each type of prior distribution, I examine six types of goal belief evolution: slow,

medium, and instant evolution with no delay in evolution, and slow, medium, and

instant evolution with a delay of four time steps before evolution begins. During the

delay period, b was set as the prior distribution. Goal belief was always fully resolved

within the first 8 time steps of a trial (thus, as the agent approached the northern

border of the environment, goal belief was fully resolved). Note that the delay /

instant evolution type is used in Hudson et al. (2007). Also, for the conditions with

no delay, the prior distribution is never explicitly represented in b.

In tasks with the flat and biased prior distributions, for the purpose of calculating

the goal belief vector, b, goals 1 through 5 are assigned integer values (1 through 5,

respectively). b(g) is determined by a normal distribution centered on the value of

true goal, g∗, with standard deviation σ. Since the integers are points, and the normal

144



1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

g* = 1

g* = 2

g* = 3

goal (g)

b(
g)
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width of b, decreases to zero. Right graphs: Goal belief evolution for the two goal
prior. Plotted is b(g∗); b(g) for the other goal is 1− b(g∗). Top graphs: Evolution for
the no delay conditions. Bottom graphs: Evolution for the delay conditions.
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Figure 5.5. Illustration of each of the six types of goal belief evolution for the
flat prior distribution. b is represented as five horizontally-aligned squares, shaded
according to b(g). Time progresses from bottom to top for each type. The top row
illustrates the fully resolved b; b at later time steps is also fully resolved. Shown is
the case for g∗ = 3. Under delay types of evolution, the first four time steps illustrate
the flat prior distribution. The biased prior is illustrated in the bottom right.

distribution is a continuous function, b is then normalized so its elements sum to 1.

Figure 5.3 illustrates b with σ = 1 when g∗ = 1 (grey line), g∗ = 2 (thin black), and

g∗ = 3 (thick black). b for g∗ = 4 and g∗ = 5 are symmetrical with b for g∗ = 2 and

g∗ = 1, respectively, and thus are not shown.

Sensory representation evolves by setting σ (by hand) to decrease over time to

σ = 0, at which point I set b(g∗) = 1 and all other b(g) = 0. Figure 5.4, left, shows

the decrease of σ for each type of sensory evolution. For the delayed cases, b is defined

by the prior distribution for the first four time steps and then is determined by the

normal distribution as described above. In tasks with the two goal prior distribution,

I simply set the value of b(g∗) (Figure 5.4, right), and the belief of the other goal is

1− b(g∗).
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Figure 5.6. Goal belief evolution under the two goal prior distribution. Follows the
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belief is always zero). The arrangement of the types of evolution are the same as that
in Figure 5.5, but are not labeled for brevity.
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Figure 5.5 illustrates the actual goal belief as it evolves for each of the six types

of evolution under the flat prior distribution. In the figure, b at a time step is

represented as five squares aligned horizontally (one for each goal); the squares are

shaded in grey according to b(g), where the darker the square, the closer b(g) is to 1.

These graphs, and graphs in the results section, are presented so that the slowest case

of goal belief evolution is in the lower left corner and the fastest case is in the upper

right corner. The bottom right of Figure 5.5 illustrates the biased prior distribution,

and Figure 5.6 illustrates the six types of goal belief evolution for the two goal prior

distribution.

Multiple Controller Model

The multiple controller model used by the agents differs from that presented in the

previous chapter. First, the Automatic controller is disabled, as I am interested in the

strategies the learning component of the Value-based controller develops. Second, to

incorporate b in the learning and determination of the values of each action, equations

4.1 and 4.4 from the previous chapter are replaced with, respectively,

Q(p, g, a) ← Q(p, g, a) + α b(g)


ra +

∑

g′∈G

b(g′)Q(p′, g′, a′)−Q(p, g, a)


 (5.1)

Q̃(p, g, a) ← fd

(
Q̃(p, g, a) + α

q
b(g)

(
Ψ(p, g, a)− Q̃(p, g, a)

))
, (5.2)

where g′ is an index (not the next goal) and α
q

is a learning rate (set to 0.001). In

addition, to accommodate the different dimensions of the environment, the tempera-

ture in Equation 4.2 is set to 0.3. Referring to Figure 3 from the previous Chapter,

[(pi, gj)], the value of State neuron (pi, gj), is simply b(gj) when the agent is in the

position represented by pi. All neurons corresponding to other positions have zero

value.

This representation is similar to that which is used in machine learning research

in partially observable domains (Littman et al., 1995; Kaelbling et al., 1998). Such
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a formulation is neurally plausible: If we consider Q̃(p, g, a) to be the weight of the

connection from State neuron (p, g) to the Decision neuron that implements action

a, then incorporating b is analogous to activating State neuron (p, g) by b(g) instead

of 1.

In total, I examine model behavior under 18 conditions (3 prior distributions and

6 types of goal belief evolution). 20 runs for each condition were performed, where a

“run” consisted of having the agent accomplish the task for 30,000 trials. I examine

three facets of behavior. First, I examine in detail the progression of behavior —

how behavior changed with experience — under the no delay / slow evolution / flat

prior condition. Second, I describe learned behavior under the different conditions

and show that the model learned to select actions appropriate for the goal belief

and prior distribution: under uncertain conditions, actions towards the mean of the

prior distribution were taken. Third, I exposed agents trained under one condition

to another type of condition; the conditions under which they were trained affected

their strategies.

Results

Many of the graphs I present show model behavior for a particular condition, goal,

and trial. Behaviors were taken from “test” trials (performed periodically for each

goal during a run), during which all exploration and learning parameters were set

to zero. Most graphs are a representation of the grid-world (see Figure 5.2). Unless

otherwise noted, the grey-scale coloring of a position indicates the the proportion

of the 20 runs for which that position was visited (greater proportions are darker,

positions not visited are not plotted).

Progression of behavior

For the no delay / slow evolution / flat prior condition, behavior at four different

points in learning for each of the five goals is shown in Figure 5.7. Early in learning
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Figure 5.7. Illustration of behavior across all 20 runs for the no delay / slow evolution
/ flat prior condition at different points in learning (labeled on the left). Each
rectangle is a representation of the grid-world (Figure 5.2. Shaded squares indicate
positions visited; the darker the shading, the greater the proportion of the 20 runs
visited that position. Positions not visited are not marked.

(e.g., trial 1, bottom of Figure 5.7), by design, the Value-based controller, B, was not

trained enough to select actions. Through the Planner, A, the agents waited until

goal belief was fully resolved (by selecting the null action) and then took the optimal

path towards each goal (for goals 2 and 4, there are several optimal paths).

As experience was gained, B selected a greater proportion of the actions. Figure

5.8 (top left) plots the proportion of actions selected by B as a function of trial for

goals 1, 2, and 3 (that of goals 4 and 5 were very similar to that of goals 2 and

1, respectively, and thus are not shown). Note that for early trials (before 1200),

B selected a greater proportion of actions for goals 1 and 3 than for goal 2. This is

because, enroute to goal 2, several paths were traversed while behavior was controlled

by A. Because the positions along those paths were visited less frequently than the

positions along the paths for goals 1 and 3, B was trained at a slower rate for goal 2. B

was also able to explore — select actions other than those considered most valuable
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Figure 5.8. Top left: Mean (across the 20 runs) proportion of actions chosen by
B as a function of trial for the no delay / slow evolution / flat prior condition.
Shown are proportions enroute to goal 1 (grey line), goal 2 (thin black), and goal
3 (thick black). Inset indicates standard deviation (s.d.). Top right: Mean (across
the 20 runs) distance between the chosen path and the direct path (the line from the
starting position to goal 1) as a function of trial. Inset indicates s.d. For each run,
distance was the mean distance between each position visited and the closest position
along the direct path. Each position was only counted once (e.g., when A controlled
behavior, the agent “visited” the starting position until goal belief was fully resolved;
the starting position was only counted once). Bottom: Earliest recorded trial that B
selected an action from each position. The darker the shading, the earlier the trial.
Positions at which B never selected an action are not marked.
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— and thus began to select actions before goal belief was fully resolved. Under

uncertainty in goal belief, the middle path (path of positions from the starting position

to goal 3) was experienced and deemed valuable. Thus, B learned to immediately

move north (towards the mean of the prior distribution) from the starting position

for all trials, including those for which the true goal was 1 or 5.

After trial 1200, for goal 1, the proportion of actions selected by B decreased and

then rose again. This is because, early in learning, the agents had little experience

with the middle path enroute to goal 1 (and positions between the middle path and

goal 1), particularly when goal belief was resolved to some degree. Thus, A was used

to select actions until B was trained. This behavior is more clearly seen in Figure 5.8

(bottom), which plots, for each position, how early in learning B was able to select

an action for each goal (darker greys indicate earlier in learning).

Note that for goals 1 and 5, B was trained along the path directly from the starting

position to the goal early in learning. This shows that B initially followed the behavior

dictated by A. Figures 5.7 and 5.8 (bottom) show that, with experience, behavior

for goals 1 and 5 deviated from moving straight to the goals to moving along the

middle path; the difference between initial behavior and learned behavior increased

with experience. This effect is seen more clearly in Figure 5.8 (top right), which plots,

for goal 1, the average distance between the path taken to goal 1 and the path straight

from the starting position to goal 1 (the direct path) as a function of trial number

(see figure caption for more details). These results show that, early in learning, as

B assumes control as some positions, it initially waits until goal belief is resolved

to some degree and then follows the strategy prescribed by A. Later in learning, B

learns to move earlier in time (i.e., when goal belief is less precise) towards the mean

of the prior distribution.

The general progression of behavior described in this section is seen for all other

conditions of goal belief evolution and prior distributions. Rather than plot behavior
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Figure 5.9. Follows same conventions as Figure 5.7, except this illustrates the no
delay / slow evolution / biased prior condition.

30K

18K

3K

1.2K

600

1

Figure 5.10. Follows same conventions as Figure 5.7, except this illustrates the no
delay / slow evolution / two goal prior condition. Also, since there are only two goals,
behavior for goal 1 is on the left and behavior for goal 5 is on the right.
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for all other conditions, I include two more noteworthy illustrations: Figures 5.9 and

5.10 show, in a manner similar to Figure 5.7, behavior for the evolution type no

delay / slow evolution with the biased and two goal prior distributions, respectively.

For the biased prior, for which goal 5 was chosen as the true goal 50% of the time,

the agents’ behaviors gradually changed (with experience) from waiting until goal

belief was resolved and then moving directly towards a specific goal from the starting

position to moving immediately towards the mean of the prior distribution. For the

two goal prior, though, a “Y” shape was seen in the distribution of positions visited

for both goals as experience was gained. This is because goals 2, 3, and 4 were never

selected as the true goals; hence, the agents required more experience to discover the

strategy of moving along the middle path as goal belief was uncertain, and deviations

from the middle path resulted in actions towards one of the two goals.

Thus, for all prior distributions, the agents gradually learned to move immediately

towards the mean of the prior distribution rather than wait for goal belief to resolve.

Another general trend is also seen: the behavioral effects of the evolving goal belief is

greater for goals further away from the center of prior distribution. Thus, for brevity,

presentation in the rest of this paper is restricted to behavior for goal 1.

Learned behavior

As the top parts of Figures 5.7, 5.9, and 5.10 show, the trained agent selected

actions towards the mean of the prior distribution when goal belief was uncertain. As

goal belief resolved, actions towards the true goal were taken. The type of goal belief

evolution under which the agents were trained affected their behaviors. Figure 5.11

illustrates the learned behavior for all six types of goal belief evolution under the flat

prior distribution for goal 1. In every case except no delay / instant evolution (top

right), action north was selected for the first 3 or 4 time steps. For both the no delay

and delay types of evolution, as the rate of evolution decreased, the longer the agent
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Figure 5.11. Learned behavior for each of the six goal belief conditions (labeled
in each graph) for the flat prior distribution. Follows same shading conventions as
Figure 5.7.
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Figure 5.12. Mean (across the 20 runs) distance between learned path for goal 1 and
the direct path for all 18 conditions, grouped by prior distribution (labeled on top
of each graph). Labels for evolution type are indicated in the lower right. Evolution
types with no delay are colored in dark grey; evolution types with delay are in light
grey. Standard deviation (s.d.) is plotted as error bars; if s.d. was < 0.01, it was not
plotted.

choose actions towards the mean of the prior distribution. This behavior is also seen

in Figure 5.12 (left), which plots (as bar graphs) the average distance between the

path taken to goal 1 (as controlled by a trained agent) and the direct path for each

of the six types of goal evolution.

The type of prior distribution used also affected behavior. Figures 5.13 and 5.14

illustrate learned behavior for all six type of goal belief evolution under the biased

and two goal prior distributions, respectively. The same trend is seen: the faster

goal belief resolved, the less time the agents spent moving towards the mean of the
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Figure 5.13. Learned behavior for the biased prior. Follows same conventions as
5.11.
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Figure 5.14. Learned behavior for the two goal prior. Follows same conventions as
5.11.

distributions. Figure 5.12 (middle and right) also shows this trend. Note that actions

towards the mean of the prior distribution were taken even when the prior distribution

was not explicitly represented in the goal belief (observe behavior under the no delay

/ slow and no delay / medium conditions).

In general, learned behavior as controlled by B incurred less cost (−∑
ra) than

behavior as controlled be A (Figure 5.15, top; cost under A is drawn as a dotted

horizontal line). As seen in Figure 5.15 (top) under the biased prior, the strategy of

moving towards the mean of the prior may be worse than simply using A when the goal

is considered on its own. However, when taking into account the prior distribution

(i.e., an average of the cost to all goals weighted by the prior distribution), behavior
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Figure 5.15. Mean (across the 20 runs) cost (−∑
ra) for the learned behavior for

all 18 conditions. Follows same conventions as Figure 5.12. Top: Cost for goal 1 only.
Bottom: Mean cost over all goals, weighted by the prior for each goal.

under B incurs less cost than behavior under A (Figure 5.15, bottom). Thus, behavior

was more costly when considering goal 1 in isolation, but better on average considering

the whole task.

The results of this section show that learned behavior for each of the three prior

distributions follow the same general trends. Learned behavior, as developed and

controlled by B, is to move immediately towards the mean of the prior distribution,

even when the prior distribution is not explicitly represented in the goal belief. Move-

ment deviates from the towards the mean to the true goal as goal belief resolves. The

faster goal belief resolves, the faster movement towards the true goal occurs. Finally,

while such behavior may result in a strategy that is worse than behavior as controlled

by A when considering a goal in isolation, it is better when considering all goals.
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Figure 5.16. Agents trained under one condition were tested (for one trial with
no learning or exploration) with another condition. Goal 1 is the true goal in cases.
Shown is the proportion of runs that visited each position (Follows same conventions
as Figure 5.11). Top half: labels indicate conditions under which the agents were
trained, plotted is their behavior when given a fully resolve goal belief. Bottom half:
All agents were trained under a fully resolved goal belief; labels indicate the conditions
under which they were tested.
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Effect of training under one condition when presented with another

The condition under which an agent was trained affects its behavior even when

exposed to a different condition. Figure 5.16 (top half) plots the behavior of agents

trained under a slow evolution but tested with a fully resolved goal belief (i.e., of

type no delay / instant evolution), for both the no delay and delay cases and for all

three prior distributions. For brevity, I do not present all possible combinations of

training / testing conditions and only examine behavior when goal 1 is the true goal.

Behavior was very similar (though not identical) to behavior when tested under the

goal belief conditions for which they were trained (compare with the left two graphs

of Figures 5.11, 5.13, and 5.14). Details on how the comparison was conducted are

provided in the figure caption.

On the other hand, agents trained with a fully resolved goal belief exhibited very

different behavior when tested with an evolving goal belief (Figure 5.16, bottom half).

The most noteworthy trend is that the representation of the prior distribution in goal

belief (which occurs under the delay condition) profoundly affects behavior. For the

flat prior distribution, behavior during the delay period tended towards the middle

path (due to the influence of goals 2, 3, and 4 on the weighted values of the actions),

but with a high variance. For the biased prior, actions straight towards goal 5 (which

had a prior belief of 0.5) were selected. For both distributions, when the delay period

ended, actions towards goal 1 were selected. Under the two goal prior distribution,

the agents moved straight towards goal 1 or goal 5 (and never moved along the middle

path). In the no delay case for all prior distributions, behavior tended towards goal 1

from the starting position, displaying some variance due to the unresolved goal belief.

These results demonstrate the inflexibility of the Value-based controller. Behavior

was learned from experience. When conditions (e.g., sensory information) changed,

resulting behavior as controlled by B was not appropriate for the new conditions.

The results also show that agents tested with goal belief that evolves faster than that
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Figure 5.17. Mean cost of behaviors plotted in Figure 5.16. Dark grey bars cor-
respond to the top half of Figure 5.16, light grey with the bottom half. Error bars
show standard deviation.

for which they were trained retain much of their behavior. Agents tested with a goal

belief that evolves slower, on the other hand, display a greater variance in behavior.

Figure 5.17 plots the mean cost of every condition illustrated in Figure 5.16. When

there was a delay in goal evolution, agents trained with an evolving representation

but tested with a fully resolved belief performed better than agents trained with a

fully resolved belief but tested with an evolving representation. The opposite was

true when there was no delay.

5.5 Sensory Transfer

Environment and Task

In this section, I investigate what I term sensory transfer, in which an agent

learns to use sensory modalities with intensity, timing, and precision qualities different

than those for which it was trained. To briefly describe the model, an agent can

choose an action from a particular group of actions, analogous to making a movement

based on sensory information from a particular modality. The actions within a group

share the same trade-off between precision and reward: some groups are precise but

costly while others are imprecise by less costly. For example, using the driving task
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described earlier, the driver can choose to estimate RPM’s based on the tachometer,

which takes time and attention but reveals an accurate and precise state estimate,

or estimate RPM’s based on auditory or somatic information, which takes less time

but may be imprecise. Thus, a stream of sensations and perceptions, including those

from different modalities, arrive over a short period of time. In this thesis, for the

sake of simplicity, I assume that information that arrives earlier is less precise than

information that arrives later.

The task used is presented in Figure 5.18. As in Chapter 4, the agent can move

in four directions (termed base actions in this section). According to the transition

dynamics of the previous chapter, execution of base action a results in a deterministic

transition from position p to p′. In this section the agent can also specify a sensory

modality, k, from which to estimate state. Rather than explicitly model the passage

of time, as in the previous section, for ease of presentation reward is a surrogate for

time. The choice of k affects the immediate reward received and the level of precision

in state estimate. I implement four modalities, hereafter referred to simply as Action

Groups to make clear that the putative effects of sensory modalities, rather than the

modalities themselves, are modeled. Figure 5.19 illustrates the four Action Groups,

and Figure 5.20 (left) illustrates the sixteen actions — four base actions and four

Action Groups.

Following Figure 5.19, if an action from Action Group 4 is selected, the current

position is estimated with exact precision and transition to p′ is deterministic. The

cost for this precision is an immediate reward of rk = −4. The only difference

between actions from Action Group 4 and actions from Chapter 4 is the immediate

reward received. However, agents can also select actions that are less costly but less

precise. In these cases, to implement imprecision, an action taken transports the

agent one position in the intended direction from a position chosen randomly from a

set centered around the current position. If the action is from Action Group 3, the
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Figure 5.18. “Grid-World” for the sensory transfer experiments. There are 630
positions arranged in a 21 × 30 grid. A transition into a “costly position” (shaded
grey) results in a reward of −50.

set is all positions within one step of the current position and rk − 3. Similarly, for

actions from Action Groups 2 and 1, the set is all positions within two and three

steps from the current position, respectively, and rk − 2 and −1, respectively. In all

cases, the position from which the agent is moved is chosen randomly from a uniform

distribution over all possible positions (as defined by the Action Group). Thus, choice

of Action Group represents a trade-off between reward and precision.

Unlike previous tasks, there is only one goal, and a subset of positions (shaded

in grey in Figure 5.18) are “costly:” transitioning into them incurs an immediate

reward of −50. Thus, immediate reward received includes rp, which is 0 except for

at the costly positions. Note that there is a narrow path through the costly positions

to the goal. A trial begins with the agent in the starting position and ends when it

has reached the goal position, valued at +200, or a time step limit of 200 has been

reached.
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Figure 5.19. Illustration of the four Action Groups. When the agent is in position
p, indicated by the thick-lined square in the center of each group, selection of an
action transitions the agent from any shaded position within the group with an equal
probability. If the agent is near a wall, the probability of positions that would be off
the environment is distributed evenly to remaining positions.
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Model

To focus on the relative advantages of different Action Groups, I depart from the

multiple controller model entirely and use a pared-down version of the Value-based

controller. Following typical simple Reinforcement Learning models, at each time

step, the agent can choose from a set of available actions. The value of each available

action is computed and the argmaxa is chosen (1− ε) proportion of the time, where

ε = 0.1 (this scheme is referred to as ε−greedy, Sutton and Barto 1998). Otherwise,

an action is chosen randomly from the set of available actions.

Update in Q-values

Actions are labeled according to the base action to which they correspond and the

Action Group to which they belong: ak, where a is the base action (north, south, east,

or west) and k is the Action Group (see Figures 5.18 and 5.20, left). The precision of

action ak is represented by a position belief vector, b, similar to the goal belief vector

from the previous section. b is determined by the actual current position, p, and the

action group, k, of the selected action (Figure 5.19). As with the update rule for the

previous section, the update of the Q-values take b into account. For all positions,

Q(p, ak)← Q(p, ak) + α b(p)


rk + rp′

0
+

∑

p′∈P

b(p′)Q(p′, a′k
′

)−Q(p, ak)


 , (5.3)

where α = 0.1, p′ and a′k
′

indicate the next position and action, respectively, rk is the

immediate reward for selecting an action from Action Group k, rp′
0

is the immediate

reward for transitioning into position p′0 (where p′0 is the actual position the agent

transitioned into), and goal g is left out of the notation because there is only one

goal.
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Figure 5.20. Left: schematic of the sixteen actions potentially available at each
position. Right: Schematic of the updates of Q(p, ak), Q(p, ak−1), and ν(p, ak−1).

Action saliency

Not all sixteen actions are immediately available, necessarily. In the driving ex-

ample, the driver initially used visual information to estimate state, but he learned to

use auditory and somatic information instead. Visual information was used because

it is intense; the intensity makes it salient in that it is easily noticeable and is known

to hold task-relevant information. The same cannot be said for auditory / somatic

perceptions — their relevance to the task must be learned. However, once learned,

they offer a better alternative to visual information. As discussed in the beginning

of this chapter and in the Introduction, one part of motor skill acquisition is to learn

what sensory information to use to best accomplish the task. The sensory informa-

tion used to initially learn a task may not be the best sensory information to use to

execute the movements after much practice. As discussed in Chapter 2 (page 23),

dopamine may be able to signal the saliency of sensory information.

To formalize these concepts, I introduce a saliency measure for each position-

action pair: ν(p, ak) (0 ≤ ν ≤ 1). In order for an action to be available, its saliency

must be above a threshold (θν = 0.8 for the results presented here). To account for

imprecision in position, the saliency of action ak is computed as
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∑

p∈P

b(p)ν(p, ak).

Initially, only the most precise actions are given a saliency of 1 (i.e., ν(p, ak) for k = 4

and all p and a are initialized to 1) and all other actions are initialized to 0. Thus,

the agent is restricted to use only the most precise actions. However, the saliencies

of less precise actions can increase and thus become available. The next paragraphs

describe this process.

When action ak is chosen, the Q-values and saliencies associated with it train

those of ak−1 (i.e., the base action taken from a Action Group k trains the base action

for the less precise Action Group, k − 1). For ease of explanation, consider the case

where state estimate is exact: b(p) = 1 and all other b(p′) = 0; thus b is left out of the

next few terms. Figure 5.20 (right) illustrates the update of Q(p, ak), Q(p, ak−1), and

ν(p, ak−1). Q(p, ak−1) is updated towards Q(p, ak). The accuracy of Q(p, ak−1), δq, is

simply the difference between the two. ν(p, ak−1) is updated towards some function of

ν(p, ak)/δq with a learning rate also inversely proportional to δq. Thus, if Q(p, ak−1) is

not accurate, ν(p, ak−1) will not increase by much. While the accurate value of action

ak−1 taken from position p is different than that of ak, Q(p, ak−1) is updated towards

Q(p, ak). Thus, before action ak−1 becomes available from position p, Q(p, ak−1) is

near Q(p, ak).

The above equations are modified to take b into account as follows:

δq ←
∑

p∈P

b(p)Q(p, ak)−
∑

p∈P

b(p)Q(p, ak−1)

Q(p, ak−1) ← Q(p, ak−1) + α b(p)δq for all positions,

which is similar to equation 5.3. δq, the accuracy of the estimated value of action

ak−1, is used to update the saliency of action ak−1 as follows:

δν ←
1

max(|κδq|, 1)
∑

p∈P

b(p)ν(p, ak)−
∑

p∈P

b(p)ν(p, ak−1)

166



ν(p, ak−1) ← ν(p, ak−1) +
α

ν

max(|κδq|, 1)
b(p)δν for all positions,

where ν is bounded by 0 and 1, α
ν

is a learning rate (set to 0.1 as well) and κ,

0 ≤ κ ≤ 1, weighs the importance of accuracy in Q-values. In the experiments to be

described, several values of κ are used.

Action selection

Finally, action selection takes both saliency and position belief into account. (1−ε)

proportion of the time, the highest-valued action is chosen: for every base action a

and Action Group k, the chosen action is

argmaxak

∑

p∈P

b(p)ν(p, ak)Q(p, ak).

The other ε proportion of time, an action is selected randomly from the set of actions

such that the following quantity is ≥ θν :

∑

p∈P

b(p)ν(p, ak).

Experiments

I examined how learning agents accomplished the task with the learning and

control mechanisms described above under five different conditions:

1. Group 4 only, in which only actions from Action Group 4 were allowed. αν was

set to 0. Thus, precision was exact for every action chosen.

2. Flat, where ν for every p and ak was initialized to 1. Thus, all sixteen actions

were available from the beginning.

3. κ = 0, in which case accuracy was given a zero weight in updating ν for actions.

Thus, ν was updated quickly based purely on experience.
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Figure 5.21. Mean reward (across the 20 runs) for each condition for the first 30,000
trials. Each plot draws the mean reward for the labeled condition in black and the
mean rewards of the all other conditions in grey for comparison.

4. κ = 0.25, in which case accuracy was given a moderate weight.

5. κ = 0.75, in which case accuracy was given a high weight.

20 runs of each condition were performed, where a run consisted of having the agent

accomplish the task for 200,000 trials.

Results

As with the previous section, all results are taken from “test trials,” where all

learning, exploration, and stochasticity in the environment were set to zero.

Learning

Figure 5.21 plots the mean reward across the 20 runs for each condition for the

first 30,000 trials. Note that because of the reward structure of the environment and

task (rk ranges from −1 to −4 and transition into a costly position incurs rp = −50),

mean rewards are largely negative during early trials. The reader’s attention should be

drawn to the shape of the reward curves, i.e., the number of trials it takes before mean
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Figure 5.22. Follows same conventions as Figure 5.21, but plots mean reward for
all 200,000 trials.

reward increases substantially. Immediately evident is the advantage of restricting

action selection to salient actions for early performance. Mean reward under the

flat condition took roughly 15,000 trials to reach −200. Conditions where accuracy

is moderately (κ = 0.25) or weakly weighted in training ν took roughly half that,

and conditions where accuracy is highly weighted (κ = 0.75) or only Action Group

4 actions are allowed required even fewer trials. These results suggest that limiting

exploration during early trials enabled the agents to accomplish the task more quickly.

The advantage in early performance may come at a cost. Figure 5.22 displays

mean reward for all 200,000 trials. While the mean rewards of agents trained under

conditions Group 4 only and κ = 0.75 increased the fastest during early trials, they

also displayed the slowest increase in performance after the first 30,000 trials. The

flat condition, on the other hand, increased the most, while conditions κ = 0 and

κ = 0.25 had intermediate increases.
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Figure 5.23. Each plot is a representation of the environment (Figure 5.18). Visited
positions are drawn and shaded by the proportion of runs that visited that position
(the darker the shading, the closer the proportion is to 1). Left column (“All Action
Groups”): positions visited by all 20 runs for each of the five conditions. Remaining
columns: proportion of positions from which an action from the Action Group labeled
at top was selected.
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Strategy

Agents from all conditions learned to use the path through the costly positions and

displayed a generally similar strategy of positions visited and use of Action Groups

(save for the Group 4 only condition). Figure 5.23 displays learned behavior in a

manner similar to Figure 5.11 — positions visited by each run are marked and shaded

according to the proportion of runs that visited that position (darker is closer to 1).

As a reminder, plotted are learned behaviors under an entirely greedy policy with

no stochasticity in the environment — all learning, exploration, and stochasticity

parameters have been set to zero.

The right four columns illustrate the proportion of runs that selected an action

from each Action Group at each position. For all conditions (except Group 4 only),

actions from Action Group k = 1 were used at many positions between the starting

position and the entrance to the path (referred to as the left portion of the environ-

ment). At positions near the path entrance and in the path, actions from k = 4

were used. Agents trained under the flat condition use actions from progressively

lower groups at positions farther from the path entrance. Agents trained under the

other conditions seem to be developing that behavior. Such strategies make sense in

that the most (immediately) rewarding but least precise Action Groups were used in

areas of the environment where precision does not matter, while closer to the costly

positions, more precise and costly actions were chosen.

To observe overall behavioral strategy, the left column of Figure 5.23 displays

the same information but without separating Action Groups. As would be expected,

there is variance in positions visited in the left portion of the environment as there

are no diagonal base actions (there are many equally optimal paths to the goal).

However, visual inspection indicates that agents that trained under conditions flat,

κ = 0, and κ = 0.25 were more consistent in the choice of positions enroute to the

goal. Figure 5.24 (top left) quantifies the consistency by plotting, as bar graphs, the
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Figure 5.24. Top left: the mean (across the 20 runs) proportion (density) of posi-
tions visited under each condition (labeled in each bar). Error bars show standard
deviation. The text above the bars for conditions Group 4 only and κ = 0.75 indicates
which conditions had a significantly higher mean than those conditions. Remaining
plots: proportion of actions selected that came from each Action Group (labeled in
each plot). Bar colors are labeled in the mean density plot (top left). That for con-
dition Group 4 only is not shown since 100% of the actions were from Action Group
4.
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mean density of positions for each condition. Mean density was calculated as follows:

for each condition, the proportion of runs that visited each position was summed;

that sum was divided by the number of positions visited. Positions not visited were

not included. While difference in mean density was not great, that for conditions flat

and κ = 0.25 were significantly greater than densities for conditions Group 4 only

and κ = 0.75, and density for condition kappa = 0 was significantly greater than that

for condition κ = 0.75 as well (two-tailed unpaired boostrap state, p < 0.05, Cohen

1995). Thus, agents trained under conditions for which less precise actions were easily

trained developed a more consistent strategy than agents trained under conditions

for which less precise actions were difficult to train or unavailable.

To determine if, indeed, less precise actions were used if available, Figure 5.24 (top

right and bottom row) plots the proportion of actions under each of the four Action

Groups for the four unrestricted conditions (that for agents trained under condition

Group 4 only are not included). Agents trained under condition κ = 0.75 used the

least percentage of actions from Group 1 and the most from Group 4. Thus, the use

of actions from Group 1, the least costly but least precise actions, led to a greater

consistency in paths taken to the goal.

Behavior

Although the use of imprecise actions led to a consistent strategy in the left portion

of the environment, actual behavior when stochasticity of the environment is taken

into account was highly variable. Figure 5.25 (top left, labeled “Greedy / no noise”)

plots the strategy, i.e., the greedy policy, of a particular run from an agent trained

under the κ = 0.25 condition. Note that for the two plots in the dashed-line box,

shading indicates to which Action Group an action chosen from each position belongs.

Consistent with the previous section, the agent chose actions from Action Group 1 at

positions in the left portion of the environment, chose actions from Action Groups 2
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Figure 5.25. Behavior following the Q-values and ν-values from a specific run from
condition κ = 0.25. The greedy policy is shown in the “Greedy / no noise” plot, while
a single sample following the greedy policy but with stochasticity in the environment
is shown under the plot labeled “sample run.” For these two plots (which are within
the dashed-line box), shading of the position indicates to which Action Group actions
selected from each position belonged. The rest of the plots show behavior under the
same conditions as the sample run, but for a conglomerate of 40 sample runs; they
follow the same conventions as in Figure 5.23.
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Figure 5.26. Follows same conventions as in Figure 5.25, but for condition κ = 0.75.

and 3 near the entrance to the path, and chose actions from Action Group 1 closer

to the path entrance and along the path to the goal.

Figure 5.25 (top middle, labeled “sample run”) illustrates a sample run for an

agent following the greedy policy (no exploration or learning) but in a stochastic

environment (and thus the effects of the imprecisions of the selected actions are re-

vealed). Figure 5.25 (top right) shows resulting conglomerate behavior after 40 sample

runs (Figure 5.25, bottom row, illustrates the same information separated by Action

Group). Variance in behavior in the left portion of the environment was high, while

behavior along the path towards the goal was very consistent. Thus, at areas of

the environment where precision is not important, precision was sacrificed in favor

of more rewarding actions. Such behavior is in agreement with the general motor

control strategy (e.g., Todorov and Jordan 2002) of allowing variance to accumulate

in task-irrelevant dimensions. However, in this case, such behavior is explained by

choice of rewarding yet imprecise actions, analogous to using sensory modalities that

estimate state imprecisely.
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In contrast, a behavioral strategy that used a lower proportion of Action Group 1

actions (as is the case for a sample run from condition κ = 0.75, Figure 5.26) resulted

in less variance. The mean (± s.d.) density of positions visited (corresponding to the

top right graph, labeled “All Action Groups,” of Figures 5.25 and 5.26) is 0.18 (±0.2)

for condition κ = 0.25, and 0.24 (±0.23) for condition κ = 0.75); the difference is

significant (two-tailed unpaired boostrap test p < 0.01, Cohen 1995).

5.6 Discussion

As discussed at the beginning of this chapter, I model the effects of sensation and

perception as leading to a redundancy in state estimate in which there is a trade-off

between precision and reward or timing. Most accounts of motor control suggest that

cortical planning mechanisms, as opposed to the simpler scheme used by the basal

ganglia, are responsible for incorporating uncertainty into behavioral strategy. In this

chapter I show that, when a task is repeatedly solved, it is possible for the learning

and control mechanisms of the BG to produce behavior that takes uncertainty in

state representation into account. In this chapter, state is factored into a position

dimension and a goal dimension; I examine uncertainty in each dimension separately.

Sensory evolution

In the experiments dealing with sensory evolution, uncertainty in goal evolved

over the first eight time steps of a trial from representing each possible goal with

a non-zero probability to representing the true goal with certainty. An agent was

presented with a variety of types of goal belief evolution and prior distributions (from

which goals were chosen). Behaviors exhibited by trained models conformed with that

exhibited by humans during a reaching task under an evolving goal representation

(Hudson et al., 2007): while belief was uncertain, movement was towards the mean

of the prior distribution. As goal belief resolved, movement veered towards the goal.
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This strategy held true under different prior distributions in both my model and

human behavior; it also held true even when the prior distribution was not explicitly

represented in the goal belief used by the model.

How behavior under such conditions is learned has not been described (to my

knowledge) in the experimental literature. The simulation results have implications

regarding the progression of behavior while learning a task and also how behavior

differs when trained under different types of goal belief evolution. Briefly, behavior

will progress gradually, over the course of learning, from waiting until goal belief is

fully resolved and then moving straight towards the true goal to immediately moving

towards the mean of the prior distribution (Figures 5.7, 5.9, and 5.10). Deviation

from a direction towards the mean of the prior to a direction towards the true goal

will occur earlier in a trial as goal belief resolves more quickly (Figures 5.11, 5.13, and

5.14). The different types of goal evolution used in this chapter serve as surrogates for

different sets of goal stimuli, each with different perceptual qualities. The dependence

of behavior on goal stimuli displayed in the model offers a way to indirectly assess

the perceptual qualities of a stimulus.

Perhaps more interesting are the results summarized in Figure 5.16, which plots

behavior as controlled by an agent trained under one type of sensory evolution but

tested under a different type. This approximates the scenario of learning a task with

goal stimuli of one type of perceptual quality, but then asked to accomplish the task

with goal stimuli of a different type of perceptual quality. Agents trained under an

evolving goal representation but tested with a fully resolved one did not change their

behaviors (Figure 5.16, top half). Such a strategy is suboptimal considering the given

representation. Also, it indicates that, when the goal stimulus is more easily resolved

than the stimuli under which an agent was trained, the relative perceptual clarity

had little effect on behavior. In the opposite case, in which agents were trained with

a fully resolved goal representation but tested with an evolving one, behavior differed
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greatly (Figure 5.16, bottom half), indicating that the relative perceptual opaqueness

had an effect on behavior.

While there was a fair amount of variance in behavior under some conditions,

comparison of performance (Figure 5.17) suggests that, when there is no representa-

tion of a prior distribution (as when there is no delay in goal evolution), it is better to

train with goal stimuli that are more easily perceived than the expected goal stimuli

under testing conditions. On the other hand, when there is some representation of

the prior distribution, it is better to train with less discernible goal stimuli, especially

for cases when the prior distribution is similar to that of the two goal prior. This is

because, under the two goal prior distribution, only goals 1 and 5 were represented

and selected. Therefore, when trained under a fully resolved goal belief, the agents

had little experience along the middle path. Consequently, during the delay period

for an evolving goal belief, either action northeast or northwest was selected from the

starting position. In the latter case, when the delay period ended, the agents were

halfway to goal 5. Since, enroute to goal 1, the agents had little experience with po-

sitions along the path directly towards goal 5, actions towards goal 1 were not taken

until goal belief was almost fully resolved (i.e., the agents had almost reached goal

5).

As behavior in the trained model is controlled by B, which uses Q-values to

make decisions, the type of sensory representation under which an agent was trained

also affects the Q-values it uses. Such a dependence is a design of the the learning

mechanisms of B (Equation 5.1). As striatal neurons have been suggested to represent

Q-values (Samejima et al., 2005), I would expect that striatal neuron activity would

also exhibit such a dependence. In particular, when subjects are trained with an

evolving goal representation and tested with a fully resolved goal representation, I

would expect striatal neuron activity to be very similar (as would behavior, Figure

5.16, top half). Specifically, striatal neural activity would exhibit a high value for
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action north from the starting position even if the representation of goal 1 was easily

perceived. In the opposite case (Figure 5.16, bottom half), though, I would expect

striatal neuron activity to be very different. Specifically, striatal neural activity would

exhibit action-values weighted by goal belief. An extreme example of this is inferred

from the lower right graph of Figure 5.16, which suggests that actions northwest and

northeast would be equal in value, while all other actions (including north) would be

near zero in value.

Sensory transfer

In the experiments dealing with sensory transfer, different sensory modalities were

not modeled explicitly; rather, their effects on state estimate were modeled. At

each time step, the agent had a choice of executing an action based on imprecise

estimates of position or based on precise ones; the higher the precision, the more

costly the action. Agents developed a strategy of using imprecise actions in areas

of the environment where precision was unimportant — there were no obstacles or

costly positions. However, at areas of the environment near costly positions, precise

actions were used.

The availability of imprecise actions led to behavior consistent with general mo-

tor control strategies. Agents that used a greater proportion of imprecise actions

developed a strategy of following a desired path to the goal that was more consistent

than that of agents that used a lower proportion of imprecise actions. Thus, strategy

was more stereotyped when imprecise actions were used. Variance in behavior has

been proposed as an objective to be minimized by control strategies in planning in

stochastic environments (Harris and Wolpert, 1998). The use of imprecise actions

led to an actual increase in variance in behavior in areas of state space where pre-

cision was not important. This strategy also conforms with a general motor control

strategy, that of allowing variance in task irrelevant dimensions (Todorov and Jor-
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dan, 2002). However, while in this model such behavior is due to choice of Action

Group, Todorov and Jordan (2002) show how such behavior minimizes variance in

task-relevant dimensions.

I also showed that restricting the initial set of available actions to precise but

costly ones, and allowing progressively imprecise but less costly actions to become

available as their saliencies increased, improved early learning — the agents were able

to learn the task more quickly than agents that had all actions available initially. This

strategy is similar to that of freezing degrees of freedom (DOF’s) (Bernstein, 1967),

in which one limits the number of variables to be controlled to facilitate learning. As

discussed in Chapter 3 of this thesis, excess DOF’s presents our nervous system with

an ill-posed problem in that there is no unique solution; freezing DOF’s alleviates this

problem. For example, human infants have been shown to “lock” their elbow joints

in reaching, but, over the course of the first year of life and beyond, progressively

allow their elbow joints and other DOF’s to contribute to arm movements (Berthier

and Keen, 2006; Berthier et al., 1999). Thus, arm movements early in life were not

smooth, but were relatively easy to control, while arm movements later in life were

much smoother. Berthier et al. (2005) show the utility of this strategy in a theoretical

model of reaching.

While it was meant to explain the use of sensory information, the formulation of

the Action Groups in this model can also be applied to the observation that variability

in movements increases as the magnitude of control signals increase (Fitts, 1954;

Engelbrecht et al., 2003; van Beers et al., 2004). In other words, larger and faster

movements are less precise. If we equate reward with speed, then use of actions from

Action Group 1 is analogous to moving faster.

Behavioral strategies as produced by the model were developed to take into ac-

count the effects of the use of different sensory modalities; such strategies coincide

with behavior described to take into account motor variables. However, while I did
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not explicitly investigate it in this thesis, the use of different sensory modalities allows

for additional types of motor behavior. For example, if actions from Action Group 1

were analogous to moving using visual information, then transfer of sensory control

to actions from other Action Groups allows for visual information to be directed else-

where. In the car driving example, the driver can shift gears while directing his gaze

on the road.

Summary

Many theoretical accounts of motor behavior and decision-making assume a static

representation of state — state is either precise or at a fixed-level of uncertainty in

a sequential-decision task. In this chapter, the effects of sensation and perception on

state estimate were modeled by introducing redundancy in state. Essentially, agents

were able to trade precision for reward (either directly, as in sensory transfer, or by

acting to move quickly, as in sensory evolution). A similar type of trade-off is the

focus of some artificial intelligence models (Zilberstein and Russell, 1993; Zilberstein,

1994; Grass and Zilberstein, 1997; Hansen et al., 1996), which showed how to best

trade quality of sensory information and abstraction with computation time in solving

simulated tasks. Learning mechanisms attributable to the basal ganglia were able to

take into account uncertainty in state representation to produce model behavior that

follows similar strategies as human behavior, suggesting the the basal ganglia can

contribute to such learning.
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CHAPTER 6

DISCUSSION

In the previous three chapters, I presented a general account of motor skill acquisi-

tion and showed how the learning and control mechanisms of the basal ganglia (BG),

realized with methods from Reinforcement Learning, can produce behavior indicative

of motor skills. I focused on the BG because of the prominent role practice plays in

motor skill acquisition — the learner must repeatedly interact with the environment

in order to gain proficiency.

Chapter 3 showed how the behavioral characteristic of coarticulation was achieved

through hierarchical optimization — using only total task performance, rather than

considering performance during each subtask, as an evaluative measure. Also, the

undirected exploration strategy used in my model produced behavior different than

a directed exploration or planning strategy, used in most other accounts of coarticu-

lation. The advantages of undirected search were discussed in the discussion section

of Chapter 3.

Chapter 4 suggested that the notion of automatic could be explained by the rich-

ness of the state representation used to make a decision and the computational so-

phistication of the controller that makes it. Such a notion is similar to most accounts

of habits (Daw et al., 2005; Yin and Knowlton, 2006; Dickinson, 1985; James, 1890). I

also demonstrated the functional advantages of using an automatic controller to select

a sequence of actions and how the use of such a controller, along with how experience

gained while using the controller is used, leads to gross changes in behavior.
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Chapter 5 described the utility of sensory exploitation, described differences in

behavior due to differences in sensory information, and showed how the BG can learn

and control such behavior. The use of the BG contrasts with most explanations

of behavior under different sensory conditions, which suggest that cortical planning

mechanisms are responsible for most behavioral change.

Many theories of motor skill acquisition focus on how planning mechanisms at-

tributed to cortical areas contribute to developing behavior indicative of motor skills.

The work presented in this thesis suggests an alternative method to such development:

by using the experiential learning mechanisms of the BG. Thus, behavior indicative

of motor skills is not due to just cortical planning mechanisms. In addition, there

may be circumstances for which planning mechanisms cannot be used effectively, e.g.,

when attention must be devoted to other tasks or when an accurate model of the en-

vironment and task is difficult to construct. Because the learning mechanisms of the

BG are less sophisticated than those of planning mechanisms, they may not require

the same attentional and computational resources. Also, they do not require an ac-

curate model of the environment. Even when cortical mechanisms cannot be used

effectively, many aspects of motor skills can be acquired through the BG. In addition,

I discussed the implications of the functional mechanisms used in each chapter in

relation to theoretical research focusing on similar problems. Such a discussion aids

in determining why motor skills are useful.

The purpose of this work was to present a basic theoretical framework through

which motor skills can be acquired and to show how the learning and control mech-

anisms of the BG can participate in all aspects of acquisition. However, this work is

not meant to be an exhaustive, detailed account of motor skill acquisition or motor

control in general, and a few general restrictions were imposed in this study. First,

as discussed in the Introduction, the term motor skill can be applied to a wide range

of behaviors. I focused on serial discrete tasks in mostly closed environments. Tech-
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niques used in this thesis can be applied to other types of tasks, particularly if one

views a periodic continuous task (e.g., walking) as simply repeating the same serial

discrete task. Second, as discussed in Chapter 2, the learning and control mechanisms

of areas other than the BG were artificially restricted to show that the mechanisms

of the BG can participate in most aspects of motor skill acquisition. Third, the func-

tional mechanisms presented in this thesis were segregated absolutely. However, it

is likely that our nervous system employs a scheme that is closer to a continuum of

control mechanisms. The segregation is useful in a theoretical model so that the con-

tributions of each control scheme is readily apparent. I discuss how these and other

restrictions can be lifted later in this chapter.

Nevertheless, although each behavioral characteristic of a motor skill was exam-

ined separately, a similar framework was used to gain proficiency in each task. In

essence, planning mechanisms were used to provide a reasonable initial solution to

each subtask, and the learning and control mechanisms of the BG were used to im-

prove upon those decisions. Such a progression is supported by experimental research

(discussed in Chapter 2) and is similar to the theory of skill acquisition suggested by

Fitts and Posner (1967). The use of multiple controllers in solving tasks is not a

new idea, but there is some debate as to how to best model the different controllers,

how different brain areas participate in behavioral control, and how to best arbitrate

between the control signals in general. In the next section, I describe a few other

types of multiple control schemes that share some functional attributes with the one

I presented in this thesis.

6.1 Multiple Controllers

In the Introduction, I discussed how the decomposition of a complicated task into

discrete subtasks aids in learning to perform that task. As an example of another

type of decomposition, Haruno and Wolpert (2001) discuss how performance of a task
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in a large environment is aided by combining multiple controllers, each of which is

trained to generate effective control signals in only part of the environment. Rather

forcing one controller to learn a complicated environmental structure, a combination

of controllers that learned simpler structures is used. In general, a modular approach,

where a complicated functions are approximated by a combination of simpler ones,

has many advantages.

Top down schemes

Several models use a gross architecture similar to mine: a general -purpose con-

troller is used to help train one specific for the current task. The model of Daw et al.

(2005), described in the discussion section of Chapter 4, showed how such a scheme

may explain behavior seen in instrumental conditioning tasks with goal devaluation.

Below are several others which focused on motor control.

In Feedback-error-learning (Kawato, 1990; Kawato et al., 1987; Kawato and Gomi,

1992), it is assumed that the system (e.g., your body) must execute control signals τ

so as to achieve a desired trajectory of states xd. The general controller is a feedback

controller which generates a control signal u based on the discrepancy between the

current trajectory (x) and the desired trajectory. The delay in receiving feedback

information is significant, so the corrective motor commands it generates is based

on delayed information — it works well for slow movements only. An inverse model

can learn to produce motor commands (u∗) which result in the desired trajectory,

and therefore does not rely on delayed feedback. The inverse model uses the motor

commands generated by the feedback controller as training signals. Overall control

is a sum of the two controllers: τ = u∗ + u. Early in learning, the inverse model

is not well trained, so the signals generated by the feedback controller are large;

later in training, because the inverse model produces motor commands which result
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in an accurate trajectory, the trajectory error is small and the feedback controller

contributes little to the overall control signal.

Supervised actor-critic RL is a scheme used by Rosenstein (Rosenstein and Barto,

2004; Rosenstein, 2003) in which the control signal, τ , is a weighted sum of the signals

prescribed by an RL agent (ae) and a supervisor (as): τ = kae+(k−1)as. The signals

generated depend on the state, s, and the supervisor prescribes a route directly to

a goal state. However, the signal and route are suboptimal in certain environments.

The RL agent is able to try out alternative signals and modifies its output based

on a reward, given by the environment, and the signals generated by the supervisor.

The weighting factor, k, is state-dependent and increases as the RL agent gains more

experience in a particular state. Early in learning, the supervisor dominates, but later

in learning, as the RL agent learns the task, its control dominates and performance

exceeds that of the supervisor.

Different types of controllers have also been used in sequence to allow for ex-

ploration and accomplishment of the task. Randlov et al. (2000) defined an error-

correcting controller that would take control when the agent was near the target

state. An RL agent would try out actions, and when it reached a state under con-

trol of the error-correcting controller, the error-correcting controller would take over.

This effectively increased the size of the target region for the RL agent, which cannot

search a very large state-action space through exploratory actions alone in a reason-

able amount of time. In a hybrid RL/SL scheme (Fagg et al., 1997a,b, 1998), an

agent, which used a combination of RL and SL to modify control signals, suggested

an initial motor command, ae, that changed the state s, of the system. If the goal

state, g, was not reached, a “teacher” generated a sequence of crude corrective move-

ments, as, that eventually achieved the goal of the task. In the case of the hybrid

RL/SL scheme, the overall control signal, τ , was either ae or as, not a summation of
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both. The actions of the RL/SL agent were updated according to reward signals and

signals generated by the teacher.

A model of how the brain learns a sequence of movements (Hikosaka et al.,

1999; Nakahara et al., 2001), built on behavioral studies using non-human primates

(Hikosaka et al., 1995), suggests that the brain uses two parallel control mechanisms.

One is in an abstract representation and learns quickly, but executes movements

slowly, and the other uses a representation more specific to the actual task, learns

slowly, but executes movements quickly. With experience, the latter dominates con-

trol.

Bottom up schemes

The focus of the research described above was to show how constructing a con-

troller to accomplish a specific task is facilitated with the cooperation of a general

purpose controller. The work presented in this thesis also displayed such a utility. In

addition, in Chapter 4, I showed how the existence of a controller that accomplished

a specific task (or portion of a task) can facilitate the learning of another task. For

example, when playing a game of tennis, it is easier to consider the motor skill of

“hit a forehand” as a single unit than to contemplate each associated movement. The

options (Precup, 2000; Sutton et al., 1999) and task decomposition (Dietterich, 2000)

frameworks, described in the discussion sections of Chapters 3 and 4, also illustrate

such utility.

Similarly, techniques used in robotics show how breaking down complicated tasks

with controllers designed to achieve specific goals greatly facilitates learning. The

Control Basis framework (Huber et al., 1996; Coelho and Grupen, 1997; Grupen and

Huber, 2005; Hart et al., 2008b) designed a set of low-level controllers that each gen-

erated control signals to achieve some objective, e.g., minimize the net moment about

an object to be grasped or instability of the robot itself. These specific controllers are
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analogous to reflexes and their control signals can be combined according to some pri-

ority, e.g., projecting the control signals of a subordinate controller onto the null space

of the superordinate controller. If a particular combination of controllers produced

some useful behavior, that combination can be designated a controller as well, to be

used to accomplish still higher level tasks. The Subsumption Architecture (Brooks,

1991) also layers controllers in a hierarchical manner, where a higher-level controller

can use a lower-level controller in accomplishing some task. For example, the high

level controller of “walk to the corner” will recruit the low level controllers of “avoid

obstacles” and “walk.” Because the low level controllers can handle all the details of

their tasks, the high level controller can devote its resources elsewhere and also plan

more efficiently.

The use of specific controllers essentially prevents one from “reinventing the wheel:”

if some task is useful and has already been accomplished, an intelligent control scheme

will use that information to accomplish more complicated tasks if applicable. Piaget

(1952) suggests that this is exactly how we develop complex sensorimotor skills. Hu-

man infants begin life with a small set of basic skills, often referred to as reflexes, such

as grasping whatever is put in their hands or sucking whatever is put in their mouths.

As they develop, those skills are used a building blocks for more complex skills. This

concept has been applied to the development of complex skills in the robotics domain

(Hart et al., 2006, 2008a).

What constitutes a useful skill? In Chapter 4, “chunks” were developed along

trajectories useful for several goals; the discussion of Chapter 4 describes theoretical

work in which useful skills were identified by similar methods. However, identification

of a useful skill may be accomplished by some inherent intrinsic reward, in which a

part of the agent’s design is to recognize some generic useful outcome and construct

a skill to achieve it. For example, an unexpected change in sensory information is a

surprising event; thus, a skill might be developed to achieve the state that led to that

188



sensory information. Once the skill is learned, that sensory information is no longer

surprising, so the agent will not be “motivated” to continue learning it. Research in

RL (Barto et al., 2004; Stout et al., 2005; Şimşek and Barto, 2006) and robotics (Hart

et al., 2008b, 2006) show how intrinsic motivation leads to the development of useful

skills.

Single-layer schemes

The multiple controller schemes described above, and in my thesis, used general

controllers to help train specific ones, and specific controllers to facilitate learning

and performance in other tasks. However, different brain areas, each specialized to

implement some computational mechanisms, may also work together on the same

hierarchical level in solving a task. Here I describe two models that depart from the

hierarchical schemes outlined above.

There is evidence that, like cortico-ganglio-thalamo loops, areas of cortex, cere-

bellum, and deep cerebellar nuclei are interconnected in segregated loops (Houk and

Wise, 1995; Houk et al., 1993) Thus, the BG, cerebellum, and cortex may work to-

gether to control movement. Houk and Wise (1995) present a conceptual model in

which the pattern recognition properties of the BG allow them to detect a sensory con-

text. Striatal neurons are transiently activated and disinhibit thalamus neurons. The

thalamus thus initiates activity in a thalamo-cortical self-sustaining positive feedback

loop, which executes movement. The cerebellum, using error-related information and

synaptic plasticity at the parallel fiber to Purkinje cell synapses, learns to modify

movement. The cerebellum also has pattern recognition capabilities, allowing it to

detect when the goal of the movement is nearly achieved and initiate the termination

of movement. Houk et al. (2007) discusses how this scheme may account for sequence

learning and the execution of corrective movements if the goal is not achieved (see

also Houk 2005).
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In Chapter 2 I discussed evidence that, as a motor skill is learned, control was

transferred from cortical areas to the BG. In other types of tasks, where a solution

or even the purpose of the task itself is not known a priori, activity in the BG has

been shown to precede that of frontal cortices (Pasupathy and Miller, 2005; Seger

and Cincotta, 2006), suggesting that cortical planning areas (such as the PFC) use

information provided by the BG rather than the other way around. Modeling work

described in O’Reilly and Frank (2006) (see also O’Reilly et al. 2007) suggests that,

in order to plan effectively, the PFC maintains representations of relevant sensory in-

formation. The BG, through reward-related mechanisms, learns to determine which

representations are useful for solving the current task and thus affect which repre-

sentations are maintained by the PFC. In this model, the task of creating and main-

taining representations is performed by the PFC, while the task of selecting relevant

representations is performed by the BG.

6.2 Future directions

This thesis described a general theoretical framework that explains several aspects

of motor skill acquisition. One advantage of this framework is its modularity —

different learning and control mechanisms are segregated to a large degree. Such

modularity enables us to improve upon different areas without reworking the entire

structure. Motor control and optimal use of sensory information and processing have

motivated much research in psychology and neuroscience; the results of such research

can be used to refine the models presented in this thesis. Perhaps the most important

direction for future work, though, focuses not on a particular control method, but

rather the communication between controllers and the circumstances under which

they are used.

Like several other top down multiple controller schemes discussed earlier, the mod-

els I present do not offer a method to immediately disengage the controller trained
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for the specific task and revert control back to the general controller, as would be

beneficial when the task suddenly changed. Though such a reversion is not explicitly

discussed in Daw et al. (2005), their scheme will revert control from their specific con-

troller (the Cached-values controller) to their general (Tree-search) controller once the

confidence of each controller reflects their true inaccuracies. However, such confidence

is determined by evidence; if the task changed, but the confidence measure is based on

a long history of previously accurate predictions, it may require some experience for

reversion to occur. Nevertheless, only their model, and the feedback error-learning

model of Kawato (1990), enables the general controller to assume control without

significant retraining of the specific controller. A simple modification to the network

dynamics I describe in Chapter 4 is to require the Action neurons to be in an “up”

state for the Value-based controller as well as for the Automatic controller, i.e., limit

the weights of the projections representing the Value-based controller. Thus, if con-

sequences of an action taken close to the expected goal was suddenly largely negative,

as would be the case if the task suddenly changed, the Action neurons could be set

to a “down” state and control reverted to the Planner.

Continuing with the topic of controller selection, the different models described

under the top down multiple controller scheme use different forms of arbitration. Some

(Kawato, 1990; Fagg et al., 1997a) recruit the general controller only if it is needed;

others (Nakahara et al., 2001; Rosenstein and Barto, 2004) increase the contribution

of the controller trained for the task as it gains experience; the model presented

in Daw et al. (2005) recruits the controller with the most confidence. Dickinson

(1985) suggests that action selection is transferred from a controller that explicitly

takes the consequence of the action into account to one that does not when the

rate of reward no longer increases in response to an increase in the rate of behavior.

With the models of Chapters 4 and 5 of thesis, I assume that a controller with

higher computational requirements requires more time to make a decision. Thus, the
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controllers were designed so that simpler controllers make decisions earlier if they are

sufficiently trained, resulting in an arbitration scheme that is essentially based on

experience. However, the design does not include any explicit advantage to using a

simpler controller to make the same decision as a more complicated one. In some

cases, it may be easier to use a simpler controller, even if the actions it selects are

not optimal for the task at hand. For example, a poor typist might develop motor

skills so that he uses only his index fingers. If the typist only typed when he needed

to perform well, the cost of using those suboptimal skills is less than the cost of using

planning mechanisms to help develop better skills.

Finally, in the first part of this chapter I mentioned how the functional mecha-

nisms described in this thesis were separated absolutely: the Planner, Value-based

controller, and Automatic controller were distinct. The segregation enabled us to

clearly see how each controller contributed to behavior, but it is more likely that a

continuum of control strategies is used by our nervous systems. Such a continuum

can be approximated by implementing controllers whose horizons recede according to

experience, performance, and predictions. In addition, each of the three controllers

I used excited Action neurons independently, e.g., the Automatic controller first ex-

cited Action neurons, then the Value-based controller did. However, it is likely that

the influence of lower controllers would contribute action selection even if they alone

cannot. Such a case is easily implemented in the models presented in this thesis and

may provide greater insights as to how the behavior arises from the different control

mechanisms.

The work presented in this thesis ultimately focuses on decision-making in motor

skill acquisition. Thus, a high level of abstraction was used in that both the sys-

tems to be controlled the the environments in which they must perform tasks were

relatively simple. Such abstraction was intentional as I showed how the functional

mechanisms I hypothesize lead to behaviors characteristic of motor skills even with
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simple systems in simple environments. More realistic systems and environments only

further demonstrates the advantages of the functional mechanisms used.

For example, one relatively minor modification to the models presented in this

thesis could further demonstrate the utility of redundancy in sensory information. In

Chapter 5, I show how different sensory modalities are best used in different parts

of the state space. The utility of different modalities is greater if some can only

be directed to a subset of the environment at any given time. For example, when

typing on a keyboard, we tend (if we’re practiced) to look at the computer screen.

This isn’t because the use of non-visual information is necessarily better for typing.

Rather, it is because it is worth it to risk errors and practice typing without looking

at our fingers so that we can observe directly the actual output of our typing on the

computer screen. The task in Chapter 5 can be augmented so that the agent must

control positions on two environments, but can only direct the analog of a visual

modality to one at a time.

Finally, I acknowledge here an important consideration thus far ignored: dynam-

ics. In order for the techniques presented in this thesis to apply to a wider range

of motor skills, they must be adapted to handle dynamics. In many types of motor

skills, such as swinging a forehand in tennis or throwing a ball, humans exploit the

dynamics of their bodies and environment. The inclusion of dynamics introduces in-

stabilities that make control difficult, so much so that many control systems attempt

to minimize their effects. However, much like how the degrees of freedom problem

(Bernstein, 1967) presents an opportunity to maximize other objectives (discussed

in Chapter 3), the dynamics affords us another dimension in which to increase pro-

ficiency and even achieve goals that are impossible achieve without dynamics. One

(relatively) recent thesis from my lab, Learning to Exploit Dynamics for Robot Mo-

tor Coordination (Rosenstein, 2003), focused on some problems similar to the ones

discussed in this thesis. As the title indicates, though, dynamics provided another
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dimension to exploit (see also VanEmmerik et al. 2004). In particular, in the third

chapter of Rosenstein (2003), a simulated three-link dynamic arm was charged with

the task of lifting a weight. Through the use of proportional-derivative controllers,

which significantly reduce complications associated with dynamics, and a search algo-

rithm similar to the undirected exploration I used in Chapter 3, the agent was able to

devise ways to lift the weight by exploiting the dynamics of its system. In addition,

functional mechanisms attributable to areas of the cerebellum, greatly minimized in

my thesis, can be leveraged to provide stability and control in dynamical systems.

Such mechanisms can be implemented in ways similar to techniques from the Control

Basis framework (discussed earlier, cf. Hart et al. 2008b for a recent paper).

6.3 Concluding Remarks

The work presented in this thesis contributes to answering the questions of how

and why motor skills are acquired. Movement is a relatively direct way to measure

behavior and infer decision-making processes. Its study is attractive as it elucidates

the strategies used by the nervous system to solve problems. In tackling the problem

of how behavior described as automatization is developed, I provided a computational

analog of “thought” and “consciousness” (discussed in Chapter 4 of this thesis and

also in Daw et al. 2005), which are difficult concepts to formally describe. Because of

its abstract nature, the concept behind the computational analog can be applied to

non-motor behaviors as well. Consider, for example, the cognitive task of multiplying

two integers. A generic planning mechanism can be employed to multiply any two

integers, x and y, with the following algorithm:

x× y =
y∑

i=1

x,

e.g., 2 × 3 = 2 + 2 + 2. Such an algorithm has advantages in that any two integers

can be multiplied. However, it has disadvantages in that it takes time and effort to
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multiply the two integers. However, early in grade school, we are taught a task-specific

short-cut: memorize multiplication tables. Rather than repeat the same algorithm

every time we must multiply two integers, we memorize common products. Such

a strategy (discussed in greater detail in Logan 1988) is analogous to using simpler

controllers to select actions frequently selected by a more sophisticated controller.

Other researchers have noted the parallels between cognitive skills and motor skills

(VanLegn, 1996; Rosenbaum et al., 2001). The similarities have been discussed on

experimental and theoretical levels. Through cortico-ganglio-thalamic loops described

in Chapter 2, the BG may contribute to the control of cognitive behaviors (Brown

et al., 1997). Tourette’s syndrome, which is characterized by uncontrolled motor tics,

is often accompanied by obsessive compulsive disorder, which can be characterized by

uncontrolled cognitive habits (Leckman and Riddle, 2000; Graybiel and Rauch, 2000).

BG dysfunction has been associated with obsessive compulsive disorder (Rapoport

and Wise, 1988; Graybiel and Rauch, 2000), and Saka and Graybiel (2003) discuss

how Tourette’s syndrome may also be related to BG dysfunction (in a sense, the

models I present in this thesis are obsessive compulsive due to their inability to

revert control to the Planner). Graybiel (1997) relates uncontrolled cognitive habits

with behavior characterizing schizophrenia, which is associated with an overactivity of

dopamine systems. Similarly, Smith et al. (2007) discuss how computational accounts

of dopamine function can explain some aspects of psychotic behaviors; Redish et al.

(2008) discuss how addiction can be explained by decision-making processes similar

to those used in this thesis; and Houk et al. (2007) discuss the implications of their

model to schizophrenia.

In this thesis, I investigated the process of motor skill acquisition. The phe-

nomenon of motor skills is well-studied by psychologists and neuroscientists. Thus, a

wealth of biological and behavioral data was available from which to construct a com-

putational theory. I based the functional mechanisms employed on those attributable
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to brain areas and model behavior was related to behavior seen in humans and an-

imals. By using the methods of theoretical neuroscience, this thesis contributes not

only to the study of motor skill acquisition, but also to discovery and characterization

of the general computational strategies employed by our nervous systems.
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