
BEHAVIORAL BUILDING BLOCKS
FOR AUTONOMOUS AGENTS:

DESCRIPTION, IDENTIFICATION, AND LEARNING

A Dissertation Presented

by

ÖZGÜR ŞİMŞEK

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2008

Department of Computer Science

c© Copyright by Özgür Şimşek 2008

All Rights Reserved

BEHAVIORAL BUILDING BLOCKS
FOR AUTONOMOUS AGENTS:

DESCRIPTION, IDENTIFICATION, AND LEARNING

A Dissertation Presented

by

ÖZGÜR ŞİMŞEK

Approved as to style and content by:

Andrew G. Barto, Chair

David Jensen, Member

Michael Littman, Member

Sridhar Mahadevan, Member

Andrea R. Nahmod, Member

Andrew G. Barto, Department Chair
Department of Computer Science

ACKNOWLEDGMENTS

It has been a joy to have Andy Barto as my thesis advisor. I would like to thank

him in particular for encouraging my ideas from the early stages of their conception

and for his support during the long and difficult time I spent in Turkey, waiting for

the renewal of my visa to the United States.

Thanks to Alicia P. Wolfe for our collaboration on developing a skill-discovery

algorithm based on local graph partitioning. It was great fun and her expertise in

graph partitioning informed key components of the algorithm.

Thanks to Konstantinos Katsikopoulos for suggesting that I take a look at Rein-

forcement Learning: An Introduction by Rich Sutton and Andy Barto, which was one

of the early steps that led to this dissertation.

Thanks to David Jensen, Michael Littman, Sridhar Mahadevan, Rich Sutton,

Doina Precup, Manuela Veloso, Andrew McCallum, and Andrea Nahmod for their

feedback on my research at its various stages.

Thanks to all past and present members of the Autonomous Learning Laboratory,

the Knowledge Discovery Laboratory, and the Information Extraction and Synthesis

Laboratory at UMass. Thanks especially to Dan Bernstein, Lisa Friedland, Anders

Jonsson, Mohammad Ghavamzadeh, George Konidaris, Victoria Manfredi, Amy Mc-

Govern, Jennifer Neville, Balaraman Ravindran, Matt Rattigan, Khashayar Rohani-

manesh, Ashwin Shah, Agustin Schapira, and Alicia P. Wolfe, who I spent extensive

time discussing ideas.

Thanks to Alicia P. Wolfe and Jennifer Neville for lending their ears whenever I

needed them.

iv

Thanks to Andy Barto, David Jensen, Andrew McCallum, UMass Amherst Grad-

uate School, and the UMass Amherst Isenberg School of Management for their finan-

cial support in graduate school.

And finally, thanks to my parents, Sevil and Hüseyin Şimşek, my sister, Özlem

Şimşek-Kiper, my brother, Onur Şimşek, my husband, Konstantinos Katsikopoulos,

and all of my dear friends in Amherst who have made my time here such a bliss.

v

ABSTRACT

BEHAVIORAL BUILDING BLOCKS
FOR AUTONOMOUS AGENTS:

DESCRIPTION, IDENTIFICATION, AND LEARNING

SEPTEMBER 2008

ÖZGÜR ŞİMŞEK

B.S., BOǦAZIÇI ÜNIVERSITESI

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

The broad problem I address in this dissertation is design of autonomous agents

that can efficiently learn how to achieve desired behaviors in large, complex environ-

ments. I focus on one essential design component: the ability to form new behavioral

units, or skills, from existing ones. I propose a characterization of a useful class of

skills in terms of general properties of an agent’s interaction with its environment—in

contrast to specific properties of a particular environment—and I introduce methods

that can be used to identify and acquire such skills autonomously.

vi

CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 What Is a Skill? . 1
1.2 Why Are Skills Useful? . 2
1.3 Outline . 3

2. BACKGROUND AND RELATED WORK . 6

2.1 Markov Decision Processes . 6
2.2 Options . 7
2.3 Q-Learning . 8
2.4 Domains and Tasks . 9
2.5 Related Work . 10

3. ACCESS SKILLS . 15

3.1 Access Skills . 16
3.2 Examples . 19

3.2.1 Rooms . 19
3.2.2 Shortcuts . 21
3.2.3 Towers of Hanoi . 21
3.2.4 Tic-Tac-Toe . 26
3.2.5 Playroom . 26
3.2.6 Taxi . 28

vii

3.3 Empirical Evaluation . 30
3.4 Related Work . 35
3.5 Discussion . 40

4. IDENTIFYING ACCESS SKILLS . 43

4.1 Betweenness . 44
4.2 Local Betweenness . 44

4.2.1 Formulation As a Classification Problem . 46
4.2.2 The Local Betweenness Algorithm (LoBet) 49
4.2.3 Performance . 50

4.3 Local Graph Partitioning . 51

4.3.1 Utility of Local Cuts . 52
4.3.2 Cut Metric . 53
4.3.3 Partitioning Algorithm . 54
4.3.4 Local Cuts . 55
4.3.5 Formulation as a Classification Problem . 56
4.3.6 The Local Cuts Algorithm (L-Cut) . 56
4.3.7 Performance . 58

4.4 Relative Novelty . 59

4.4.1 Novelty . 60
4.4.2 Relative Novelty . 60
4.4.3 Formulation as a Classification Problem . 61
4.4.4 The Relative Novelty Algorithm (RN) . 62
4.4.5 Performance . 64

4.5 Sensitivity Analysis . 65

4.5.1 Priors and Misclassification Costs . 65
4.5.2 Class-Conditional Probabilities . 66

4.6 Limitations of Local Methods . 68
4.7 Discussion . 70
4.8 Contributions . 72

5. ACQUIRING SKILLS EFFICIENTLY . 73

5.1 Optimal Exploration Problem . 75
5.2 Formulation as an MDP . 76
5.3 An Approximate Solution . 79
5.4 The Policy of a Trainer Skill . 81

viii

5.5 Example: Learning to Solve a Maze Task . 82
5.6 Example: Learning an Approach Skill . 84

5.6.1 Rooms . 84
5.6.2 Playroom . 86

5.7 Discussion . 86

6. CONTRIBUTIONS . 89

BIBLIOGRAPHY . 93

ix

LIST OF TABLES

Table Page

3.1 Domains and skills used in the empirical evaluation. 32

x

LIST OF FIGURES

Figure Page

3.1 A visual representation of betweenness on two sample graphs. 18

3.2 The Rooms domain and its interaction graph showing
betweenness. 20

3.3 The Shortcuts domain. 21

3.4 Three of the domains used in the empirical evaluation. (a) A legal
configuration of the Towers of Hanoi puzzle with 5 disks, (b) A
final board configuration in the game of Tic-Tac-Toe showing a
win for the X player, (c) the Taxi grid. 22

3.5 Betweenness in the Towers of Hanoi puzzle with 5 disks. 23

3.6 Local maxima of betweenness in the Towers of Hanoi puzzle, the game
of Tic-Tac-Toe, the Playroom domain, and the Taxi domain. 24

3.7 Betweenness in the game of Tic-Tac-Toe. 25

3.8 Betweenness in the Playroom domain. 29

3.9 Betweenness in the Taxi domain. 31

3.10 Performance with and without access skills in the (a) Rooms, (b)
Shortcuts, (c) Tower of Hanoi, and (d) Playroom domains. 33

3.11 Additional performance results. (a) (b) (c) Rooms, (d) (e) (f)
Playroom, (g) Shortcuts, (h) Towers of Hanoi, (i) Towers of Hanoi
with only the three skills that correspond to global maxima of
betweenness. 34

3.12 Performance in the Taxi domain. 36

3.13 Performance in the game of Tic-Tac-Toe. 37

xi

3.14 A cut of the Shortcuts domain that minimizes both NCut and
RatioCut metrics. 39

4.1 Local-maximum rates in the Rooms domain. 46

4.2 Decision threshold as specified by Inequality 4.1 when λfa

λmiss
= 100,

p(N)
p(T)

= 100, p = 0.36, and q = 0.036. 48

4.3 The Local Betweenness Algorithm (LoBet). 50

4.4 Performance of LoBet in the Rooms domain during a random
walk. 52

4.5 Performance of LoBet in the Shortcuts domain during a random
walk. 52

4.6 A sample local interaction graph in the Shortcuts domain. 53

4.7 Border rates in the Shortcuts domain. 55

4.8 The Local Cuts Algorithm (L-Cut). 57

4.9 Performance of L-Cut in the Shortcuts domain during a random
walk. 59

4.10 Performance of L-Cut in the Rooms domain during a random
walk. 59

4.11 Empirical probability distribution function of relative novelty scores
in the Rooms domain. 61

4.12 Relative novelty rates in the Rooms domain. 62

4.13 The Relative Novelty Algorithm (RN). 63

4.14 Performance of RN in the Rooms domain during a random walk. 64

4.15 Performance of RN in the Shortcuts domain during a random
walk. 64

4.16 Decision threshold for various settings of P (N)
P (T)

λfa

λmiss
. Other parameter

settings were as reported in Section 4.4.5. 66

xii

4.17 Performance of RN in the Rooms domain during a random walk with
various settings of P (N)

P (T)

λfa

λmiss
. Other parameter settings were as

reported in Section 4.4.5. 67

4.18 Performance of RN in the Rooms domain during a random walk with
various settings of q. Other parameter settings were as reported in
Section 4.4.5. 68

4.19 Performance of RN in the Rooms domain during a random walk with
various settings of p. Other parameter settings were as reported
in Section 4.4.5. 68

4.20 The Surfaces domain and its interaction graph. The gray shading on
the vertices show betweenness, with black corresponding to the
highest betweenness in the domain and white corresponding to
the lowest. 71

4.21 Performance of LoBet in the Surfaces domain during a random
walk. 72

5.1 A schematic representation of my approach. External state and
reward are used to update the task value function. This update
produces an intrinsic reward that is used to update the trainer
value function. 75

5.2 A deterministic MDP with five states. 77

5.3 State transition graph of the derived MDP corresponding to the task
MDP of Figure 5.2. The horizontal axis shows the external state
while the vertical axis shows the internal state, depicting an
internal state with the associated greedy policy for the task
MDP. 78

5.4 The maze task. Terminal states are marked with the amount of
reward they generate. 82

5.5 Performance in the maze task: (a) Policy value as defined by
Equation 2.1, (b) RMS error between the current and optimal
state values. 83

5.6 Performance in the Rooms skill-acquisition task. 84

5.7 Performance in the Playroom skill-acquisition task. 87

xiii

CHAPTER 1

INTRODUCTION

The broad problem I address in this dissertation is design of autonomous agents

that are able to efficiently learn how to achieve desired outcomes in large, complex

environments. I focus on one essential design component: the ability to autonomously

form useful skills. In the following sections, I describe what I mean by a skill, explain

why skills are useful, and outline the contents of this dissertation.

1.1 What Is a Skill?

A skill is a behavior that an agent may exhibit in its environment. It is composed

of the actions that are made available to the agent by the system designer and it may

itself be treated as a single action when learning, planning, or determining how to

act. Grasping, driving, and walking are examples of skills we use frequently. For a

mobile robot, we can define a skill for moving to a particular location. A strategy

that directs the individual moves of a chess player is also a skill.

The daily use of “skill” implies doing something well, but this meaning of the word

is not implied in its use here. A skill, as defined here, may specify any behavior—

although a skill would not be particularly useful unless it does something well.

The skills I consider in this dissertation are composed of discrete actions only.

They do not include skills defined with continuous actions such as grasping. The

ideas presented here, however, may be extended in the future to be applicable in the

continuous case.

1

1.2 Why Are Skills Useful?

Skills do not augment the set of behaviors that an agent may exhibit. Those are

determined by the actions that are built in by the system designer. Skills simply

define a set of behaviors that the agent may treat as individual behavioral units.

What, then, can be gained by forming skills?

The answer is speed. Problem solving proceeds by trying different actions and

evaluating their consequences. Built-in actions typically are too fine units of behavior

to be used in this procedure, to the extent that they often do not lead to a solution,

optimal or not, in a reasonable amount of time. In contrast, a suitable set of skills

specifying coarser units of behavior may make it possible to identify a solution with

ease. The trade-off is that a given skill set may be unable to represent all possible

solutions and therefore may lead to a solution inferior to the one theoretically possible

with primitive actions. This trade-off is often worth it, and is often necessary, because

it makes it possible to find a satisfactory solution.

An additional incentive is present for forming skills if the agent is to face a sequence

of related problems: skills formed while solving one problem may be useful for solving

subsequent problems. The ability to grasp objects, for example, is useful for solving

many problems that a robot may face. Some degree of transfer is still possible even

if the new environment is not entirely the same as the environment in which the skill

was acquired. If objects have a different shape than those experienced before, the

skill for grasping objects may be adapted to the new shape while higher-level skills

that use grasping remain usable as they are.

Perhaps the most important reason for equipping artificial agents with the ability

to form useful skills is to enable an autonomous developmental process. Equipped

with this ability, an agent can learn to display behaviors of increasing complexity

through continuously building on its existing skills to acquire new ones. For example,

grasping may be followed by manipulating objects in different ways, which may be

2

followed by using a key to unlock the door to an adjacent room, and so on, form-

ing a continuously growing skill hierarchy. In this process, the agent develops the

capability to perform tasks of increasing difficulty without guidance tailored for the

specific environment it operates in. Instead, the capabilities developed are the re-

sult of a generic developmental process that, in a different environment, would result

in learning to perform an entirely different set of tasks. This type of open-ended

developmental process is fundamentally different from how artificial agents learn to

perform complex tasks today—by considerable human design effort tailored for spe-

cific tasks—and has the potential to dramatically increase the capabilities of artificial

agents. The argument for this type of open-ended developmental learning has been

made convincingly in the literature by several researchers (e.g., Barto et al. 2004;

Weng et al. 2001).

1.3 Outline

In this dissertation, I address a sequence of questions that are of fundamental

importance for equipping artificial agents with the ability to form useful skills on

their own.

1. What constitutes a useful skill? In other words, what are the fundamental prop-

erties of skills that make them useful, as useful, for example, as grasping is for

agents that routinely manipulate objects? More importantly, can we express the

answer without reference to particular properties of a specific task or a domain,

using instead properties that are shared across different tasks and domains?

I characterize a set of skills using a graphical representation of an agent’s inter-

action with its environment. This characterization uses betweenness, a measure

of centrality on graphs, to capture a set of skills that allows efficient navigation

on the interaction graph by exploiting its structural properties. Because these

skills allow efficient access to different regions of the graph, I call them access

3

skills. I show that this single concept captures a wide range of skills in a di-

verse set of environments. These skills are consistent with common sense, are

similar to skills that people handcraft for these domains, and improve learning

performance. In the game of Tic-Tac-Toe, access skills set up a fork, forcing the

opponent to lose. In the Towers of Hanoi puzzle, access skills include clearing

the stack above the largest disk and clearing another peg entirely to be able to

move the largest disk to another peg.

2. How can an agent identify such skills?

The definition of access skills may be used directly as a discovery algorithm

to form a set of skills suitable for a given environment. I also develop three

low-cost, incremental algorithms that do not require explicit or complete rep-

resentation of the interaction graph. Instead, these algorithms use short paths

sampled from the graph while the agent interacts with its environment.

3. How can an agent efficiently acquire a desired skill? For instance, how can an

agent efficiently and fully learn how to grasp, once it decides to acquire this

skill?

While the previous question is concerned with identifying what the skill should

accomplish, this third question is concerned with how to efficiently develop the

skill. I formulate the optimization problem that the agent needs to address

in this context and propose an algorithm for its approximate solution. The

algorithm I introduce is not limited to acquiring access skills, but may be used

to acquire a much broader set of skills: those that may be specified by a reward

function they should maximize.

In Chapter 1, I provide a brief background on the learning framework I use in this

dissertation and discuss the related work in the literature. In Chapters 3, 4, and

4

5, I address the three questions outlined above. I conclude with a discussion of the

contributions of this dissertation.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

The main assumption I make in this dissertation is that the interaction of the

agent with its environment can be modeled as a Markov Decision Process (MDP). The

MDP framework has proved over the years to be a fruitful formalism for addressing

sequential decision-making problems. In this framework, the agent’s interaction with

its environment proceeds as follows. At each decision stage, the agent takes some

action, observes the change in environment state, and receives a numerical reward

signal. The agent’s objective is to maximize some long-term measure of the reward

it receives. I pay particular attention to the setting in which the MDP is not known,

but needs to be discovered through interaction with the environment.

In the following sections, I review the basic concepts from the literature on MDPs

and reinforcement learning that are directly relevant for this dissertation. For an in-

depth introduction to these topics, the reader is referred to Howard (1960), Puterman

(1994), Kaelbling et al. (1996), Bertsekas and Tsitsiklis (1996), and Sutton and Barto

(1998).

2.1 Markov Decision Processes

A finite MDP is a tuple 〈S,A, T,R,D, γ〉, where S is a finite set of states, A is a

finite state of actions, T : S×A×S → [0, 1] is a transition function, R : S×A×S → <

is a reward function, D : S → [0, 1] is the initial state distribution from which the

start state is drawn, and γ is a discount factor, 0 ≤ γ ≤ 1. At each decision stage, the

agent observes a state s ∈ S and executes an action a ∈ A with probability π(s, a),

6

where π : S×A→ [0, 1] is a stationary stochastic policy. With probability T (s, a, s′),

the agent observes state s′ in the next decision stage and receives an immediate reward

with expected value R(s, a, s′).

The objective is to maximize return, which is defined here as the discounted sum

of future rewards. The value function of policy π is a map V π : S → < that

specifies the expected return for executing π starting from state s. An optimal policy

is one that maximizes the value function over all states. The actual value of state s is

distinct from the agent’s estimate of it. To refer to the latter at decision stage t, I use

Vt(s). I use V (π) to denote policy value with respect to the initial state distribution:

V (π) =
∑
s∈S

D(s)V π(s). (2.1)

The action-value function of policy π is a map Qπ : S × A → < that specifies

the expected return from state s if the agent executes action a and thereafter follows

policy π.

The state-transition graph of an MDP, or its interaction graph, is a weighted,

directed graph in which the vertices correspond to the states in the MDP and the

edges correspond to possible state transitions. A directed edge v1 → v2 is present in

the graph if and only if the corresponding state transition is possible through at least

one action. Edge weights are equal to the reward expected when the corresponding

transition takes place.

2.2 Options

An option represents a skill by specifying a policy to be followed during the skill’s

execution, the set of states at which the option is available as an action choice, and

the probability of termination at each state in the domain. Specifically, an option is

a triple 〈I, π, β〉, where I denotes the option’s initiation set, i.e., the set of states in

7

which the option can be invoked, π denotes the policy followed when the option is

executing, and β : I → [0, 1], denotes the option’s termination condition, with β(s)

giving the probability that the option terminates in state s ∈ I (Precup 2000; Sutton

et al. 1999).

The work presented here is concerned with the behavior that a skill should ex-

hibit. As such, the contributions of this dissertation are not tied to a particular

representation. Although I represent skills as options, other representations may be

used instead. Existing representations that are most similar to options are hierarchies

of abstract machines (Parr and Russell 1998; Parr 1998) and the MAX-Q framework

(Dietterich 2000).

2.3 Q-Learning

A simple and elegant algorithm for learning an optimal policy for an MDP is Q-

learning (Watkins 1989), which may be applied without knowledge of the underlying

MDP while the agent is interacting with its environment. The algorithm maintains

an action-value function and updates it at every decision stage. The update equation

after executing primitive action a in state s, observing next state s′, and receiving

reward r is

Q(s, a)← Q(s, a) + α[r + γ maxa′∈AQ(s′, a′)−Q(s, a)],

where α is a step-size parameter, 0 < α ≤ 1.

If the agent’s action repertoire includes options, the analogous update after ini-

tiating option o at state s, executing it for k steps until its termination at state s′

is

Q(s, o)← Q(s, o) + α[
k∑
t=1

γt−1rt + γk maxa′∈OQ(s′, a′)−Q(s, o)],

8

where O is the set of all actions (both primitives and options) and r1..rk are the

sequence of rewards received during the option’s execution. This equation is a Macro-

Q learning update (McGovern et al. 1997), the discrete-time version of the Q-learning

update in Semi-Markov Decision Processes (Bradke and Duff 1995).

The option values may also be updated while the skill is executing. After the

agent executes primitive action a (through executing option o) at state s, receives

reward r, and observes next state s′, the update equation is

Q(st, o)← Q(st, o) + α[r + γU(st+1,o)−Q(s, o)]

where

U(s, o) = (1− β(s))Q(s, o) + β(s)maxo′∈OQ(s, o′).

This equation denotes one-step intra-option Q-learning update (Precup 2000). It may

be applied not only to the option currently executing, but to every other option that

would execute primitive action a with probability 1 at state s.

2.4 Domains and Tasks

To examine a skill’s utility in addressing different problems in the same environ-

ment, it is useful to define an MDP in terms of a domain and a task.

Definition A domain is a tuple 〈S,A, TD, RD〉, where S is a finite set of states,

A is a finite state of actions, TD : S × A × S → [0, 1] is the domain transition

function and RD : S × A× S → < is the domain reward function.

DefinitionA task defined on a domainD = 〈S,A, TD, RD〉 is a tuple 〈G,RT , D, γ〉,

where G ∈ S is a finite set of terminal states, RT : S × A × S → [0, 1] is the

task reward function, D : S → [0, 1] is the initial state distribution from which

the start state is drawn, and γ is a discount factor, 0 ≤ γ ≤ 1.

9

A domain D = 〈S,A, TD, RD〉, together with a task T = 〈G,RT , D, γ〉 defined on

that domain, specifies an MDP 〈S,A, T,R,D, γ〉, where

R(s, a) =

 RD(s, a) +RT (s, a), s /∈ G

0, s ∈ G,

T (s, a, s′) =

TD(s, a, s′), s /∈ G

1, s ∈ G, s = s′

0, s ∈ G, s 6= s′.

Definition The domain interaction graph, or the domain state-transition graph,

is the interaction graph of the MDP specified by the domain and a task that

has no terminal states and that assigns zero reward to all transitions.

2.5 Related Work

The utility of forming new behavioral units from existing ones has been recog-

nized early in the Artificial Intelligence (AI) literature. Work on deterministic search

problems introduced the notion of a macro-operator, or a macro, which is a sequence

of primitive operators treated as a single operator (Amarel 1968). Subsequent work

on stochastic problems has employed generalizations of this idea, forming closed-loop

policies over the primitives whose execution depends on feedback from the environ-

ment. Some examples are behaviors (Brooks 1986), activities (Harel 1987), and op-

tions (Sutton et al. 1999). Here, I adopt the terminology of Thrun and Schwartz

(1995) and call them skills.

Despite early recognition of the utility of skills in the AI literature, methods

for forming skills autonomously have received relatively little attention, perhaps due

to the difficulty of specifying methods that are independent of the specific context.

Below, I discuss the main ideas that have been proposed for forming skills.

10

String together primitives that can be executed consecutively. For example, in

addressing deterministic search problems, Dawson and Siklossy (1977) created

macro-operators composed of successive execution of two primitive operators

such that the post-conditions of the first operator matched the pre-conditions

of the second one.

Form skills that jump over a “valley” between two “peaks”, with respect to a

heuristic evaluation function, if such a function is being used to guide the search.

This principle was used by Iba (1989) to address deterministic search problems.

Find common action sequences in successful solutions to a single problem or

a number of related problems. This principle was used by Iba (1989) to filter

macro-actions discovered by other means and by McGovern (2002) as the basis

for forming them. Related methods have been proposed by Thrun and Schwartz

(1995) and by Pickett and Barto (2002).

Decompose the problem into smaller, easier problems and define skills for solving

each of these. Korf (1985) has used macro-actions that achieve a subgoal of the

problem without undoing subgoals already achieved. Methods more recently

proposed by Hengst (2002), Jonsson and Barto (2005), Mehta et al. (2008),

and Marthi et al. (2007) address problems in which state is specified by a set of

variables. The algorithm by Hengst (2002) decomposes the problem into smaller

tasks based on an ordering of the state variables with respect to their frequency

of change. Jonsson and Barto (2005) and Mehta et al. (2008) decompose the

problem based on causal relationships among the state variables. Marthi et al.

(2007) search the space of all possible decompositions that are consistent with

observed trajectories to identify the decomposition that minimizes a measure

of learning time in future problems. In all of these algorithms, the subtasks

11

are substantially easier to solve than the main problem because irrelevant state

variables are ignored when solving the subtasks.

Identify subgoals and form skills that efficiently take the agent to these states.

Subgoals are states that are considered useful to reach for various reasons. Sub-

goals proposed in the literature include states that have a high reward gradi-

ent (Digney 1998), states that are visited frequently (Digney 1998; Stolle and

Precup 2002; Stolle 2004), states that are visited frequently on successful trajec-

tories but not on unsuccessful ones (McGovern and Barto 2001), states that are

difficult to reach but easy to leave under a random walk (Bonarini et al. 2006),

states that lie between densely-connected regions of the state space (Menache

et al. 2002; Mannor et al. 2004), and states that lie between metastable regions

of the state space (Mathew 2008), where a metastable region is informally de-

fined as a region of the state space such that the time spent in the region is

much larger than the time taken to transition to other metastable regions. Also

in this category are the narrows of Amarel (1968), which he defines as “points

of transition between easily traversible areas”.

Access skills, the skills that I introduce in this dissertation, belong to the last

category. They efficiently take the agent to certain states in the environment. They

are closely related to the skills identified by the discovery algorithms of Stolle and

Precup (2002), Stolle (2004), McGovern and Barto (2001), Menache et al. (2002),

Mannor et al. (2004), and Mathew (2008). These algorithms are motivated by the

“bottleneck” concept, which access skills capture and generalize. Consequently, there

is an overlap in the skills that are identified by these existing algorithms and the skills

introduced in this dissertation. This is a small overlap, with access skills encompassing

a much larger set of skills than those identified by the existing algorithms. The

algorithms by Stolle and Precup (2002) and Stolle (2004) are exceptions. The overlap

with these algorithms is large, but the skill-discovery algorithms that are introduced

12

in this dissertation require drastically less computation and experience in the domain

than these earlier algorithms.

Access skills are defined on a graphical representation of the agent’s interaction

with its environment. I use the structural properties of the interaction graph as a com-

mon language between different domains and tasks to define a set of skills that may be

instantiated in a specific task in a particular domain. As such, this dissertation is part

of a growing body of work in the machine-learning and AI literature that makes use

of the graphical structure of the data. In the reinforcement-learning literature, a sim-

ilar graphical approach is taken in defining proto-value functions (Mahadevan 2005,

Mahadevan and Maggioni 2007), a set of basis functions for representing value func-

tions. The common starting point of proto-value functions and of access skills is the

topology of the state space. The work in this dissertation focuses on how the topol-

ogy influences navigation in the state space, while the work on proto-value functions

focuses on how it constrains the value function. Although the objectives are different,

there is overlap in the machinery used. Specifically, the spectral decomposition of the

Laplacian of the state transition graph plays an important role both in proto-value

functions and in one of the algorithms proposed here.

The graphical representation of the agent’s interaction with its environment has

been used earlier in the literature by Menache et al. (2002) and by Mannor et al.

(2004) to discover useful skills. As noted earlier, these algorithms are among those

that are motivated by identifying bottlenecks. They partition the interaction graph to

identify regions that are densely connected within themselves, but weakly connected

to each other, forming skills that efficiently take the agent to states that border

the different regions. Access skills are conceptually different—they are based on an

analysis of shortest paths on the interaction graph. How they differ from the skills

identified by the algorithms of Menache et al. (2002) and Mannor et al. (2004) is

discussed more fully later in the dissertation.

13

An important dimension in which the work presented in this dissertation differs

from a large body of existing work is that it demonstrates the feasibility of form-

ing a large class of useful skills without the need for extensive experience in the

domain. Before forming skills, many existing algorithms require the agent to have

already learned to perform a number of different tasks in the domain (e.g, Thrun and

Schwartz 1995, Pickett and Barto 2002, Stolle and Precup 2002, Stolle 2004, Mehta

et al. 2008, Marthi et al. 2007) or to have succeeded at performing a single task many

times (e.g., McGovern and Barto 2001, McGovern 2002), or to have knowledge of

the task dynamics or to have explored the environment sufficiently to have discov-

ered it approximately (e.g., Menache et al. 2002, Mannor et al. 2004, Mathew 2008,

Hengst 2002, Jonsson and Barto 2005). In contrast, here I demonstrate the possibility

of forming useful skills without the need to have already performed the task or even

to have explored a large part of the environment. This has important implications.

Many real-world problems we would like artificial agents to address are so difficult

that achieving the desired outcome even once is a challenge beyond the capabilities

of today’s agents.

14

CHAPTER 3

ACCESS SKILLS

A necessary first step towards developing effective skill-discovery algorithms is to

define what makes a useful skill. For instance, what properties of grasping make

it a useful skill for agents that routinely manipulate objects? More importantly,

can we express the answer without reference to particular properties of grasping and

manipulation tasks, using instead properties that are shared across different tasks

and environments?

In this chapter, I propose one answer to the question of what constitutes a useful

skill. My answer is based on a graphical representation of an agent’s interaction

with its environment. Specifically, I use betweenness, a measure of centrality on

graphs (Freeman 1977, 1979), to define a set of skills that allows efficient navigation

on the interaction graph by exploiting its structural properties. In the game of Tic-

Tac-Toe, these skills translate into setting up a fork to force the opponent to lose.

In the Towers of Hanoi puzzle, they include clearing the stack above the largest disk

and clearing one peg entirely to be able to move the largest disk to a different peg.

The primary contribution of this chapter is conceptual. I show that a single

concept can capture a wide range of skills in a diverse set of domains. These skills are

consistent with common sense, are similar to skills that people handcraft for these

domains, and improve learning performance.

A secondary contribution of the present chapter is algorithmic. The skill definition

proposed here may be used directly to form a suitable set of skills if the interaction

graph is readily available. But, more importantly, this definition is a useful guide

15

for developing low-cost, incremental skill-discovery algorithms that do not rely on

complete or explicit representation of the interaction graph.

The skill characterization presented here captures and generalizes, at least in-

tuitively, the concept of a “bottleneck”, which is an early and persistent theme in

the skill discovery literature (McGovern and Barto 2001; Stolle and Precup 2002;

Stolle 2004; Menache et al. 2002; Mannor et al. 2004; Mathew 2008). The canonical

example of a bottleneck is a doorway connecting two rooms. A skill that takes the

agent efficiently to a bottleneck is considered a useful behavioral unit, one that allows

efficient exploration of possible solutions to many tasks posed in that domain. Bot-

tlenecks have been described in intuitive terms such as regions that the agent tends to

visit frequently on successful trajectories but not on unsuccessful ones (McGovern and

Barto 2001) or border states of strongly connected areas (Menache et al. 2002). The

explicit and concrete description presented here of what makes a useful skill serves

to identify some of the limitations of these existing methods and suggests alternative

approaches.

In the following sections, I first present the skill definition I propose, give examples

of skills that emerge from this definition in a variety of domains, and empirically test

their utility in a number of learning problems. I continue with a discussion of the

experimental results, directions for further development of the ideas presented in this

chapter, and related work in the literature.1

3.1 Access Skills

I argue that states that have a pivotal role in efficiently navigating the interaction

graph are useful states to reach and that a useful measure for evaluating how pivotal

a vertex v is

1The ideas presented in this chapter appear in Şimşek and Barto (2009).

16

∑
s 6=t6=v

σst(v)

σst
wst, (3.1)

where σst is the number of shortest paths from vertex s to vertex t, σst(v) is the

number of such paths that pass through vertex v, and wst is the weight assigned to

paths from vertex s to vertex t.

With uniform path weights, Expression 3.1 defines betweenness, a measure of

centrality on graphs (Freeman 1977, 1979; Wasserman and Faust 1994). It gives the

fraction of shortest paths on the graph, between all possible sources and destinations,

that pass through the vertex of interest. If there are multiple shortest paths from a

given source to a given destination, they are given equal weights that sum to one.

Path weights are included in Expression 3.1 to take into account the reward func-

tion. Depending on the reward function—or a probability distribution over possible

reward functions—some parts of the interaction graph may be given more weight than

others, depending on how well they serve the agent’s needs.

Betweenness may be computed in O(nm) time and O(n+m) space on unweighted

graphs with n nodes and m edges (Brandes 2001). On weighted graphs, the space

requirement remains the same, but the time requirement increases to O(nm+n2logn).

I define access states to be those states that correspond to local maxima of be-

tweenness on the interaction graph. They are states that have a higher betweenness

than other states in their neighborhood. Here, I use a simple definition of neighbor-

hood, including in it only the states that are one hop away in either direction, which

may be revised in the future. Access skills are behaviors that efficiently reach access

states. They may be combined in different ways to efficiently reach different parts of

the interaction graph, serving as useful building blocks for efficiently navigating the

graph.

The definition of access states contains both a local and a global component.

What is important is not the absolute value of betweenness of a given state, but how

it compares to other states in its proximity. On the other hand, incorporating path

17

Figure 3.1. A visual representation of betweenness on two sample graphs.

weights in the betweenness computation introduces a global component. While the

local component refers to how pivotal a vertex is for connecting its neighborhood to

the rest of the graph, the global component refers to whether the regions of the graph

to which the vertex provides efficient access are desirable.

Figure 3.1 shows a visual representation of betweenness on two sample graphs,

computed using uniform edge and path weights. The gray-scale shading on the ver-

tices corresponds to the relative values of betweenness, with black representing the

18

highest betweenness on the graph and white representing the lowest. The graph on

top corresponds to a gridworld in which a doorway connects two rooms. The graph

in the bottom has a doorway of a different type: an edge connecting two otherwise

distant nodes on a uniform lattice. In both graphs, states that are local maxima of

betweenness correspond to our intuitive choice of subgoals.

3.2 Examples

The skill definition of the previous section was applied to a variety of domains

to investigate the type of skills it captures in various different problems. The results

are discussed below. Unless stated otherwise, actions had uniform cost, between-

ness was computed using uniform path weights, and layouts of interaction graphs

were determined by a force-directed algorithm that models the edges as springs and

minimizes the total force on the system. To improve visibility, edge directions and

self-transitions are omitted from the interaction graphs. The gray shading on the

vertices represent the betweenness of the vertex, with black representing the highest

betweenness on the graph and white representing the lowest. A vertex was considered

to be a local maximum if its betweenness was higher than or equal to those of its

immediate neighbors, taking into account both incoming and outgoing edges.

3.2.1 Rooms

The first example is the gridworld domain shown in Figure 3.2. At each state,

the available actions are north, south, east, and west. These move the agent in

the intended direction with probability 0.8 and in a uniform random direction with

probability 0.2. If the direction of movement is blocked, the agent remains in the same

location. The local maxima of betweenness are the fourteen states that surround the

doorways, which have slightly higher betweenness than the doorways themselves.

19

Figure 3.2. The Rooms domain and its interaction graph showing betweenness.

20

Figure 3.3. The Shortcuts domain.

3.2.2 Shortcuts

The Shortcuts domain consists of two shortcut edges placed on top of a regular

lattice as shown in Figure 3.3. The transition dynamics of the domain is similar to

that of the Rooms domain, but there is an additional action that can be taken in

each of the four states that border the shortcut edges. This action succeeds with

probability one in transporting the agent to the other side of the shortcut edge.

The local maxima of betweenness in this domain are the four states that border the

shortcut edges.

3.2.3 Towers of Hanoi

The Towers of Hanoi puzzle consists of three pegs and a number of disks of different

sizes that can slide onto any peg. Each move consists of taking the top disk from one

of the pegs and sliding it onto another peg, on top of the other disks that may already

be present there. A disk may not be placed on top of a disk that is smaller than itself.

Only one disk may be moved at a time. Legal positions are those in which no disk

21

X
O

X
O

X

O
X

R G

Y B

5

4

3

2

1

2

y

x

1 3 4

5

(a) (b) (c)

Figure 3.4. Three of the domains used in the empirical evaluation. (a) A legal con-
figuration of the Towers of Hanoi puzzle with 5 disks, (b) A final board configuration
in the game of Tic-Tac-Toe showing a win for the X player, (c) the Taxi grid.

is placed on top of a disk smaller than itself. Figure 3.4a shows a legal position in a

puzzle with five disks.

The corresponding interaction graph is shown in Figure 3.5. The highest local

maxima of betweenness divide the graph into three clusters in which the largest disk

is always on the same peg. Skills that take the agent to these maxima correspond to

setting up the pegs so that the largest disk may be moved to a different peg and, in

some cases (depending on the direction of movement on the graph), also executing

this move. The setup for this move involves clearing the stack on top of the largest

disk (so that it is legal to move the largest disk) and clearing another peg entirely (so

that it is legal to move the largest disk to that peg).

Within each of the three clusters, there are additional local maxima of between-

ness. The next highest local maxima correspond to an analogous movement with

the second largest disk. Figure 3.6 shows all local maxima in the domain, omitting

symmetries with respect to peg identities. The states are ordered from left to right

in decreasing betweenness.

22

Figure 3.5. Betweenness in the Towers of Hanoi puzzle with 5 disks.

23

X
X

O
O X

XO O
X

X
O

O
X

X

O

O
X

X

O

O

X
X

O

O X
X

O
O X X O

O
X

X

OO
X

X

O
O

Eye Hand Marker Light Music Monkey Bell
ball ball bell off on quiet off

light switch light switch bell on on quiet off
music button music button bell on off quiet off
light switch light switch bell off on frightened off
light switch light switch bell on off quiet off

bell bell bell off on frightened off

Taxi state (x y Passenger* Destination)
02TY 30TB 04TR 44TG 12TR 22TG 02YB 02YG
02YR 04TB 04TY 44TB 04TG 44TR 44TY 12RB
12RG 12RY 32BG 32BR 32BY 22GB 22GR 22GY
*T denotes “in-taxi”.

Figure 3.6. Local maxima of betweenness in the Towers of Hanoi puzzle, the game
of Tic-Tac-Toe, the Playroom domain, and the Taxi domain.

24

Figure 3.7. Betweenness in the game of Tic-Tac-Toe.

25

3.2.4 Tic-Tac-Toe

Tic-tac-toe is a board game in which two players take turns to placing marks

on a 3 × 3 board. The player who succeeds in marking a horizontal, vertical, or

diagonal row wins the game. Figure 3.4b shows a final board configuration showing

a win for the X player. In the current implementation, the agent played first. The

opponent followed a policy that (1) placed the third mark in a row, whenever possible,

winning the game, (2) blocked the agent from completing a row, or (3) placed its mark

on a random empty square, with decreasing priority. The state representation was

invariant with respect to rotational and reflective symmetries of the board.

Figure 3.7 shows the interaction graph. The node at the center is the empty board

position. Other states form rings around the center node with respect to their path

length from this initial configuration, with the innermost ring showing states in which

both players have had a single turn.

To compute betweenness, a weight of +1 was assigned to paths that terminate at

a win for the agent and 0 to all other paths. Figure 3.6 shows the local maxima of

betweenness.2 The agent is the X player and will go next. Each of these states gives

the agent the possibility of immediately setting up a fork, creating an opportunity to

win in the next turn.

3.2.5 Playroom

The Playroom domain (Barto et al. 2004; Singh et al. 2005) contains an agent

that interacts with a number of objects in its surroundings. A Markov version of

the domain was used here which contains a light switch, a ball, a bell, a button for

turning music on and off, and a toy monkey. The agent has an eye, a hand, and a

marker it can place on objects. Its actions include looking at a randomly selected

2There were five other “trivial” local maxima, which were states that allow the agent to immedi-
ately win the game by placing the third X in a row.

26

object, looking at the object in its hand, holding the object it is looking at, looking

at the object that the marker is placed on, placing the marker on the object it is

looking at, moving the object in its hand to the location it is looking at, flipping the

light switch, pressing the music button, and hitting the ball towards the marker. The

first two actions succeed with probability 1, while the remaining actions succeed with

probability 0.75, producing no change in the environment if they fail. In order to

operate on an object, the agent must be looking at the object and holding the object

in its hand. To be able to press the music button successfully, the light should be on.

The toy monkey starts to make frightened sounds if the bell is rung while the music

is playing; it stops only when the music is turned off. If the ball hits the bell, the bell

rings for one decision stage.

The MDP state consists of the object that the agent is looking at, the object that

the agent is holding, the object that the marker is placed on, music (on/off), light

(on/off), monkey (frightened/quiet), and bell (ringing/off).

The interaction graph of this domain is shown in Figure 3.8. To the best of my

knowledge, the Playroom domain has not been used for skill discovery in the literature

and its graphical structure has not been examined previously.

The six different clusters of the interaction graph emerge naturally from the force-

directed layout algorithm and correspond to the different settings of the music, light,

and monkey variables. There are only six such clusters because not all combinations

are possible. The graph shows that betweenness values peak at regions that imme-

diately connect neighboring clusters, corresponding to skills that change the settings

of the music, light, or monkey variables. It is a surprising and pleasing finding that

27

the graphical structure of the domain naturally corresponds to skills that have been

user-specified in the earlier work of Barto et al. (2004) and Singh et al. (2005)3.

3.2.6 Taxi

The taxi domain (Dietterich 2000) includes a taxi and a passenger on a 5 × 5

grid shown in Figure 3.4c. At each grid location, the taxi has six primitive actions:

north, east, south, west, pick-up, and put-down. The navigation actions succeed

in moving the taxi in the intended direction with probability 0.80; with probability

0.20, the action takes the taxi to the right or left of the intended direction. If the

direction of movement is blocked, the taxi remains in the same location. The action

pick-up places the passenger in the taxi if the taxi is at the passenger location;

otherwise it has no effect. Similarly, put-down delivers the passenger if the passenger

is inside the taxi and the taxi is at the destination; otherwise it has no effect. The

source and destination of all passengers are chosen uniformly at random from among

the grid squares R, G, B, Y. Here, I used a continuing version of this domain in which

a new passenger appears after each successful delivery.

Figure 3.9 shows the interaction graph. The highest local maxima of betweenness

are at four regions of the graph that correspond to passenger delivery. Other local

maxima belong to one of the following categories: (1) taxi is at the passenger location4,

(2) taxi is at one of the passenger wait locations with the passenger in the taxi5, (3)

taxi and passenger are both at destination, (4) the taxi is at location x = 2, y = 3,

a navigational bottleneck on the grid, and (5) the taxi is at location x = 3, y = 3,

3In this earlier work, the agent creates skills that change the settings of the salient variables in
the environment. Because salient variables are defined by the system designer, the algorithm in this
earlier work does not discover skills in the sense of the term used here.

4Except when passenger is waiting at Y, in which case the taxi is at grid location x = 1, y = 3.

5For wait location Y, the corresponding subgoal is taxi is at grid location x = 1, y = 3, having
picked up the passenger.

28

Figure 3.8. Betweenness in the Playroom domain.

29

another navigational bottleneck. The corresponding skills are (approximately) those

that take the taxi to the passenger location, to the destination with passenger in the

taxi, or to a navigational bottleneck. These skills closely resemble those that are

hand-coded for this domain in the literature, for example, in Dietterich (2000), but

without the state abstraction. All local maxima are shown in Figure 3.6.

3.3 Empirical Evaluation

The previous section showed that the skill definition of Section 3.1 translated

into skills that are intuitively appealing in a variety of domains. Here, I carry out

an empirical investigation to evaluate how these skills impact learning performance

when made available to a reinforcement-learning agent.

In all experiments reported, the agent used Q-learning with ε-greedy exploration,

with ε set to 0.05. When using skills, it performed both intra-option and macro-Q

updates. The learning rate (α) was kept constant at 0.1. Initial Q-values were 0.

Discount rate γ was set to 1 in episodic tasks, to 0.99 in continuing tasks.

Skills were made available to the agent fully formed at the beginning of the learn-

ing trials. Unless stated otherwise, a single skill was created for each access state in

a domain, eliminating redundancies by selecting a single representative among access

states that are in close proximity (within 2 hops). The exact set of skills that were

tested in each domain is shown in Table 3.1. The initiation sets of the skills were

restricted to include a certain number of states. This number varied between experi-

ments, but in any single experiment, all skills had initiation sets of the same size. The

initiation sets consisted of the specified number of states that had the smallest hop

distance to the skill destination on the interaction graph, with ties broken randomly.

The skills terminated with probability one outside their initiation set and at their

destination; they continued to execute in all other states. The skill policy was the

optimal policy for reaching the skill destination.

30

Figure 3.9. Betweenness in the Taxi domain.

31

In Rooms, Shortcuts, Towers of Hanoi, and Playroom domains, access skills were

tested on a collection of 500 tasks. Each task had a single, randomly-selected goal

state. The initial states were selected randomly. Domain reward consisted of −0.001

for each transition. Task reward was +1 for transitions into the the goal state, 0 for

all other transitions. In Towers of Hanoi, to make the learning problem more difficult,

actions were implemented with stochastic effects. An action succeeded as intended

with probability 0.8; otherwise, it resulted in a random slip of the disk into any of

the legal pegs. The interaction graph and its access states of this stochastic version

are identical to those of the deterministic game.

Figure 3.10 shows learning performance, comparing an agent using only primitive

actions to an agent using both primitive actions and skills. The figure shows mean

performance in the 500 tasks that were tested. In all four domains, the availability

of access skills resulted in a dramatic improvement in performance. The numbers in

the legends show the mean number of skills available in a state. For example, in the

Rooms domain, 1 skill/state indicates that the initiation sets consisted of 89 states,

2 skills/state indicates that the initiation sets consisted of 178 states, and so on.

Figure 3.11 shows additional results in these domains. These graphs include com-

parisons with an agent that used a control group of skills whose destinations were

selected randomly. In all performance results that compare access skills to random

Table 3.1. Domains and skills used in the empirical evaluation.

Domain Vertices Edges Skills Skill destinations
Rooms 623 2461 7 Doorways
Shortcuts 400 1600 4 States that border the shortcut edges
Playroom 755 5055 6 States in Figure 3.6
Towers of Hanoi 243 726 21 States in Figure 3.6 and states

that are symmetric to them with
respect to peg identities but are
not adjacent to them

Tic Tac Toe 296 965 1 States in Figure 3.6
Taxi 404 1636 24 States in Figure 3.6

32

0 20 40 60 80 100
0

1000

2000

3000

4000

Episode

primitives

skills (2)

N
um

be
r

of
 s

te
ps

0 20 40 60
0

500

1000

1500

Episodes

N
um

be
r

of
 S

te
ps

Primitives

Skills

(a) (b)

0 20 40 60 80 100
0

200

400

600

800

1000

Episode

primitives

skills (8)

N
um

be
r

of
 s

te
ps

0 20 40
0

2000

4000

6000

8000

10000

Episode

primitives

skills (2)

N
um

be
r

of
 s

te
ps

(c) (d)

Figure 3.10. Performance with and without access skills in the (a) Rooms, (b)
Shortcuts, (c) Tower of Hanoi, and (d) Playroom domains.

skills, the number of skills used and the size of the initiation sets were identical. The

plots show cumulative number of steps as a function of episodes completed, for easier

comparison of the different learning curves.

These plots show that access skills improved Q-learning performance compared to

both the primitives-only setting and the random-skill setting, for different settings of

the initiation set size. Random skills usually improved performance compared to the

primitives-only setting, but this improvement was much smaller than that obtained

by access skills. In general, performance improved with increases in initiation set size.

33

0 20 40 60 80 100

2

4

6

8

10

12

x 10
4

primitives

skills (1)

random (1)

Episodes completed

C
um

ul
at

iv
e

nu
m

be
r

of
 s

te
ps

0 20 40 60 80 100

2

4

6

8

10

x 10
4

primitives

skills (2)

random (2)

Episodes completed
C

um
ul

at
iv

e
nu

m
be

r
of

 s
te

ps
0 20 40 60 80 100

2

4

6

8

10

12

x 10
4

primitives

skills (7)

random (7)

Episodes completed

C
um

ul
at

iv
e

nu
m

be
r

of
 s

te
ps

(a) (b) (c)

0 20 40
1

2

3

4

5

6

7

x 10
4

primitives

skills (1)

random (1)

Episodes completed

C
um

ul
at

iv
e

nu
m

be
r

of
 s

te
ps

0 20 40
1

2

3

4

5

6

7

x 10
4

primitives

skills (2)

random (2)

Episodes completed

C
um

ul
at

iv
e

nu
m

be
r

of
 s

te
ps

0 20 40

2

3

4

5

6

7

x 10
4

primitives

skills (4)

random (4)

Episodes completed
C

um
ul

at
iv

e
nu

m
be

r
of

 s
te

ps

(d) (e) (f)

0 20 40 60
0

0.5

1

1.5

2

x 10
4

Episodes completed

C
um

ul
at

iv
e

nu
m

be
r

of
 s

te
ps

Primitives

Skills

Random

0 20 40 60 80 100

0.5

1

1.5

2

2.5

3
x 10

4

primitives

skills (2)
random (2)

skills (4)
random (4)

skills (8)
random (8)

Episodes completed

C
um

ul
at

iv
e

nu
m

be
r

of
 s

te
ps

0 20 40 60 80 100

0.5

1

1.5

2

2.5

3
x 10

4

primitives

skills (1)
random (1)

skills (2)

random (2)

skills (3)

random (3)

Episodes completed

C
um

ul
at

iv
e

nu
m

be
r

of
 s

te
ps

(g) (h) (i)

Figure 3.11. Additional performance results. (a) (b) (c) Rooms, (d) (e) (f) Play-
room, (g) Shortcuts, (h) Towers of Hanoi, (i) Towers of Hanoi with only the three
skills that correspond to global maxima of betweenness.

34

In the Taxi domain, performance was evaluated in a single continuing task that

rewarded the agent for continuously picking up and delivering passengers. Reward

was −1 for each action, an additional +50 for passenger delivery, and an additional

−10 for an unsuccessful pick-up or put-down action. Figure 3.12 shows learning

performance in 500 trials. The results are qualitatively similar to those obtained in

earlier domains.

In Tic-Tac-Toe, performance was similarly evaluated on a single task. Reward was

−0.001 for each action, an additional +1 for winning the game, and an additional

−1 for losing. Creating an individual skill for reaching each of the access states (as

done in other domains) generates skills that are not of much use in Tic-Tac-Toe. It is

almost always impossible to reach a desired board configuration. A skill with a single

destination would typically need to be abandoned after only one action. Therefore,

a single skill with multiple destinations was formed in this domain. The destinations

were the local maxima of betweenness shown in Figure 3.6. The initial Q-value of this

skill was set to 1 at the start state to ensure that it got executed frequently enough.

It was not clear what would be a meaningful control condition for this single skill.

Therefore, there is no control condition with random skills in this domain. Figure 3.13

shows mean performance in 100 trials, revealing a large improvement in performance

when the skill was available.

3.4 Related Work

A graphical approach to forming skills was first suggested by Amarel (1968) in

his classic analysis of the missionaries and cannibals problem. Amarel advocated

representing action consequences in the environment as a graph and forming skills

that correspond to navigating this graph by exploiting its structural regularities. He

did not, however, propose any general mechanism that can be used for this purpose.

35

0 50 100

−300

−200

−100

0

100

200

Period (1000 steps each)

R
et

ur
n

Primitives

random (2)

skills (2)

0 50 100

−300

−200

−100

0

100

200

Period (1000 steps each)

R
et

ur
n Primitives

random (4)

skills (4)

Figure 3.12. Performance in the Taxi domain.

The skill definition proposed here captures the “bottleneck” concept, which has

inspired many of the existing skill-discovery algorithms, most prominently the al-

gorithms by McGovern and Barto (2001), Stolle and Precup (2002), Stolle (2004),

Menache et al. (2002), Mannor et al. (2004), and Mathew (2008). There is clearly

an overlap between the skills proposed here and the skills that are formed by these

discovery algorithms. For example, in gridworld environments, all of these discovery

algorithms generate skills for efficiently reaching doorways, which also emerge from

the skill definition provided here. Below, I review each of these algorithms in turn,

focusing on whether they can identify access states and, if so, whether they do it

efficiently.

The discovery method of McGovern and Barto (2001) examines past trajectories to

identify states that are common in successful trajectories but not on unsuccessful ones.

The definition of “success” is left to the system designer. In their implementation,

successful trajectories are defined to be those in which the agent reaches a goal state

within a certain number of decision stages.

A fundamental property of this algorithm prevents it from identifying a large

subset of access states: It examines different paths that reach the same goal location,

36

0 10 20 30 40 50
−10

−5

0

5

10

primitives

skill

Rounds (10 games each)

R
et

ur
n

Figure 3.13. Performance in the game of Tic-Tac-Toe.

while the definition of access states consider the most efficient ways of navigating

between different source and destination pairs. Access states that are not on the

path to the goal state would not be identified by the method of McGovern and Barto

(2001).

With respect to sample complexity, an important concern with the approach is its

need for excessive exploration of the environment. Their method can be applied only

after the agent has successfully performed the task at least once. Typically, it requires

many additional successful trajectories to be able to reliably distinguish bottlenecks

from other states. There is reason to believe that the information they ignore—how

the states in a trajectory are linked together—may be the basis of a much faster and

accurate algorithm. Even a short trajectory may reveal enough information about

the graphical structure of the environment to suggest useful subgoals.

As a preliminary test of this conjecture, I replicated the experiment on the two-

room gridworld in McGovern and Barto (2001), using the trajectories differently. The

state trajectory from the first episode was used to construct the interaction graph to

compute betweenness. In 774 of 1000 trials, the state with the highest betweenness

was either a doorway state or a state within one transition away from the doorway. At

37

the end of the second episode, this number increased to 954. In contrast, in McGovern

and Barto (2001), the subgoal discovery process starts after 25 episodes.

To summarize, the discovery method of McGovern and Barto (2001) can identify

only a small subset of access states and that the discovery process has a higher sample

complexity than may be possible using alternative approaches.

Stolle and Precup (2002) and Stolle (2004) build on the work by McGovern and

Barto (2001) to identify a broader set of bottleneck states. They propose a number

of algorithms that mine past trajectories using visitation frequencies, obtaining their

trajectories from multiple tasks that start and terminate at different states. As the

number of tasks increases, the subgoals that are identified become more and more

similar to access states. Unfortunately, however, data efficiency is even a larger

concern with their algorithms. They require the agent to have already identified the

optimal policy—not for only a single task, but for many different tasks in the domain.

Menache et al. (2002) and Mannor et al. (2004) have proposed discovery tech-

niques that address the high sample complexity of frequency-based approaches. These

algorithms make use of the graphical structure of the problem, but their use of graph-

ical structure differs from the approach taken here. These algorithms construct the

interaction graph from experience, apply a clustering algorithm to partition the graph

into blocks and create skills that take the agent efficiently to states that connect dif-

ferent blocks. The objective is to identify blocks that are highly connected within

themselves but weakly connected to each other. Different clustering techniques and

cut metrics may be used towards that end.

The Shortcuts domain illustrates the limitations of these techniques in identifying

access states. There are access states in this domain, but unlike a doorway, they

do not partition the state space into two weakly-connected regions. The cut that

minimizes the widely-used NCut and RatioCut metrics (defined in Section 4.3.2)

cuts the graph horizontally in the middle as shown in Figure 3.14.

38

Figure 3.14. A cut of the Shortcuts domain that minimizes both NCut and RatioCut
metrics.

Although it is motivated from a different perspective, the algorithm by Mathew

(2008) also partitions the interaction graph and therefore shares the limitations of

the algorithms by Menache et al. (2002) and Mannor et al. (2004).

The argument against graph partitioning extends beyond the simple example pro-

vided by the Shortcuts domain. Most real-world domains show a complex connectivity

structure that does not lend itself to the use of graph partitioning in identifying the

access states. For example, analogous situations exist in continuous control prob-

lems where sequential composition of “funnels” in system dynamics can give rise to

access-like states (Burridge et al. 1999).

The more fundamental property that makes a doorway a useful subgoal is that

it is between many source-destination pairs. Discovery methods that partition the

interaction graph can not directly tap into this property, although they can sometimes

do it indirectly. In the following chapter, I propose a discovery algorithm based on

graph partitioning that is better suited for identifying access states than the existing

partitioning approaches.

39

3.5 Discussion

In a diverse set of domains, the skill definition of Section 3.1 gives rise to skills

that make common sense and that are similar to skills people handcraft for these

domains. When added to the action repertoire of an agent, these skills improved

learning performance, to a greater extent than a control group of randomly generated

skills, suggesting that the improvements should not be attributed to the presence of

skills alone but that the specific skills that were formed are valuable.

In most cases, the experimental evaluation showed an improvement in performance

when using skills with randomly-selected destinations compared to the primitives-only

condition. This result warrants further study of random selection of skill destinations.

Although judicious selection results in better performance, the low computational cost

of random selection may make it attractive in some circumstances.

The skill definition proposed here can take into account the reward function—or

a probability distribution over possible reward functions—through assigning different

weights to different paths on the graph. This property is desirable because the utility

of a skill depends critically on the reward function. Two identical agents operating

in the same environment but performing different tasks require different sets of skills

suitable for the individual tasks that they face. Instead of an external reward function,

path weights may reflect an agent’s internal state, more specifically, an agent’s own

learning priorities in the current stage of its development.

Although knowledge about the reward function may be taken into account, when

such information is available, it is not necessary for the approach to specify useful

skills. The experimental evaluation in this chapter spanned a range with respect

to the role played by the reward function in defining the skills. In Tic-Tac-Toe, the

reward function was fully taken into account, producing skills that were tailored to the

task. In Taxi, the reward function was ignored entirely—betweenness was computed

using uniform edge and path weights. The resulting skills were then tested on the

40

standard reward function for this domain in the literature. In the remaining domains,

the action costs were taken into account (or they were identical) but not the location

and magnitude of the goal reward. The results demonstrate that the resulting skills

were useful in a collection of tasks in which the goal varied drastically, although the

skills were not tailored to any of the particular goal locations.

The skill definition proposed here may be refined in a number of ways. First,

while the analysis of shortest paths to the exclusion of all others has proved useful,

considering a broader set of paths may improve skill utility. Second, action effects

may be more accurately represented on the interaction graph, for instance, by in-

cluding vertices to represent individual actions. Third, the size and constituents of

the initiation sets may be informed by the betweenness of the skill destination. For

instance, the size of the initiation set may be informed by the absolute betweenness of

the skill destination, with larger initiation sets attached to skills that reach globally

more important states.

The skill description I propose may be used directly to form a set of skills for

a given MDP. However, it may require more information than is available to the

agent. Therefore, there is a need to develop methods that rely on less information,

in particular, methods that do not require that the interaction graph is known in its

entirety. A key property of the approach taken here is that the utility of a state as a

subgoal is determined in relation to other states in its vicinity. What matters is not

the absolute value of betweenness but whether it is higher than the betweenness values

in its proximity. Although betweenness of a vertex can not be estimated reliably using

only local information, it should be possible to reliably determine local maxima of

betweenness without knowledge of the full graph. I investigate this possibility in the

next chapter.

The definition provided here can not directly handle multi-dimensional, continuous

states spaces, but it may be extended in the future for such domains. My conjecture

41

is that the fundamental reason why grasping is a useful skill is analogous: it is between

various things that we do in our daily life.

It is unlikely that a single skill definition would capture all the different types of

skills that an autonomous agent may find useful. I propose the skill characterization

of the current chapter as one of several different types of skills that would complement

each other.

42

CHAPTER 4

IDENTIFYING ACCESS SKILLS

The skill definition provided in the previous chapter may be used directly to

form a set of skills suitable for a given task or a domain. However, because of its

reliance on complete knowledge of the interaction graph and the computational cost

of betweenness, the use of the skill definition itself as a discovery method is limited,

although there are conditions under which it would be useful.

In this chapter, I develop three alternative approaches for identifying access skills

that do not require explicit or complete representation of the interaction graph. All

three methods have low computational cost that is not directly related to the number

of states in the domain. A preliminary analysis suggests that they are effective in

reliably identifying access states.

I assume that the agent can sample paths from the graph through interacting with

its environment: executing an action, observing the change in environment state, and

receiving a numerical reward signal. The methods I propose are founded on the

following observations:

1. On interaction graphs constructed from short trajectories, access states are more

likely than other states to be local maxima of betweenness,

2. On interaction graphs constructed from short trajectories, access states are more

likely than other states to lie between two regions that are densely connected

within themselves but weakly connected to each other,

43

3. Access states are more likely than other states to introduce short-term novelty,

in other words, to mediate a transition from a region recently well explored to

a region recently unexplored.

In the following sections, I first discuss the use of the skill definition itself as

a discovery method. I then describe the three alternative approaches, discuss their

strengths and limitations, and conclude with the contributions of the present chapter.1

4.1 Betweenness

The skill definition of Section 3.1 may be used directly to form a set of skills

suitable for a given task if the interaction graph of the domain is known and the

cost of computing betweenness is not a burden. Knowledge of the reward function is

not necessary for this approach to yield useful skills, but the reward function may be

fruitfully taken into account to form skills that are tailored to the task at hand. One

setting in which this approach would be beneficial is when the agent faces a sequence

of different tasks in the same domain, where the computational cost of forming skills

would be worthwhile because of the benefits it would introduce over time in different

tasks.

4.2 Local Betweenness

The betweenness value of a vertex is a global graph property that can not be esti-

mated reliably without knowledge of the entire graph. It should, however, be possible

to reliably determine local maxima of betweenness using only partial information. Of

particular interest here is whether it is possible to reliably determine local maxima of

betweenness using subgraphs of the interaction graph. Specifically, we are interested

1Some of the ideas presented in this chapter have appeared in Şimşek and Barto (2004) and
Şimşek, Wolfe and Barto (2005).

44

in subgraphs that correspond to sample trajectories of the MDP, which an agent

interacting with its environment can easily obtain. Other types of subgraphs, for in-

stance, a subgraph around a particular node, containing all nodes within a specified

distance from this node, may better support our objective, but may not be easy to

obtain for an agent.

Definition A local interaction graph is a weighted, directed graph constructed

from an input trajectory of states, actions, and rewards sampled from an MDP.

Vertices in the graph correspond to states in the trajectory. Edges correspond

to state transitions that take place in the trajectory. A directed edge v1 → v2 is

present in the graph if and only if the corresponding state transition is present

in the trajectory. Edges have two sets of weights defined on them. The first

weight is the mean reward obtained in the trajectory when the corresponding

state transition took place. The second weight is the number of corresponding

transitions that took place in the trajectory.

I hypothesize that the states that are local maxima of betweenness on the full

interaction graph are more likely than other states to be local maxima of betweenness

on local interaction graphs. Local interaction graphs obtained in the Rooms domain of

Section 3.2.1 provide some empirical support for this hypothesis. The agent performed

10,000 random walks of 1000 steps in this domain, each starting at a random location.

At the end of each random walk, a local interaction graph was constructed that

reflected the agent’s brief experience in the domain. The mean number of vertices in

these graphs was 159, much smaller than the number of states in the domain.

Figure 4.1a shows the histogram of local-maximum rates obtained, where local-

maximum rate of a state is the number of local interaction graphs in which the state

was a local maximum of betweenness divided by the number of local interaction

graphs on which the state was represented. As in the previous chapter, a state was

considered to be a local maximum if its betweenness was greater than or equal to those

45

0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

300

Local−maximum rate

F
re

qu
en

cy

Access states

Others

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) (b)

Figure 4.1. Local-maximum rates in the Rooms domain.

of its immediate neighbors. The figure shows a bimodal distribution. The majority of

states have rates that are below 0.12, while a small number of states have rates that

are higher than 0.32. The latter group consists of the fourteen states that are adjacent

to doorways, which are the local maxima of betweenness on the full interaction graph.

The local-maximum rate of each state is depicted visually in Figure 4.1b, where the

gray shading on each grid square represents the local-maximum rate of that state.

The figures show that most states appeared as a local maximum on at least some

local interaction graphs. Consequently, for the objective of determining local maxima

of the full interaction graph, any given local interaction graph is not particularly

informative. In fact, it could be quite misleading. It is possible, however, to combine

the evidence from many such graphs to reliably determine the access states of the full

graph, as described in the next section.

4.2.1 Formulation As a Classification Problem

The discovery problem may be formulated as a classification task in which the

agent’s objective is to determine whether a given state is an access state, based

on evidence from a collection of local interaction graphs obtained in the domain.

46

Each local interaction graph yields an observation for each state represented on it:

a positive observation if the state is a local maximum of betweenness on the graph,

a negative observation otherwise. Both positive and negative observations may be

associated with each state, but access states have a higher probability than other

states of producing positive observations.

If we make the simplifying assumption that the environment contains two classes

of states, targets (access states) and non-targets, and that states in the same class

have the same probability of producing a positive observation, the problem faced by

the agent is to classify a given state as target (T) or non-target (N) based on a number

of binary observations on that state.

If class-conditional distributions are known, this classification task is straightfor-

ward using Bayesian decision theory (Duda et al. 2001). Assigning an appropriate

cost to two possible types of error—classifying a target as non-target (miss) or a non-

target as target (false alarm)—and minimizing total cost gives rise to a decision rule

that labels the state as target if

P (o1..on|T)

P (o1..on|N)
>

λfa
λmiss

P (N)

P (T)
,

where o1..on are the observations on a given state, P (T) is the prior probability of a

target state, P (N) is the prior probability of a non-target state, λfa is the cost of a

false alarm, and λmiss is the cost of a miss. If we assume that the observations are

independent and identically distributed given the class, we can rewrite this inequality

as
pn+(1− p)n−n+

qn+(1− q)n−n+
>

λfa
λmiss

P (N)

P (T)
,

where n+ is the number of positive observations, n is the total number of observations,

p is the probability of a positive observation given a target, and q is the probability

47

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of observations

T
hr

es
ho

ld

Figure 4.2. Decision threshold as specified by Inequality 4.1 when λfa

λmiss
= 100,

p(N)
p(T)

= 100, p = 0.36, and q = 0.036.

of a positive observation given a non-target. Simple algebra yields a decision rule to

label the state as a target if

n+

n
>

ln 1−q
1−p

lnp(1−q)
q(1−p)

+
1

n

ln(
λfa

λmiss

p(N)
p(T)

)

lnp(1−q)
q(1−p)

. (4.1)

Inequality 4.1 is a threshold on the proportion of positive observations on a given

state. The threshold depends on the number of observations collected on the state.

With increasing number of observations, the threshold decreases at a decreasing rate,

approaching a constant in the limit. Figure 4.16 shows the threshold when λfa

λmiss
=

100, p(N)
p(T)

= 100, and p and q are estimated using the random walk data in the Rooms

domain discussed in Section 4.2 (p = 0.36, q = 0.036). The figure does not show

threshold values greater than 1, the largest value n+

n
can take.

Inequality 4.1 can be used directly as a decision rule if p, q, and λfa

λmiss

P (N)
P (T)

are

known or can be estimated. Alternatively, Inequality 4.1 can be used to motivate a

simpler rule. On the right hand side, the first term is a constant. The second term is

inversely related to the number of observations, therefore its influence decreases with

increasing number of observations. Consequently, for large n, the inequality may be

48

approximated with a constant, which suggests the decision rule to label a state as a

target if (1) the number of observations on this state is above a threshold parameter

tn, and (2) the proportion of positive observations is greater than another threshold

parameter tp:

n > tn and
n+

n
> tp. (4.2)

To arrive at this decision rule, we made two simplifying assumptions that are

likely to be violated to some degree. First, placing all states in one of two classes

is a simplification. The probability of producing a positive observation may vary

considerably within states of the same class. Second, if local interaction graphs are

constructed from overlapping trajectories, observations on a given state are not en-

tirely independent. Nevertheless, the simple and intuitive decision rules obtained

with these assumptions are surprisingly effective in identifying access states.

4.2.2 The Local Betweenness Algorithm (LoBet)

The formulation of the discovery problem as a classification task suggests an in-

cremental algorithm presented in Figure 4.3. The agent continuously interacts with

its environment, constructing local interaction graphs from short, non-overlapping

trajectories. From each local interaction graph, it obtains an observation for each

state represented on the graph. This is a positive observation if the state is a local

maximum of betweenness on the graph, a negative observation otherwise. With each

new observation on a given state, the agent reapplies Decision Rule 4.1 or 4.2 to the

state, classifying it as an access state if the decision rule is satisfied. The agent contin-

ues this incremental process indefinitely. I call this algorithm the Local Betweenness

Algorithm (LoBet).

Each local interaction graph may be processed in time O(l2) if edge weights are

uniform, in time O(l2 + l2 log l) otherwise. The parameter l, the length of the input

49

Parameters if using Decision Rule 4.1
l Trajectory length
p Probability of a positive observation given an access state
q Probability of a positive observation given not an access state
P (N)
P (T)

Prior ratio
λfa

λmiss
Cost ratio

Parameters if using Decision Rule 4.2
l Trajectory length
tn Threshold on required observations on a state
tp Threshold on proportion of positive observations

Algorithm
oi = 0, o+

i = 0
Repeat forever:
Observe state s
V = {s}, E = ∅, nij = 0, wij = 0
Repeat l times:
Take action a, observe reward r and next state s′
V = V ∪ {s′}
E = E ∪ (s, s′)
nss′ = nss′ + 1
wss′ = wss′ + (r − wss′)/nss′
Compute betweenness on graph G = (V,E) using edge costs −wij.
For all s ∈ V :
os = os + 1
If s is a local maximum on G: o+

s = o+
s + 1

If the decision rule is satisfied, classify s as an access state.

Figure 4.3. The Local Betweenness Algorithm (LoBet).

trajectory, is a small constant not directly related to the number of states in the

domain.

4.2.3 Performance

Figure 4.4 shows the results of applying the Local Betweenness Algorithm in the

Rooms domain while the agent was performing a random walk. The algorithm was

applied using Decision Rule 4.1, with l = 1000, λfa

λmiss
= 100, p(N)

p(T)
= 100, p = 0.36,

50

q = 0.036. The parameters p and q were estimated from the random walk discussed

earlier in Section 4.2.

The figure shows the number of times each state was identified as an access state

in 100 trials. The local maxima of betweenness in this domain are the fourteen states

that are adjacent to the seven doorways. The doorways themselves have slightly lower

betweenness values, therefore they are not local maxima with respect to the definition

employed here. These fourteen states were identified as access states in all 100 trials.

Very few additional states were identified as access states, amounting to less than one

state per trial. Figure 4.4 also shows how the discovery process progressed over time,

revealing that the discovery rate eventually reduced to approximately zero rather

than indefinitely continuing at a substantial rate.

Figure 4.5 shows similar results in the Shortcuts domain introduced in Section 3.2.2.

All experimental conditions were identical to their settings in the Rooms example,

except p and q were similarly determined while the agent was performing a random

walk (p = 0.3, q = 0.07). The local maxima of betweenness in this domain are the four

states that border the two shortcut edges. All of them were identified as access states

in all 100 trials. Few additional states were identified as access states, amounting to

less than 0.2 states per trial.

4.3 Local Graph Partitioning

The second method I propose for identifying access states also takes a graph-

theoretic approach. In particular, it also operates on local interaction graphs rather

than the full interaction graph of the domain. Instead of computing betweenness on

these graphs, this alternative approach identifies cuts that partition the graph into

two blocks with a low between-blocks transition probability. States that consistently

border identified cuts are labeled as access states.

51

20

40

60

80

0 50 100 150 200 250 300
0

5

10

15

Number of subgraphs

S
ta

te
s

cl
as

si
fie

d
as

 a
cc

es
s

st
at

es

Figure 4.4. Performance of LoBet in the Rooms domain during a random walk.

20

40

60

80

0 50 100 150 200
0

1

2

3

4

5

Number of subgraphs

S
ta

te
s

cl
as

si
fie

d
as

 a
cc

es
s

st
at

es

Figure 4.5. Performance of LoBet in the Shortcuts domain during a random walk.

4.3.1 Utility of Local Cuts

The local scope of the interaction graph is a key property of this discovery method.

The cuts it performs do not partition the entire state set but only a small part of

it encountered in a short, continuous fragment of experience. This local perspective

allows the approach to identify a large set of access states that are missed by methods

that perform cuts of the full interaction graph, such as the discovery algorithms by

Menache et al. (2002) and Mannor et al. (2004).

52

Figure 4.6. A sample local interaction graph in the Shortcuts domain.

The Shortcuts domain discussed earlier in Section 3.2.2 illustrates the difference

between global and local cuts. Global cuts miss the access states in this domain as

discussed in Section 3.4 and illustrated in Figure 3.14. In contrast, a local cut can

easily isolate the access states as illustrated in Figure 4.6. Not all transition sequences

yield a graph like the one in this figure, but the classification framework described

in Section 4.2.1 can be similarly used here to combine evidence from an ensemble of

local interaction graphs to reliably determine access states of the domain.

4.3.2 Cut Metric

Given a graph G = (V, E) where V is the set of vertices and E is the set of edges,

a cut (A, B) of G is a partition of V. The edges that cross the cut are those with one

endpoint in block A and the other in block B.

A cut metric particularly well suited to identifying access states is the normalized

cut (NCut) introduced by Shi and Malik (2000):

NCut(A,B) =
cut(A,B)

vol(A)
+
cut(B,A)

vol(B)
, (4.3)

53

where cut(A,B) is the sum of the weights on edges that originate in A and terminate

in B, and vol(A) is the sum of weights on all edges that originate in A.2 For a local

interaction graph with edge weights that denote transition frequencies, the first term

in Equation 4.3 is the number of observed transitions from a state in block A to a

state in block B divided by the total number of transitions from states in block A. The

result is an estimate of the probability that the agent transitions to block B in one

step under its current policy given that it starts in block A. A similar argument can

be made for the second term in Equation 4.3 for transitioning in the other direction.

Their sum, NCut , is an estimate of the sum of probabilities of crossing the cut from

each block.

Alternative cut metrics commonly used in graph partitioning are MinCut (Wu

and Leahy 1993) and RatioCut (Hagen and Kahng 1992). MinCut is the sum of edge

weights that cross the cut. RatioCut equals cut(A,B)/|A| + cut(A,B)/|B| for an

undirected graph, where |A| and |B| are the number of vertices in blocks A and B,

respectively. Neither of these metrics are as suitable as NCut for identifying access

states. MinCut , in particular, creates a bias towards cuts that separate a small

number of nodes from the rest of the graph, for example a single corner state in a

gridworld, and is inferior to the other two metrics for the purpose of identifying access

states.

4.3.3 Partitioning Algorithm

Finding a partition of a graph that minimizes NCut is NP-hard, but there exist

good approximate algorithms. In the experiments reported here, the spectral cluster-

ing algorithm of Shi and Malik (2000) is used on an undirected version of the local

interaction graph in which edge weights show the number of transitions in either

direction. This algorithm has a running time of O(N3), where N is the number of

2The choice of NCut as the cut metric is due to Alicia P. Wolfe.

54

0 0.05 0.1
0

50

100

150

Border rate

F
re

qu
en

cy

Access states

Others

0.02

0.04

0.06

0.08

0.1

0.12

Figure 4.7. Border rates in the Shortcuts domain.

vertices in the graph. Because the approach proposed here works with local interac-

tion graphs rather than the full interaction graph of the domain, N is not directly

related to the number of states in the domain.

4.3.4 Local Cuts

I hypothesize that access states are more likely than other states to border cuts

of the local interaction graphs in which the blocks are well separated. An analysis

performed in the Shortcuts domain supports this hypothesis. The agent performed

10,000 random walks of 500 steps, each starting at a random location. At the end

of each random walk, a local interaction graph was constructed that reflected the

agent’s brief experience in the domain. The mean number of vertices in these graphs

was 153. If the cut that minimized NCut had a low NCut value (less than 0.02),

indicating that the blocks were well separated, the states that border the cut edges

were labeled as border states.

Figure 4.7 shows a histogram of the border rates obtained in the domain, where

border rate of a state is the number of times the state was labeled as a border state

divided by the number of local interaction graphs on which the state was represented.

The figure shows a bimodal distribution, as expected. The four access states of the

55

domain had border rates above 0.08 while the rest of the states had border rates that

were below 0.04. The figure also visually depicts the border rate of each state in the

domain, showing clearly the contrast between the four access states and the other

states.

4.3.5 Formulation as a Classification Problem

The discrepancy in the border rates of access states and other states in the domain

makes it possible to formulate the problem of identifying access states as a classifica-

tion task, analogous to the formulation presented in Section 4.2.1. This formulation

yields exactly the same decision rules as in Section 4.2.1. The only difference here

is in how the positive and negative observations are obtained for each state. Local

interaction graphs are still the source of the observations, but the processing of these

graphs involves graph partitioning rather than computing vertex betweenness. As in

the earlier formulation, each local interaction graph yields one observation for each

state represented on it. This is a positive observation if the state is a border state on

the graph, a negative observation otherwise. Both positive and negative observations

may be associated with each state, but access states have a higher probability than

other states of producing positive observations.

4.3.6 The Local Cuts Algorithm (L-Cut)

The formulation of the discovery problem as a classification task suggests an incre-

mental algorithm presented in Figure 4.8 that is quite similar to the Local Between-

ness Algorithm (LoBet) introduced earlier. The agent continuously interacts with

its environment, constructing local interaction graphs from short, non-overlapping

trajectories. Each local interaction graph produces a new observation for each state

represented on it. A low NCut value indicates a good separation between the blocks.

In this case, the states that are endpoints of the edges that cross the cut obtain a

positive observation while the remaining states obtain a negative observation. On

56

Parameters if using Decision Rule 4.1
l Trajectory length
tc Cut threshold
p Probability of a positive observation given an access state
q Probability of a positive observation given not an access state
P (N)
P (T)

Prior ratio
λfa

λmiss
Cost ratio

Parameters if using Decision Rule 4.2
l Trajectory length
tc Cut threshold
tn Threshold on required observations on a state
tp Threshold on proportion of positive observations

Algorithm
oi = 0, o+

i = 0
Repeat forever:
Observe state s
V = {s}, E = ∅, wij = 0
Repeat l times:
Take action a, observe reward r and next state s′
V = V ∪ {s′}
E = E ∪ (s, s′)
wss′ = wss′ + 1
Identify the cut (A, B) that minimizes NCut on graph G = (V,E)
For all s ∈ V :
os = os + 1
If NCut(A, B)< tc and s borders (A, B): o+

s = o+
s + 1

If decision rule is satisfied, classify s as an access state

Figure 4.8. The Local Cuts Algorithm (L-Cut).

57

the other hand, a high NCut value indicates that the blocks are not well separated,

in which case all states in the graph obtain a negative observation. The threshold

NCut value (tc) is a parameter of the algorithm. With each new observation on a

given state, the agent reapplies Decision Rule 4.1 or 4.2 to the state and classifies

the state as an access state if the decision rule is satisfied. The agent continues this

incremental process indefinitely.

Local interaction graphs are constructed periodically from non-overlapping tra-

jectories of length l, another parameter of the algorithm. Edge weights used in graph

partitioning are the number of corresponding transitions that take place in the tra-

jectory.

Each local interaction graph may be processed in time O(l3). The parameter l, the

length of the input trajectory, is a small constant not directly related to the number

of states in the domain.

4.3.7 Performance

Figure 4.9 shows the results of applying the Local Cuts Algorithm in the Shortcuts

domain while the agent was performing a random walk. The algorithm was applied

using Decision Rule 4.1, with l = 500, λfa

λmiss
= 100, p(N)

p(T)
= 100, p = 0.1053, q = 0.0142.

The parameters p and q were estimated from the random walk discussed earlier in

Section 4.3.4. The figures show that L-Cut succeeded in isolating the access states of

the domain. In all 100 trials, at least one border state of both shortcut edges were

identified as an access state. No state other than the four states that border the

shortcut edges was identified as an access state in any of the trials.

Figure 4.10 shows similar results in the Rooms domain. All experimental condi-

tions were identical to their earlier settings, except p and q were similarly determined

while the agent was performing a random walk (p = 0.1652, q = 0.0065). The al-

gorithm was successful in this domain as well. In all 100 trials, the seven doorways

58

10

20

30

40

50

60

70

80

0 1 2 3 4

x 10
5

0

0.5

1

1.5

2

2.5

3

Number of steps

S
ta

te
s

cl
as

si
fie

d
as

 a
cc

es
s

st
at

es

Figure 4.9. Performance of L-Cut in the Shortcuts domain during a random walk.

20

40

60

80

0 1 2 3 4

x 10
5

0

5

10

15

Number of steps

S
ta

te
s

cl
as

si
fie

d
as

 a
cc

es
s

st
at

es

Figure 4.10. Performance of L-Cut in the Rooms domain during a random walk.

or their immediate neighbors were identified as access states. All states that were

labeled as access states were states that are within 2 transitions of the doorways.

4.4 Relative Novelty

Unlike LoBet and L-Cut, the next approach I propose for identifying access states

does not use the graphical structure of the domain directly. This third approach is

founded on the observation that access states are likely to allow the agent to transition

to a different region in the state space. To detect such transitions, I introduce the con-

59

cept of relative novelty , a measure of how much short-term novelty a state introduces

to the agent. Below, I define novelty and relative novelty, formulate the discovery

problem as a classification task analogous to the earlier formulations, describe the full

algorithm, and show examples of its behavior in sample domains.

4.4.1 Novelty

Various concepts of novelty play many roles in both cognitive and computational

science. I purposefully use a simple notion of novelty that can later be revised for

richer formalisms than the discrete state problems that are addressed here. This

definition of novelty makes use of the number of visits since a designated start time.

The novelty of a set of states equals n−1/k, where n is the mean number of visits to

states in this set and k > 0 is a parameter. With this definition, the novelty of a

single state equals 1 when it is first visited, decays with each succeeding visit, and

approaches 0 in the limit.

4.4.2 Relative Novelty

The relative novelty of a state in a transition sequence is the ratio of the novelty of

states that followed it (including itself) to the novelty of the states that preceded it.

The number of forward and backward transitions to take into account in computing

this score is a parameter called the novelty lag (ln). A state is likely to produce a

different relative novelty score each time it is visited.

Figure 4.11 shows the distribution of relative novelty scores in the Rooms domain

during a 1000-step random walk repeated 10,000 times, starting each at a random grid

location. Relative novelty was computed using k = 2 and ln = 7. The figure shows the

distribution of relative novelty scores separately for access states (seven doorways and

fourteen states adjacent to them) and for other states, revealing a difference between

the two distributions. Both distributions peak around a relative novelty score of 1,

60

0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

Relative novelty score

Access states

Others

Figure 4.11. Empirical probability distribution function of relative novelty scores
in the Rooms domain.

indicating approximately equal novelty scores preceding and following a state, but

the distribution for access states has a heavier tail.

A state is defined to introduce relative novelty when its relative novelty score

is greater than a parameter called the relative novelty threshold (tRN). Figure 4.12

shows the relative-novelty rate, the proportion of relative novelty scores that are

greater than the threshold, when tRN was set to 2. The conversion from a continuous

relative novelty score to a binary feature adequately captures the differences among

states because the distributions of relative novelty scores differ mainly in their tail.

The figure shows clearly that the access states introduced relative novelty at a higher

rate than the other states in the domain.

Repeated experiments with different settings of parameters k and l showed a

similar discrepancy in relative novelty scores of the access states and other states in

the domain. This discrepancy is the basis of the algorithm I propose.

4.4.3 Formulation as a Classification Problem

The problem posed by the agent may once again be formulated as a classification

task, as in earlier approaches, with the premise that access states have a higher prob-

ability of producing positive observations than other states. In this case, the binary

61

0 0.02 0.04 0.06
0

100

200

300

400

Relative novelty rate

F
re

qu
en

cy

0.01

0.02

0.03

0.04

0.05

0.06

Figure 4.12. Relative novelty rates in the Rooms domain.

observations indicate whether a particular visit to a state introduced relative novelty.

Observations are collected continuously as the agent interacts with its environment.

With each transition, the agent obtains a new observation for some state s and wishes

to determine whether s is an access state based on all observations obtained so far for

s. The formulation in Section 4.2.1 applies exactly, except for how the observations

are obtained, yielding the two decision rules used earlier for LoBet and L-Cut.

4.4.4 The Relative Novelty Algorithm (RN)

The formulation of the discovery problem as a classification task suggests an in-

cremental algorithm similar to LoBet and L-Cut. This algorithm is presented in

Figure 4.13. The algorithm computes a new relative novelty score for a given state

each time this state is visited. If this score is greater than the relative novelty thresh-

old, it produces a positive observation for the state, otherwise a negative observation.

Given the number of observations so far accumulated on this state, Decision Rule 4.1

or 4.2 is then used to determine whether to label it as an access state. The agent

continues this incremental process indefinitely.

There are some details to this relatively simple procedure. First, it is essential

to periodically reset visitation counts. It is important to do so because the type of

62

Parameters if using Decision Rule 4.1
k Novelty exponent
ln Novelty lag
tRN Relative novelty threshold
p Probability of a positive observation given an access state
q Probability of a positive observation given not an access state
P (N)
P (T)

Prior ratio
λfa

λmiss
Cost ratio

Parameters if using Decision Rule 4.2
k Novelty exponent
ln Novelty lag
tRN Relative novelty threshold
tn Threshold on required observations on a state
tp Threshold on proportion of positive observations

Algorithm
oi = 0, o+

i = 0
Repeat at each decision stage t:
s = state visited at decision stage t− ln + 1
If s! = state visited at decision stage t− ln:
RN=relative novelty score for decision stage t− ln + 1
os = os + 1
If RN > tRN : o+

s = o+
s + 1

If decision rule is satisfied, classify s as an access state.

Figure 4.13. The Relative Novelty Algorithm (RN).

novelty sought here is defined relative to the agent’s recent experience. It is irrelevant

whether a state is novel to the agent overall. Second, self-transitions (transitions

from a state to itself) are ignored because two consecutive scores for the same state

are highly correlated, violating the assumption of independent observations in the

formulation of the problem as a classification task. And third, there is a time lag

between the actual state visitation and the relative novelty computations because of

the novelty lag.

RN has very low computational complexity. Each new experience sample may be

processed in time O(1).

63

20

40

60

80

0 1 2 3 4 5

x 10
5

0

5

10

15

20

25

Number of steps

S
ta

te
s

cl
as

si
fie

d
as

 a
cc

es
s

st
at

es

Figure 4.14. Performance of RN in the Rooms domain during a random walk.

20

40

60

80

0 1 2 3 4

x 10
5

0

1

2

3

4

5

Number of steps

S
ta

te
s

cl
as

si
fie

d
as

 a
cc

es
s

st
at

es

Figure 4.15. Performance of RN in the Shortcuts domain during a random walk.

4.4.5 Performance

Figure 4.14 shows the results of applying the Relative Novelty Algorithm in the

Rooms domain while the agent was performing a random walk. The algorithm was

applied using Decision Rule 4.1, with k = 2, tRN = 2, λfa

λmiss
= 100, p(N)

p(T)
= 100,

p = 0.05, q = 0.01. The parameters p and q were estimated from the random

walk discussed earlier in Section 4.4. The figure shows the number of times each

state was identified as an access state in 100 trials as well as how the discovery

process progressed over time. The results are similar to those obtained with earlier

algorithms. RN succeeded in identifying the access states of the domain, labeling

64

very few additional states as access states. Figure 4.15 shows similar results in the

Shortcuts domain under identical experimental conditions.

4.5 Sensitivity Analysis

LoBet, L-Cut, and RN are inspired by the same statistical formulation of the

discovery problem. They use the same decision rule to distinguish access states from

the other states in the domain, differing only on the type of observations they collect.

Here, I investigate the sensitivity of their decision rule to its parameters: P (N)
P (T)

, λfa

λmiss
,

p, and q.

In general, the more separation between the class-conditional probabilities, the

more robust the algorithms are to the settings of the decision-rule parameters. In the

examples given in this chapter, the smallest separation between the class-conditional

probabilities was observed when using RN in the Rooms domain. The sensitivity

analysis was conducted in this setting.

4.5.1 Priors and Misclassification Costs

The priors and the misclassification costs appear together in the decision rule as

a product: P (N)
P (T)

λfa

λmiss
. Figure 4.16 shows the decision threshold for various settings of

the product term P (N)
P (T)

λfa

λmiss
, ranging from 312 to 20,000, when p and q were kept at

their values reported in Section 4.4.5. The product term plays a role when the number

of observations is small. Its role in the decision rule is to increase the threshold for

low sample sizes when uncertainty about the class label is high. With increasing

number of observations, the influence of the product term on the threshold decreases,

approaching zero in the limit.

Figure 4.17 shows performance results in the Rooms domain with various settings

of the product term. The figure shows that access states were correctly labeled at

all settings of the product term, but other states were sometimes incorrectly labeled

65

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of observations

T
hr

es
ho

ld

312
1250
5000
20000

Figure 4.16. Decision threshold for various settings of P (N)
P (T)

λfa

λmiss
. Other parameter

settings were as reported in Section 4.4.5.

as access states. The number of states labeled incorrectly increased with decreasing

values of the product term. In other words, there were no misses, but increasingly

more false alarms with decreasing values of the product term. False alarms were

not uniformly distributed in the domain, but tended to be close to the access states.

As skill subgoals, such states are expected to be more useful than states randomly

selected from the domain.

Most false alarms happen early in the discovery process when the number of

observations is low. With increasing number of observations, the difference between

the decision thresholds with various settings of the product term decreases, resulting

in more accurate decisions. Early misclassifications are not a big problem because a

skill may be eliminated if further evidence suggests that its subgoal is not an access

state.

4.5.2 Class-Conditional Probabilities

Figures 4.18 and 4.19 show performance results with various settings of the class-

conditional probabilities p and q. The figures show that the degradation in perfor-

mance is gradual over a range of settings of these parameters. Errors tend to be either

66

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

P (N)
P (T)

λfa

λmiss
= 312 P (N)

P (T)

λfa

λmiss
= 2500

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

P (N)
P (T)

λfa

λmiss
= 625 P (N)

P (T)

λfa

λmiss
= 5000

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

P (N)
P (T)

λfa

λmiss
= 1250 P (N)

P (T)

λfa

λmiss
= 20, 000

Figure 4.17. Performance of RN in the Rooms domain during a random walk
with various settings of P (N)

P (T)

λfa

λmiss
. Other parameter settings were as reported in

Section 4.4.5.

67

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

5

10

15

20

25

30

35

40

45

50

q = 0.005 q = 0.02 q = 0.03

Figure 4.18. Performance of RN in the Rooms domain during a random walk with
various settings of q. Other parameter settings were as reported in Section 4.4.5.

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

p = 0.025 p = 0.075 p = 0.1

Figure 4.19. Performance of RN in the Rooms domain during a random walk with
various settings of p. Other parameter settings were as reported in Section 4.4.5.

false alarms or misses, but not both. In other words, if any states are identified as

subgoals, they will include access states of the domain. Furthermore, false alarms

tend to be close to the access states of the domain.

4.6 Limitations of Local Methods

The three incremental algorithms proposed for identifying access states rely on

the assumption that short trajectories in the domain can, in principle, reveal the

different regions that access states lie between. In domains in which this assumption

does not hold, the proposed algorithms are not likely to be very successful. The game

of Tic-Tac-Toe is one such example. In this domain, the trajectories experienced by

the agent are chains that do not reveal any local or global structure in the domain.

68

Unless the agent combines multiple trajectories together to form one local interaction

graph, local approaches can not identify the access states in such domains.

The Relative Novelty and the Local Cuts algorithms further rely on the assump-

tion that the access states are artifacts of the graph connectivity structure. This

assumption does not always hold. For instance, access states may be artifacts of the

reward structure, as illustrated in Figure 4.20. The figure shows Surfaces, a grid-

world domain with varying rewards. The lightly colored squares incur a reward of

−0.001 for actions that originate in them, while the darker squares incur −0.1. The

domain contains no obstacles other than the surrounding walls, but the varying re-

ward structure creates two doorway-like regions that support efficient navigation in

the domain. These regions are useful subgoals for reasons similar to why doorways

are useful subgoals.

Because the structure in Surfaces is not a result of node connectivity, RN and

L-Cut do not succeed in identifying its access states. In 100 random walks of 400,000

steps, RN and L-Cut identified very few subgoals (less than 0.05 subgoal/trial) uni-

formly distributed in the domain.

Note, however, that although RN and L-Cut do not succeed in this domain while

the agent is performing uninformed exploration, such as a random walk, these al-

gorithms may succeed if the agent is following a policy that is somewhat aware of

efficient means of navigation in the domain, as would be the case in middle to late

stages of learning how to perform a particular task in the domain. In such cases,

the skills that are consequently formed may have limited utility in the current task,

because the learning has already progressed quite a bit, but the skills would still be

useful for addressing future problems in the domain.

The Local Betweenness Algorithm does not share this limitation. It correctly

identifies the access states in the domain as shown in Figure 4.21, which shows the

69

performance of the algorithm during 100 random walks of 400,000 steps. The algo-

rithm was applied using Decision Rule 4.2, with l = 1000, tn = 10, tp = 0.20.

Finally, none of the incremental algorithms presented here can directly take into

account the path weights wst in Expression 3.1, which defines access states. They all

address the case in which the path weights are uniform. The path weights are im-

portant in some situations because they bias the betweenness computation towards

regions that are important for the agent. For instance, in the Tic-Tac-Toe example

given earlier, paths that terminate with a win for the agent was assigned a weight of

+1 while all other paths were assigned a weight of 0. With uniform path weights,

the access skills of the domain include creating forks in favor of the opponent. One

potential remedy for this limitation is to develop a two-tiered approach that contin-

uously refines the skill set by eliminating the skills that are not serving the agent’s

needs.

4.7 Discussion

The sample problems provided here demonstrate that the local maxima of be-

tweenness may reliably be identified using local information. Besides the computa-

tional benefits that an incremental discovery approach would bring, this has another

important consequence. Incremental algorithms can provide potentially useful skills

in a new environment before the agent learns how to achieve any particular task. This

property is essential if a discovery method is to be successfully applied to complex

real-world tasks.

A fruitful research direction is to develop algorithms that actively explore to dis-

cover access states, rather than only passively mining available trajectories. An active

approach that has the objective of producing the most informative local experience

can drastically reduce the number of experiences required in incremental algorithms.

70

Figure 4.20. The Surfaces domain and its interaction graph. The gray shading on
the vertices show betweenness, with black corresponding to the highest betweenness
in the domain and white corresponding to the lowest.

Refining the definition of relative novelty for high-dimensional or continuous state

spaces is another important direction for future research. The definition used here is

for discrete-state problems only and therefore has limited applicability.

Various concepts of novelty are closely linked to motivation and reward in animals

(e.g., Kakade & Dayan, 2001). The use of novelty measures to drive the automatic

creation of hierarchical behavior architectures may provide useful computational in-

terpretations of novelty-related animal behavior.

71

5

10

15

20

25

Figure 4.21. Performance of LoBet in the Surfaces domain during a random walk.

4.8 Contributions

The work presented in this chapter demonstrates the utility of the skill character-

ization presented earlier in informing practical skill-discovery algorithms. The ideas

that are introduced here are not developed fully to the extent that they can be im-

mediately applied to practical problems, but they lay the groundwork that future

research can successfully build on. Specifically, the work presented in this chapter

makes three primary contributions:

It provides evidence that representing or knowing the full interaction graph is

not necessary for successfully identifying the local maxima of betweenness. In

other words, it demonstrates the feasibility of incremental discovery algorithms

for identifying access states.

It introduces three incremental, low-cost approaches for identifying access states

that show promise for further development.

It introduces a formulation of the skill-discovery problem as a classification

task, deriving simple and effective decision rules for identifying subgoals. This

framework may be used to develop alternative discovery algorithms in the future

that target access states or an entirely different set of subgoals.

72

CHAPTER 5

ACQUIRING SKILLS EFFICIENTLY

In this chapter, I develop a class of algorithms for efficiently learning how to reach

a desired state. These algorithms specify a behavioral policy in terms of primitive

actions and therefore may be considered skills themselves. I call them trainer skills.

Trainer skills direct the actions of an agent so that the agent efficiently acquires

an optimal policy for later use. That is, an agent executing a trainer skill efficiently

learns how to maximize expected return without necessarily collecting high reward

during the process. The relevant reward signal may be received from the environment

or may be specified by the agent itself.

The objective of a trainer skill is distinct from the traditional objective of a re-

inforcement learning agent—maximizing return within the agent’s lifetime—which

requires a trade-off between exploration and exploitation. In contrast, a trainer skill

aims to perform optimal exploration for the sake of learning a policy that will enable

exploitation when needed at a later time.

Trainer skills are useful in a number of contexts. They are a natural fit for problems

that can be approached using a two-stage structure—train first, test later. Consider,

for example, a team participating in the Robocup Soccer Competition1. Goals scored

before the competition have no consequence, therefore the best use of this time is to

learn how to score goals. The learned policy can then be used during the competition

to score as many goals as possible.

1http://www.robocup.org/

73

Trainer skills may also be useful in addressing the traditional reinforcement learn-

ing problem. In this context, a trainer skill may be executed as a multi-step explo-

ration policy, for example, instead of the one-step exploratory actions taken by the

widely-used ε-greedy method.

Finally, trainer skills can be used to efficiently acquire policies for other skills.

Most skill discovery methods first identify a reward function that the skill should

maximize, then learn a corresponding policy. The latter, if done during a period

devoted exclusively to learning a satisfactory skill policy, is an instance of the problem

addressed by trainer skills. Such an active approach to skill acquisition has not been

discussed in the literature, but a short-term indifference to reward accumulation may

prove to be beneficial in this context.

To derive a policy to be followed by trainer skills, I assume that the agent faces an

MDP and refer to it as the task MDP. I formulate the optimal exploration problem

as a different MDP, which I call the derived MDP. The states of the derived MDP

have two components: an external state that designates the state of the task MDP

and an internal state that refers to the internal data structures of the agent. When

the agent acts according to the optimal policy of the derived MDP, it performs opti-

mal exploration for learning an optimal policy of the task MDP. This formulation is

adapted from that of Duff (2003), where the internal state of the agent is a probability

distribution over possible models of the task MDP. Instead of optimally exploring for

the sake of identifying the task MDP as in Duff’s work, the objective of a trainer skill

is to optimally explore to form an optimal policy for the task MDP.

I propose an approximate solution to the derived MDP that produces a simple

and intuitive algorithm for specifying the policy of a trainer skill. The algorithm is

schematically represented in Figure 5.1 when the objective is to maximize a reward

signal obtained from the environment. The figure shows two value functions, a task

value function that can be used to maximize external reward (in the future) and a

74

AGENT

ENVIRONMENT

Trainer
Value

Function

Task
Value

Function

action

intrinsic
reward

external
reward

external
state

Figure 5.1. A schematic representation of my approach. External state and reward
are used to update the task value function. This update produces an intrinsic reward
that is used to update the trainer value function.

trainer value function that is used to select actions in the present. The task value

function is updated in the usual manner using external state and reward. The updates

to the trainer value function ignore external reward but use a different reward signal

that depends on the evolution of the task value function. Because this reward signal

is a function of the internal state of the agent, it is an intrinsic reward as defined by

Barto et al. (2004) and Singh et al. (2005).

In the following sections, I first define the optimal exploration problem, formulate

it as an MDP, and describe the solution I propose. I then illustrate the use of trainer

skills in a number of learning problems and conclude with a discussion of related and

future work.2

5.1 Optimal Exploration Problem

The optimal exploration problem is to devise an action selection mechanism for

generating trajectories in the task MDP such that the policy learned by the end of

2The ideas presented in this chapter have appeared in Şimşek and Barto (2006).

75

a given number of training experiences has as high a value as possible as defined by

Equation 2.1.

I assume that the learning algorithm maintains a value function, but otherwise I

treat it as a black box, seeking to devise a method that will adapt to the particular

algorithm being used. I assume that the structure of the task MDP is unknown, and,

furthermore, that it is not possible to sample a transition from an arbitrary state but

only from its current state.

5.2 Formulation as an MDP

In the context described above, an action has two direct consequences. First, it

generates a training experience for learning the task MDP by revealing an immediate

reward and the next state. Second, it changes the environment state, determining

which external state will be sampled next. We can explicitly consider the impact of

both on future updates to the value function by modeling the agent’s internal state,

which consists of the data structures representing the task value function and other

relevant entities, in addition to the external state of the environment.

With an appropriate representation of internal state, the joint evolution of in-

ternal and external state satisfies the Markov property. Consequently, the optimal

exploration problem may be formulated as an MDP each of whose states has two

components: external state (se) and internal state (si). The actions in the derived

MDP and their effect on the external state component are identical to those in the

task MDP. The internal state includes the policy derived from the agent’s current

value function for the task MDP, denoted πsi
, and all other information that may

impact changes to this in the future. The exact representation of internal state and

the transition dynamics of the derived MDP depend on the algorithm used to learn

the task MDP value function.

76

1 2 3 4 5

+1

Figure 5.2. A deterministic MDP with five states.

To make matters concrete, consider the deterministic MDP shown in Figure 5.2.

All transitions yield zero reward, except for transitions from state 2 into state 1, which

yield a reward of +1. The initial state is state 5 with probability 1. Assume the agent

uses Q-learning with step size α = 1, γ < 1, and initial Q-values set to zero. Assume

also that when the agent reaches the absorbing state, the environment is initialized to

the start state (state 5). In this context, it is adequate to consider the agent’s internal

state to be its current greedy policy. Figure 5.3 shows the state transition dynamics

of the derived MDP, depicting an internal state with the corresponding greedy policy

for the task MDP. As the policy for the task MDP is improved, transitions move the

state of the derived MDP toward the bottom of the diagram. Note that more than

one action may be greedy in a given state and that external state 1 is not part of the

derived MDP because the agent makes no decisions at this state.

The reward for the derived MDP obtained upon a transition from state (se, si)

to (s′e, s
′
i) is the difference between the values of their associated policies for the

task MDP: V (πs′i) − V (πsi
). It follows that, with γ = 1, the return obtained in a

trajectory of finite length is the difference between the values of policies associated

with the last and the first state in the trajectory. Consequently, with γ = 1 and a

horizon that equals the number of training experiences available, the optimal solution

to the derived MDP specifies an optimal exploration policy—one that yields a policy

with as high a policy value as possible after the specified number of transitions.

It is worthwhile to make a few observations here on the transition structure of

the derived MDP. We do not make any assumptions about the structure of the task

77

5432
EXTERNAL STATE

IN
TE

R
N

A
L

S
TA

TE

Figure 5.3. State transition graph of the derived MDP corresponding to the task
MDP of Figure 5.2. The horizontal axis shows the external state while the vertical
axis shows the internal state, depicting an internal state with the associated greedy
policy for the task MDP.

MDP, so the transitions along the external state component can be arbitrary. But,

transitions along the internal state component have a particular structure. Internal

state changes very little from one decision stage to the next because a single training

experience changes the value function only slightly. Furthermore, in general (but not

always), the policy value increases with more experiences. As a consequence, rather

than jumping arbitrarily along the internal state dimension, the agent goes through

a progression of internal states that typically increase in value.

Furthermore, if we refer to a set of states with the same internal state component

as a layer , we observe that the connectivity and reward structure of layers that are

directly connected are very similar. This property is due to the incremental nature

of learning updates. If an external state transition produces a change in the value

function, it is likely to produce a similar change the next time it is experienced.

In addition, transitions that are close to such transitions are likely to soon produce

changes themselves because the changes in the value function propagate in the state

space.

78

5.3 An Approximate Solution

The derived MDP models the agent’s learning process and its optimal policy

specifies an optimal exploration policy for learning to solve the task MDP. It is,

however, not practical to solve the derived MDP exactly. Here, I enumerate the

major difficulties and explain how I address them to derive a principled heuristic.

1. The agent cannot generate simulated experience for learning trials. The transi-

tion probabilities of both the task MDP and the derived MDP are unknown. As a con-

sequence, the only experiences available to solve the derived MDP are those obtained

during the training period itself—which the derived MDP is supposed to optimize!

Unless one takes a Bayesian approach to explicitly represent the uncertainty in the

transition probabilities, which is intractable even for very small problems, the only

viable alternative is to learn to solve both MDPs simultaneously, using the current

solution to the derived MDP to select actions. This approach is the one I take.

2. The state set of the derived MDP is enormous, even if one could easily identify

an appropriate internal state representation. In any problem of reasonable size, the

agent is unlikely to observe a state of the derived MDP more than once. I address this

issue by using state approximation, more specifically by ignoring the internal state

component and learning a behavior policy as a function of external state only. When

the internal state component is hidden, the derived MDP appears as a non-stationary

MDP, with expected reward associated with transitions varying over time as the agent

jumps from one layer of the derived MDP to another. This non-stationarity, however,

is slowly varying because the directly connected layers are very similar. It should

therefore be possible to “track” this slowly-varying non-stationary MDP in the sense

of maintaining a nearly optimal (or at least, good) policy over time.

3. Reward for the derived MDP cannot be computed exactly. Recall that the reward

for transitioning from state (se, si) to state (s′e, s
′
i) is V (πs′i)− V (πsi

), or equivalently

79

∑
s∈Se

D(s)
(
V
πs′

i (s)− V πsi (s)
)
, (5.1)

which we obtain using Equation 2.1 and where Se is the state set of the task MDP.

This expression is a weighted sum, over all external states, of the change in actual

state value from one decision stage to the next, brought about by the updates to

the value function of the task MDP. It can not be computed exactly because the

actual state values are unknown, but a reasonable estimate can be obtained using the

evolution of estimated state values, Vt(s).

To estimate reward, I distinguish between two types of updates to the value func-

tion: those that use the new training experience directly as a new sample, for example

updates performed by Q-learning with or without eligibility traces, and those that

propagate the direct updates in the state space, for example model-based planning

updates of Dyna (Sutton 1990). When both updates are present, the reward estimate

is ∑
s∈Se

D(s)(Vt(s)− Vt−1(s)), (5.2)

where the transition takes place from decision stage t−1 to t. This estimate assumes

that the change in estimated value of a state equals the change in its actual value.

When only direct updates are present, it is not clear how they would propagate in

the state space. The reward estimate in this case is

∑
s∈Se

(Vt(s)− Vt−1(s)), (5.3)

which is independent of the initial state distribution. One can view this estimate

as the result of assuming the extreme case that a direct update would propagate

undiminished to all the other states; in other words that it would change the estimated

value of all other states by the same amount.

With the approximation to the reward function given by Expression 5.2 or 5.3,

there are two issues to consider. First, for a given state s, Vt(s) may show high

80

fluctuations over time. It may therefore be desirable to use a smoother estimate of

state value using the history of value functions, for example a moving average or the

maximum estimate over history. Second, it is important to have pessimistic initial

values because the underlying assumption is that increases in estimated value reflect

increases in actual value.

5.4 The Policy of a Trainer Skill

The ideas in the preceding sections produce a simple and intuitive algorithm for

specifying the policy of a trainer skill schematically represented in Figure 5.1. The

figure shows two value functions: one that can be used to solve the task MDP (in the

future) and another that is used to select actions in the present. I call these the task

value function and the trainer value function, respectively, and I call their associated

policies the task policy and the trainer policy.

At decision stage t, the agent executes an action, observes an immediate external

reward and the next external state, and updates the task value function. This up-

date produces an intrinsic reward, ri(t), which the agent uses, together with observed

external state, to update the trainer value function. The reinforcement learning algo-

rithm used to update the trainer value function may be different than the algorithm

used for learning the task value function. The number of available training experi-

ences does not influence the algorithm, so it does not need to be known in advance.

I refer to this algorithm as ∆V.

In the experiments presented here, intrinsic reward was defined as follows:

ri(t) = p+
∑
s∈S

(
V max
t (s)− V max

t−1 (s)
)
, (5.4)

where V max
t (s) = maxT≤tVT (s) and p < 0 is a small action penalty. The action penalty

does not change the optimal policy of the derived MDP, but tends to promote faster

81

1

1

5

2

Figure 5.4. The maze task. Terminal states are marked with the amount of reward
they generate.

learning and therefore better tracking of the non-stationary MDP observed when the

internal state component is ignored.

5.5 Example: Learning to Solve a Maze Task

In this section, I evaluate ∆V in the stochastic maze task shown in Figure 5.4.

The available actions in each state are north, south, east, and west. These move the

agent in the intended direction with probability 0.9 and in a uniform random direction

with probability 0.1. If the direction of movement is blocked, the agent remains in

the same location. Reward is −0.001 for each action and an additional +1, +2, or

+5 when transitioning into one of the terminal states. The start state is the square

in the center of the grid with probability 1. When generating training experiences,

the agent returned to the start state after reaching a terminal state. The agent used

Q-learning with α = 0.1 and γ = 0.99 to learn both the task value function and the

82

0 5 10 15 200

1

2

3

4

Number of transitions (×20000)

Po
lic

y
va

lu
e

R

CP

CB

!V

0 5 10 15 200.5

1

1.5

2

2.5

3

3.5

4

Number of transitions (×20000)

RM
S

er
ro

r

R

CP

CB

!V

Figure 5.5. Performance in the maze task: (a) Policy value as defined by Equa-
tion 2.1, (b) RMS error between the current and optimal state values.

trainer value function. Initial Q-values were zero. The trainer policy was the greedy

policy with respect to the trainer value function. The penalty term p was −0.005.

Figure 5.5 shows performance on this task in comparison to a number of baselines.

Random (R) picked actions uniformly randomly. Counter-based (CB) picked the

action selected the least number of times from the current state, which is a model-free

variant of the action selection mechanism in Thrun (1992). Constant-Penalty (CP)

was identical to ∆V, but as intrinsic reward used only the penalty term p instead of

the right hand side of Equation 5.4.

The figure shows two performance measures: (1) policy value (of the greedy pol-

icy with respect to the task value function) computed using Equation 2.1, and (2)

root mean-squared (RMS) error between the current and optimal state values. The

figure shows means of 30 trials. In both performance measures, ∆V showed clear

performance gains over the baselines. These results were typical in a variety of maze

tasks.

A closer examination of learning trials revealed that the behavior of ∆V was

qualitatively different than the other algorithms, as expected. Its behavior was neither

random, nor could it be characterized as repeated systematic sweeps of the state

83

5 10 15 20 25 30 35

0

200

400

600

800

Length of developmental phase (!1000)
R

e
w

a
rd

 i
n

 t
e

s
t

p
h

a
s
e

R

CP

CB

!V

Primitives only

Figure 5.6. Performance in the Rooms skill-acquisition task.

space. Instead, it obsessively remained in regions in which the task value function

was improving, efficiently backing up the rewards in the terminal states to the rest of

the state space.

5.6 Example: Learning an Approach Skill

The majority of skill discovery methods proceed by generating a reward function

that the skill should maximize, typically by identifying a set of states that are useful

to reach and defining a skill reward function whose optimal policy efficiently takes the

agent to these states, e.g., Hengst (2002), McGovern and Barto (2001). When a new

skill reward function is identified, a trainer skill may be used to generate the future

experiences of the agent until a satisfactory skill policy is acquired. In this context,

a brief period of indifference to external reward may be a small sacrifice with a high

payoff. The sooner the skill is functional, the sooner the agent can start obtaining its

benefits.

5.6.1 Rooms

I evaluated the utility of ∆V in skill acquisition in the two-room gridworld envi-

ronment shown in Figure 5.6, with dynamics identical to the maze domain presented

84

above. A useful skill in this domain, for solving a number of problems, is one that

takes the agent efficiently to the doorway. Many existing discovery methods can iden-

tify this skill, but, rather than using one of these algorithms, I isolate the exploration

problem from the discovery problem by assuming that the agent has at its disposal

an ideal discovery method—one that would identify the doorway as a useful subgoal

the first time it is experienced.

The experimental method consisted of two phases: a developmental phase in

which the agent acquired the skill policy and a test phase in which the agent used the

acquired skill (in addition to the primitive actions) to maximize an external reward

signal. Performance measure was the total discounted reward obtained in the test

phase, during which the agent repeatedly performed an episodic task that started

from a random state in the west room and terminated at the southeast corner of the

grid. Reward associated with each transition was −0.001, plus an additional +1 if

the transition took the agent to the terminal state. The skill was made available only

from the west room to be able to attribute performance differences only to differences

in the quality of the acquired skill policy. Otherwise, poor performance may also

be attributed to a well-acquired skill diverting the agent from reaching the terminal

state.

When the agent observed the doorway state for the first time, it created an option

that terminated with probability 1 at the doorway, with an initiation set containing

only the state visited prior to visiting the doorway. The initiation set was expanded

with subsequent experiences. Each time the agent transitioned to a state in the

initiation set from a state s of the west room outside the initiation set, s was added

to the initiation set. The skill reward function assigned −0.001 for each transition

and an additional +1 for transitioning to the doorway.

In the test phase, the agent used intra-option Q-learning with α = 0.1, ε = 0.05,

γ = 1. The test phase was 60,000 steps, which was the number of transitions required,

85

on average, for an agent using only primitive actions to converge to its maximum

performance. The algorithms used in the developmental phase and any unspecified

parameters were identical to those in the maze task discussed in Section 5.5.

Figure 5.6 shows the total reward obtained in the test phase as a function of the

length of the developmental phase measured in number of transitions. The figure

shows means over 100 trials. In addition to the previous baselines, the figure shows

the performance of an agent that used only primitive actions, which is independent of

the length of the developmental phase. The figure shows that ∆V not only obtained

the maximum performance with much less experience, but also that it never produced

a “harmful” skill with which the agent accumulates less reward than it would using

only primitive actions.

5.6.2 Playroom

I repeated a similar experiment in the Playroom domain (discussed in Section 3.2.5)

with similar results. The skill learned in this domain was turning the music on. The

policy acquired for the skill was tested in a collection of randomly-selected tasks in

the domain all of which required the agent to turn the music on in order to reach

the goal state. All other experimental conditions were identical to those in the grid-

world example. The results, shown in Figure 5.7, were qualitatively similar to those

obtained in the gridworld skill.

5.7 Discussion

Exploration in reinforcement learning has been studied extensively but typically

with the objective of maximizing return in an agent’s lifetime, which requires a trade-

off between exploration and exploitation, e.g., Duff (2002), Kearns and Singh (1998).

Doing so optimally is known as the optimal learning problem. In contrast, the problem

addressed by a trainer skill is optimal exploration, in which the objective is to learn

86

0 5 10 15 20
−500

0

500

1000

1500

2000

2500

Length of developmental phase (5K steps each)
R

et
ur

n
in

 te
st

 p
ha

se

R

CP

CB

∆V

Figure 5.7. Performance in the Playroom skill-acquisition task.

how to maximize return without necessarily accumulating high reward in the process.

Despite this difference, the approach taken here adopts aspects of the full Bayesian

adaptive approach to solving the optimal learning problem (Duff 2002). In particular,

the algorithm is motivated through a derived MDP with states factored into internal

and external components analogous to, but not the same as, the information and

physical state components of the Bayesian adaptive approach.

The behavior achieved by trainer skills is focused exploration in regions of the

state space in which the learning updates improve the task value function the most. A

similar behavior is achieved with Prioritized Sweeping (Moore and Atkeson 1993) and

Queue-Dyna (Peng and Williams 1993) when a model is used to generate updates to

the value function. Theirs is a different problem than the one addressed here because,

when a (learned) model is available, states can be selected arbitrarily for backups.

Both Prioritized Sweeping and Queue-Dyna are concerned with making the most of

available training experience, while trainer skills are concerned with generating the

training experience that will be the most useful. As such, Prioritized Sweeping and

Queue-Dyna are complementary to the algorithm presented here and can be used in

conjunction with it.

87

An essential component of trainer skills is a reward function defined as a function

of the internal state of the agent. Some other work in the literature that does the same

are Kaplan and Oudeyer (2003), Schmidhuber (1991), and Schmidhuber and Storck

(1993), which are concerned with learning predictive models of the environment.

In contrast, trainer skills learn a value function for maximizing an external reward

signal. The perspective taken here may help formalize the intuition behind these

related algorithms, although a value function is more suitable for this approach than

a model. Because the value of a state is a function of the values of its neighbors,

changes in the value of one state propagate throughout the state space, helping to

create the structure in the derived MDP that trainer skills exploit. This property,

in general, does not hold in the case of learning a model. A model, however, also

is typically learned incrementally, so the derived MDP would still have some of the

same structure when the goal is to learn a model.

The use of trainer skills in the context of skill acquisition is an active approach to

skill acquisition. Most skill discovery methods are passive, in that they do not direct

the agent to seek experiences that will be useful for acquiring the skill. Instead, they

use whatever experiences are available. One exception is the algorithm by Barto

et al. (2004) and Singh et al. (2005) in which an intrinsic reward term is added to

the external reward function. While this method does not create a pure exploration

policy as a trainer skill, it has a similar idea of influencing the behavior towards

those experiences that would lead to efficient learning of the skill policy. Subsequent

research, however, has shown that this method is not effective in achieving such

behavior (Barto and Şimşek 2005).

88

CHAPTER 6

CONTRIBUTIONS

In this dissertation, I have addressed a series of questions on skill acquisition

in autonomous agents. This is a subject of fundamental importance in AI. New

insights have the potential to significantly extend the capabilities of autonomous

agents, allowing them to operate at a qualitatively different level than the agents of

today.

I started with a conceptual question: What constitutes a useful skill? I presented

one answer to this question using the properties of the graphical representation of

the agent’s interaction with its environment as a common language across different

problems. In a wide range of problems, my answer captures a broad range of skills

that are intuitively appealing, that correspond to what people handcraft for these

problems, and that improve empirical learning performance. In the game of Tic-Tac-

Toe, these skills set up a fork to force the opponent to lose. In the Towers of Hanoi

puzzle, they include clearing the stack on top of the largest disk, as well as clearing

another peg entirely, to be able to move the largest disk to another peg.

The skill characterization I presented captures and generalizes—at least intuitively—

the “bottleneck” idea, an intuitive concept that has inspired many existing skill discov-

ery algorithms. By concretely defining what makes a useful skill, my characterization

illuminates the limitations of existing algorithms in terms of the type of bottlenecks

they miss. My characterization also suggests that the discovery process may suc-

ceed with much less sample and computational complexity than required by existing

algorithms.

89

The second question I addressed was algorithmic: How can an agent autonomously

identify such skills? The skill characterization I presented can be used directly as a

discovery algorithm, but its use is limited to the settings in which the graphical

representation of the agent’s interaction with its environment is known and is small

enough that the computational cost is not a burden. In many cases, the interaction

graph is not available, but the agent can sample paths from the graph by interacting

with its environment, trying out different actions and observing their consequences.

For this more challenging but more prevalent setting, I presented three algorithms

with low computational complexity that do not require complete representation of

the graph. These algorithms succeed in their current form in some simple domains,

but need to be further developed to be applicable to large, complex domains with

varying graphical structure.

The discovery methods I proposed here address some of the limitations of existing

algorithms. Although not comprehensive or conclusive, the analysis I presented sug-

gests that, through further development, the methods I proposed have the potential to

identify a broader set of skills than existing algorithms, with less computational and

sample requirements. Most importantly, the discovery methods proposed here illus-

trate the feasibility of acquiring useful skills without the need to explore a large part

of the environment or the need to achieve the desired behavior at least once. Most

existing algorithms, if not all of them, require one of these conditions to succeed.

Finally, I addressed another algorithmic question: How can an agent autonomously

acquire a desired skill? While the earlier question was concerned with what the skill

should accomplish, this third question is concerned with how to develop the skill

efficiently. The optimization problem that the agent needs to address in this con-

text is one of optimal exploration. I defined this optimization problem concretely,

pointed out how it differs from the optimization problem typically addressed in the

reinforcement learning literature, formulated the problem as an MDP, and presented

90

an algorithm for solving it approximately. This algorithm produces an exploration

behavior that is qualitatively different from existing exploration methods and that

results in dramatic improvements in empirical learning performance.

This dissertation departs from existing literature by explicitly and concretely

defining a set of targets for the discovery process. Although ultimately what is needed

is a discovery process, I argue that the process of defining what makes a skill useful is

necessary for developing effective processes that can reliably succeed in large, complex

real-world problems. I believe that paying more attention to this conceptual problem

will speed up progress in the field.

Future work can build on the ideas presented here in a number of ways, most

importantly by extending the skill characterization in several directions, further de-

veloping the discovery and exploration algorithms proposed here, and introducing

alternative algorithms.

One important direction for extending the skill characterization is to define similar

skills in continuous environments. My conjecture is that many useful skills in con-

tinuous environments, for example, grasping, are useful for fundamentally the same

reasons as the skills defined here in discrete environments.

A second direction is to refine the skill characterization to refer only to the parts

of the state description that are relevant for the skill objective. For instance, rather

than representing a particular doorway and a specific behavior for reaching that

particular doorway, a skill may represent a generic description of doorways and a

generic behavior that succeeds in reaching any specific doorway. Such a skill is truly

reusable because it may be executed in a state that has not been experienced before,

as long as the relevant part of the state matches the skill description.

A third direction for extending the skill characterization is to represent skills not

in isolation but in a hierarchy that explicitly specifies the role they play in achieving

the objectives of other skills. For example, reaching the entrance to a building is, in

91

many cases, necessary for reaching the entrance to a particular room in the building.

The explicit hierarchical representation supports the development and use of learning

and planning algorithms that can fully take advantage of behavioral units of different

granularity.

92

BIBLIOGRAPHY

Amarel, S. (1968). On representations of problems of reasoning about ac-
tions. In Michie, D., editor, Machine Intelligence 3, volume 3, pages 131–171.
Elsevier/North-Holland, Amsterdam, London, New York.

Barto, A. G. and Şimşek, Ö. (2005). Intrinsic motivation for reinforcement learning
systems. In Proceedings of the Thirteenth Yale Workshop on Adaptive and Learning
Systems.

Barto, A. G., Singh, S., and Chentanez, N. (2004). Intrinsically motivated learn-
ing of hierarchical collections of skills. In Proceedings of the Third International
Conference on Development and Learning.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena
Scientific.

Bonarini, A., Lazaric, A., Restelli, M., and Vitali, P. (2006). Self-development frame-
work for reinforcement learning agents. In Proceedings of the Fifth International
Conference on Development and Learning.

Bradke, S. J. and Duff, M. O. (1995). Reinforcement learning methods for continuous-
time Markov decision problems. In Tesauro, G., Touretzky, D., and Lenn, T.,
editors, Advances in Neural Information Systems, volume 7, pages 393–400. The
MIT press.

Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Math-
ematical Sociology, 25(2):163–177.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14–23.

Burridge, R., Rizzi, A. A., and Koditschek, D. E. (1999). Sequential composition
of dynamically dexterous robot behaviors. The International Journal of Robotics
Research, 18:534–555.

Dawson, C. and Siklossy, L. (1977). The role of preprocessing in problem solving
systems. In Proc. of the 5th IJCAI, pages 465–471, Cambridge, MA.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13:227–303.

93

Digney, B. (1998). Learning hierarchical control structure for multiple tasks and
changing environments. In From Animals to Animats 5: The Fifth Conference on
the Simulation of Adaptive Behaviour. MIT Press.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. Wiley,
New York.

Duff, M. (2002). Optimal learning: Computational procedures for Bayes-adaptive
Markov Decision Processes. PhD thesis, University of Massassachusetts Amherst.

Duff, M. (2003). Design for an optimal probe. In Proceedings of the Twentieth
International Conference on Machine Learning.

Freeman, L. C. (1977). A set of measures of centrality based upon betweenness.
Sociometry, 40:35–41.

Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social
Networks, 1:215–239.

Hagen, L. and Kahng, A. B. (1992). New spectral methods for ratio cut partition-
ing and clustering. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 11:1074–1085.

Harel, D. (1987). Statecharts: A visual formulation for complex systems. Science of
Computer Programming, 8(3):231–274.

Hengst, B. (2002). Discovering hierarchy in reinforcement learning with HEXQ. In
Sammut, C. and Hoffmann, A. G., editors, Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning, pages 243–250. Morgan Kaufmann.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. The M.I.T.
Press.

Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine
Learning, 3(4):285 – 317.

Jonsson, A. and Barto, A. G. (2005). A causal approach to hierarchical decomposition
of factored MDPs. In ICML, pages 401–408.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning:
a survey. Journal of Artificial Intelligence Research, 4:237–285.

Kakade, S. and Dayan, P. (2001). Dopamine bonuses. In Leen, T. K., Dietterich,
T. G., and Tresp, V., editors, Advances in Neural Information Processing Systems,
volume 13, pages 131–137. MIT Press.

Kaplan, F. and Oudeyer, P.-Y. (2003). Motivational principles for visual know-how
development. In Prince, C. G., Berthouze, L., Kozima, H., Bullock, D., Stojanov,
G., and Balkenius, C., editors, Proceedings of the Third International Workshop on
Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems.

94

Kearns, M. and Singh, S. (1998). Near-Optimal reinforcement learning in polyno-
mial time. In Shavlik, J. W., editor, Proceedings of the Fifteenth International
Conference on Machine Learning, pages 260–268. Morgan Kaufmann.

Korf, R. E. (1985). Macro-operators: A weak method for learning. Artificial Intelli-
gence, 26(1):35–77.

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement learning.
In Proceedings of the International Conference on Machine Learning.

Mahadevan, S. and Maggioni, M. (2007). Proto-value functions: A laplacian frame-
work for learning representation and control in markov decision processes. Journal
of Machine Learning Research, 8:2169–2231.

Mannor, S., Menache, I., Hoze, A., and Klein, U. (2004). Dynamic abstraction in rein-
forcement learning via clustering. In Proceedings of the Twenty-First International
Conference on Machine Learning, pages 560–567. ACM Press.

Marthi, B., Kaelbling, L., and Lozano-Perez, T. (2007). Learning hierarchical struc-
ture in policies. NIPS Workshop on Hierarchical Organization of Behavior.

Mathew, V. (2008). Automated spatio-temporal abstraction in reinforcement learn-
ing. Master’s thesis, Indian Institute of Technology Madras.

McGovern, A. (2002). Autonomous discovery of temporal abstractions from interac-
tion with an environment. PhD thesis, University of Massachusetts, Amherst.

McGovern, A. and Barto, A. G. (2001). Automatic discovery of subgoals in reinforce-
ment learning using diverse density. In Brodley, C. E. and Danyluk, A. P., editors,
Proceedings of the Eighteenth International Conference on Machine Learning, pages
361–368. Morgan Kaufmann.

McGovern, A., Sutton, R. S., and Fagg, A. H. (1997). Roles of macro-actions in
accelerating reinforcement learning. In Grace Hopper Celebration of Women in
Computing, pages 13–18.

Mehta, N., Ray, S., Tadepalli, P., and Dietterich, T. (2008). Automatic discovery and
transfer of maxq hierarchies. In International Conference on Machine Learning.

Menache, I., Mannor, S., and Shimkin, N. (2002). Q-Cut - Dynamic discovery of
sub-goals in reinforcement learning. In Elomaa, T., Mannila, H., and Toivonen, H.,
editors, Proceedings of the Thirteenth European Conference on Machine Learning,
volume 2430 of Lecture Notes in Computer Science, pages 295–306. Springer.

Moore, A. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning
with less data and less real time. Machine Learning, 13:103–130.

Parr, R. (1998). Hierarchical Control and Learning for Markov Decision Processes.
PhD thesis, Computer Science Division, University of California, Berkeley.

95

Parr, R. and Russell, S. (1998). Reinforcement learning with hierarchies of machines.
In Jordan, M. I., Kearns, M. J., and Solla, S. A., editors, Advances in Neural
Information Processing Systems, volume 10, pages 1043–1049. MIT Press.

Peng, J. and Williams, R. J. (1993). Efficient learning and planning within the dyna
framework. Adaptive Behavior, 2:437–454.

Pickett, M. and Barto, A. G. (2002). PolicyBlocks: An algorithm for creating useful
macro-actions in reinforcement learning. In Sammut, C. and Hoffmann, A. G., edi-
tors, Proceedings of the Nineteenth International Conference on Machine Learning,
pages 506–513. Morgan Kaufmann.

Precup, D. (2000). Temporal abstraction in reinforcement learning. PhD thesis,
University of Massachusetts Amherst.

Puterman, M. L. (1994). Markov Decision Processes. Wiley.

Schmidhuber, J. (1991). A possibility for implementing curiosity and boredom in
model-building neural controllers. In From Animals to Animats: Proceedings of the
First International Conference on Simulation of Adaptive Behavior.

Schmidhuber, J. and Storck, J. (1993). Reinforcement driven information acquisi-
tion in nondeterministic environments. Technical report, Fakultat fur Informatik,
Technische Universit at Munchen.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888–905.

Şimşek, Ö. and Barto, A. G. (2004). Using relative novelty to identify useful tem-
poral abstractions in reinforcement learning. In Proceedings of the Twenty-First
International Conference on Machine Learning, pages 751–758. ACM Press.

Şimşek, Ö. and Barto, A. G. (2006). An intrinsic reward mechanism for efficient explo-
ration. In Proceedings of the Twenty-Third International Conference on Machine
Learning.

Şimşek, Ö. and Barto, A. G. (2009). Skill characterization based on betweenness. In
Advances in Neural Information Processing Systems, volume 21 (to appear).

Şimşek, Ö., Wolfe, A. P., and Barto, A. G. (2005). Identifying useful subgoals in
reinforcement learning by local graph partitioning. In Proceedings of the Twenty-
Second International Conference on Machine Learning.

Singh, S., Barto, A. G., and Chentanez, N. (2005). Intrinsically motivated reinforce-
ment learning. In Advances in Neural Information Processing Systems.

Stolle, M. (2004). Automated discovery of options in reinforcement learning. Master’s
thesis, McGill University.

96

Stolle, M. and Precup, D. (2002). Learning options in reinforcement learning. In
Koenig, S. and Holte, R. C., editors, Abstraction, Reformulation and Approxima-
tion, 5th International Symposium, SARA 2002, Kananaskis, Alberta, Canada,
August 2-4, 2002, Proceedings, volume 2371 of Lecture Notes in Computer Science,
pages 212–223. Springer.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Porter, B. W. and Mooney,
R. J., editors, Proceedings of the Seventh International Conference on Machine
Learning, pages 216–224. Morgan Kaufmann.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA.

Sutton, R. S., Precup, D., and Singh, S. P. (1999). Between MDPs and Semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial Intelli-
gence, 112(1-2):181–211.

Thrun, S. (1992). Efficient exploration in reinforcement learning. Technical Report
CMU-CS-92-102, Carnegie-Mellon University.

Thrun, S. and Schwartz, A. (1995). Finding structure in reinforcement learning.
In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors, Advances in Neural
Information Processing Systems, volume 7, pages 385–392. MIT Press.

Wasserman, S. and Faust, K. (1994). Social Network Analysis. Cambridge University
Press, Cambridge U.K.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, Cambridge
University.

Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., and The-
len, E. (2001). Autonomous mental development by robots and animals. Science,
291:599–600.

Wu, Z. and Leahy, R. (1993). An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15:1101–1113.

97

