
Autonomous Hierarchical Skill Acquisition in Factored MDPs

Christopher M. Vigorito and Andrew G. Barto
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01002

{vigorito,barto}@cs.umass.edu

Abstract— Learning hierarchies of reusable skills is essential
for efficiently solving multiple tasks in a given domain. Un-
derstanding the causal relationships between one’s actions and
various dimensions of one’s environment can facilitate learning
of abstract skills that may be used subsequently in related
tasks. Using Bayesian network structure-learning techniques
and structured dynamic programming algorithms, we show
that reinforcement learning agents can learn incrementally and
autonomously both the causal structure of their environment
and useful skills that exploit this structure. As new structure
is discovered, more complex skills are learned, which in turn
allow the agent to discover more structure, and so on. Because
of this bootstrapping property, our approach can be considered
a developmental process that results in steadily increasing
domain knowledge and behavioral complexity.

I. INTRODUCTION

Much research in reinforcement learning (RL) has focused
on efficient learning of optimal behavior policies for single
sequential decision tasks in a given domain [1], [2]. The
body of literature applying RL to ensembles of related tasks
in the same or similar domains is considerably smaller. Part
of the reason for this is the difficulty of defining relatedness
between tasks. Without providing a strict definition, we
adopt the notion that two or more tasks are related if the
transition dynamics of their domains are either identical or
overlap considerably in terms of their structure. In the former
case, the tasks would only differ in their reward functions,
while in the latter it is assumed that there are certain aspects
of the dynamics that are common among the tasks. These
commonalities can often be exploited to learn policies for
each task more efficiently than by learning each task from
scratch [3].

An essential component of learning systems designed
for solving ensembles of tasks efficiently is a mechanism
for representational abstraction. That is, agents must be
able to compactly represent policies and models of skills
in order to learn feasibly a library of skills that can be
reused in multiple tasks to solve similar sub-problems. If
the representations for each skill is sparse in the sense of
being defined only over relevant environmental variables, a
skill can be applied in multiple contexts that differ along
irrelevant dimensions without having to relearn the skill in
each of those contexts. Abstract representations like this
greatly facilitate learning of such skills as well, since the
number of relevant variables is generally much smaller than
the total number of environmental variables, greatly reducing

the amount of experience and computation needed to find
good policies.

Hierarchy is also a necessity in such systems, allowing
more abstract skills to make use of lower level skills as
atomic actions without concern for the details of their
execution. This facilitates learning of complex skills as well
as planning at multiple levels of abstraction. If an agent
can construct a useful hierarchy of abstract skills in a given
environment, then the search space of policies for similar
tasks within that environment effectively shrinks. This is
because selecting between alternative abstract actions allows
the agent to take larger, more meaningful steps through the
search space of policies than does selecting between more
primitive actions [4].

In the framework presented here we focus on the model-
based approach whereby an agent accumulates knowledge
of the dynamical structure of its environment as it explores.
Using this structural knowledge, the agent incrementally
generates abstract skills, each composed of a policy for
reliably changing certain aspects of its environment and
a compact model representing the long term effects that
skill has on the environment. As these skills are added to
the agent’s skill set, they become available as primitive
actions to be used when computing policies and models
of more complex skills. This bootstrapping scenario of
steadily increasing behavioral complexity built upon existing
knowledge and behavioral repertoires can be considered an
instance of an autonomous developmental learning system
[5]. As an agent in this framework continues to add new
skills to its behavioral repertoire it becomes more of an
expert at manipulating its environment. This increasing
behavioral expertise is essentially the high-level goal of an
agent in our approach.

The following section describes our formalism for this
framework and presents relevant background material. In
particular, we make the assumption that an agent’s envi-
ronment can be modeled as a Markov Decision Process
(MDP), more specifically a factored MDP, both of which
are discussed below. We use incremental Bayesian network
learning techniques [6] to accumulate structural knowledge
of the environment and, given this knowledge, employ struc-
tured dynamic programming methods [2], [7] to compute
abstract, closed-loop control policies and their corresponding
models in the form of options, the formalization of skills we
adopt.

II. BACKGROUND

A. Markov Decision Processes

A finite Markov decision process (MDP) is a tuple
〈S,A, P,R〉 in which S is a finite set of states, A is a finite
set of actions, P is a one-step transition model that specifies
the distribution over successor states given a current state
and action, and R is a one-step expected reward model
that determines the real-valued reward an agent receives for
taking a given action in a given state. An MDP is assumed to
satisfy the Markov property, which guarantees that the one-
step models R and P are sufficient for defining the reward
and transition dynamics of the environment.

When the task of an RL agent is formulated as an MDP,
the goal of the agent is to learn a policy π : S → A, mapping
states to actions that maximize its expected sum of future
rewards, also called expected return. It is often assumed
that the transition and reward models are unavailable to the
agent. When this is the case, a policy can be learned through
estimation of an action-value function Qπ : S × A → <,
which maps state-action pairs (s, a) ∈ S ×A to real values
representing the expected return for executing action a in
state s and from then on following policy π. If Qπ = Q∗,
where Q∗ denotes the optimal value function for the MDP,
then the agent can act optimally by selecting actions in each
state that maximize Qπ . The Q-learning algorithm [8] is one
method for estimating this function online from experience.

When the transition dynamics of the environment are
known or estimated from experience, model-based RL [9]
can be employed to expedite value function learning in the
sense of requiring less experience for Qπ to converge to Q∗.
If the reward function is also known, dynamic programming
techniques such as value iteration can be used to compute
an optimal value function and corresponding policy directly
from the model [1]. However, even when model-based
methods are used in this way to improve data efficiency,
tabular representations of value functions and policies (i.e.,
those with one entry per state or state-action pair) become
infeasible to learn or compute efficiently in large MDPs.

For this reason much work has focused on approximation
techniques that allow for both generalization of value be-
tween similar states and compact representations of value
functions [1]. One class of these methods is appropriate
when the MDP can be represented in factored form, af-
fording the potential for certain dimensions of the MDP to
be irrelevant when predicting the effects of actions on other
dimensions. In these cases, this structure can be exploited to
learn or compute compact representations of value functions
and policies efficiently [2].

B. Factored MDPs

A factored MDP (FMDP) is an MDP in which the state
space is defined as the Cartesian product of the domains of a
finite set of random variables {S1, . . . , Sn} = S. While the
variables in an FMDP can be either discrete or continuous,
we restrict our attention to the discrete case such that each

B

A A'

C

B'

C'

t t+1

B

1.0 0.0

0 1

C

B0.0

0 1

0.20.7

0 1

0.5

Fig. 1. A simple DBN for a given action with corresponding conditional
probability trees.

Si ∈ S takes on one of finitely many values in D(Si), the
domain of Si. States in factored MDPs are thus represented
as vectors of assignments of specific values to the variables
in S. As the number of variables in an FMDP increases
linearly, the number of states increases exponentially (a
problem known as the curse of dimensionality [10]). How-
ever, if the FMDP contains relatively sparse inter-variable
dependencies, we can exploit this structure to reduce the
effect this exponential growth has on computing optimal
policies.

FMDPs can be represented as a set of Dynamic Bayesian
Networks (DBN) [11], one for each action. A DBN is
a two-layer directed acyclic graph with nodes in layers
one and two representing the variables of the FMDP at
times t and t + 1, respectively (Figure 1). Edges represent
dependencies between variables given an action. We make
the common assumption that there are no synchronic arcs
in the DBN, meaning that variables within the same layer
do not influence each other. The transition model for a
given DBN can often be represented compactly as a set of
conditional probability trees (CPTs), one for each variable
Si, each of which contains internal nodes corresponding
to the parents of Si and leaves containing a probability
distribution over D(Si) at time t + 1. Figure 1 shows a
simple arbitrary DBN (for some action a) consisting of three
binary variables and their corresponding decision trees, with
the probability that Si = 1 displayed at the leaves.

When the transition and reward models of an FMDP
are known, one can use Structured Value Iteration (SVI)
[2] to compute value functions and policies that exploit
domain structure to represent these functions compactly. It
has been shown that SVI can be much more computationally
efficient, both in time and space, than the flat version of
value iteration on many FMDPs. However, for very large
FMDPs, even this approach does not scale well in general.
This is because the decision-theoretic regression approach
taken by SVI regresses value functions through primitive
actions, which have very short-term effects. If one could

regress through longer sequences of actions in one step
using temporally abstract models of long-term behaviors,
then computational efficiency could be greatly improved.
This requires a formalization of skills in MDPs, which we
discuss next.

C. Hierarchical Reinforcement Learning

The options framework [4] is a formalism for temporal
abstraction in RL that details how to learn and use closed-
loop control policies for temporally extended actions in
MDPs. An option is defined as a tuple 〈I, π, β〉, where
I ⊆ S is a set of states over which the option is defined (the
initiation set), π is the policy of the option, defined over I ,
and β : S → [0, 1] is a termination condition function that
gives the probability of the option terminating in a given
state.

Options can also be understood as sub-MDPs embedded
within a (possibly) larger MDP, and so all of the machinery
associated with learning MDPs also applies to learning
options, with some subtle differences. Thus, models for the
transition and reward functions of an option can be learned
as well. Algorithms for learning the policy, reward model,
and transition model of an option from experience are given
in Sutton, Precup, and Singh [4]. The advantage of having
access to the transition and reward models of an option is
that the option can be treated as an atomic action in planning
or model-based RL methods. Additionally, since options can
call other options in their policies, agents can construct
deeply-nested policies with multiple levels of behavioral
abstraction, leading to increased efficiency in both learning
and planning as the hierarchy deepens.

While much attention has been devoted to learning options
in MDPs, most of these approaches use the same state
representation for every option, leading to temporal abstrac-
tion but not state abstraction. Less research has focused on
learning options in FMDPs, where it is possible for different
options to have different representations. The following
section discusses the relevant work involved in constructing
options in FMDPs, each with its own state abstraction.

D. Hierarchical Decomposition of Factored MDPs

Jonsson and Barto [7] present a framework for option
discovery and learning in FMDPs. The VISA algorithm
discovers options by analyzing the causal graph of a domain,
which is constructed from the dependencies exhibited in the
DBNs that define the FMDP. There is an edge from Si to Sj
in the causal graph if there exists an edge from Sti to St+1

j

in the DBN model for any action. The algorithm identifies in
the causal graph context-action pairs, called exits, that cause
one or more variables to change value when the given action
is executed in the corresponding context. By searching
through the conditional probability distributions that define
the DBN, exit options are then constructed to reliably reach
this context from any state and execute the appropriate
action. The agent’s overall task is then decomposed into
sub-tasks solved by these options. VISA takes advantage of

structure in the domain to learn compact policies for options
efficiently by ignoring irrelevant variables.

Another feature of the framework is a method for com-
puting compact option models from a given DBN model.
The models are compact in that they take the same form as
the models of primitive actions (DBNs) and represent with
decision trees the probability distributions over the variables
of the FMDP expected once the option finishes executing
from a given state. Having option models in this form allows
their use in planning as atomic actions as mentioned above.
This also means that one can use SVI to compute new option
policies in terms of existing options very efficiently. The
VISA algorithm and option model construction techniques
described here require knowledge of the transition structure
of the environment. It is thus interesting to ask whether one
can learn this structure incrementally and construct options
as sufficient relevant structure is obtained. This is the subject
of the following sections.

E. Incremental DBN Structure Learning

Recall that we model an agent’s environment as a set
of DBNs, each of which consists of a directed acyclic
graph representing the dependencies between state variables
(conditioned on an action) and the corresponding CPTs,
one for each variable. The problem of Bayesian network
structure learning is to find the network B = 〈G, θ〉 that
best fits a data set D, where G in our case represents
the graphical structure of a DBN and θ represents the
corresponding CPTs. To learn this structure incrementally,
we take the approach given in [6], described next.

To simplify the description, we first introduce some
notation building upon that in section II-B. Let Sti and St+1

i

denote the value of variable Si ∈ S at times t and t + 1,
respectively, and let fX, X ⊆ S, be a projection such that if
s is an assignment to S, then fX(s) is s’s assignment to X.
We thus denote the projection of an assignment s to S onto
the parents of a variable Si as fPa(Si)(s). Data points in our
framework will take the form of assignment pairs 〈st, st+1〉
denoting the agent’s state at times t and t+ 1.

One way to find the best network for a given data set is to
compute the posterior probability distribution P (B|D) over
a set of networks and choose the one that maximizes this
distribution. It is not feasible to compute this distribution di-
rectly, but there are approximation techniques that have been
shown to perform well. It follows from Bayes theorem that
P (B|D) ∝ P (D|B)P (B). One approximation technique,
known as the Bayesian Information Criterion (BIC), makes
the approximation

log[P (D|B)P (B)] ≈ L(D|B)− |θ|
2

log |D|,

where L(D|B) is the log-likelihood of the data given the
network. When all data values are observable, as we assume,
this likelihood can be decomposed as

L(D|B) =
∑
i

∑
j

∑
k

Nijk log θijk,

where Nijk is the number of data points x ∈ D such that
fPa(St+1

i
)(s

t) = j and f{St+1
i
}(s

t+1) = k, and θijk =
P (St+1

i = k|Pa(St+1
i) = j). This quantity is maximized

for θijk = Nijk/
∑
kNijk. Although finding the network

with the best BIC score is known to be NP-complete [12],
the score decomposes into a sum of terms for each variable
Si and each value of j and k that only changes locally
when edges between variables are added or deleted. Thus
we can incrementally add or delete edges greedily to find
high-scoring networks.

To do this we maintain at each leaf of each CPT a set
of data points that are distributed, one at each time step, to
the leaves of each tree according to the assignment given
by st in each data point 〈st, st+1〉. Each time a new data
point is added to a leaf, we compute the BIC score of the
data at the leaf and the scores associated with each possible
refinement of that leaf. A refinement of a leaf l is a split of
l on some variable Sj , resulting in a new child leaf for each
value of Sj , to which the data instances of l are distributed
accordingly. If the sum of the BIC scores associated with
any refinement of a leaf is greater than the current BIC score
of that leaf, then the refinement is kept. Refinements of a
leaf l on a variable Sj are not considered if Sj is already
on the path from the root of the tree to l.

F. Caching Options

The framework outlined in [13] proposes to learn the full
structure of an FMDP given a specified reward function
and then use the VISA algorithm to decompose the task
into sub-problems solved by exit options. To extend this
approach to the case in which we are interested, where there
is no specified task, we would like an agent to accumulate
structural knowledge as it explores its environment and
cache options for reaching various subgoals as enough
structure becomes available to do so. For many options, this
will occur long before the full structure of the environment
is discovered. Indeed we would hope that incrementally
constructing options before the full structure is discovered
will increase the probability of an agent being able to
reach areas of the state space that would otherwise be quite
difficult to reach, thereby enabling the agent to learn about
the structural properties of those areas.

To do this we must monitor changes in the structure of
an agent’s model and, each time the structure is changed,
evaluate the resulting model to decide whether a new option
may be constructed. We maintain a set C, initially empty,
of what we term controllable variables. These are variables
for which the agent possesses options to set to each of its
possible values. Every time a new refinement of a leaf in
the CPT for variable Si in the DBN for action a is made, if
Si /∈ C we check the causal graph of the domain (described
in section II-D) to see if each of its ancestors is controllable.
This is to make sure that we can reliably reach the context
given by the branch along which the new refinement has
been made. If this is true, and the value of Si is possibly
changed by executing a in the branch’s context, we construct

an exit option to reach that context and execute action a. If
the new option, coupled with all existing options, results in
the agent’s ability to set Si to each of its possible values,
we add Si to C.

The process described here is the equivalent of running
the VISA algorithm on a task whose reward function is 1 for
executing action a in the refinement’s context, and zero ev-
erywhere else. The only difference is that the algorithm now
has at its disposal the set of options (and their corresponding
models) for setting each variable in C to each of its values.
Additionally, since we are defining the reward function for
the option, it need not be learned and we can therefore
use SVI to compute the policies for the new options (as
distinguished from [13], in which RL was used to learn the
option policies). Once the policy is computed we can then
compute the option model as well.

There is one more issue we have not addressed that must
be considered when deciding whether to construct an option.
It may be the case that a refinement is made in the CPT for
Si, and all ancestors of Si are controllable, but the CPT
is either incomplete or incorrect in some way. If we were
to use VISA to construct an exit option at this point, the
option would likely be incorrect (both policy and model).
Thus we need a way to decide whether the correct CPT has
been learned for Si under action a. If the environment is
stochastic, this can only be done to within some confidence
factor, since it is impossible to determine with certainty
whether a distribution at a CPT leaf has non-zero entropy
because of inherent stochasticity or because of incomplete
structural knowledge. However, if we make the assumption
that the environment is deterministic, then once the entropy
of the distribution at every leaf of the CPT has reached zero,
no more refinements can be made and we know the correct
structure has been discovered. For the experiments presented
here we make this assumption, although we are currently in
the process of extending the approach to the stochastic case
by analyzing the distributions and BIC scores at each of the
leaves in various ways.

III. EXPERIMENTS

A. The Light Box Domain

We ran preliminary experiments in a simple artificial
domain called the Light Box (Figure 2). The domain consists
of a set of twenty “lights”, each of which is a binary variable
with a corresponding action that toggles the light on or off.
Thus there are twenty actions and 220 ≈ 1 million states.
The nine circular lights are simple toggle lights that can
be turned on or off by executing their corresponding action.
The triangular lights are toggled similarly, but only if certain
configurations of circular lights are active, with each trian-
gular light having a different set of dependencies. Similarly,
the rectangular lights depend on certain configurations of
triangular lights being active, and the diamond-shaped light
depends on configurations of the rectangular lights. In this
sense, there is a strict hierarchy of dependencies in the
structure of this domain. It should be noted, however, that

321

654

987

10
20

1211

13

14

15

16 17

18

19

Fig. 2. A visual rendering of the Light Box domain.

the agent does not perceive any structure directly as may
be evident in the visual rendering of the domain. Rather
the agent perceives only a string of twenty bits at any
given time. The structure must be discovered from the state
transitions the agent experiences while interacting with the
environment. Exploitation of this structure is essential for
efficient computation of option policies and models in a
large domain such as this.

B. Results

We ran an agent in this domain using a random policy
and allowed it to collect statistics to incrementally refine its
transition model. The model was initialized such that there
were no dependencies between variables—each CPT for
each variable consisted of a single leaf node. The structure
learning techniques discussed in section II-E were applied
at every time step and when a refinement was made to a
leaf, the method given in section II-F was used to determine
whether to construct a new option or not.

The agent was able to learn the correct structure of the
domain on each of 30 runs, with an average of 15,783
time steps per run. This is a considerably smaller number
than than the number of states in the domain, illustrating
the advantage of using factored representations. Learning a
tabular representation of the transition model of this domain
would require a few orders of magnitude more experience.
The amount of computation time spent computing option
policies and models during each run was on average 1
minute 55 seconds on an Apple MacBook Pro with a
2.16GHz dual core processor and 2GB of RAM. Figure 3
shows two example option policies that were computed, one
for toggling light 10 (O10), and one for light 16 (O16). Note
how compact option models allow the nesting of policies,
so that O16 makes use of O10 in its policy.

To illustrate the utility of computing hierarchies of skills

1

a1 4

7

a10a7

a4

0 1

0 1

0 1

O10

10

O10 11

a16O11

0 1

0 1

O16

Fig. 3. The policies of two options constructed in the Light Box domain.
Note the nested policies.

in large factored domains such as the Light Box, we
compared the time it took to compute policies for various
different tasks (i.e., different reward functions) by an agent
with only primitive actions to the time taken by one with
a full hierarchy of options (including primitives). For each
of the twenty lights, we computed a policy for a task
whose reward function was 1 when that light was on and
0 otherwise. We averaged together the computation times
of the tasks at each level of the Light Box hierarchy (i.e.,
all times for circular lights were averaged together, and
similarly for triangular and rectangular lights, with only one
task for the diamond light).

Results are shown in Figure 4. For the lowest level,
where the tasks can be solved by one primitive action, the
two agents take very little time to compute policies, with
the options agent being slightly slower due to having a
larger action set. However, once the tasks require longer
sequences of actions to solve, we see a significant increase
in the computation time for the primitives-only agent, but
very little increase for the options agent. The overhead of
computing the options in the first place is thus made up for
once the agent has been confronted with just a few different
higher-level tasks such as these. The savings become very
substantial above level 2 (note the log scale). The level 4
task took the options agent just 0.05 seconds, but we ran
out of time trying to run the primitives-only agent, and so
it is not shown.

IV. DISCUSSION

We have presented a framework for autonomous, incre-
mental learning of skill hierarchies in FMDPs. Our prelim-
inary results show that the construction of abstract policies
and models of skills in this framework can provide drastic
reductions in the computational costs of computing policies
for new tasks when compared with flat, or unstructured
policy representations. Our approach also has the appeal
of being developmental in nature, allowing for steadily
increasing behavioral complexity through bootstrapping of
existing structural knowledge and behavior.

Although our results suggest that our framework is sound,
there are clearly many points on which this work can be

1 2 3
10−2

10−1

100

101

102

103

Hierarchy Level

Ti
m

e
(s

)

Primitives
Options

Fig. 4. Policy computation times for tasks at varying levels of the Light
Box hierarchy for an agent with primitive actions only and for one with
options + primitives.

improved and extended. The first and most obvious is to
extend the mechanism for deciding when to construct an
option to the stochastic case, as mentioned earlier. This is a
relatively straightforward extension and we are currently ex-
perimenting with a few different possibilities. Even if a good
mechanism is designed, however, additional mechanisms for
evaluating the effectiveness of an option at performing its
subtask may be required in the case where the mechanism
makes a wrong decision and constructs an incorrect option.

While the Light Box domain illustrates how a set of
options in a fixed domain can be used to compute policies
efficiently for many different reward functions, it does not
afford the potential to illustrate transfer between tasks in
similar, but non-identical domains. In future work we plan
to test the framework in environments with multiple domains
that differ somewhat in their transition structure but share
common dynamical properties (e.g., “physics” that stay
constant over different domains in the same environment).
It is in these types of setting that we expect our approach
to provide an even greater improvement in computational
efficiency than presented here.

We are also currently experimenting with active learning
techniques for speeding up the acquisition of environmental
structure. Rather than execute a random explorative policy,
we would like the agent to use its current skill set to compute
plans to move to areas of the state space for which its
structural knowledge is lacking. We expect that this will
speed up structure learning in complex domains where a
random policy has low probability of reaching many areas
of the state space. While Jonsson and Barto [6] develop a
greedy approach to active learning of this sort, they obtain
mixed results in large domains similar to the Light Box.
This may be because of the myopic way in which actions
are selected. Applying longer-term planning methods may
alleviate this problem.

The approach presented in [13] as well as our work con-

structs options to set every environmental variable to each of
its possible values. For environments with large numbers of
variables and/or variables with many values this may not be
feasible or desirable. Rather we would like to consider ways
of selectively constructing options based on some metric
evaluating the utility of being able to set a certain variable
to a certain value. In the case where the agent has a specific
task it is clear that this metric should take the task’s reward
function into account. However, in the taskless scenario we
outline here, it is less clear what this metric should depend
on. One possibility is to incorporate a designer-specified
salience function, which makes certain types of variable-
value combinations inherently more interesting to the agent
[14].

V. ACKNOWLEDGEMENTS

We would like to thank Anders Jonsson for his helpful in-
sights and especially for making his code available to us. The
work presented here was supported by the National Science
Foundation under Grant No. IIS-0733581. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, Massachusetts: MIT Press, 1998.

[2] C. Boutilier, R. Dearden, and M. Goldszmidt, “Stochastic dynamic
programming with factored representations,” Artificial Intelligence,
vol. 121, no. 1, pp. 49–107, 2000.

[3] G. D. Konidaris and A. G. Barto, “Building portable options: Skill
transfer in reinforcement learning,” in The Twentieth International
Joint Conference on Artificial Intelligence, Hyderabad, India, 2007,
pp. 895–900.

[4] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learn-
ing,” Artificial Intelligence, vol. 112, pp. 181–211, 1999.

[5] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,
and E. Thelen, “Autonomous mental development by robots and
animals,” Science, vol. 291, no. 5504, pp. 599–600, 2001.

[6] A. Jonsson and A. G. Barto, “Active learning of dynamic bayesian
networks in markov decision processes,” in Lecture Notes in Artificial
Intelligence: Abstraction, Reformulation, and Approximation - SARA
2007, vol. 4612, pp. 273–284.

[7] ——, “Causal graph based decomposition of factored mdps,” Journal
of Machine Learning Research, vol. 7, pp. 2259–2351, 2006.

[8] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
King’s College, Cambridge, 1989.

[9] R. S. Sutton, “Integrated modeling and control based on reinforce-
ment learning and dynamic programming,” in Advances in Neural
Information Processing Systems 3, 1991.

[10] R. E. Bellman, Dynamic Programming. Princeton, New Jersey:
Princeton University Press, 1957.

[11] T. Dean and K. Kanazawa, “A model for reasoning about persistence
and causation,” Computational Intelligence, vol. 5, pp. 142–150,
1989.

[12] D. Chickering, D. Geiger, and D. Heckerman, “Learning bayesian
networks: search methods and experimental results,” in Proceedings
of Artificial Intelligence and Statistics, vol. 5, 1995, pp. 112–128.

[13] A. Jonsson, “A causal approach to hierarchical decomposition in rein-
forcement learning,” Ph.D. dissertation, University of Massachusetts
Amherst, 2006.

[14] A. G. Barto, S. Singh, and N. Chentanez, “Intrinsically motivated
learning of hierarchical collections of skills,” in The 3rd International
Conference on Developmental Learning, La Jolla, California, 2004.

