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Abstract
This paper introduces an approach to auto-
matic basis function construction for Hierar-
chical Reinforcement Learning (HRL) tasks.
We describe some considerations that arise
when constructing basis functions for multi-
level task hierarchies. We extend previous
work on using Laplacian bases for value func-
tion approximation to situations where the
agent is provided with a multi-level action
hierarchy. We experimentally evaluate these
techniques on the Taxi domain.

1. Introduction
Hierarchical reinforcement learning (HRL) ap-

proaches have been proposed to scale reinforcement
learning (RL) to large domains. HRL techniques do
not require the agent to reason at each time step
but instead allow the agent to execute temporally-
extended actions. HRL techniques decompose large
problems into smaller subproblems that are simpler
for the agent to solve. Several techniques, such as
HAMs (Parr & Russell, 1998), options (Sutton et al.,
1999), and MAXQ (Dietterich, 2000), have been intro-
duced to explicitly represent a multi-level action hier-
archy. MAXQ and hierarchical options use recursive
algorithms to learn the policy on each level of the ac-
tion hierarchy. The policy does not need to be defined
over the entire state space; instead it can be defined
on only the states at the current level of the hierarchy.

Although the subproblems are often simpler, HRL
techniques can greatly benefit from generalization.
HRL techniques cannot ensure that all of the sub-
tasks will be small. Function approximation tech-
niques will further enable HRL techniques to be scaled
up to larger problems. Recently there have been sev-
eral papers on automatically discovering basis func-
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tions. However, most of this work has focused on au-
tomatic basis function construction for approximating
value functions in situations where the agent does not
have access to an action hierarchy (Keller et al., 2006;
Mahadevan, 2005; Parr et al., 2007; Petrik, 2007) or
where the task hierarchy is limited to a single level of
abstraction (Osentoski & Mahadevan, 2007).

This paper focuses on automatic basis function
construction for multi-level task hierarchies. Given a
Markov Decision Process (MDP) M = (S,A, P,R),
and a task hierarchy H the goal is to automatically
construct a low-dimensional representation Φ such
that Φ provides a low-dimensional projection of the
value function. The construction method should lever-
age H to create a compact representation Φ that re-
spects the task hierarchy. Φ should be constructed
such that the solution to M calculated using Φ closely
approximates the solution of the original MDP M .

While the task hierarchy provides opportunities to
speed up learning through policy reuse, value func-
tion reuse, and state abstractions, function approxi-
mation provides a powerful opportunity to create com-
pact representations via generalization. We describe
some considerations that arise when constructing ba-
sis functions for multi-level task hierarchies.

The first consideration is whether information
about the reward function should be incorporated dur-
ing basis function construction. Research on basis
function construction has largely been divided into two
categories: reward sensitive approaches (Keller et al.,
2006; Parr et al., 2007; Petrik, 2007) and reward in-
sensitive approaches (Mahadevan, 2005). Reward in-
sensitive basis functions are an appropriate choice for
low level subtasks that are often parameterized, since
only one set of basis functions must be built rather
than a set for each parameterization.

The second consideration is that temporal local-
ity and spatial locality may no longer be correlated in
HRL tasks. For some levels of the hierarchy, states
that are sequential in the agent’s decision making may
no longer be close in terms of spatial locality.
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The third consideration is that task hierarchies are
constructed to decompose problems into simple sub-
problems. These subproblems allow both the policies
and value functions of subtasks to be shared. Figure
1(a) shows how the Q-value function decomposes un-
der the MAXQ framework (Dietterich, 2000) into two
parts: Va(s) the expected sum of rewards obtained
while executing action a and the the completion func-
tion Ci(s, a), the expected cumulative reward for Mi

following the current policy πi after action a is taken in
state s. In order to scale, the representations created
for HRL problems should decompose recursively in a
similar manner. Lower level basis functions could be
reused when constructing basis functions at a higher
level. Figure 1(b) is a visualization of how basis func-
tions might decompose according to the hierarchy. For
a subtask i the basis functions for state s can be de-
composed into two parts: φΩi

(s) the basis functions
specific to subtask i constructed from the representa-
tion Ωi built using the agent’s experience and φa(s)
the basis functions from child subtasks where a is one
of the child subtasks.

This paper describes an approach to automatically
build basis functions for HRL tasks when the agent is
using a pre-defined task hierarchy. We consider HRL
approaches where the hierarchy constrains each macro-
action to be a separate subtask. We focus on domains
where state can be represented as a factored set of
variables.

2. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning algorithms
constrain policies via a hierarchy (Barto & Mahade-
van, 2003). These algorithms allow the agent to se-
lect actions that take more than one time step. Often
hierarchical RL algorithms use Semi-Markov Decision
Processes (SMDPs) as a model. SMDPs are a gener-
alization of MDPs in which actions are no longer as-
sumed to take a single time step and may have varied
durations. We are specifically interested in frameworks
where the agent learns at multiple levels of abstraction
simultaneously. Hierarchical RL agents learn a func-
tion Q(s, a) which is the expected sum of rewards for
taking action a in state s, where a is either a tempo-
rally extended action or a primitive action.

2.1. Task Hierarchies for Reinforcement
Learning

A task hierarchy decomposes an MDP M into
a set of subtasks which can be modeled as SMDPs
{M0,M1, ...,Mn} where M0 is the root subtask which
solves M . A subtask is defined to be a tuple Mi =
(βi, Ai, R̃i). βi is a termination predicate. Ai is a set
of actions that can be performed to achieve subtask
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Figure 1. We explore an approach to basis function con-
struction that exploits the value function decomposition
defined by a fixed task hierarchy.

Mi. The actions can be either primitive actions from
A or other subtasks. A subtask called from Mi is the
child of subtask i. A subtask cannot call itself either
directly or indirectly. R̃i is a pseudo-reward function
which specifies a reward function specific to Mi.

Each state s can be written as a vector of variables,
X. One of the advantages of task hierarchies is that
they allow abstractions to occur such that only a sub-
set of the variables Xi are relevant to a subtask i. Xi,j

is the jth variable for subtask i. A state xi defines a
value xi,j ∈ Dom(Xi,j) for each variable Xi,j . A task
hierarchy H with an abstraction function χ is called
a state-abstracted task hierarchy. χi is a function that
maps a state s onto only the variables in Xi. When
we refer to a state s for a specific level of the task
hierarchy we are actually referring to χi(s).

Task hierarchies allow subtasks to be parameter-
ized. If Mj is a parameterized subtask it is as if this
task occurs many times in Ai, where Mi is the parent
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task. Each parameter of Mj specifies a distinct task.
βj and R̃j must be redefined as βj(s, p) and R̃j(s′, p)
where p is the parameter. If a subtask’s parameter has
many values this is the same as creating a large num-
ber of subtasks which must all be learned and creates
a large number of possible actions for parent tasks.

2.2. Task Hierarchy for Taxi
We describe the task hierarchy for the Taxi task

(Dietterich, 2000) pictured in Figure 2(a). The taxi
task is defined as a grid of 25 states. There are four
colored locations, red (R), green (G), yellow (Y), and
blue (B). The task is for the agent, the taxi, to pick
up the passenger located on one of the colored loca-
tions and drop the passenger at the desired destina-
tion. The factored state contains the location of the
taxi, the passenger location, and the passenger desti-
nation. There are 6 primitive actions in this domain:
four navigation actions, north, east, south, and west
and 2 actions to access the passenger location, pickup
and putdown. Each action receives a reward of -1. If
the passenger is putdown at the intended destination a
reward of +20 is given. If the taxi attempts to pickup
a nonexistent passenger or putdown the passenger at
the wrong destination a reward of -10 is received. If
the taxi runs into the wall it remains in the same state
and receives a reward of -1.

(a) Taxi Domain

Root

Get Put

Pickup PutdownNavigate
(p)

North East South West

p:source p:destination

(b) Taxi Hierarchy

Figure 2. Taxi Task

The task hierarchy is pictured in Figure 2(b). The
root node is defined over all states and state variables
and can select one of two abstract actions, get and put.
The get action can only be selected when the passenger
is not located in the taxi and the put action can only
be selected when the passenger is located in the taxi.
The get action only considers the taxi location and
the passenger location. It has access to two actions,
navigate(p), and pickup. The put action considers only
the taxi location and the passenger destination. It has
access to two actions, navigate(p), and putdown. The
navigate action has 4 parameter values that indicate
which of the 4 locations it can navigate to and has
access to the 4 navigation actions.

2.3. Solving HRL tasks
Each subtask Mi has a value function Qi(s, a) that

defines the value of taking an action a in state s.
Qi(s, a) is used to derive a policy πi, typically by se-
lecting the action with the maximum Q value for s.
For this paper we focus on the MAXQ technique for
HRL. However our approach easily extends to the hi-
erarchical option framework where the hierarchies will
be similar and the major difference is the update rule.

In MAXQ the value function is decomposed based
upon the hierarchy. MAXQ defines Qi recursively as:

Qi(s, a) = Va(s) + Ci(s, a) where

Vi(s) =
{

maxaQi,t(s, a) if i composite
Vi(s) if i is primitiive.

Va(s) is the expected sum of rewards obtained while
executing action a. The completion function, Ci(s, a),
is the expected cumulative reward for Mi following
the current policy πi after action a is taken in state s.
C̃ is the completion function that incorporates both
R̃i and R (the real reward function) and is used only
inside the subtask to calculate the optimal policy of
subtask i. Q̃i is defined as Q̃i(s, a) = Va(s) + C̃i(s, a).
Q̃ is used to select the maximum action. If R̃i is zero,
C and C̃ will be identical.

When using function approximation in HRL, we
assume each subtask contains a set of basis functions
Φi and a set of k weights θi that are used to calculate
the value function. φi(s, a) is a k length feature vec-
tor for state s and action a. The completion function
for subtask i at time t is approximated by Ĉi,t(s, a) =∑k

j=1 φi,j(s, a)θi,j,t. The update rule for the weights
is θi,(t+N) = θi,t + αi[γN (maxa′∈A(s′) Ĉi,t(s′, a′) +
Va′,t(s′))− Ĉi,t(s, a)] ·φi(s, a) where N is the duration
of a.

3. Automatic Basis Function
Construction for HRL
We focus on the graph Laplacian approach to auto-

matic basis function construction (Mahadevan, 2005).
In this approach the agent automatically constructs
basis functions by first exploring the environment and
collecting a set of samples. These samples are used to
create a graph where the vertices are states and edges
are actions. Basis functions are created by calculating
the eigenvectors of the graph Laplacian.

A general overview of spectral decomposition of
the Laplacian on undirected graphs can be found in
(Chung, 1997). A weighted undirected graph is de-
fined as Gu = (V,Eu,W ) where V is set of vertices,
Eu is the set of edges, and W is the set of weights wij

for each edge (i, j) ∈ Eu. If an edge does not exist
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between two vertices it is given a weight of 0. The va-
lency matrix, D, is a diagonal matrix whose values are
the row sums of W . The combinatorial Laplacian is
defined as Lu = D−W and the normalized Laplacian
is defined as Lu = D−

1
2 (D−W )D−

1
2 . The set of basis

functions, Φ, are the “first” k eigenvectors associated
with the smallest eigenvalues of either Lu or Lu. φ(s)
is the embedding of state s defined by the eigenvectors.

3.1. Recursive Reduced Graph Approach to
Basis Function Construction in HRL

One reason HRL is useful is that value functions
have been shown to decompose with the hierarchy.
The intuition behind our approach to basis func-
tion construction for HRL problems is that similarity
should decompose much as value functions decompose.
Our approach automatically constructs basis functions
using basis functions from the children of a subtask. A
reduced graph is created and basis functions specific to
the subtask are generated from this graph. Basis func-
tions are gathered recursively from child subtasks.

The first step to our approach for representation
discovery for multi-task hierarchies is to perform sam-
ple collection such that a subtask has a set of sam-
ples Di which consist of a state, action, reward, and
next state, (s, a, r, s′). The agent constructs a graph
from Di. The agent can leverage a state-abstracted
task hierarchy by building the graph in the abstract
space defined by χi. The graph can be built such that
χi(s1) is connected to χi(s2) if the agent experienced
a transition from χi(s1) to χi(s2) in Di. We call a
graph over an abstract space a state-abstracted graph.
Figure 3 describes how a state-abstracted graph can
be created; this approach is similar to the approach
in Osentoski and Mahadevan (2007) but uses the ab-
straction function χ.

State-abstracted Graph: For an MDP M with
a state-abstracted task hierarchy, a state-abstracted
graph Gi can be constructed for subtask i over the
reduced state space defined by χi such that the ver-
tices V correspond to the abstract states for subtask i
χi(S) or a subset of abstract states χi(S). In the state-
abstracted graph Gi, v1 = v2 for any pair of states s1

and s2 where χi(s1) = χi(s2). An edge exists between
u and v if there is an action that causes a transition
between the corresponding abstract states.

3.1.1. Building the Reduced Graph

In this section we describe how properties of the
graph can be used to create abstractions through a
reduced graph. Our approach to graph reduction
requires that the original graph Gi be an edge la-
beled graph. We define an edge labeled graph to be
G = (V,E,Z,W ) where V is the set of vertices, E is
the edge set, Z is a set of labels over E, and W is the

CreateBasis Algorithm(Subtask i, Samples D, Num-
ber of local basis functions ki, Initial policy π0)

1. Sample Collection:

(a) Exploration: Generate a set of samples Di,
which consists of a state, action, reward, and
nextstate, (s, a, r, s′, N) for subtask, i accord-
ing to π0. N is the number of steps a took to
complete.

(b) Subsampling Step (optional): Form a sub-
set of samples Di ∈ D by some subsampling
method.

2. Representation Learning:

(a) if GraphReduction will be performed
Build an edge labeled graph Gi =
(V, E ,Z,W) from Di where Z are labels
over the edge set E . State v1 is con-
nected to state v2 if χ(s1) and χ(s2) are
linked temporally in Di by an action a.
Z(χi(s1), χi(s2)) = a.

(b) else Build an graph Gi = (V, E ,W) from Di

where state v1 is connected to state v2 if χ(s1)
and χ(s2) are linked temporally in Di.

(c) Gi=GraphReduction (Gi, ki) as found in Fig-
ure 4.

(d) Calculate the ki lowest order eigenfunctions of
the graph Laplacian of Gi.

Figure 3. CreateBasis Algorithm for Hierarchical Rein-
forcement Learning.

weight matrix. Gi must be constructed such that the
Z is the action a that caused the transition between
v1 and v2.

Reduced Graph: A reduced graph can be con-
structed for subtask i with a graph Gi in the follow-
ing manner: Two vertices v1 and v2, corresponding to
states, or abstract states, s1 and s2 respectively can be
represented as the same abstract vertex ṽ if the state
variables for Mi can be divided into two groups Xi and
Yi such that:

• s1 and s2 differ only in their values of Yi

• v1 and v2 are connected to the same set of vertices
in the graph and the labels z ∈ Z for those edges
are the same.

v1 and v2 are merged into an abstract vertex ṽ corre-
sponding to the subset of state variables Xi.

A reduced graph can be built if M does not have
an abstraction function χ associated with H or if the
state-abstracted graph can be further compressed. If
no nodes are merged the graph will be the original
graph. Figure 4 contains the algorithm used to trans-
form the state graph into the reduced graph and create
basis functions from the reduced graph.
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GraphReduction Algorithm(Original Graph Go, ki)

Create reduced graph, Gi = (V,E,W ), from Go

V = Vo

For all v1 ∈ V
Loop through v2 ∈ V

V1 is the set of vertices such that
v′ ∈ V1 =⇒ v1 → v′

V2 is the set of vertices such that
v′ ∈ V2 =⇒ v2 → v′

if V1 = V2

and the labels over the edges are the same
and the factored states of s1 and s2

can be split into two groups Xi and Yi

such that the states only differ in their
values of Yi

then merge v1 and v2 into an abstract node ṽ
corresponding to the state variables Xi

Return Gi

Figure 4. Graph Reduction Algorithm

3.1.2. Generating Hierarchical Basis
Functions

Basis functions are automatically constructed by
first generating basis functions for the graph Gi us-
ing the spectral decomposition of the graph Lapla-
cian. These basis functions are concatenated together
along with basis functions recursively gathered from
the child subtasks. This means that the basis func-
tions are no longer guaranteed to be linearly indepen-
dent. If necessary the bases can be reorthogonalized
using Gram-Schmidt or QR decomposition.

This approach allows methods such as graph Lapla-
cian basis functions to be scaled to larger domains
since the reduced graph can greatly reduce the size
of the eigenproblem that must be solved.

3.2. Example of Hierarchical Basis Function
Construction on the Taxi Task

To illustrate our approach we return to the example
of the get task. Figure 5 shows the state-abstracted
graph of the get subtask. The four clusters of nodes
correspond to the states for each passenger location
for the task. Within each cluster the darker vertices
correspond to states where the taxi is located in one of
the colored gridstates. Dark edges are refer to edges
caused by primitive actions, in this case the pickup
action.

Figure 6 displays the reduced graph for the get
task. The outer four nodes correspond to abstract
nodes corresponding to states where the taxi is not in
one of the colored grid locations. The four inner states
correspond to the bottleneck states when the agent is
in the same location as the passenger. The center state
represents when the passenger has been picked up and

Figure 5. State-abstracted graph for the get subtask.

is in the taxi. Basis functions for the get task are con-
structed using eigenvectors of the reduced graph and
basis functions from the navigate child subtask.

Pass Pos=R

Pass Pos=GPass Pos=B

Pass Pos=Y

Pass Pos=Taxi

Pass Pos=R
Taxi Pos=R

Pass Pos=G
Taxi Pos=G

Pass Pos=B
Taxi Pos=B

Pass Pos=Y
Taxi Pos=Y

Figure 6. Reduced graph for the get task.

4. Experimental Analysis
We evaluated 4 different techniques: hierarchical

recursive graph Lapacian basis functions, graph Lapla-
cian basis functions using the more traditional ap-
proach, RBFs, and table-lookup on the Taxi task. The
results can be seen in Figure 7. The results of each ex-
periment was averaged over 30 trials.

Figure 7. Results for the Taxi domain
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The function approximation techniques are all us-
ing a similar number of basis functions. Our results
use the normalized graph Laplacian. The recursive
basis function approach used 10 local basis functions
for the navigate subtask, 9 basis functions for get, and
7 basis functions for put. The basis functions of the
graph Laplacian of the state space were created us-
ing directed graphs and the directed graph Laplacian
(Johns & Mahadevan, 2007). 10 basis functions were
used for all of the subtasks. It is important to note
that while a similar number of basis functions were
calculated for both of the graph based approaches the
reduced graph is significantly smaller than the state
space graph. The recursive approach also uses basis
functions from lower levels in order to obtain a bet-
ter approximation. The navigate subtask had a total
of 17 basis functions created by uniformly placing the
RBFs with 2 states between each RBF. The get and
put subtasks had 21 basis functions created by placing
the RBFs uniformly with 5 states between each RBF.
We experimented with different numbers of RBFs but
even doubling the number did not greatly improve per-
formance.

5. Discussion and Future Work
This paper introduces a novel approach for basis

function construction for HRL. We show that our ap-
proach enables HRL techniques to learn substantially
quicker. It also allows basis function construction to
be scaled to large domains where solving eigen prob-
lems is computationally prohibitive.

While we assumed that the hierarchy is given and
that samples to create the basis functions are collected
using the hierarchy, this is not necessary. A signifi-
cant amount of work has focused on subtask creation
such as (Jonsson & Barto, 2006; Mehta et al., 2008).
These approaches require samples from the domain
that could be used to genenerate basis functions for
the hierarchy. Şimşek and Barto (2008) create a graph
that could be modified into graphs, similar to ours,
once the subgoal options are determined.

Our learned representations are useful for transfer
between subtasks. Subtasks at similar levels of ab-
straction often have topologically similar graphs. Ad-
ditionally the reduced graph provides an abstraction
that should allow the representation and thus the sub-
task to be transferred to new learning scenarios.

Another area of future work is combining reward
sensitive and insensitive approaches in HRL tasks. We
have started extending BEBFs (Parr et al., 2007) to
TD methods, used in HRL algorithms, using a collec-
tion of samples. However the Bellman error from TD
updates is not smooth across the state space. More
work is needed to extend BEBFs to TD methods or

sample based least squares approaches to SMDPs.
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