
ACTION-BASED REPRESENTATION DISCOVERY IN MARKOV
DECISION PROCESSES

A Dissertation Presented

by

SARAH OSENTOSKI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2009

Department of Computer Science

c© Copyright by Sarah Osentoski 2009

All Rights Reserved

ACTION-BASED REPRESENTATION DISCOVERY IN MARKOV
DECISION PROCESSES

A Dissertation Presented

by

SARAH OSENTOSKI

Approved as to style and content by:

Sridhar Mahadevan, Chair

Andrew G. Barto, Member

Roderic Grupen, Member

Andrea Nahmod, Member

Andrew G. Barto, Department Chair
Department of Computer Science

To my grandmothers: Doris Barrons and Theresa Osentoski.

ACKNOWLEDGMENTS

I start by thanking my advisor Sridhar Mahadevan. His guidance, advice, and support

were instrumental in shaping this research and guiding my development as a researcher.

Working with Sridhar taught me how to identify interesting problems and how to study

them using many different tools.

I am also grateful to the other members of my committee for their support and guid-

ance. I have been very privileged to have many interactions with Andrew Barto as part of

the Autonomous Learning Lab. Andy has been a great source of inspiration and a wonder-

ful example. His suggestions and criticisms have made me a more careful and thorough

researcher. I have also been privileged to collaborate with Roderic Grupen during my

time at UMass. Rod is an outstanding researcher who helped me look at problems from

a broader perspective. I would like to thank him for his constant support, his faith in my

work, and for all of the time he spent discussing ideas with me. I thank Andrea Nahmod

for her insightful comments and advice.

Many others have contributed to the development of the ideas in this dissertation and

to my development as a researcher. I thank George Konidaris, Steve Hart, Alicia “Pippin”

Wolfe, Jeff Johns, and Ashvin Shah for their insightful conversations and camaraderie. I

thank Russell Duhon for the many conversations about the broader perspective and impact

of research.

I am grateful to the members, past and present, of the Autonomous Learning Labora-

tory and the Laboratory for Perceptual Robotics for the many helpful discussions, support

and friendship. Thanks to Mohammad Ghavamzadeh, Mike Rosenstein, Anders Jonsson,

Özgür Şimşek, Kimberly Ferguson, Alicia P. Wolfe, Rob Platt, Balarman Ravindran, Victo-

ria Manfredi, Steve Hart, Aron Culotta, Andy Fagg, Colin Barringer, Jeffrey Johns, Chang

v

Wang, George Konidaris, Suchi Saria, Andrew Stout, Chris Vigorito, TJ Brunette, Khasha-

yar Rohanimanesh, Shriaj Sen, Ashvin Shah, Bruno Castro da Silva, William Dabney, Scott

Kuindersma, and Vimal Mathew.

I could have never made it through the graduate program without the support staff at

UMass. I thank Leeanne Leclerc and Sharon Mallory for helping me navigate my way

through the graduate program. I also thank Laurie Downey and Gwyn Mitchell for their

help with my numerous questions over the years.

I thank all of the wonderful friends I have made in Amherst. The fun times we had

made grad school more enjoyable. I thank Emily Horrell, Kimberly Ferguson, Lisa Fried-

land, Ilene Magpiong, Audrey Lee, Victoria Manfredi, Maryanne Olson, Emily Russo,

Özgür Şimşek, and Hanna Wallach for the wonderful dinners we shared and their friend-

ship. I also thank Stephen Murtagh and Gene Novark for their friendship and the wonderful

conversations shared over a few pints.

I thank my family for their love and encouragement. My parents have been very sup-

portive of me in all my endeavors. I also thank my siblings for the crazy conversations

and entertaining stories. My family always challenges to me think about my priorities and

keeps me honest.

Last I would like to thank Andrew Cosand for his constant support and unwavering

faith as I finished my dissertation. Our shared conversations and adventures have made

completing this dissertation a more enjoyable process. Thank you, Andy.

vi

ABSTRACT

ACTION-BASED REPRESENTATION DISCOVERY IN MARKOV
DECISION PROCESSES

SEPTEMBER 2009

SARAH OSENTOSKI

B.Sc., UNIVERSITY OF NEBRASKA LINCOLN

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

This dissertation investigates the problem of representation discovery in discrete Markov

decision processes, namely how agents can simultaneously learn representation and optimal

control. Previous work on function approximation techniques for MDPs largely employed

hand-engineered basis functions. In this dissertation, we explore approaches to automati-

cally construct these basis functions and demonstrate that automatically constructed basis

functions significantly outperform more traditional, hand-engineered approaches.

We specifically examine two problems: how to automatically build representations for

action-value functions by explicitly incorporating actions into a representation, and how

representations can be automatically constructed by exploiting a pre-specified task hier-

archy. We first introduce a technique for learning basis functions directly in state-action

space. The approach constructs basis functions using spectral analysis of a state-action

vii

graph which captures the underlying structure of the state-action space of the MDP. We

describe two approaches to constructing these graphs and evaluate the approach on MDPs

with discrete state and action spaces.

We show how our approach can be used to approximate state-action value functions

when the agent has access to macro-actions: actions that take more than one time step

and have predefined policies. We describe how the state-action graphs can be modified to

incorporate information about the macro-actions and experimentally evaluate this approach

for SMDPs with discrete state and action spaces.

Finally, we describe how hierarchical reinforcement learning can be used to scale up

automatic basis function construction. We extend automatic basis function construction

techniques to multi-level task hierarchies and describe how basis function construction can

exploit the value function decomposition given by a fixed task hierarchy. We demonstrate

that combining task hierarchies with automatic basis function construction allows basis

function techniques to scale to larger problems and leads to a significant speed-up in learn-

ing.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Overview of Approach . 6
1.2 Contributions . 9
1.3 Outline . 10

2. BACKGROUND AND RELATED WORK . 11

2.1 Markov Decision Processes . 11
2.2 Reinforcement Learning . 13
2.3 Value Function Approximation . 13

2.3.1 Least-squares Methods . 14
2.3.2 Hand-Coded Basis Functions . 15

2.4 Representation Discovery . 17

2.4.1 Dimensionality Reduction and Manifold Learning 18
2.4.2 Automatic Basis Function Construction in Markov Decision

Processes . 20

2.5 State Abstraction in Reinforcement Learning . 22

ix

3. SPECTRAL BASES ON GRAPHS . 24

3.1 Basic Definitions . 25

3.1.1 Functions over Graphs . 27
3.1.2 Graph Laplacian . 28

3.1.2.1 Spectral Decomposition of the Graph Laplacian 30

3.1.3 Embeddings of the Graph . 32
3.1.4 Directed Graph Laplacian . 32

3.2 Applications of Spectral Graph Analysis . 36
3.3 Representation Policy Iteration . 37

3.3.1 MDPs as Graphs . 38

4. REPRESENTATION DISCOVERY USING STATE-ACTION GRAPHS 41

4.1 State-Action Space . 43
4.2 Graph Creation in State-Action Space . 43
4.3 Basis Function Construction Using State-Action Graphs 44
4.4 General Analysis of State-Action Graphs . 46

4.4.1 Relationship Between State-Action Graphs and State Graphs 46
4.4.2 Smoothness of Q-value Functions in State-Action Space 49
4.4.3 Analysis of Updates During Learning . 50

4.5 Demonstration Using Four Room Gridworld . 51

4.5.1 Basis Functions for the Four Room Gridworld . 53
4.5.2 Comparison of Feature Spaces . 57
4.5.3 Smoothness Comparison . 60

4.6 Experimental Evaluation . 62

4.6.1 Learning Action-Value Functions Using State-Action Basis
Functions . 62

4.6.2 Experiments On The Four Room Gridworld . 63
4.6.3 Mazeworld . 65
4.6.4 Graph Weighting Comparison . 67
4.6.5 Graph Laplacian Comparison . 69
4.6.6 Directed Versus Undirected Graph Comparison 70

4.7 Comparison to Alternate Approaches for Basis Function Construction 71

4.7.1 Radial Basis Functions . 71

x

4.7.2 Geodesic Gaussian Kernels . 72
4.7.3 Bellman Error Basis Functions . 74
4.7.4 Discussion of the Comparisons . 75

4.8 Conclusion . 76

5. REPRESENTATION DISCOVERY IN SEMI-MARKOV DECISION
PROCESSES . 77

5.1 Graph Creation in Semi-Markov Decision Processes . 79
5.2 Demonstration Using Four Room Gridworld . 80

5.2.1 Comparison of Basis Functions in MDPs and SMDPs 81

5.3 Learning Value Functions in Semi-Markov Decision Processes 84

5.3.1 Eight Room Gridworld . 88
5.3.2 Comparison of Graph Creation Techniques . 89

5.4 Conclusion . 90

6. REPRESENTATION DISCOVERY FOR HIERARCHICAL
REINFORCEMENT LEARNING . 92

6.1 Hierarchical Reinforcement Learning . 98

6.1.1 Task Hierarchies for Reinforcement Learning . 98
6.1.2 State Abstraction for Multi-level Hierarchies . 99
6.1.3 Solving HRL tasks . 101

6.1.3.1 Function Approximation for HRL . 102

6.2 Automatic Basis Function Construction for Multi-level Hierarchies 102

6.2.1 Graph Creation for Multi-level Task Hierarchies 103

6.2.1.1 State-abstracted graph for the Get Task 104
6.2.1.2 Building a Reduced Graph . 106
6.2.1.3 Reduced graph for the Get Task . 107
6.2.1.4 Generating Hierarchical Basis Functions 108

6.3 Analysis . 111
6.4 Experimental Analysis . 114

6.4.1 Taxi . 114
6.4.2 Manufacturing Domain . 115
6.4.3 Discussion of Results . 117

xi

6.5 Conclusion . 119

7. CONCLUSIONS AND FUTURE WORK . 120

7.1 Summary . 120
7.2 Future Work . 122

7.2.1 Representation Discovery Using State-Action Graphs 122

7.2.1.1 Extension of State-Action Graphs to Continuous
Spaces . 122

7.2.1.2 Action Representation using Alternative Feature
Types . 123

7.2.1.3 Basis Function Construction for Other Action Value
Functions . 123

7.2.2 Representation Discovery for Multi-Level Task Hierarchies 125

7.2.2.1 Extension to State-Action Space . 125
7.2.2.2 Multi-Scale Representations for Hierarchical

Reinforcement Learning . 125

7.2.3 Theoretical Analysis of Basis Function Construction 125
7.2.4 Extension to Partially Observable Markov Decision

Processes . 126
7.2.5 Incremental Basis Function Construction . 126

7.3 Closing Remarks . 127

BIBLIOGRAPHY . 129

xii

LIST OF TABLES

Table Page

4.1 Information about eigenvectors used in the comparisons. 57

4.2 Distance between subspaces induced by the eigenvectors of the graph
Laplacians. 58

4.3 Dirichlet Sum Comparison . 61

4.4 Sobolev Norm Comparison . 62

4.5 Weightings used for state action graphs . 67

5.1 Weightings used for SMDP graphs . 80

5.2 Weightings used in comparison experiments. 90

6.1 Number of basis functions used in the taxi experiments 115

xiii

LIST OF FIGURES

Figure Page

1.1 Four room gridworld domain an example of a value function. 3

1.2 An illustration of the general approach in which the agent starts in a
domain, collects samples via exploration, builds a graph, calculates the
k smallest eigenvectors of the graph Laplacian and uses the
eigenvectors as basis functions to represent the value function during
learning. 7

1.3 The state action graphs created for a small room. 8

3.1 An example of an undirected graph containing five vertices and six
edges. 25

3.2 A three dimensional view of the 2nd and 3rd eigenvectors of the graph
Laplacian for the graph in Figure 3.1. 32

3.3 The embedding of the graph in Figure 3.1. 33

3.4 Example directed graph . 33

3.5 The analogous symmetric graph. 36

3.6 An illustration of the general approach in which the agent starts in a
domain, collects samples via exploration, builds a graph, calculates the
k smallest eigenvectors of the graph Laplacian and uses the
eigenvectors as basis functions to represent the value function during
learning. 38

3.7 The generic model-free RPI algorithm for learning representation and
control (Mahadevan & Maggioni, 2007). 40

4.1 Two techniques to create state-action graphs. 44

4.2 Pseudo-Code for creating state-action graphs. 45

xiv

4.3 Example to demonstrate the relationship between state and state-action
graphs. 47

4.4 State graph generated from the state-action graph. 48

4.5 Four room gridworld. 51

4.6 The state action graphs created for a small room. 52

4.7 Right corner of the four room gridworld with the corner states labeled. 53

4.8 Embeddings of the four room domain on the 2nd and 3rd eigenvectors. 54

4.9 Visualization of state-action graph for the right corner of the four room
gridworld. 55

4.10 A visual comparison of the basis functions constructed from either the
state or state-action graph on the state-action space of the four room
gridworld. 56

4.11 Visualization of the Q-function for the four room gridworld. 59

4.12 A comparison of the error of the projected Q-function. The error is the
sum of the error between the optimal Q-function and the Q-function
projected onto the set of basis functions. 60

4.13 RPI Framework for learning representation and control using state-action
graphs. 64

4.14 Results for learning in the four room gridworld. 65

4.15 The mazeworld domain. 66

4.16 Results for learning in the maze world. 67

4.17 A visual comparison of the state-action graph embedding of the four room
gridworld for the two different weighting techniques. 68

4.18 Results comparing the two weighting approaches in the four room
gridworld. 69

4.19 Results comparing the normalized and combinatorial Laplacians in the
four room gridworld. 70

xv

4.20 Results comparing the directed and undirected graph Laplacian on
state-action graphs. 71

4.21 Results comparing different basis function approaches in the four room
gridworld. 75

5.1 Pseudo-Code for creating state-action graphs in SMDPs. 81

5.2 State graph for the upper right hand room showing transitions when the
agent has access to both macro-actions and primitive actions. 82

5.3 Transitions associated with nodes for the state-action pairs for state 1
when the doorway macro-actions are available. 83

5.4 The invariant distribution of the four room gridworld with only primitive
actions and with options. 83

5.5 RPI Framework for learning representation and control using state-action
graphs in SMDPs. 86

5.6 Steps to goal in the four room gridworld. 87

5.7 Eight room gridworld. 88

5.8 Steps to goal in the eight room gridworld. 89

5.9 Weighting comparison . 91

6.1 Taxi Domain . 93

6.2 Hierarchy for the Taxi Domain . 94

6.3 An example of the taxi get task where the taxi must pick up the passenger
located in the green square. 95

6.4 We explore an approach to basis function construction that exploits the
value function decomposition defined by a fixed task hierarchy. 97

6.5 HRL Algorithm with representation discovery. 104

6.6 CreateBasis Algorithm for Hierarchical Reinforcement Learning. 105

6.7 State-abstracted graph of the get subtask. 106

6.8 Graph Reduction Algorithm . 107

xvi

6.9 Reduced graph for the get task. 108

6.10 The reduced graphs for the taxi task. 109

6.11 The recursive basis function decomposition from our proposed
approach. 111

6.12 Results for the Taxi domain . 114

6.13 The Manufacturing Domain . 116

6.14 Hierarchy for the Manufacturing Domain . 117

6.15 Results for the manufacturing domain . 118

xvii

CHAPTER 1

INTRODUCTION

A hallmark of human intelligence is the ability to adapt to new environments and to

learn new tasks. These abilities are also desirable in autonomous agents. For example,

a robot may need to navigate in a new environment or to manipulate new objects. Such

sequential decision problems involve significant uncertainty, and are often modeled as

Markov decision processes (MDPs) (Puterman, 1994). An MDP is a mathematical model

that represents a problem as a set of states S, a set of actions A, a stochastic transition

distribution P that describes the outcome of selecting action a in state s and a reward func-

tion R. The agent selects actions that change its environment and then selects new actions

based upon feedback from the environment, such as a reward signal or changes in the envi-

ronment. The objective of the agent is to learn a policy or a mapping from states to actions

that maximizes its long-term cumulative discounted reward.

The agent must learn which action are responsible for the outcome of the task, given

that he agent may not be rewarded frequently, and that many actions may be taken before

reward is given. One way the agent can solve this problem is to construct a value function

over the state space where the value for a state is the expected sum of immediate reward

received and the expected value of the next state. There are many approaches to solving

Markov decision processes, such as linear programming (de Farias & Van Roy, 2003),

policy iteration (Howard, 1960), and value iteration (Puterman, 1994). In this dissertation,

we focus on reinforcement learning (RL), a machine learning paradigm designed learn the

best action given an agent’s experience in the domain. RL algorithms, such as Q-learning

1

(Watkins, 1989), can be used to approximately solve MDPs, by propagating values back

across states and actions as the agent gains more experience in the environment.

Function approximation techniques are necessary when exact representations become

infeasible, such as a large or continuous state space. These approaches are also valuable in

accelerating the convergence of many RL algorithms. Samuel (1959) introduced one of the

first examples of function approximation in the game of checkers. In Samuel’s paradigm,

agents do not learn the underlying representation but instead leverage this representation to

learn policies. Amarel (1968) introduced a paradigm where agents learned representations

built through global analysis of the state space. Most previous work in approximately

solving large MDPs used a set of hand engineered features, also known as basis functions.

Basis functions map a state s ∈ S to a k-dimensional real valued vector φ(s) where k �

|S|. Examples of popular basis functions are radial basis functions (RBFs) (Powell, 1987;

Sutton & Barto, 1998; Lagoudakis & Parr, 2003), “cerebellar model articulator controllers”

(CMACs) (Albus, 1981; Watkins, 1989; Sutton & Barto, 1998), polynomials (Bellman &

Dreyfus, 1959; Lagoudakis & Parr, 2003), and neural networks (Farley & Clark, 1954).

A linear combination of basis functions is used to represent the value function V = Φθ,

where θ is the parameter vector and Φ is a matrix whose columns are the basis functions. Φ

provides a low-dimensional projection of the original value function in R|S| onto a smaller

subspace in Rk. Φ also induces a reduced MDP and can be used to compress any function

over the MDP, not just value functions (Mahadevan, 2009).

Previous approaches typically hand-engineered basis functions, creating a low dimen-

sional subspace. However, the success of these approaches depend upon the designer creat-

ing appropriate basis functions. These approaches often assume that the underlying space

has Euclidean geometry, but states that are close in Euclidean space may have values that

are far apart (Dayan, 1993; Drummond, 2002). Figure 1.1 illustrates a four room grid-

world in which two states are labeled. Figure 1.1(b) illustrates that while these states are

close in Euclidean space, they have very different values. Additionally, traditional function

2

approximation approaches did not solve the problem of automatically constructing basis

functions.

1 2
G

(a) Four room gridworld (b) Example value function for the four room gridworld

Figure 1.1. Four room gridworld domain an example of a value function.

In this dissertation we propose a paradigm in which an agent automatically discov-

ers representations and uses these representations for learning policies. This dissertation

specifically focuses on automatically constructing a set of compact low-dimensional basis

functions Φ to represent an MDP that will aid the agent in efficiently solving the MDP.

Definition 1.1 Automatic Basis Construction Problem: Given a Markov Decision Pro-

cessM = (S,A, P,R), automatically construct a low-dimensional representation Φ where

the size of Φ is |S̃| × k or |S̃||A| × k where S̃ ⊂ S and k � |S̃| or k � |S̃||A|. Φ should

be constructed such that the solution of M calculated using Φ closely approximates the

solution of the original MDP M .

There are several considerations that must be addressed when selecting a basis function

construction technique. The first is the information available to the agent. Some approaches

require the full model of the MDP (Poupart & Boutilier, 2002; Parr et al., 2007), others re-

quire a set of samples from the domain, or an assumption about distance metrics over the

state space. The second is the cost of constructing the basis functions. Typically we would

3

like the cost of constructing the basis to be less than the cost of solving the MDP; how-

ever, this is not possible for all approaches. These approaches can be justified if the agent

must solve multiple similar MDPs. The complexity of the basis is another consideration.

For large sparse problems it may be desirable to have a basis that is also sparse. Another

important consideration concerns whether the basis functions should be reward-sensitive

or reward-independent. Reward-sensitive bases incorporate information about the reward,

while reward-independent bases do not. Reward-sensitive bases are often more effective at

compressing the value function, but reward-independent bases are more reusable in similar

MDPs that have different value functions. Bases can also be constructed for a specific pol-

icy. Policy-specific bases will be useful for a short period of time during learning, but may

be more effective at compressing the value function under the policy. The last considera-

tion we will mention is incremental versus batch methods. Incremental approaches build

representations incrementally as the agent learns while batch methods construct multiple,

or all, basis functions at a time.

In this dissertation, we specifically examine approaches to automatically constructing

basis functions that are jointly defined over states and actions. In particular, the aim of

this dissertation is to construct basis functions that can approximate any function f(s, a)

over states s ∈ S and actions a ∈ A. One example is the action-value function Q(s, a).

Most traditional function approximation approaches solve the basis construction problem

exclusively over the state space or build separate function approximators for the state and

action spaces. However, the ability to generalize across states and actions simultaneously

is a skill that comes easily to humans. Consider a baker as an illustrative example. The

baker could bake a variety of items but is focused upon bread and cookies. There are also

a variety of actions that he will employ during the baking process, two of which are adding

butter and adding yeast. If the baker were to generalize over state alone, the bread and

cookies might seem initially quite similar since their primary ingredient is flour. If he were

to generalize over the actions, adding yeast and adding butter would seem quite different.

4

However, the baker actually generalizes across both states and actions. When considering

bread, state-action pairs for yeast and butter will be quite similar as they are necessary for

a successful product. When considering cookies, these two actions are quite different since

adding yeast will take the process to a disastrous section of the state space while butter is

necessary.

Specifically we examine two problems: is it possible to automatically build representa-

tions for action-value functions by explicitly incorporating actions into the representation

and can representations be automatically constructed for hierarchical reinforcement learn-

ing problems in a way that takes advantage of the action hierarchy?

Many RL algorithms compute an action-value function, which is used to derive the pol-

icy. Action-value functions explicitly represent the value of a state-action pair. Q(s, a), an

example of an action-value function, gives the value of the agent being in state s and select-

ing action a. Function approximation is necessary if the space required to store the value

function is too large or if generalization is desired. We explore a technique that automati-

cally builds representations in state-action space for action-value function approximation.

However, these representations could be used to represent any arbitrary function over state-

action space, such as a policy. We explore how to build representations in this space and

how using representations built in this space affects learning.

A significant advance in RL has been the introduction of temporal abstraction frame-

works and hierarchical learning algorithms (Barto & Mahadevan, 2003). These frameworks

allow the agent to employ temporally-extended actions that allow it to make decisions at

different time scales. We explore how to build representations that incorporate information

about the temporally-extended actions including how to leverage a task hierarchy when one

is available.

5

1.1 Overview of Approach

Our approach to building compact representations in state-action space is based on

recent work that constructs basis functions on graphs induced by an MDP. This approach

is convenient for two reasons: incorporating actions into the framework is straightforward

and the approach captures the underlying structure of the domain. Specifically we build

upon the graph Laplacian eigenfunction approach to building basis functions (Mahadevan,

2005). However, our approach can easily be extended to other approaches such as wavelets

(Maggioni & Mahadevan, 2006a) or geodesic Gaussian kernels (Sugiyama et al., 2007).

This approach introduces a novel type of function approximation by deriving the bases

from the topology of the underlying state space graph. Many RL algorithms learn a value

function and then derive a policy from the value function. The goal of these techniques

is to represent value functions compactly. To do this, function approximation techniques

build a reduced representation in a feature space. A desirable feature space is one in which

similar state-action pairs (or states) are mapped to similar points in feature space. Function

approximation has two primary benefits: generalization and compact representations. Our

approach is specifically useful for situations where the agent wishes to approximate an

action-value function.

Linear function approximation techniques map each state-action pair (s, a) (or state)

into a feature vector φ(s, a). These basis functions can be used to approximate any function

defined on the state-action space. The graph Laplacian eigenbasis is an approach to building

these basis functions. The graph Laplacian eigenbasis approach consists of three steps:

forming a graph from the agent’s experience in the domain, calculating the Laplacian on

the graph, and computing the k smoothest eigenvectors of the Laplacian. To illustrate this

approach consider the simple grid world example shown in Figure 3.6. The agent begins

in a domain, collects samples according to some initial policy, and builds a graph from

the samples. The agent then calculates the eigenvectors of the graph Laplacian. Figure

1.2 shows the second eigenvector of the graph Laplacian. The k smallest eigenvectors can

6

then be used as basis functions to learn the optimal policy using a learning algorithm of the

programmer’s choice.

Figure 1.2. An illustration of the general approach in which the agent starts in a domain,
collects samples via exploration, builds a graph, calculates the k smallest eigenvectors of
the graph Laplacian and uses the eigenvectors as basis functions to represent the value
function during learning.

The technique described by Mahadevan and Maggioni (2007) builds a graph over the

state space and uses the eigenvectors of the graph Laplacian as basis functions. Basis

functions over state-action pairs are then created by copying these basis functions for each

action, zeroing out the bits corresponding to actions that were not performed. This means

that the basis functions for every action in a state will be identical.

Instead, we directly represent the state-action graph, which allows the representation to

vary for different actions in a state. Previous work has primarily focused on building basis

functions exclusively on the state space (Lagoudakis & Parr, 2003; Mahadevan, 2005) or

building separate function approximators for the state and action spaces (Smith, 2002). In

order to transform basis functions built exclusively on the state space, most approaches

typically copy the basis functions for each action (Lagoudakis & Parr, 2003; Mahadevan,

2005). Our approach creates fewer basis functions because it does not require saving basis

functions that are copied or the extra weights for these basis functions. This is especially

important in domains with a large number of actions and domains where the number of

actions available in each state varies significantly; the basis functions for a state must be

copied for all possible actions, even those not available in the state. Embeddings created

using state-action graphs are also able to differentiate between actions when several actions

7

with different costs lead from state s to state s′. In state graphs these differences cannot be

modeled and would be averaged or totally ignored.

In order to understand what these state-action graphs look like, consider a smaller ex-

ample of the four room grid world shown in Figure 1.2. In this domain, the agent can select

from four actions: north, east, south, and west. Figure 1.3 shows the state-action graph for

the upper right-hand room. Figure 1.3(a) shows the global topology of the graph. Each

node in this figure represents the four state-action pairs for each state. Figure 1.3(b) shows

the state-action pairs for state 21. In this dissertation, we will describe an approach that

allows an agent to create these graphs automatically and will demonstrate their usefulness

in learning.

23 24 25

36 37 38

49 50 51

21 22

34 35

47 48

62 63 64

75 76 77

60 61

73 74

88 89 9086 87

101

46

(a) State-action graph for the
four room gridworld.

21, N

21,E21, W

21, S

34

22

(b) Close up of transitions associated
with nodes for state action pairs for
state 1.

Figure 1.3. The state action graphs created for a small room.

When exploring basis function construction for hierarchical reinforcement learning, we

first extend the state-action graph approach to incorporate temporally extended actions.

We then examine building basis functions for multi-level task hierarchies. We introduce

an approach that constructs basis functions that decompose with the task hierarchy. This

approach automatically constructs basis functions for parent subtasks using basis functions

from the children of a subtask. A reduced graph is created and basis functions specific to

8

the subtask are generated from this graph. Basis functions are built recursively from child

subtasks.

1.2 Contributions

There are three contributions in this dissertation.

1. The first contribution is to introduce a technique for learning basis functions directly

in state-action space. Function approximators built on state-action spaces are more

efficient since they can capture similarities and distinctions in state-action space and

do not require copying. We empirically demonstrate that function approximation

using state-action graphs leads to faster learning.

2. The second contribution is to show how this technique can allow us to approximate

state-action value functions when the agent has access to macro-actions: actions that

take more than one time step and have predefined policies. A macro-action strings

together a set of primitive actions according to its policy. When the agent has access

to macro-actions, the effect of selecting different actions can lead to significantly

different resulting next states. Thus, actions have significantly different effects and

variable durations.

3. The third contribution is to examine how a task hierarchy can be used to scale up au-

tomatic basis function construction. One of the benefits of macro-actions is that they

help the agent structure its environment. Our research shows that task hierarchies

can be used to scale automatic basis function construction to large tasks. Addition-

ally, the use of automatically constructed representations significantly improves the

learning performance in hierarchical reinforcement learning problems.

9

1.3 Outline

The remainder of this dissertation is organized as follows. Chapter 2 provides an

overview of the background material and related work for this dissertation. Chapter 3

reviews spectral bases of graphs and their use in reinforcement learning. Chapter 4 in-

troduces state-action graphs and demonstrates how bases created from these graphs will

accelerate learning. Chapter 5 extends this approach to build basis functions for function

approximation in SMDPs. Chapter 6 introduces an approach to build basis functions for

multi-level task hierarchies.

10

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter introduces the mathematical framework and definitions that underly the

rest of the dissertation. We specifically review Markov Decision Processes (MDPs), re-

inforcement learning, and value function approximation. We also review related work on

representation discovery including manifold learning, basis function construction, and state

abstraction.

2.1 Markov Decision Processes

In this dissertation, we use finite Markov decision processes (MDPs) (Puterman, 1994)

as our framework for sequential decision making. An MDP is defined as a tuple M =

(S,A, P,R) where S is the set of states, and A is the set of actions. P is the transition

model where P a
ss′ specifies the probability of transitioning from state s to s′ after action

a is taken. R is the reward function: Ra
ss′ is the reward for taking action a in state s and

transitioning to s′. We will denote the set of actions admissible for a state s as A(s).

The agent can compute a policy π where π(s, a) is the probability that policy π will

select action a in state s. The agent’s task is to compute an optimal policy π∗ that will

allow it to maximize return. The expected sum of discounted future reward, or return, for

state s while following policy π can be written as:

V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s
}

=
∑
a

π(s, a)
∑
s′

P a
ss′ [R

a
ss′ + γV π(s′)],

11

where γ ∈ [0, 1) is the discount rate.

The optimal value function, denoted as V ∗, satisfies the Bellman optimality equation:

V ∗(s) = max
π

V π(s)

= max
a

∑
s′

P a
ss′ [R

a
ss′ + γV ∗(s′)]

for all s ∈ S.

Action-value or Q-value functions explicitly represent the value of a state-action pair.

Qπ(s, a) is the expected return of starting in state s, taking action a, and following policy

π from that point on:

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkri+k+1|st = s, at = a
}

= Ra
ss′ + γ

∑
s′

P a
ss′

∑
a′

π(s, a′)Qπ(s′, a′).

The optimal Q-value function can be written as:

Q∗(s, a) = E
{
rt+1 + γmax

a′
Q∗(st+1, a

′)|st = s, at = a
}

=
∑
s′

P a
ss′ [R

a
ss′ + γ max

a′∈A(s′)
Q∗(s′, a′)]

for all s ∈ S, a ∈ A.

The two value functions are related by V ∗(s) = maxaQ
∗(s, a), and the use of either

type of value function allows an agent to act optimally. However, the V -function requires

the agent perform a one-step look-ahead search to select an action. This search is difficult if

the agent does not have an accurate transition model. The Q-function is defined over state-

action pairs, rather than just states, and requires more storage space than the V -function.

However when using the Q-function, the agent does not need the transition model since the

value of an action is explicitly represented.

12

2.2 Reinforcement Learning

Reinforcement Learning (RL) (Sutton & Barto, 1998) is a machine learning framework

in which an agent learns to take actions in its environment in order to maximize some

measure, such as its long term discounted reward. At each time-step t the agent perceives

the state of its environment st ∈ S and selects an action from the set of available actions

at ∈ A. In response to this action a reward r is given, and the agent transitions to the next

state st+1.

Many algorithms in the RL framework can be viewed as variants of temporal-difference

(TD) learning. Using TD methods, the agent learns estimates of a value function directly

from experience in the environment without a model of the environment’s dynamics. TD

methods use a bootstrapping technique to update the estimates; estimates are updated using

existing estimates.

Q-learning (Watkins, 1989), a popular TD-type RL algorithm, approximates the opti-

mal action-value function through experience. Suppose the agent observes a current state

s, executes action a, receives reward r, and then observes state s′. Q-learning updates the

current estimate Qt(s, a) of Q∗(s, a) using the following update:

Qt+1(s, a)← Qt(s, a) + α[rt + γ max
a′∈A(s′)

Qt(s
′, a′)−Qt(s, a)],

where α ≥ 0 is the step-size parameter.

2.3 Value Function Approximation

As the state or state-action space grows larger, it becomes computationally infeasible

to fully represent the value function. Function approximation maps a state s and action a

into a length k feature vector φ(s, a) where k � |S × A| and φ(s, a) ∈ R.

In this dissertation, we focus on linear function approximation; Q is approximated a

weighted linear combination of feature vectors

13

Q̂π(s, a|θ) =
k∑
j=1

φj(s, a)θj, (2.1)

where θj is the j-th parameter and θ is a vector of the k parameters. Φ is a matrix with

|S| × |A| rows and k columns such that φj(s, a) is a row of this matrix. Since Q is linear

in θ, there is exactly one optimal θ (or in degenerate cases, one set of equally good op-

tima). However, because the basis functions that form the columns of Φ may be arbitrarily

complex, it is possible to represent any value functions.

Algorithms to learn the value function now update the parameter vector instead of the

tabular values. Q-learning can be modified to update Q̂ by updating the parameters in the

following way:

θt+1 ← θt + α[rt + max
a′∈A(s′)

γQ̂t(s
′, a′|θt)− Q̂t(s, a|θt)] · ∇θt

Q̂t(s, a|θt).

This is a gradient descent approach to learn the parameters, where α determines the step

size.

2.3.1 Least-squares Methods

Least-squares projection (Bradtke & Barto, 1996; Boyan, 1999; Nedic & Bertsekas,

2003; Lagoudakis & Parr, 2003) is a parameter estimation method used to approximate

value functions. Boyan (1999) examined the link between least-squares and TD methods.

Both approaches are solving the same system of equations, however TD methods are de-

scending a gradient towards the solution. TD methods are cheaper but are not as sample

efficient. Least-squares methods do not require specifying a step-size parameter α.

One such method, Least Squares Policy Iteration (LSPI) (Lagoudakis & Parr, 2003), is a

least-squares temporal-difference learning method for approximating the action-value func-

tion Q̂π. LSPI approximates the action-value function by projecting the exact Q-function

onto a subspace spanned by a set of basis functions φ(s, a). LSPI approximates the true

state-action value function Qπ(s, a) using the linear architecture defined in Equation 2.1.

14

LSPI uses a linear approximation scheme that attempts to find a fixed point approxi-

mation of the Bellman equation TπQπ ≈ Qπ, where Tπ is the Bellman operator, which is

defined as:

Tπ(Q)(s, a) = R
π(s)
ss′ + γ

∑
s′∈S

P
π(s)
ss′

∑
a′∈A(s′)

π(s′, a′)Q(s′, a′)

where π(s′, a′) is the probability that policy π selects action a′ in state s′.

The fixpoint solution for the parameters is given by:

θπ = (ΦT (Φ− γPΠπΦ))−1ΦTR,

where γ is the discount factor, and Ππ is a stochastic matrix that describes the current policy

π. The parameters θπ minimize the projected Bellman residual in the subspace spanned by

the basis functions. LSPI begins with an initial policy π0 and an initial set of parameters

θ0. The algorithm repeatedly iterates until the parameter vector converges.

2.3.2 Hand-Coded Basis Functions

Thus far, we have described how the action-value function can be approximated and

how the weight vector can be learned from experience. However, we have not described

how Φ is constructed. Constructing Φ is critical, as it is the representation the agent uses for

learning and defines the similarity between states. In this subsection, we briefly describe

traditional techniques where the basis functions are designed a priori.

There has been a great deal of work on hand-coded basis functions in RL, including

CMACs (Sutton & Barto, 1998), radial basis functions (Sutton & Barto, 1998; Lagoudakis

& Parr, 2003), polynomials (Lagoudakis & Parr, 2003), Fourier basis functions (Konidaris

& Osentoski, 2008) and nonlinear approaches, such as neural nets (Tesauro, 1992). Most

approaches use a fixed predefined parametric representation and then use a parameter esti-

mation technique such as temporal difference learning (Tsitsiklis & Van Roy, 1997; Sutton

15

& Barto, 1998), least squares projection (Bradtke & Barto, 1996; Boyan, 1999; Nedic &

Bertsekas, 2003; Lagoudakis & Parr, 2003), or linear programming (de Farias & Van Roy,

2003; Guestrin et al., 2003) to approximate the value function.

There has also been work on using non-parametric techniques for value function ap-

proximation. Gordon (1995) used nearest neighbor methods for value function approxi-

mation, and Ormoneit and Sen (2002) used kernel density estimation. Our approach dif-

fers from these by modeling the underlying manifold of the data and extracting a distance

metric that respects this manifold. Kernel methods have been applied to value function

approximation through the use of support vector machines (Dietterich & Wang, 2002) and

Gaussian processes (Engel et al., 2003; Rasmussen & Kuss, 2004). Our approach is similar

to these approaches; however, we do not use a hand-engineered kernel and instead use a

data-dependent graph or diffusion kernel (Kondor & Vert, 2004).

Some research focuses on dynamically defining the basis functions upon the state space.

Singh et al. (1995) introduced the concept of soft state clustering for function approxima-

tion. In this approach, the function approximator is a set of clusters over the state space.

Soft state clustering allows a state to belong to several clusters. They introduce an Adap-

tive State Aggregation (ASA) algorithm and define a good clustering as one that reduces

the Bellman error for the states of the MDP. They demonstrate that their ASA algorithm is

able to construct a clustering that reduces the Bellman error on the state space. Kretchmar

and Anderson (1999) investigated a technique to automatically allocate basis functions to

regions of the state space based on the probability of visiting the regions. Smith (2002)

used Self-Organizing Maps (SOMs) to map MDPs with continuous states and continuous

actions to a smaller space of discrete states and discrete actions. Separate SOMs were

used for states and actions, and the SOMs were updated based upon the performance of

the agent. SOMs were selected in order to capture some of the topology of these spaces;

however, this work did not directly attempt to capture the underlying manifold of the state

or state-action space.

16

Driessens et al. (2006) used Gaussian processes in conjunction with graph kernels as

a function approximation for reinforcement learning. This approach is a non-parametric

Bayesian technique; no prior assumption is made about the parameters. Regression is used

to set the parameters in relational reinforcement learning tasks.

Some work has investigated representing structure in value functions themselves. Fos-

ter and Dayan (2002) investigated finding common structure in MDPs by decomposing a

set of value functions according to shared structure. Their work uses a mixture of Gaus-

sians as the model and trained the model using EM-based maximum likelihood techniques.

Drummond (2002) uses computer vision techniques to find nonlinearities in the value func-

tion.

Menache et al. (2005) propose modifying both the basis functions and parameter vector

simultaneously. They suggest two approaches: a gradient based adaptation and a cross

entropy approach and evaluate their approach using RBFs. The gradient method was found

to be more susceptible to local minimum and the cross entropy performed significantly

better but required a greater computational effort. This approach may not result in a linear

function approximator.

2.4 Representation Discovery

Currently, most research in machine learning assumes that the learning algorithm has

a set of useful features that were provided by a domain expert. In this dissertation, we

are interested in algorithms that allow the agent to automatically discover representations

from its experience and use these representations for learning. Representation discovery

is an area of vital importance for machine learning and artificial intelligence (Mahadevan,

2008). The proper representation facilitates learning. In this section, we first discuss di-

mensionality reduction and manifold learning. We then review automatic basis function

construction in Markov decision processes.

17

2.4.1 Dimensionality Reduction and Manifold Learning

Many machine learning applications involve large data sets with a significant amount

of data. Often this data has a high dimension, or number of variables. One reason that high

dimensional data can be be difficult for machine learning algorithms is because many vari-

ables may not be important for the task of interest. The goal of dimensionality reduction

is to construct lower dimensional representations that capture the important features of the

data. Dimensionality reduction approaches can be categorized as either representing the

data on a subset of the original features – feature subset selection – or by constructing new

features. Many approaches to basis function construction can be thought of as dimensional-

ity reduction techniques. Rather than learning the full set of parameters required in a table

look-up, the size of the space is reduced and then the smaller set of parameters is learned. In

this section, we will primarily focus our discussion on approaches to dimensionality reduc-

tion that construct new features since they are most closely related to the approach we will

use for basis function construction. We only briefly mention a few approaches, more infor-

mation about different dimensionality reduction techniques is available in several survey

papers (Fodor, 2002; Ye, 2003; Gorban et al., 2007).

Traditional dimensionality reduction techniques often focus on finding reductions that

are linear transformations of the data. Principal component analysis (PCA) (Jolliffe, 1986)

and singular value decomposition (SVD) (Golub & Loan, 1989) find a low dimensional

fitting of the data that minimizes the mean square error. These approaches finds principal

components, which are the eigenvectors of the covariance matrix. Factor analysis (Mardia

et al., 1995) also finds a linear reduction but uses second order information; and projection

pursuit (Huber, 1985) captures higher than second order information such as the negative

Shannon entropy. Independent component analysis (Hyvvärinen, 1999) finds linear projec-

tions that are as statistically independent as possible, which is a stronger condition than the

correlation conditions of previously discussed approaches.

18

In the machine learning community there has been increasing interest in manifold and

spectral learning techniques for nonlinear dimensionality reduction. Isomap (Tenenbaum

et al., 2000), locally linear embedding (LLE) (Roweis & Saul, 2000), and Laplacian Eigen-

maps (Belkin & Niyogi, 2001) are unsupervised nonlinear dimensionality reduction tech-

niques. These techniques assume that local distance metrics are given but global distances

are unknown. They learn the underlying structure of the manifold by maintaining local

neighborhood structures. These techniques have been found to be especially useful in do-

mains such as vision and text where the data set is assumed to lie on a low dimensional

manifold.

The work on nonlinear dimensionality reduction has been applied to semi-supervised

learning (Belkin & Niyogi, 2004). In this work, the unlabeled data are used to discover

the underlying manifold of the data. The labeled examples are then used to develop a

classifier defined over the manifold. The major difference between this work and ours is

that reinforcement learning is an active learning process that does not take place on a static

data set. Our work is also different in that it is specifically aimed toward solving MDPs and

seeks to approximate value functions over a state space graph.

A large amount of the research on dimensionality reduction has mainly focused on clas-

sification and clustering; however, some work has focused on low dimensional embedding

in situations with dynamics or tasks involving optimal control. We specifically describe

some examples of this type of work since it also constructs low dimensional representa-

tions from data collected from an agent taking actions in a domain.

Jenkins and Matarić (2004) introduced spatio-temporal Isomap, an extension to Isomap

for data with both spatial and temporal relationships. The approach was used to find low

dimensional data from a teleoperated humanoid robot and from motion capture data of hu-

mans performing different activities. Tsoli and Jenkins (2007) and Ciocarlie et al. (2007)

investigate dimensionality reduction techniques for grasping tasks. Ferris et al. (2007);

Ham et al. (2005) use dimensionality reduction techniques for robotic localization tasks.

19

Yairi (2007) compares multiple dimensionality reduction approaches on a robotic map

building task without localization.

Shi and Malik (2000) introduce NCuts, an approach that uses spectral techniques to

perform image segmentation. Grudic and Mulligan (2005) use dimensionality reduction

techniques to perform clustering in visual tasks.

Action Respecting Embedding (ARE) (Bowling et al., 2005) is an approach that uses

actions when building low-dimensional representations of data. In this approach, the data

are transformed into a low-dimensional representation in which actions are a simple trans-

formation in the new space. While actions are used to create the embedding, they are not

explicitly represented in this approach.

2.4.2 Automatic Basis Function Construction in Markov Decision Processes

Recently ideas from the manifold learning and dimensionality reduction literature have

been used to build basis functions for Markov decision processes. Much of this work has

focused on modeling the intrinsic structure of the domain, particularly the state space. The

goal of this work is to automatically construct basis functions such that the solution of

the MDP calculated using these basis functions closely approximates the solution of the

original MDP.

Some early work recognized that the state space of an MDP might be embedded in a

low-dimensional manifold. This early work relied upon heuristics that attempt to exploit

this intuition. Smart (2004) proposed the use of manifold techniques for value function

approximation. This work used charts to cover the state space, and basis functions were

created from the embeddings of the charts. Ratitch and Precup (2004) used Sparse Dis-

tributed Memories (SDMs) to create basis functions over the state space. Both of these

approaches have similarities to CMACs. However, the location and size of the tiling is

dynamic and can be adjusted. While the authors recognized that the MDP could be rep-

20

resented in a low-dimensional manifold, their approaches are closer to automatic model

selection than automatic basis function construction.

Representation Policy Iteration (RPI) (Mahadevan, 2005) constructs a graph over the

sampled state space and uses spectral analysis of the graph to define basis functions. Our

work specifically builds upon RPI, and we will be discuss this approach in significant detail

in Chapter 3. Sugiyama et al. (2007) defines Gaussian kernels on a graph created on the

state space and uses them for value function approximation. A technique, similar to the

techniques used by Gärtner et al. (2003) and Driessens et al. (2006), is used to extend

the basis functions to state-action pairs by incorporating information about the transition

probabilities. This approach requires explicitly modeling the transition matrix and performs

poorly in highly stochastic environments. An automatic approach for the placement of the

Gaussian centers is not currently given. Thus this approach is not a fully automatic basis

function construction technique. Several techniques for automating RBF placement have

been examined and could be incorporated into this approach (McLoone et al., 1998; Moody

& Darken, 1989; Sanchez, 1995; Karayiannis, 1999; Haykin, 1999; Gonzalez et al., 2003;

Lazaro et al., 2003).

Other approaches introduced techniques for learning basis functions that incorporates

information about the reward function. We call basis functions created by these techniques

reward sensitive basis functions; basis functions constructed without using the reward func-

tion are reward insensitive basis functions. If the reward function changes but the state and

action spaces and the transition model P remain unchanged, a new set of basis functions

must be learned. Keller et al. (2006) and Parr et al. (2007) investigate techniques that

learn basis functions that incorporate reward from a specific task by estimating the Bell-

man residual. Petrik (2007) combines Krylov bases and Laplacian bases to create basis

functions that incorporate the reward function. Mahadevan (2009) investigates the use of

Drazin bases for value function approximation.

21

Another vein of research has examined multi-scale basis function construction. These

approaches create a hierarchy of basis functions, where the hierarchy contains basis func-

tions at different levels of resolution. One approach employs multigrid methods, typically

used to solve differential equations, to construct basis functions at multiple levels of res-

olution (Ziv, 2004; Ziv & Shimkin, 2005) . Diffusion wavelets (Mahadevan & Maggioni,

2006; Maggioni & Mahadevan, 2006a) are another approach used to automatically con-

struct basis functions over the MDP’s state space. This approach compactly represents

dyadic powers of the transition matrix at each level of the hierarchy.

2.5 State Abstraction in Reinforcement Learning

In the previous section, we discussed methods to automatically construct basis functions

for MDPs. Another approach to compressing the state space in MDPs is state abstraction

or state aggregation. Abstraction is frequently described as mapping the original repre-

sentation of the problem to an abstract representation of the problem, where the abstract

representation is more compact. This problem has been extensively studied in the context

of decision making (Rogers et al., 1991; Giunchiglia & Walsh, 1992). In this section, we

briefly review some of the approaches that have been used for abstraction in RL. Li et al.

(2006) provide a unified treatment of some of these approaches and a detailed review of

different abstraction approaches.

State aggregation methods can be divided into two groups, exact and approximate meth-

ods. . Exact methods preserve P andR of the original MDP while constructing the abstract

model. Model minimization (Givan et al., 2003) and MDP homomorphisms (Ravindran,

2004; Ravindran & Barto, 2003; Wolfe & Barto, 2006) typically fall into this category of

state abstraction.

Approximation methods for homomorphisms have been suggested (Dean et al., 1997;

Givan et al., 2000; Ferns et al., 2004). These methods define a similarity measure, and

aggregation is performed according to the measure. Adaptive aggregation (Castañon &

22

Bertsekas, 1989) groups states with similar Bellman residuals. Some work has examined

creating abstractions when the agent does not know P and R. This work has mainly in-

volved using statistical tests. The G algorithm (Chapman & Kaelbling, 1991) aggregates

states with the same reward and Q-values for each action. The U-tree algorithm (McCal-

lum, 1995) combines states that have the same optimal actions and similar Q-values for the

actions. Policy Irrelevance (Jong & Stone, 2005) group states that have the same optimal

action. However this approach may not be as useful for learning the optimal policy in the

original MDP.

Approaches to abstraction and function approximation attempt to reduce the size of

the learning problem by coming up with a more compact representation. The basis matrix

in state aggregation approaches partitions the space, where each state can only be in one

partition. Most state abstraction approaches require the agent to have access to P and

R; however, some work has been done on lifting this assumption. Traditional function

approximation techniques have not focused on preserving properties of P or R but also do

not require that these functions be known or estimated. However, this work has primarily

focused on using the abstractions created exclusively for value function approximation.

The use of the basis functions created by these approaches for other applications is not well

explored.

23

CHAPTER 3

SPECTRAL BASES ON GRAPHS

This dissertation focuses on representation discovery in MDPs. We build upon work in

representation discovery using the graph Laplacian for constructing basis functions, specif-

ically Representation Policy Iteration (RPI) (Mahadevan, 2005). In this chapter, we define

the terminology that will be used throughout the remainder of the dissertation and review

this approach in detail.

In this chapter, we specifically review the model-free version of RPI, in which the agent

does not have access to the transition matrix P or the reward functionR. RPI can be seen as

a generic algorithm where the agent explores its environment and automatically constructs

basis functions. We specifically discuss a version of RPI where the the agent automatically

constructs basis functions over the agent’s state space.

Definition 3.1 Automatic State Space Basis Construction Problem: Given a Markov

Decision Process M = (S,A, P,R), automatically construct a low-dimensional represen-

tation Φ such that the size of Φ is |S| × k where k � |S|.1 Φ should be constructed such

that the solution of M calculated using Φ closely approximates the solution of the original

MDP M . Φ can be seen as compressing the state space of the MDP.

In the RPI approach an agent explores its environment and creates a representation

of the sampled state space in the form of a graph. The agent then uses spectral graph

1It is important to note that it is possible and desirable for the basis to be defined over a set of samples
S̃ ⊆ S. When the basis is defined over a subset of the state space, an out of sample extension technique is
required for states not in the sample set (Mahadevan et al., 2006).

24

theoretic approaches to create basis functions. Spectral graph theory provides an analytical

approach to deducing the principal properties and structure of a graph from its eigenvalues

and eigenvectors. In this chapter, we provide a brief overview of spectral graph theory; a

more in-depth explanation can be found in Chung (1997). We also give a brief overview of

the RPI framework.

3.1 Basic Definitions

We start by first defining a graph and terms commonly associated with a graph. A

weighted undirected graph is defined as a tuple Gu = (V,E,W), where V is the vertex set,

E is the edge set, and W : E → R is the weight function, where W (u, v) = W (v, u) and

W (u, v) ≥ 0. If W (u, v) = 0, there is no edge between vertex u and vertex v. Figure 3.1

shows an example of an undirected graph with five vertices and six edges.

1 2

54

3

Figure 3.1. An example of an undirected graph containing five vertices and six edges. All
edges have a weight of one.

The adjacency matrix for our example graph is :

W =



0 1 0 1 0

1 0 1 0 1

0 1 0 0 1

1 0 0 0 1

0 1 1 1 0


.

25

The degree of vertex u is du =
∑

vW (u, v). In our example graph, d2 = 3 and

d3 = 2. The valency matrix D is a diagonal matrix whose entries are the row sums of W ,

or equivalently the degree of the vertices. D for our example graph is:

D =



2 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 3


.

A walk of length l on Gu is a sequence of vertices (v0, v1, ...vl) such that {vi, vi+1} ∈ E

for i, 1 ≤ i < l. A random walk is a walk on G where vi+1 is chosen uniformly at random

from the neighbors of vi. The random walk is defined by a transition probability matrix

P = D−1W . P(u, v) = W (u,v)
du

, du 6= 0 denotes the probability of moving from vertex u to

vertex v. P(u, v) = 0 if no edge exists between u and v, and
∑

uP(u, v) = 1. P for our

example graph is :

P =



0 1
2

0 1
2

0

1
3

0 1
3

0 1
3

0 1
2

0 0 1
2

1
2

0 0 0 1
2

0 1
3

1
3

1
3

0


.

P is called a diffusion model because for any function f on Gu, the powers of P tf ,

where t is the number of steps, determine how quickly the random walk will mix and

converge to the stationary distribution ρ(v) = dv

vol(G)
, where vol(G) =

∑
v∈G dv is the

volume (Chung, 1997). However, P is not necessarily a symmetric matrix, and it is often

beneficial, for computational reasons, to find a symmetric matrix that has a closely related

spectral structure. This matrix is the graph Laplacian matrix.

26

3.1.1 Functions over Graphs

Before introducing the graph Laplacian we discuss functions over a graph. A function

f : V → R over a graph maps vertices of the graph to the real numbers. We define an inner

product between two functions f and g to be:

< f, g >=
∑
v∈V

f(v)g(v).

The L2-norm of a function over G is:

||f ||22 =
∑
v∈V

|f(v)|2dv,

where dv is the degree of vertex v. We can now discuss the idea of smooth functions over a

graph. Intuitively, a smooth function over a graph means that f(u) will be similar to f(v) if

u and v are connected in the graph. We can describe how a function over the graph changes

through its gradient. The gradient of a function over a graph is defined as:

∇f (u, v) = W (u, v)(f(u)− f(v)).

The smoothness of a function over a graph is measured by the Sobolev norm (Mahadevan

& Maggioni, 2006):

||f ||2H2 = ||f ||22 + ||∇f ||22 =
∑
v∈V

|f(v)|2dv +
∑
u∼v

|f(u)− f(v)|2W (u, v). (3.1)

∑
u∼v denotes the sum over all unordered pairs u and v, where u and v are adjacent. This

can also be seen as taking the sum over all the edges. It is important to note that each edge

is only counted once in this sum.

The first term of the Sobolev norm controls the size, in terms of the L2-norm, of the

function f . The second term, also known as the Dirichlet sum, controls the size of the

gradient. The smoother a function f is over the graph the smaller ||f ||2H2 will be.

27

3.1.2 Graph Laplacian

Intuitively the graph Laplacian measures how information flows throughout the graph.

There are two forms of the graph Laplacian (Chung, 1997): the combinatorial Laplacian of

a graph is defined as:

L = D −W, (3.2)

and the normalized Laplacian is:

L = D−
1
2 (D −W)D−

1
2 . (3.3)

It is often more intuitive to think about the value of these functions for two vertices in

the graph. The combinatorial Laplacian can be written as:

L(u, v) =


du if u = v,

−1 if u and v are adjacent,

0 otherwise,

and the normalized Laplacian can be written as:

L(u, v) =


1 if u = v, and du 6= 0

− 1√
dudv

if u and v are adjacent,

0 otherwise.

The normalized Laplacian enforces a normalization constraint on the Laplacian, where the

the degree of a vertex is a local measure. The combinatorial Laplacian for our example

graph is:

28

L =



2 −1 0 −1 0

−1 3 −1 0 −1

0 −1 2 0 −1

−1 0 0 2 −1

0 −1 −1 −1 3


.

An operator over a graph takes a function f over the graph and transforms it into

another function f ′ over the graph. The Laplacian can be viewed as an operator on the

space of functions f : fV → R. In particular, the Laplacian can be viewed as a difference

operator. When the Laplacian is applied to a function f over the graph, it can be shown

that:

Lf(u) =
∑
u∼v

(f(u)− f(v))W (u, v). (3.4)

It can be shown that:

〈f, Lf〉 =
∑
u

f(u)Lf(u) =
∑
u∼v

(f(u)− f(v))2W (u, v). (3.5)

This property is important because it means that smoothness is measured based on the

connectivity in the graph and not Euclidean space. Additionally, it is worth noting that

〈f, Lf〉 equals ||∇f ||22, from Equation 3.1.

Earlier we discussed how the transition probability matrix P is useful for analyzing

properties of the graph. At first glance, the graph Laplacian and P seem to have little in

common. However, the two are related. The connections are best understood by examining

the normalized Laplacian L:

29

L = D−
1
2 (D −W)D−

1
2

= I −D−
1
2WD−

1
2

I − L = D−
1
2WD−

1
2

D−
1
2 (I − L)D−

1
2 = D−1W

D−
1
2 (I − L)D−

1
2 = P

From this we can see that the random walk operator and I − L are similar. In fact, the

eigenvectors of the random walk are the eigenvectors of I − L multiplied by D−
1
2 . We

can now provide a rationale for using the eigenvectors of the graph Laplacian as a basis

representation for the graph.

3.1.2.1 Spectral Decomposition of the Graph Laplacian

We first give a brief review of eigenvectors and eigenvalues. Given an n by n matrix A,

a non-zero vector φ is defined to be an eigenvector of A if it satisfies

Aφ = λφ, (3.6)

where λ is the eigenvalue associated with eigenvector φ. IfA is symmetric, the eigenvectors

of A are linearly independent and form an orthogonal basis of A. A basis for a space is

defined as a set of vectors such that a linear combination of these vectors can represent every

vector in that space, and none of these vectors can be represented as a linear combination

of the other eigenvectors. If A has n linearly independent eigenvectors we can use them to

diagonalize A:

AΦ = ΦΛ (3.7)

A = ΦΛΦ−1, (3.8)

30

where Λ is a diagonal matrix, Λ(i, i) = λi, and Φ is the eigenvector matrix where each

column is a distinct eigenvector.

The Laplacian is symmetric as well as positive semi-definite, and thus it has eigenvalues

that are real valued and non-negative (Chung, 1997). The first eigenvalue λ1 = 0. The first

eigenvector of L is a constant function φ1 = c1 where c is a constant and 1 is a vector of

ones. The first eigenvector of L is φ1 =
√
D1. The eigenvectors of the graph Laplacian are

an orthonormal basis that span the wholwholee space of functions. These basis functions

are defined over the entire graph and thus capture global features of the graph.

Λ and Φ for L of our example graph are:

Λ =



0 0 0 0 0

0 1.3820 0 0 0

0 0 2.3820 0 0

0 0 0 3.6180 0

0 0 0 0 4.6180



Φ =



−0.4472 0.5117 −0.6015 −0.1954 −0.3717

−0.4472 −0.1954 −0.3717 0.5117 0.6015

−0.4472 −0.6325 −0.0000 −0.6325 0.0000

−0.4472 0.5117 0.6015 −0.1954 0.3717

−0.4472 −0.1954 0.3717 0.5117 −0.6015


.

Figure 3.2 shows a visualization of the 2nd and 3rd eigenvectors in Φ. In this visualiza-

tion, the vertices of the graph are labeled and the grey lines show the graph’s edges. The

dark blue points are the values of the eigenvector for each vertex in the graph. To enable

easier visualization, we added light blue lines from each vertex in the graph to its value in

the eigenvector. If no line appears, the value of that vertex in the eigenvector is zero.

31

(a) 2nd Eigenvector (b) 3rd Eigenvector

Figure 3.2. A three dimensional view of the 2nd and 3rd eigenvectors of the graph Lapla-
cian for the graph in Figure 3.1. Each point represents the value of the eigenvector for that
vertex. We added lines from the graph to the points to help with visualization.

3.1.3 Embeddings of the Graph

The embedding of a vertex, Φ(v), is the spectrum evaluated at vertex v. The embedding

of a vertex is its values in any subset of the eigenvectors. However, we will typically refer

to the eigenvectors that correspond to the first k low valued eigenvalues. The embedding

of vertex 3 in our graph when k = 3 is

Φ(3) = [−0.4472 − 0.6325 − 0.0000].

The embedding of the vertices can be used to visualize the graph in a two dimensional

plane. When we refer to the embedding of a graph, we refer to the visualization of the

graph such that the vertices of the graph are plotted according to their values in the 2nd and

3rd eigenvectors. Figure 3.3 shows the embedding for our example.

3.1.4 Directed Graph Laplacian

Thus far, our discussion has been limited to undirected graphs. However, there are

many scenarios where a directed graph would be more appropriate. In this section, we

briefly summarize spectral decomposition of the Laplacian on directed graphs; a more in

depth analysis can be found in (Chung, 2005; Johns & Mahadevan, 2007).

32

Figure 3.3. The embedding of the graph in Figure 3.1.

A weighted directed graph is defined as a tuple Gd = (V,Ed,W) where V is the set of

vertices, Ed is the set of directed edges, and W is the weight matrix. The major distinction

between the directed and undirected graph is the non-reversibility of the edges. A directed

graph may have weights W (u, v) = 0 and W (v, u) 6= 0. Figure 3.4 shows an example of a

directed graph. This example is similar to that shown in Figure 3.1. However, in the new

graph four of the edges are directed: E(2, 3), E(2, 5), E(3, 5), and E(4, 1).

1 2

54

3

Figure 3.4. An example of an directed graph containing five nodes, two undirected edges,
and four directed edges. All edges have a weight of one.

33

The weight matrix and valency matrix for the graph in Figure 3.4 are:

W =



0 1 0 0 0

1 0 1 0 1

0 0 0 0 1

1 0 0 0 1

0 0 0 1 0


and D =



1 0 0 0 0

0 3 0 0 0

0 0 1 0 0

0 0 0 2 0

0 0 0 0 1


.

To define the graph Laplacians on Gd, we must first introduce the Perron vector, ψ,

which is used to make the transition matrix symmetric. The transition probability matrix

of Gd is defined as P = D−1W . The probability transition matrix for the graph in Figure

3.4 is:

P =



0 1 0 0 0

1
3

0 1
3

0 1
3

0 0 0 0 1

1
2

0 0 0 1
2

0 0 0 1 0


.

The Perron-Frobenius Theorem states that if Gd is strongly connected, then P has a

unique left eigenvector ψ with all positive entries such that Pψ = ρψ, where ρ is the

spectral radius. The spectral radius of a matrix A is the real number max{|λ| : Ax = λx},

where |λ| is the modulus or formal product of the (possibly complex-valued) eigenvalue

λ (Mahadevan, 2009). ρ can be set to 1 by normalizing ψ such that
∑

i ψi = 1. A more

intuitive way of thinking of ψ is as the stationary distribution of a random walk on the

graph. The example graph is strongly connected since there is a path from all vertices to

all other vertices within the graph.

There is no closed-form solution for ψ; however, there are several algorithms to calcu-

late it. The power method (Golub & Loan, 1989) is an approach to iteratively calculate ψ

that starts with an initial guess for ψ, uses the definition ψP = ψ to determine a new esti-

mate, and iterates. Another technique is the Grassman-Taksar-Heyman (GTH) algorithm.

34

This technique uses a Gaussian elimination procedure designed to be numerically stable.

The naive GTH implementation runs in O(n3), but this can be improved in O(nm2) if P

is sparse. Other techniques, such as Perron complementation (Meyer, 1989), have been

introduced to speed up convergence.

Ψ is a diagonal matrix where Ψii = ψi. For our example Ψ is

Ψ =



.2 0 0 0 0

0 .2 0 0 0

0 0 .0667 0 0

0 0 0 .2667 0

0 0 0 0 .2667


.

The graph Laplacians for the directed graph are defined by Chung (2005) as

Ld = Ψ− ΨP + PTΨ

2
(3.9)

and

Ld = I − Ψ1/2PΨ−1/2 + Ψ−1/2PTΨ1/2

2
. (3.10)

Ld for the graph in Figure 3.4 is:

Ld =



.2 −.1333 0 −.0667 0

−.1333 .2 −.0333 0 −.0333

0 −.0333 .0667 0 −.0333

−.0667 0 0 .2667 −.2

0 −.0333 −.0333 −.2 .2667


.

Ld is a symmetric matrix, and we can work backwards from Ld to find the analogous

symmetric graph. We show this graph in Figure 3.5; note that it now has undirected edges

35

with weights. These weights constrain the random walk. Recall that the random walk is

defined as P(u, v) = W (u,v)
du

. Vertex u has a lower probability of moving to a vertex v when

an edge with a low weight connects them. This example illustrates how the directed graph

Laplacian essentially can be seen as making the directed graph undirected such that the

properties of the random walk are preserved.

1 2

54

3

.1333

.0333

.0333

.0333

.2

.0667

Figure 3.5. The analogous symmetric graph. The edge weights, listed on the edges, help
maintain the properties of the random walk of the original directed graph.

The directed Laplacian requires a strongly connected graph. However, graphs created

from data may not have this property. In order to ensure that this property exists, we use

a teleporting random walk (Page et al., 1998). With probability η the agent acts according

to the transition matrix P , and with probability 1 − η teleports to any other vertex in the

graph uniformly at random. This assumption is not built into the domain or the data. It is

only used for the purpose of creating ψ and performing the spectral decomposition.

3.2 Applications of Spectral Graph Analysis

Thus far, we have discussed graphs and spectral graph analysis as an abstract concept.

Graphs are a natural representation for the data of interest for machine learning applica-

tions. Graphs can be used to model interactions between people, the relationship between

documents, and the relationship between portions of images or images themselves. Once

a graphical representation of the data has been constructed, the techniques and analysis we

discussed earlier in this section can be performed. Spectral analysis of graphs can be used

36

in many ways. Some popular applications of spectral theory are graph partitioning, graph

compression, and function approximation.

Spectral graph partitioning is performed by using the eigenvector that corresponds to

the 2nd smallest eigenvalue of the graph Laplacian. This eigenvector is often referred to

as the Fiedler vector. The Fiedler vector can be used to partition the vertices into two sets

and used recursively to cluster the vertices of the graph. Spectral graph partitioning has

been used in many applications such as vision (Shi & Malik, 2000) , text (Dhillon, 2001),

clustering (Ng et al., 2002), and robotics (Olson et al., 2005).

Graph compression and function approximation can be seen as essentially analogous

approaches. Graph compression uses the eigenvectors that correspond to the smallest k

eigenvalues. The graph with n vertices goes from being represented in an n by n matrix to

an n by k matrix where n � k. Function approximation compactly represents a function

defined over the entire graph by representing the values over the compressed graph. These

approaches have been used in may applications such as graphics (Karni & Gotsmann, 2000)

and semi-supervised learning (Belkin et al., 2004).

3.3 Representation Policy Iteration

The major insight of representation policy iteration (RPI) (Mahadevan, 2005; Mahade-

van & Maggioni, 2007) is that the agent can use its experience in the domain to construct

compact representations of the MDP. The initial work used graphs to compress MDPs as

well as to approximate any function over the state space of the MDP. This work was ex-

tended to use diffusion wavelets (Maggioni & Mahadevan, 2006b) and Drazin bases (Ma-

hadevan, 2009).

In this section, we specifically review the approach to the construction of basis func-

tions where basis functions are constructed from the graphs and used as a representation

of the state space of the domain. The eigenvectors of the graph Laplacian can be used for

value function approximation in MDPs. Previously, RL algorithms primarily used hand en-

37

gineered basis functions such as RBFs and polynomial basis functions. RPI automatically

constructs basis functions from the agent’s experience in the domain. Basis functions are

constructed via spectral analysis of the state graph built from the MDP. The RPI algorithm

is illustrated in Figure 3.6. The first phase is an initial sample collection according to some

initial policy; the second is the basis construction phase, and the third is the control learning

phase. Figure 3.7 shows a more detailed algorithmic view of the RPI algorithm.

Figure 3.6. An illustration of the general approach in which the agent starts in a domain,
collects samples via exploration, builds a graph, calculates the k smallest eigenvectors of
the graph Laplacian and uses the eigenvectors as basis functions to represent the value
function during learning.

3.3.1 MDPs as Graphs

RPI builds a graph of an MDP, as defined in Section 2.1. First, we define a graph over

an MDP.

Definition 3.2 MDP State Graph: An MDP state graph G is defined over an MDP M ,

such that the vertices V correspond to the states S or a subset of the states. An edge exists

between u and v if there is an action that causes a transition between the corresponding

states. The weights on the edges of the graph can be defined in many ways. For simplic-

ity, unless otherwise stated, we assume that that W (u, v) = 1 if u and v are connected,

otherwise W (u, v) = 0.

An MDP state graph can easily be constructed from the transition model P . However,

in RL an agent does not typically have access to P . RPI assumes that the agent performs

an initial exploratory period. During this time, the agent executes a policy πm, typically

38

a random walk, and collects a set of samples D, each of which consists of state, action,

reward and next state, (s, a, r, s′). A graph is built such that the vertices of the graph

correspond to the states in D. States i and j are connected if they are linked temporally in

D: W (i, j) = 1 if i and j are linked otherwise W (i, j) = 0.

It is important to note that in RPI, the agent is not building an accurate estimate of P ,

but is building an approximate representation of state transitions. This places the approach

somewhere between the realm of model free and model based approaches. Building an

accurate estimate of P would require significantly more samples than is required with this

approach.

The premise behind this approach is that building representations initially makes it

easier for learning to occur at a later time. RPI assumes that while the reward function

is typically not smooth, the value function will often be smooth over the state space. The

graph models the geometry of the state space, and thus the spectral approaches we described

for general graphs can be applied to the MDP state graph. Phi the basis functions are

created using the first k eigenvectors of the graph Laplacian. The eigenvectors may be used

to approximate the value function as described in Section 2.3.

This approach has been demonstrated to significantly improve performance over tradi-

tional basis function approaches such as RBFs and polynomial basis functions (Mahadevan,

2005; Mahadevan & Maggioni, 2007; Mahadevan, 2008). Primarily, this is due to the fact

that the basis functions respect the geometry of the state space.

Most previous work on automatic basis function construction has employed least squares

learning approaches, particularly LSPI (Lagoudakis & Parr, 2003). The choice in function

approximator is independent of the choice in learning algorithm. In this dissertation, we

use incremental TD learning algorithms; while least squares approaches have been shown

to be sample efficient, incremental algorithms are also desirable.

39

Model-Free RPI Algorithm (D, γ, ε, k, πm):
// D: Source of samples (s, a, r, s′)
// γ: Discount factor
// ε : Stopping criteria
// k: Number of basis functions
//πm: Initial policy specified as a weight vector w0

1. Sample Collection:

(a) Generate a set of samples, D, which consists of a state, action, reward, and next state,
(s, a, r, s′). The samples are created using a series of exploratory trajectories using πm.
Typically πm is a random walk that terminates when an absorbing state is reached or
some preset maximum number of steps is reached.

(b) Subsample D in order to gain a smaller set of transitions Ds by some method, random
or greedy are typical examples.

2. Representation Learning:

(a) Build an undirected weighted graph Gu from Ds where V is the set of vertices, Eu is
the edge set, and W is the weight matrix. The vertices are the set of states, S ∈ Ds.
Several methods can be used to connect the states. The simplest technique is placing
an edge with weight 1 between state i and state j if they are temporally linked in Ds.

(b) Calculate the k lowest order eigenfunctions of the (combinatorial or normalized) graph
Laplacian operator on Gu. These k eigenvectors are used as the basis functions φ.

i. Form the directed Laplacian per Equation 3.2 or 3.3.
ii. Calculate φ by computing the eigenvectors of the graph Laplacian.

Create the basis functions for state action pairs by concatenating the state encoding
|A| times.

3. Control Learning Phase:
Use a parameter estimation method such as LSPI (Lagoudakis & Parr, 2003) or Q-learning
(Watkins, 1989) to find the best policy π. Previous papers have primarily focused on the use
of LSPI.

4. Optional: Repeat the above procedure by calling RPI(D, γ, ε, k, πm+1)

Figure 3.7. The generic model-free RPI algorithm for learning representation and control
(Mahadevan & Maggioni, 2007).

40

CHAPTER 4

REPRESENTATION DISCOVERY USING STATE-ACTION
GRAPHS

In this chapter, we discuss algorithms that automatically construct representations for

action-value functions. Action-value functions represent the value of taking an action in a

given state and can be used to derive an appropriate policy in an MDP, typically by greedily

selecting actions with the highest value. Action-value functions are necessary when an

agent cannot perform one-step look-ahead search or when this computation is expensive.

Action-value functions have a long history in AI and are an important part of reinforcement

learning. The most popular type of action value function for RL, the Q-function, was

introduced by Watkins (1989). However, the idea of the action-value function predates this

work significantly. Shannon (1950) used a function h(P,M) for a chess program to decide

if performing move M in position P was worthwhile. In classical physics, Hamilton’s

principal function is an action-value function (Goldstein et al., 2002).

Watkins (1989) argues for the use of action-value functions because they are signif-

icantly smaller to store than models of the reward and transition probability functions.

Action-value functions require at most size |S||A|. In the worst case, a model of the re-

ward function requires size |S||A|, and the transition probability function requires |S|2|A|.

However, these functions are often quite sparse and thus compressible. While action-value

functions are comparatively smaller, they can still grow to be quite large. Function approx-

imation is necessary when the action-value function cannot be exactly represented or when

generalization is desired. Function approximation of an action-value function requires that

the basis functions be defined over state-action pairs rather than over states alone.

41

Most approaches to function approximation create basis functions on the state space

and then map these basis functions to state-action space. Perhaps the simplest approach

is to copy the state space basis functions for all possible actions, even those not available

in the state (Lagoudakis & Parr, 2003; Mahadevan, 2005). Another approach is to use a

linear combination of the features of the potential next states of an action as the features for

the state-action pair (Gärtner et al., 2003; Driessens et al., 2006; Sugiyama et al., 2008).

This approach has been observed to perform well in situations where the environment is

deterministic.

Both approaches map features created on the state space to features in state-action

space, but the mappings do not allow compression across states and actions simultane-

ously. In this chapter, we examine how basis functions can be automatically constructed in

state-action space.

Definition 4.1 Automatic State-Action Space Basis Construction Problem: Given a

MDP M = (S,A, P,R), automatically construct a low-dimensional matrix representation

Φ such that the size of Φ is |S||A| × k where k � |S||A|.1 Φ should be constructed such

that the solution of M calculated using Φ closely approximates the solution of the original

MDP M . Φ can be seen as compressing the state-action space of the MDP.

We introduce an approach to automatically building basis functions that captures simi-

larities across both states and actions using state-action graphs. We describe these graphs,

introduce two techniques for building them, and empirically demonstrate that they perform

better than basis functions created from state graphs.

1It is important to note that it is possible and desirable for the basis to be defined over a set of samples
S̃ ⊆ S and Ã ⊆ A.

42

4.1 State-Action Space

To build basis functions appropriate for action-value functions, it is useful to directly

incorporate actions when creating a representation. Most previous approaches construct

representations for all actions using copies of the same set of features, with separate weights

for each action. In this work, we propose building basis functions using state-action graphs.

In our approach the agent can generalize over states and actions simultaneously. This

reflects the actual similarities and differences between actions.

Definition 4.2 MDP State-Action Graph: An MDP state-action graph Gsa = (Vsa, Esa,

Wsa) is defined over an MDP M such that each vertex v ∈ Vsa corresponds to a state-

action pair (s, a), where s ∈ S and a ∈ A. An edge exists between u, (s, a), and v, (s′, a′),

if an action a ∈ A(s) causes a transition between s and s′ and a′ ∈ A(s′). Wsa is the

weight matrix for the graph and specifies the weights over the edges in Esa.

4.2 Graph Creation in State-Action Space

State-action graphs can be created in a variety of ways. In this section, we assume the

agent undertakes an initial exploratory period during which it will collect a set of samples

D. These samples will be used to build the state-action graph, Gsa. Vsa is the set of state-

action pairs observed in D.

Two techniques, shown in Figure 4.1, may be used to create Esa in state-action graphs.

The first technique, on-policy graph creation, places an edge between (s, a) and (s′, a′) if

D contains at least one sample where the agent was in state s, took action a, transitioned

to state s′ and then selected action a′. The second technique, off-policy graph creation,

places an edge between (s, a) and (s′, a′) if D contains at least one sample where the agent

was in state s, took action a, and transitioned to s′ where a′ ∈ A(s′) is one of the actions

available in s′. Self-loops are explicitly excluded in both types of graph creation. On-policy

graph creation can be used to model the agent’s current policy while the off-policy graph

will model the underlying MDP. When the agent is executing a random walk, the two

43

s,a s',a'

(a) On-policy graph creation only adds a sin-
gle edge based on the exact experience of the
agent.

(s′,a′
1)

(s′,a′
2)

(s′,a′
3)

(s′,a′
4)

(s,a)

(b) Off-policy graph creation
adds edges for all actions avail-
able in state s′.

Figure 4.1. Two techniques to create state-action graphs.

techniques will converge in the limit to the same graph; however, the off-policy method

requires fewer samples.

State-action graphs may be significantly impacted when the environment is stochastic.

One approach to handle this is for Wsa to be an approximation of P . Wsa can be calculated

using a simple maximum-likelihood estimation (MLE) approach; we keep track of the

frequency of transitions during the exploration period and then divide the edge weight by

this number. The MLE approach constructsWsa such that unlikely transitions will not have

similar weights as likely transitions. However, this approach does not require an accurate

model of P , just an approximate weighting. Figure 4.2 shows simple pseudo-code for the

MLE construction of Wsa.

4.3 Basis Function Construction Using State-Action Graphs

Once the graph has been created, we use spectral techniques to create basis functions

for the state-action graph. State-action graphs are inherently directional. An undirected

edge in a state-action graph implies that the agent must be able to transition from state s

44

State-Action Graph Creation (D):
// D: Source of samples (s, a, r, s′, a′)
// Creates a graph Gsa = (Vsa, Esa,Wsa) where Vsa is the set of state-action pairs in D.

// u and (s, a): refer to a state-action pair (s, a) found in D
// v and (s′, a′): refers to a state-action pair (s′, a′) found in D

//ΥD(u): refers to a function that returns the number of times u is observed in D
//ΥD(u, v): refers to a function that returns the number of times a transition between u and v occurs
in D

If using on-policy graph creation
Wsa

(
(s, a), (s′, a′)

)
= ΥD

(
(s, a), (s′, a′)

)
Else for off-policy graph creation
Wsa

(
(s, a), (s′, a′)

)
= 0

For all (s, a, s′) ∈ D
For all a′′ ∈ A(s′)

Wsa

(
(s, a), (s′, a′′)

)
= Wsa

(
(s, a), (s′, a′′)

)
+ 1

For all Wsa(u, v) 6= 0
Wsa(u, v) = Wsa(u, v)/ΥD(u)

Figure 4.2. Pseudo-Code for creating state-action graphs.

using action a to state s′ and transition from state s′ with action a′ to state s. Assuming an

undirected graph as a model leads to a significant number of erroneous edges. Therefore,

we use the directed graph Laplacian, described in Section 3.1.4, where the transition matrix

is symmetrized using the Perron vector.

We will use the eigenvectors of the directed graph Laplacian on the state-action graph

as basis functions during learning. The resulting eigenvectors are directly defined over

state-action pairs. The embeddings of the state-action graph are in a different space: the

distance between state-action pairs depends upon the actions that the agent takes in a state.

State-action pairs can now be differentiated; some actions in a state are more similar than

others. This technique is capable of capturing smoothness in state-action space, which will

not necessarily happen when copying basis function created in state space.

This approach creates fewer basis functions because it does not require saving basis

functions that are copied or the extra weights for these basis functions. This is especially

45

important in domains with a large number of actions and domains where the number of

actions available in each state varies significantly. Embeddings created using these graphs

are also able to differentiate between actions when several actions with different costs lead

from state s to state s′. In state graphs these differences cannot be modeled and would be

averaged or lost. While fewer basis functions are created, the graphs will be larger, thus the

eigen decomposition will be more expensive. If the agent can reuse these basis functions

many times during its lifetime, this initial expense should be worthwhile.

4.4 General Analysis of State-Action Graphs

In this section, we perform three different types of analyses on the state-action graph.

The first analysis describes the relationship between state-action graphs and state graphs.

The second provides a general argument that Q-functions will be smooth functions over

state-action graphs, and the third analyzes the Q-learning update rule for state and state-

action graphs.

4.4.1 Relationship Between State-Action Graphs and State Graphs

A state-action graph is a special type of graph where each vertex represents multiple

types of variables. The state and state-action graphs can be viewed as two models of a

corresponding underlying process. State-action graphs are strictly more general than state

graphs, and state graphs can be constructed from state-action graphs. Additionally action

graphs, graphs where actions are the vertices of the graph, could also be created.

In order to show this, we use the small deterministic five state gridworld in Figure 4.3

as an example. In this domain, the agent can take four actions: north, east, south, and west.

Given a state-action graph Gsa = (Vsa, Esa,Wsa), the corresponding state graph Gs =

(Vs, Es,Ws) can be easily constructed. Vs can be created from Vsa by selecting the unique

set of states that create the state-action pairs. Es can be created from Esa such that any two

46

(a) Small, discrete five state grid-
world.

1 S

1 E 2 W

2 S

3 W

4 N

4 E 5 W

5 N

2 E

1 N

1 W

5 E

5 S4 S

4 W

2 N

3 S

3 N

3 W

(b) The corresponding state-action graph. Each edge has a
weight of 1.

Figure 4.3. Example to demonstrate the relationship between state and state-action graphs.

nodes s1 and s2 ∈ Vs are connected if there exist two nodes (s1, ai), (s2, aj) ∈ Vsa with an

edge between (s1, ai) and (s2, aj).

In our example, the unique set of states that create the state-action pairs in Vsa are

{1 2 3 4 5}; these will be the vertices for the state graph Vs. There will be an edge between

vertex 1 and vertex 2 because (1, E) and (2,W) are connected in the state-action graph.

However, vertex 1 and vertex 3 will not have an edge between them because no state-action

pair for either state 1 or state 3 that are connected in the state-action graph.

Each entry in the weight matrix Wsa of the state-action graph provides the weight of

an edge between a state-action pair (s1, a1) to another state-action pair (s2, a2). Ws could

be easily created by setting Ws(s1, s2) = 1 if an edge exists between the vertices and 0

otherwise. An alternate approach to creating Ws is through marginalization:

Ws(s1, s2) =
∑

ai∈A(s1)

∑
aj∈A(s2)

Wsa

(
(s1, ai), (s2, aj)

)

where Wsa

(
(s1, ai), (s2, aj)

)
= 0 if an edge does not exist between (s1, ai) and (s2, aj).

47

1 2 3

54

4

4

4

4

44

4

4

44

Figure 4.4. State graph generated from the state-action graph.

Figure 4.4 shows the state graph generated from the state-action graph. Since the do-

main is deterministic, each edge of the state-action graph will have a weight of one. In the

state graph W (1, 2) = 4. This is because for state 1, the state-action pair (1,E) has four

edges extending to the four state-action pairs of state 2, and no other state-action pairs of

state 1 connect to the state-action pairs of state 2.

We can also calculate the graph transition probability of two states from the state-action

graph as well:

Ps(s1, s2) =

∑
ai∈A(s1)

∑
aj∈A(s2) Wsa

(
(s1, ai), (s2, aj)

)
Ds1

,

where Ds1 =
∑

ai∈A(s1)

∑
(sj ,aj) I(s1 6= sj)Wsa

(
(s1, ai), (sj, aj)

)
.
∑

(sj ,aj) indicates a

summation over the vertices in the state-action graph and I(si 6= sj) is the indicator func-

tion that returns one when si 6= sj and 0 otherwise. In our example Ps(1, 2) = 4/8 = 1/2.

Every entry in Ws is a linear combination of a subset of entries in Wsa. Ls can be

represented in terms of Wsa. The graph Laplacian of two vertices of the state graph can be

computed from the state-action graph in the following way:

Ls(s1, s2) =


Ds1 if s1 = s2,

−
∑

ai∈A(s1)

∑
aj∈A(s2) Wsa

(
(s1, ai), (s2, aj)

)
if s1 and s2 are adjacent in Gs,

0 otherwise.

48

In our example Ls(1, 1) = 8 and Ls(1, 2) = −4.

4.4.2 Smoothness of Q-value Functions in State-Action Space

The argument for using the eigenvectors of the graph Laplacian for value function ap-

proximation is that value functions are typically smooth on the state space graph. Smooth-

ness on the state space graph of an MDP means that if an agent can select an action that

causes a transition from one state to another state then these states will have similar values.

Mahadevan and Maggioni (2006) use the Sobolev norm

||f ||2H2 = ||f ||22 + ||∇f ||22

=
∑
v∈V

|f(v)|2dv +
∑
u∼v

|f(u)− f(v)|2W (u, v)

as a smoothness measure of functions over graphs. They state that this approach is intended

for value functions that have smallH2 norm and argue that smoothness comes from the fact

that a value at a given state V π(s) is always a function of the values at neighboring states.

This analysis holds for value functions; however when using the state-action value func-

tion Qπ(s, a), the basis functions are copied. The assumption is that each action is held

constant and smoothness is in terms of just the states.

We can measure the smoothness of the functions over directed graphs as well. The

Sobolev norm for the directed graph (Johns & Mahadevan, 2007) is defined as

|f ||2H2 = ||f ||22 + ||∇f ||22 =
∑
v∈V

|f(v)|2dv +
∑
u→v

|f(u)− f(v)|2ψu
du
W (u, v). (4.1)

If we assume V π has a small H2 norm, neighboring states will have similar values. We

also know that in the state graph two vertices are connected if an action causes a transition

between the corresponding states. Now consider the corresponding state-action graph. A

state-action pair, (s, a) is connected to (s′, a′) if a causes a transition from s to s′, and a′

is an action that is available in s′. V π(s) and V π(s′) have similar values because s and s′

49

are linked under π. Similarly Qπ(s, a) and Qπ(s′, a′) are linked under π. The argument is

essentially the same as the argument for the state-graph. The action has merely gone from

being implicitly represented on the edges to explicitly represented by the vertices.

This explicit representation is important to compactly represent the action-value func-

tion. Several actions could cause transitions between s and s′. These similarities are cap-

tured in the state-action graph and thus in the embedding. The state-action graph also

represents only the actions available in a given state. Neither of these are possible when

using the embedding of the state graph to represent the action-value function with copying.

4.4.3 Analysis of Updates During Learning

The difference between basis functions created directly in state-action space versus

those created in state space can be understood through analysis of the parameter update rule

used in Q-learning. Recall from Section 2.3 that the action value function is approximated

in the following way

Q̂π(s, a|θ) =
k∑
j=1

φj(s, a)θj.

The parameter update is given by

θt+1 ← θt + α · (rt + max
a′∈A(s′)

γQ̂t(s
′, a′|θt)− Q̂t(s, a|θt)) · ∇θt

Q̂t(s, a|θt). (4.2)

For linear function approximators

∇θt
Q̂t(s, a|θt) = φ(s, a).

If Φ is a set of basis functions originally constructed on the state space and then copied

for each action, φ(s, a) will be a vector of mostly zeros. We can formally write the exten-

sion of φ(s) to φ(s, a) as a Kronecker product

50

φ(s, a) = eI(a)⊗ φ(s),

where eI(a) is the unit vector corresponding to the index of action a. For example, eI(a1) =

[1, 0, . . . , 0]T . Since φ(s, a) is the k length embedding of the state-action pair, only the

portion of the vector that corresponds to action a will contain the k
|A| values from the state

basis functions. This means only the parameters corresponding to the set of features for

action a will be updated. Generalization across actions cannot occur.

If Φ is a set of basis functions constructed directly on the state-action space, φ(s, a)

may be a dense vector of length k. Parameters for all state-action pairs can potentially be

updated. Generalization across states and actions can occur simultaneously.

4.5 Demonstration Using Four Room Gridworld

To illustrate this technique, we use a four room gridworld shown in Figure 4.5 (Sutton

et al., 1999). This domain consists of 169 states of which 104 are free states (states that

G

Figure 4.5. Four room gridworld.

are not a wall). In any free state the agent can perform one of four primitive actions: north,

south, east or west. There is a 10% probability that an action will fail and the agent will

remain in the same location. If an agent selects an action that would transition it into a

51

wall state, it remains in the same location. Rewards are zero on all state transitions except

transitions into the goal state when the agent receives a reward of 100.

23 24 25

36 37 38

49 50 51

21 22

34 35

47 48

62 63 64

75 76 77

60 61

73 74

75 76 7786 87

101

46

(a) State graph

23 24 25

36 37 38

49 50 51

21 22

34 35

47 48

62 63 64

75 76 77

60 61

73 74

88 89 9086 87

101

46

(b) State-action graph.

21, N

21,E21, W

21, S

34

22

(c) Close up of transitions associated with
nodes for state action pairs for state 21.

Figure 4.6. The state action graphs created for a small room.

Figure 4.6 illustrates a portion of the graphs including only the states located in the

upper right room room. Figure 4.6(a) shows the state graph. Figures 4.6(b) and 4.6(c) show

the state-action graph. Figure 4.6(b) show the global topology of the graph. The global

topology of the state-action graph is similar to the topology to the state graph. However,

52

each node in this figure represents the 4 state-action pairs for each state. Figure 4.6(c)

shows the state action pairs specifically for state 21.

4.5.1 Basis Functions for the Four Room Gridworld

In order to understand the representations created from these graphs, we look at the em-

beddings of the graphs on the second and third eigenvector, as explained in Section 3.1.3.

Figure 4.8 shows the embedding of the vertices of the graphs using the second and third

eigenvectors as coordinates. The portion of the graph corresponding to the plotted sub-

graphs is circled. These figures show the vertices of the graphs embedded in feature space.

We show only the embeddings of the combinatorial graph Laplacian since the embeddings

Figure 4.7. Right corner of the four room gridworld with the corner states labeled.

of the normalized graph Laplacian are similar for this domain. These figures show that both

techniques group the graphs into four large clusters corresponding to the four rooms. Fig-

ures 4.8(c) and 4.8(d) provide a zoomed in view of the vertices of the graph for the states

in the upper right-hand corner of the domain, shown in Figure 4.7. The circles in Figures

4.8(a) and 4.8(b) show the zoomed in area on the respective figures. Figure 4.8(c) shows

the embedding of the states while Figure 4.8(d) shows the embedding of the state-action

pairs. As can be seen in Figure 4.8(d), actions north (N) and east (E) in state 25 are located

on the same point. This is a desirable result since state 25 is located at the top right corner

53

of the grid, and both actions will transition back to state 25. State-action pairs that have

similar transitions are also placed near to each other: (25,S), (38,N) and (25,W), (24,E), are

examples of this. This proximity in the embedding’s space is highly desirable as it yields

good generalization across state-action space.

(a) Embeddings of the state graph’s vertices on
the 2nd and 3rd eigenvectors of the directed com-
binatorial graph Laplacian of the state graph.

(b) Embeddings of the state-action graph’s
vertices on the 2nd and 3rd eigenvectors of the
directed combinatorial graph Laplacian of the
state-action graph.

(c) Close up of the embeddings of the combina-
torial graph Laplacian on the state graph for the
right corner.

(d) Close up of the embeddings of the
combinatorial graph Laplacian on the state-
action graph for the right corner.

Figure 4.8. Embeddings of the four room domain on the 2nd and 3rd eigenvectors.

Figure 4.10 provides a visual comparison of the basis functions created from either

the state or state-action graph of the four room gridworld. The basis functions created

from the state graph are constructed by taking the combinatorial graph Laplacian of the

54

graph and then copying the basis functions for each action. The basis functions created

from the state-action graph are constructed by taking the combinatorial graph Laplacian of

that graph. Each colored square in Figure 4.9 is a valid state-action pair in the four room

gridworld domain. Each state is represented by a three by three grid in this image where

the north action is on the first row and second column. An explanation of this visualization

Figure 4.9. Visualization of state-action graph for the right corner of the four room grid-
world.

for the upper right hand corner of the four room gridworld can be seen in Figure 4.10. West

and east actions are located on the second row in the first and third columns respectively.

The south action is located in the third row and second column. The three by three squares

are arranged to correspond to the state adjacency in Figure 4.5. The colors in the figures

represent the values ranging from low, dark blue, to high, dark red, of the eigenvectors

for the corresponding state-action pair. To visualize the state-action space for the state

graph Laplacian we use the four basis functions in state-action space created by copying

the eigenvector over the state space for each action. We do not visualize basis functions

associated with the first eigenvector for either graph because this eigenvector is a constant

vector.

The overall shape of the basis functions of the state and state-action graphs are similar.

However, basis functions created from the state graph for a specific eigenvector have the

55

(a) 5th-8th state basis functions (b) 9th-12th state basis function

(c) 2nd state-action basis function (d) 3rd state-action basis function

(e) 13th-16th state basis function (f) 17th-20th state basis function

(g) 4th state-action basis function (h) 5th state-action basis function

Figure 4.10. A visual comparison of the basis functions constructed from either the state
or state-action graph on the state-action space of the four room gridworld.

56

same values for every action in a given state, while the basis functions created from the

state-action graph are capable of having different values for different actions in a given

state. The eigenvectors of the state-action graph visually have a smoother gradient than the

eigenvectors from the state graph.

4.5.2 Comparison of Feature Spaces

In this section, we compare the basis functions created using eigenvectors of the graph

Laplacians on the two different types of graphs. We consider three different sets of basis

functions: Set 1 is created using the first eight eigenvectors with the smallest eigenvalues

of the directed graph Laplacian on the state-action graph. Set 2 is the first two low order

eigenvectors of the state graph Laplacian copied four times to create 8 basis functions. Set

3 is the first eight low order eigenvectors of the state graph Laplacian copied eight times to

create 32 basis functions. Table 4.1 contains a summary of the set information.

Set Graph Number of eigenvectors Copying Number of basis functions
Set 1: State-action 8 no 8
Set 2: State 2 4 times 8
Set 3: State 8 4 times 32

Table 4.1. Information about eigenvectors used in the comparisons.

The basis functions define a subspace within the space of functions that can be repre-

sented over the graph. It is possible to find the minimum angle between two subspaces

quantitatively by projecting the two spaces onto each other (Bjorck & Golub, 1973; Wedin,

1983). The size of the angle between two subspaces, or space spanned by the basis func-

tions, signifies how different the subspaces are. If the angle is small then the spaces are

almost linearly dependent.

We can compare the angle between the subspaces spanned by the basis functions created

from the state-action graph and the two sets of basis functions created on the state graph.

Distance 1 is the angle between Set 1 and Set 2. These subspaces have the same number

57

of parameters that must be learned by the learning algorithm. However, the basis functions

created from the state-action graph contain less zeros. Distance 2 is the angle between Set 1

and Set 3. These subspaces have the same number of nonzero entries in the basis functions,

but the basis functions from the state graph have 4 times the number of parameters that

must be examined in learning.

The results of our comparison can be found in Table 4.2. The angle between the sub-

space defined by Set 1 and the subspace defined by Set 2 is 90 degrees. The angle between

the subspace defined by Set 1 and the subspace defined by Set 3 is 5.4 degrees. This indi-

cates that while the subspace defined by Set 1 is more similar to the subspace defined by

Set 3, it requires the same number of parameters as the first set of basis functions in Set 2.

Distance 1: Set 1 and Set 2 90 degrees
Distance 2: Set 1 and Set 3 5.4 degrees

Table 4.2. Distance between subspaces induced by the eigenvectors of the graph Lapla-
cians.

This analysis indicates that the basis functions in Set 1 and the basis functions in Set 3

have similar representational power. Figure 4.11 is a visualization of how useful the basis

functions are for representing the Q-value function in this domain. We project the optimal

Q-value function, displayed in Figure 4.11(a), onto the space spanned by the basis func-

tions. Figure 4.11(b) shows the optimalQ-value function projected onto the basis functions

in Set 1. Figure 4.11(c) shows the optimal Q-value function projected onto the basis func-

tions in Set 2. Figure 4.11(d) shows the projection of the optimal Q-value function onto

the basis functions in Set 3.

The basis functions used to represent the value function in Figure 4.11(b) and Figure

4.11(c) have the same number of parameters but the number of nonzero entries in the state-

action basis functions is four times that of the state basis functions. The state-action basis

functions are clearly able to more accurately represent the value function than the state

58

(a) The optimal Q-value function. (b) Projection of the Q-value function onto the
first 8 eigenvectors of the directed graph Lapla-
cian of the state-action graph.

(c) Projection of the Q-value function onto the
first 8 eigenvectors of the graph Laplacian of
the state graph. The first 8 eigenvectors are
created by copying the first 2 eigenvectors of
the graph Laplacian of the state graph for each
action.

(d) Projection of the Q-value function onto the
first 32 eigenvectors of the graph Laplacian of
the state graph. The first 32 eigenvectors are
created by copying the first 8 eigenvectors of
the graph Laplacian of the state graph for each
action.

Figure 4.11. Visualization of the Q-function for the four room gridworld.

basis functions. The basis functions used to represent the value function in Figure 4.11(b)

and Figure 4.11(d) have the same number of nonzero entries but the state basis functions

have four times the number of parameters.

Figure 4.12 plots the error of the projected Q-value function. In this figure, we plot

the sum of the error (or the L1 error) of the projected Q-value function over the number

of basis functions used in the projection. We show three different comparisons. The state-

action basis functions are the eigenvectors of the directed combinatorial graph Laplaican of

59

the state-action graph. The state basis functions are the eigenvectors of the combinatorial

graph Laplacian of the state graph. Since this required each eigenvector to be copied four

times we also plotted the number of basis functions copied. This figure shows that the

Q-function approximation created using state-action basis functions has a lower error than

the approximation created using basis functions constructed from the state graph.

Figure 4.12. A comparison of the error of the projected Q-function. The error is the sum
of the error between the optimal Q-function and the Q-function projected onto the set of
basis functions.

The visualization in Figure 4.11, measures of distance between the subspaces, and error

analysis of the projectedQ-function all provide an intuition of how the state and state-action

basis functions are related. The state and state-action basis functions perform similarly

in their ability to represent the value function. However during learning, four times the

number of parameters will be required to be learned for the state bases extended to the

state-action bases, which may substantially slow learning.

4.5.3 Smoothness Comparison

The Sobolev norm is a measure of the smoothness of a function over a graph. In this sec-

tion, we examine the smoothness of the optimal value function V over the state graph and

the optimal action-value function Q over the state-action graph in the four room gridworld

60

problem. Since the Sobolev norm of the directed graph Laplacian, defined in Equation 4.1,

is normalized by the invariant distribution it cannot be directly compared to the Sobolev

norm of the undirected graph defined in Equation 3.1. We compare both approaches using

the Sobolev norm of the directed graph Laplacian. The Sobolev norm of the value function

V over the state graph is defined as

|V ||2H2 = ||V ||22 + ||∇V ||22

=
∑

(s1)∈Vs

|V (s1)|2d(s1) +
∑

(s1)→(s2)

|V (s1)− V (s2)|2.
ψ(s1)

d(s2)

W (s1, s2).

The Sobolev norm of the action value function Q over the state-action graph is defined

as

|Q||2H2 = ||Q||22 + ||∇Q||22

=
∑

(s1,a1)∈Vsa

|Q(s1, a1)|2d(s1,a1) +

∑
(s1,a1)→(s2,a2)

|Q(s1, a1)−Q(s2, a2)|2
ψ(s1,a1)

d(s2,a2)

W ((s1, a1), (s2, a2)).

We first compare the Dirichlet sums, the second term of the Sobolev norm. Table 4.3

shows the differences between the Dirichlet sum for the appropriate value function over the

three different types of graphs. The Q-function over the directed state-action graph has the

smallest value.

V over State Graph: 0.4620
Q over Undirected State-Action: 0.5528
Q over Directed State-Action Graph: 0.4206

Table 4.3. Dirichlet Sum Comparison

We next compare the Sobolev norm for the four room gridworld for the state graph, the

undirected state-action graph, and the directed-state action graph. Table 4.4 displays the

61

Sobolev norm for each of each graph normalized by the number of vertices in the graph.

The results demonstrate that the undirected state-action graph does not capture smoothness

properties of the Q-function as effectively as the directed state-action graph. Additionally

our results show that the Q-function over the state-action graph is smoother than the V

function over the state graph.

V over State Graph: 791.975
Q over Undirected State-Action: 1461.1
Q over Directed State-Action Graph: 627.772

Table 4.4. Sobolev Norm Comparison

4.6 Experimental Evaluation

In the previous section we analyzed the potential of the state-action basis functions for

Q-value function approximation. In this section, we experimentally evaluate these basis

functions and compare them to basis functions created on the state graph as well as more

traditional approaches.

4.6.1 Learning Action-Value Functions Using State-Action Basis Functions

Figure 4.13 shows the pseudo-code for our experimental approach. The agent performs

an initial period of exploration where it collects samples. These samples are then used to

build basis functions, and the basis functions are all used during learning.

The learning algorithm we use in this section is Q(λ)-learning (Sutton & Barto, 1998)

to learn a policy that maximizes the agent’s return. We selected Q(λ) because it is an

off-policy learning technique and we will use the samples collected for basis function con-

struction for learning. The learning algorithm uses an ε-greedy policy for action selection

62

and accumulating eligibility traces. Traces are set to zero when a random action is taken.

The update rule for the parameters is given as:

θt+1 = θt + αδtet, (4.3)

where

δt = r + γ max
a′∈A(s′)

Q̂t(s
′, a′|θt)− Q̂t(s, a|θt),

et = γλet−1 +∇θt
Q̂t(s, a|θt), and e0 = 0.

4.6.2 Experiments On The Four Room Gridworld

We first consider a learning problem in the four room gridworld domain. The agent

must use the primitive actions (north, east, south, west) to learn to reach the goal. We allow

the agent to explore the environment using a policy that selects the least frequently used

action in a state. This exploratory period was only performed once and the set of samples

were reused for all experiments in this domain. We used 2000 episodes with 50 steps per

episode. During the exploration period the agent’s initial state is randomly selected from

the set of states that are not a wall.

We performed experiments to compare the performance of using a state-action graph

versus a state graph. For these experiments we used the normalized graph Laplacian. We

systematically varied the number of basis functions used during function approximation.

In experiments using state graphs we varied the number of basis functions from 40 to 200

in steps of 40. In experiments using the state-action graphs we varied the number of basis

functions from 50 to 200 in increments of 50. The result of each experiment was averaged

200 times and each experiment consisted of 200 episodes.

63

SA-RPI Algorithm (D, γ, ε, k, π0):
// D: Source of samples (s, a, r, s′)
// γ: Discount factor
// ε : Stopping criteria
// k: Number of basis functions
//π0: Initial policy specified as a weight vector w0

1. Sample Collection: Generate a set of samples D, which consists of a state, action, reward,
and next state, (s, a, r, s′). The samples are created using a series of exploratory trajectories
using π0, where π0 selects the least frequently used action in any state. During sample
collection the agent was placed in a random location at the beginning of an episode.

2. Representation Learning:

(a) Build a directed weighted graph Gsa from D where Vsa is the set of state-action pairs,
E is the edge set, andW is the weight matrix constructed using the off-policy approach
in Figure 4.2.

(b) Calculate the k lowest order eigenfunctions of the (combinatorial or normalized) graph
Laplacian operator on G. These k eigenvectors make up the basis functions φ.

i. Form the directed Laplacian per Equation 3.9 or 3.10.
ii. Calculate φ by computing the eigenvectors of the directed Laplacian.

3. Control Learning Phase:
Use Q(λ)-learning as the parameter estimation method to learn a policy π using the parameter
update in Equation 4.3.

Figure 4.13. RPI Framework for learning representation and control using state-action
graphs.

Figure 4.14 compares the number of steps taken by the agent to reach the goal when

the graph is created on the state and state-action graphs. When examining the results, it

is important to recall that the basis functions for a state graph are the eigenvectors of the

graph Laplacian copied |A| times. |A| is the number of actions. In the four room domain

there are four actions. This means that one eigenvector of the graph Laplacian on the state

graph will be four basis functions for the learning algorithm. In this figure, we report

the number of basis functions not the number of unique eigenvectors. We also varied α,

selecting the setting of α that provided the best learning performance without divergence.

The experiments with state-action basis functions plotted in Figure 4.14 both had α = .1.

64

The state basis function experiment had α = .05. λ and γ were both set to .9 for all

experiments and ε = .1.

The best performance we observed using basis functions built from the state graph

required using 200 basis functions. We observed similar convergence when using 50 state-

action basis functions. When we used 100 state-action basis functions, we found that the

agent achieved better performance significantly quicker.

Figure 4.14. Results for learning in the four room gridworld.

4.6.3 Mazeworld

We also examined performance of state-action basis functions in a maze world, pictured

in Figure 4.15. This domain contains a greater number of obstacles than the four room

gridworld, thus many states will have multiple actions with a similar effect. The domain

has 400 states and 4 actions, corresponding to the cardinal directions, are available in each

state. There is a 10% probability that an action will fail; when this occurs the agent remains

in the current state. If an agent hits a wall, it remains in the same location. Rewards are

−1 on all state transitions except transitions into the goal state where the agent receives a

reward of 100.

65

G

Figure 4.15. The mazeworld domain.

Our experiments in this domain required the agent to learn to navigate from the upper

leftmost square to the goal state in the right bottom corner. To create the samples we used

a policy that selected the least frequently used action in each state. The samples were

collected using 2000 episodes with 100 steps per episode. The agent started each episode

in a random state. We performed this exploration only once. We built the state-action

graph using off-policy graph creation and used the eigenvectors of the normalized graph

Laplacian. We used the approach in Figure 4.13 with Q(λ)-learning. For all experiments

γ = 0.9, ε = 0.1, α = .1, and λ = .9. Each episode was halted after 5000 steps. The agent

started each episode in the learning phase in the top left corner of the domain.

We experimentally varied the number of state-action basis functions used from 100 to

1000 in increments of 100. We varied the number of state basis functions from 400 to 1600

in increments of 200. Each trial was run for 200 episodes and results are averaged over

50 trials. Figure 4.16 shows that faster convergence is achieved when using state-action

graphs and that fewer basis functions are required to achieve this performance.

66

Figure 4.16. Results for learning in the maze world.

4.6.4 Graph Weighting Comparison

In the previous set of experiments we assumed that W was an approximation of P .

In this section, we experimentally demonstrate the effects of different weightings on the

state-action graph. Table 4.5 displays the three types of graph weightings we consider. In

this table, u and v are vertices that correspond to (s, a) and (s′, a′). count(u) is the number

of times that action a was selected in state s in the set of samples D. count(u, v) is the

number of times action a was selected in state s and a transition to s′ was observed and a′

is one of the available actions in s′. Weighting 1 is the weighting we used previously in

this chapter and can be viewed as an MLE approximation of P . Weighting 2 is can be seen

as a frequency count of the transition that is not normalized. Weighting 3 is the simplest

weighting in which all edges have a weight of 1.

Weighting 1 W (u, v) = count(u,v)
count(u)

Weighting 2 W (u, v) = count(u, v)
Weighting 3 W (u, v) = 1 if edge else 0

Table 4.5. Weightings used for state action graphs

67

To understand the effects of the weightings, we first visualize the changes in the basis

functions when using Weighting 1 and Weighting 3. In this visualization, we assume the

agent has access to perfect information about the domain. Weighting 1 will actually be P

for this visualization. The second weighting will treat all of the neighboring vertices of a

specific vertex as equivalent. Weighting 1 will penalize transitions that are less frequent.

Figure 4.17 shows a comparison of the effects of the two weighting approaches on the

embedding of the vertices of the state-action graph on the 2nd and 3rd eigenvectors of the

directed combinatorial graph Laplacian. In both embeddings the state action pairs are sepa-

rated according to which room they belong. However, the embedding using Weighting 3 is

more scattered than the embedding using Weighting 1. When estimating Weighting 1 from

data, we expect that the embedding will fall somewhere between these two embeddings

depending upon the accuracy of the estimate.

(a) Embedding of state-action graph on the 2nd
and 3rd eigenvectors of the directed combinatorial
graph Laplaican when Weighting 1 was used.

(b) Embedding of the state-action graph on the 2nd
and 3rd eigenvectors of the directed combinatorial
graph Laplaican when Weighting 3 was used.

Figure 4.17. A visual comparison of the state-action graph embedding of the four room
gridworld for the two different weighting techniques.

To understand the effect of the different weightings on learning, we experimentally

evaluated this approach on the four room gridworld using the same set up as in Section

4.6.2. (In this experiment, we use the samples to calculate the weights upon the graph.) In

this experiment, α = .1 for all experiments, except Weighting 3 with 50 basis functions.

68

We found these experiments frequently diverged when α = .1 and set α = .05. Figure

4.18 shows the results of the different weightings averaged 200 times with standard error

bars plotted every 5 episodes. The weightings do not have a large effect upon the learning

results. The only really large difference we see is when using Weighting 3 with 50 basis

functions, but this is likely due to the fact it was necessary to decrease α.

Figure 4.18. Results comparing the two weighting approaches in the four room gridworld.

4.6.5 Graph Laplacian Comparison

All other experiments in this chapter have been performed using basis functions from

the normalized graph Laplacian. In this section, we compare the difference in results in

learning between basis functions created using the directed normalized Laplacian and the

directed combinatorial Laplacian. Once again, we use the same experimental set up as in

Section 4.6.2. All experiments were run with α = .1. Figure 4.19 shows the results of

learning averaged 200 times with standard error bars plotted every 5 episodes. We do not

see a significant change in the learning experiments between using the different types of

69

directed graph Laplacian when using 100 basis functions. However, when using 50 basis

functions we see that the normalized Laplacian performs somewhat better.

Figure 4.19. Results comparing the normalized and combinatorial Laplacians in the four
room gridworld.

4.6.6 Directed Versus Undirected Graph Comparison

The last set of experiments that examine the construction of the basis functions in state-

action space compare using a directed graph versus an undirected graph. Experiments with

the directed graph were run with α = .1 and α = .01 in experiments with the undirected

graph. Figure 4.20 shows the results of learning averaged 200 times with standard error bars

alloted every 5 episodes. Learning performance severely degrades when basis functions

constructed on the undirected graph are used. The undirected graph will have a substantial

number of erroneous extra edges. Twice as many basis functions are required to achieve

comparable learning performance.

70

Figure 4.20. Results comparing the directed and undirected graph Laplacian on state-
action graphs.

4.7 Comparison to Alternate Approaches for Basis Function Construc-

tion

In this section, we compare our approach to other basis functions approaches in the

literature. We specifically compare to radial basis functions (RBFs) and Geodesic Gaussian

Kernels (GGKs) (Sugiyama et al., 2007). Figure 4.21 shows a comparison of our approach

with these basis functions. We also discuss the differences between our approach and that

of Bellman error basis functions (BEBFS), a type of policy-specific basis function. First

we give a brief overview of the other basis function types and discuss how we performed

the experiments involved with each type of basis function.

4.7.1 Radial Basis Functions

RBFs are created by tiling the state space with Gaussians. Each basis function is one of

the Gaussians. The Gaussians have a mean, located at one of the states, and a fixed variance

σ. The value of a state for basis function i is written as

71

φi(s) = exp(−D(s, ci)

2σ2
), (4.4)

where ci is the center of the i-th Gaussian and σ is the variance parameter andD(s, ci) is the

distance between s and ci. TypicallyD(s, ci) is the Euclidean distanceD(s, ci) = ||s−ci||2.

In our experiments we will define D(s, ci) to be the Manhattan distance over the grid. In

order to transform basis functions from state space to state-action space, the RBFs are

copied for each action.

Placement of the Gaussians is up to the designer. In our experiments we tile 50 Gaus-

sians over the state space uniformly. Our decisions in terms of distance metric and place-

ment incorporate our knowledge of the state space. If we were uncertain about the domain,

we may have just randomly placed the Gaussians over the state space and assumed Eu-

clidean distance. Although we have included some of our knowledge about the domain,

RBFs cannot capture information about obstacles and will still perform poorly.

We tried several settings of σ. Specifically we ran experiments with σ = 1, 2, 3 and 5.

Generally RBFs performed poorly, and it was difficult to find a good setting of α for any

setting of σ. This is mainly due to the fact that the basis functions use euclidean distance.

Thus states that should have different values are actually represented as similar in the basis

functions. For example, states separated by a wall are likely to be represented as similar

even though the agent cannot transition between them.

4.7.2 Geodesic Gaussian Kernels

Geodesic Gaussian Kernels (GGKs) (Sugiyama et al., 2007; Sugiyama et al., 2008) are

an approach to basis function construction for value function approximation. This work

extends traditional RBFs to be constructed over the state space manifold. The approach

builds basis functions by placing Gaussian kernels over the MDP state graph.

In the GGK approach the distance between states is calculated using the shortest paths

on the graph, changing Equation 4.4 to

72

φi(s) = exp(−SP (s, ci)
2

2σ2
) (4.5)

where SP (s, ci) is the shortest path on the graph from state s to state ci, which is once

again the center of the i-th Gaussian. Shortest paths on graphs can be calculated using the

Dijkstra algorithm (Dijkstra, 1959).

Sugiyama et al. (2007) propose an approach to extending GGKs from the state space

to state-action space using a “shift” approach. Rather than copy the basis functions for

each action, the feature of a state is the linear combination of the features of the potential

next state for a state-action pair. This approach is also employed by Gärtner et al. (2003)

and Driessens et al. (2006). Sugiyama et al. (2007) report that this approach works best

in deterministic domains or domains where P is known. This approach will construct a

parameter vector of the same size as the simple copying mechanism. Since P is not known

in our experiments and our domain is not deterministic, we perform experiments with the

simple copying mechanism.

Both GGKs and basis functions based on the graph Laplacian measure distances on the

graph. GGKs and RBFs are both examples of local basis functions. This allows them to

approximate value functions that are locally smooth but not globally smooth. However, the

shortest path distance metric is easily susceptible to erroneous edges in the graph.

Two parameters must be specified for GGKs: the centers, ci and the standard devia-

tion σ. The placement of the the Gaussians is important for performance. We performed

preliminary experiments that indicated that learning performance when the Gaussians were

placed randomly varied significantly, which corresponded to intuition from the literature.

For the comparison experiments, we placed the Gaussians uniformly over the state space

graph. It is important to note that GGKs do not constitute an entirely learned basis since

there is no automated algorithm to determine the placement of the Gaussians. While uni-

form placement is well defined for spaces like the state space of a grid world, it is difficult

73

to imagine what uniform placement may be on more complex graphs. It may be possible

to adapt approaches that automatically tune RBF placement for this approach.

We tried several settings of σ: σ = 1, 2, 3, 5, and 10. We found that smaller values of

σ performed better on the four room gridworld with Q(λ)-learning. Specifically we will

report results with σ = 2, although the results for σ = 1 were similar. Larger values of σ

required significantly lower learning rates in our experiments.

4.7.3 Bellman Error Basis Functions

Bellman error basis functions (BEBFs) or Krylov basis functions were introduced by

(Poupart & Boutilier, 2002; Keller et al., 2006; Parr et al., 2007; Petrik, 2007). In this

approach, basis functions are created by explicitly using a measure of the error in value

function approximation called the Bellman residual T π(V) − V . The Bellman residual is

approximated over the set of samples using the following sample-based TD error:

Q̂k(s
′, πk(s

′)) + r − Q̂k(s, a).

These basis functions can easily be constructed directly in state-action space since each

basis function is an estimate of the error of the current estimate of the action-value function.

BEBFs have been exclusively used with least squares techniques. The approach is well

suited to policy iteration techniques since the policy is held fixed and evaluation is done

over the entire set of collected samples, and then the updates to the basis functions and

parameters are computed.

BEBFs have not yet been extended to TD methods, which present interesting chal-

lenges. Updates to the value function are often small local updates, which means that basis

functions constructed from the Bellman error will tend to be similar to delta functions. Ad-

ditionally BEBFs are currently only appropriate for on-policy learning and would need to

be extended for off-policy approaches.

74

4.7.4 Discussion of the Comparisons

Figure 4.21. Results comparing different basis function approaches in the four room grid-
world.

Our comparison shows that RBFs perform quite poorly. This is expected since the ba-

sis functions constructed using RBFs cannot take obstacles into account. GGKs and state

graph Laplacian basis functions perform quite similarly. This is somewhat unsurprising in

this domain since both construct basis functions with distances between states calculated on

the state space and the Q-function is globally smooth. However, both of these approaches

must still copy their basis functions for each action, and thus have larger parameter vec-

tors. The state-action graph outperforms all of the approaches. If GGKs were placed on

the state-action graph we believe they would achieve similar performance as long as the

placement was correct. However, it is unclear how to place Gaussians over state-action

graphs “uniformly”. An automated approach for placing the Gaussians would most likely

be helpful (McLoone et al., 1998; Moody & Darken, 1989; Sanchez, 1995; Karayiannis,

1999; Haykin, 1999; Gonzalez et al., 2003; Lazaro et al., 2003).

75

4.8 Conclusion

In this chapter, we defined an approach for automatically constructing basis functions

for action-value functions. We introduced state-action graphs and describe how basis func-

tions are constructed using the graph Laplacian. We described two approaches to creating

these graphs: on-policy and off-policy graph creation.

Our analysis shows that basis functions created on the state-action graph are closely

related to those created on the state graph. However, our approach performs better because

actions are explicitly incorporated into the bases.

We experimentally evaluated the performance of these basis functions for learning

action-value functions. Our results demonstrate that basis functions created from the state-

action graph significantly improve learning performance when compared to basis functions

created on the state-graph. Additionally, the basis functions are fairly resilient to settings

of many of the parameters in domains where actions have small local effects.

76

CHAPTER 5

REPRESENTATION DISCOVERY IN SEMI-MARKOV DECISION
PROCESSES

Thus far, this dissertation has focused on incorporating actions into representations

when the actions take a single time step. A significant advance in RL has been the in-

troduction of temporal abstraction frameworks and hierarchical learning algorithms (Barto

& Mahadevan, 2003). These frameworks allow the agent to employ temporally-extended

actions that allow it to make decisions at different time scales. Humans frequently employ

such techniques and do not consciously plan at lower levels, such as muscle movements.

For example, consider the task of baking a cake. This task could be summarized into the

following subtasks: “get the ingredients”, “combine”, and “bake”. This task itself could be

part of a high level task such as planning a birthday party. The ability to simultaneously

reason at multiple scales greatly improves the applicability of RL algorithms.

In this chapter, we assume the agent has access to skills or macro-actions. We use semi-

Markov decision processes (SMDPs) (Puterman, 1994) as the underlying model. SMDPs

are a generalization of MDPs in which actions are no longer assumed to take a single

time step and may have varied durations. An SMDP is defined as a tuple (S,A, P,R).

All components have the same definition as in an MDP except the transition probability

function P and the reward function R. S is the set of states, and A is the set of actions the

agent may take at each decision point. The transition probability function P is modified to

take into account the duration of the actions. P is now a multi-step transition probability

function, where P (s′, N |s, a) denotes the probability that action a taken in state s will

cause a transition to state s′ in N time steps. The reward function is also modified to take

into account the duration of the action. Rewards can accumulate over the entire duration of

77

an action. The reward functionR(s′, N |s, a) is the expected reward received from selecting

action a in state s and transitioning to state s′ with a duration of N time steps. An SMDP

can be seen as representing the system at decision points, while an MDP represents the

system at all times.

Much work has been done in learning value functions for SMDPs (Dietterich, 1998;

Parr & Russell, 1998; Sutton et al., 1999). In this chapter, we will focus on the options

framework (Sutton et al., 1999) an option, o, is defined as a tuple 〈I, πo, β〉 where I is the

initiation set of states, where the option may be initiated. πo is the option policy, which

determines how the option will select actions or other options for execution. β is the termi-

nation condition, which gives the probability of option termination after each action in the

world.

Prior work in hierarchical reinforcement learning (HRL) has not explored automatic

basis function construction approaches. In this chapter, we examine how basis functions

can be constructed for SMDPs. We examine both state space compression and state-action

space compression.

Definition 5.1 Automatic State-Action Space Basis Construction Problem in SMDPs:

Given a Semi-Markov Decision Process M = (S,A, P,R), automatically construct a low-

dimensional representation Φ such that the size of Φ is |S|×k or |S||A|×k where k << |S|

or k << |S||A|. Φ should be constructed such that M can be solved ”accurately” in less

time than an exact representation.

Chapters 3 and 4 described techniques for automatically building basis functions for

MDPs. In this chapter, we extend these approaches to SMPDs. This work is the first

exploration of automatic basis function construction for SMDPs.

Much work has been done on discovering naturally useful activities in a domain. We as-

sume that the skills are predefined or already learned using one of the various techniques in

the literature. More details on skill learning can be found in the following papers Thrun and

78

Schwartz (1995); McGovern (2001); Hengst (2002); Şimşek and Barto (2004); Bonarini

et al. (2006); Mehta et al. (2008); Şimşek and Barto (2008); Konidaris and Barto (2009).

This work can be seen as being orthogonal to our own. We assume that the skills or

macro-actions are predefined. However, others have used similar fundamental techniques

to those that we employ, such as spectral methods, to learn skills (Menache et al., 2002;

Şimşek et al., 2005). Our approach could potentially lead to a new approach for skill

discovery; however, this is currently not the focus of our work.

5.1 Graph Creation in Semi-Markov Decision Processes

Our graph construction approach for SMDPs is similar to the approach proposed in

Section 4.1. However, a few modifications are necessary to account for the variable dura-

tion of the actions. We propose modifying the weight matrix W to take the duration of the

temporally extended actions of the SMDP into account. This is done by weighting each

option edge by the inverse of average duration of the action.

Definition 5.2 SMDP State Graph: An SMDP state graph Gs = (Vs, Es,Ws) is defined

over an SMDP M such that each vertex v ∈ Vs corresponds to a state s such that s ∈

S. An edge exists between a vertex u and a vertex v if an action a ∈ A(s) causes a

transition between s (corresponding to u) and s′ (corresponding to v). The weight matrix

is constructed according to Table 5.1.

Definition 5.3 SMDP State-Action Graph: An SMDP state-action graph Gsa = (Vsa,

Esa,Wsa) is defined over an SMDP M such that each vertex v ∈ Vsa corresponds to a

state-action pair (s, a) such that s ∈ S and a ∈ A. An edge exists between a vertex u and

a vertex v, corresponding to (s′, a′), such that action a causes a transition from s to s′ and

action a′ ∈ A(s′). The weight matrix is constructed according to Table 5.1.

Table 5.1 shows the weightings for the edges of graphs created on SMDPs. W (u, v) in-

dicates the weighting between two vertices of the graph. In the state-action graph, W (u, v)

79

is the weight in the state-action graph for the edge between u corresponding to (s, a) and v

corresponding to (s′, a′). avetime(u, v) is the average duration of the action transitioning

from state s to state s′ using action a. count(u) is the number of times the agent is in state

s and selects action a. count(u, v) is the number of times the agent selects action a in state

s and transitions to state s′ and selects action a′. In the state graph, W (u, v) is the weight

for the transition between state s and state s′. avetime(u, v) is the average duration of

the action transitioning from state s to state s′. Figure 5.1 shows the pseudo-code for the

technique used for creating state-acton graphs for SMDPs using these weightings.

State-action graph W (u, v) = 1
avetime(u,v)

count(u,v)
count(u)

State graph W (u, v) = 1
avetime(u,v)

Table 5.1. Weightings used for SMDP graphs

5.2 Demonstration Using Four Room Gridworld

We now consider the full specification of the four room domain described in Section

4.5. Two hallway macro-actions are provided in each of the four rooms. These macro-

actions allow the agent to navigate from any location within one room to one of the two

hallway states that lead out of that room. The macro-actions may be called from any state

within a room. A hallway macro-action’s policy is optimal and cannot be terminated once

selected until it reaches its goal state. Hallway states do not have hallway macro-actions

available to them; in these states only primitive actions are available. Figure 5.2 shows

the structure for the portion of the graph for the upper right room when the agent has

access to macro-actions. The graph has a similar structure as the graph in Figure 4.6(a).

However, the macro-actions introduce long edges going from each state to states 46 and

101. Figure 5.3 shows the state-action pairs for state 21 when the agent has access to the

hallway macro-actions. Two nodes are added for each state to represent the new state-action

80

SMDP State-Action Graph Creation (D):
// D: Source of samples (s, a, r, s′, a′, t)
// t is the duration of the transition between s and s′ using action a.
// Creates a graph Gsa = (V,E,W) where V is the set of state-action pairs in D.
// u: refers to a state-action pair (s,a) found in D
// v: refers to a state-action pair (s’, a’) found in D

// ΥD(u): refers to a function that returns the number of times u is observed in D
// ΥD(u, v): refers to a function that returns the number of times a transition between u and v is
observed in D

c is initalized to a sparse matrix of size (S ×A)× (S ×A)

If using on-policy graph creation:
W
(
(s, a), (s′, a′)

)
= ΥD

(
(s, a), (s′, a′)

)
For all (s, a, s′, a′, N) ∈ D

c
(
(s, a), (s′, a′)

)
= c
(
(s, a), (s′, a′)

)
+N

Else for off-policy graph creation
W
(
(s, a), (s′, a′)

)
= 0

For all (s, a, s′, a′N) ∈ D
For all a′′ ∈ A(s′)

W
(
(s, a), (s′, a′′)

)
= W

(
(s, a), (s′, a′′)

)
+ 1

c
(
(s, a), (s, a′′)

)
= c
(
(s, a), (s′, a′′)

)
+N

For all W (u, v) 6= 0
W (u, v) = W (u, v)/ΥD(u) ∗W (u, v)/c(u, v)

Figure 5.1. Pseudo-Code for creating state-action graphs in SMDPs.

pairs. Transitions from these nodes will lead to the 4 state-action nodes of the hallway states

associated with the transition.

5.2.1 Comparison of Basis Functions in MDPs and SMDPs

We have explained how the graph itself will change due to the addition of macro-

actions. In this section, we examine how the changes in the graph can provide intuitions

about the changes to the basis functions and to the domain itself. We first start by examining

the state graph. Figure 5.4 compares the invariant distribution of the two state graphs. The

invariant distribution of the state graph of the MDP is displayed in Figure 5.4(a). The in-

81

23 24 25

36 37 38

49 50 51

21 22

34 35

47 48

62 63 64

75 76 77

60 61

73 74

75 76 7786 87

101

46

Figure 5.2. State graph for the upper right hand room showing transitions when the agent
has access to both macro-actions and primitive actions.

variant distribution is fairly uniform with a slightly lower probability of being in the corner

and doorway states. Figure 5.4(b) visualizes the invariant distribution of the state graph in

the SMDP version of the four room gridworld. The addition of the hallway macro-actions

causes the invariant distribution to be significantly higher in the hallway states and states

that are close to these states. The states with the lowest values are those at the four corners.

This result is expected and desirable. Options are often added to a domain to help an agent

find key states that are important in solving a task. Thus, it is desirable that the invariant

distribution of the random walk would be skewed towards states in the termination set of

the options.

This change to the invariant distribution will also have an effect upon basis functions

created using the directed graph Laplacian. Johns and Mahadevan (2007) discuss the effect

of the the normalization by the Perron vector. We follow this analysis to understand the

82

21,
N

21,E21,
W

21,
S

34

22

46

101

21,
D2

21,
D1

Figure 5.3. Transitions associated with nodes for the state-action pairs for state 1 when the
doorway macro-actions are available.

(a) Invariant distribution when only primitive
actions are available.

(b) Invariant distribution when options are available.

Figure 5.4. The invariant distribution of the four room gridworld with only primitive ac-
tions and with options.

effect of the addition of options upon the basis functions created from the directed graph

Laplacian.

83

We have already mentioned that smoothness of a function f on a graph can be measured

by the Sobolev norm and that functions that are smooth over the graph minimize this norm.

The Sobolev norm for the directed graph Laplacian (Johns & Mahadevan, 2007) can be

rewritten as:

||f ||2H2 = ||f ||22 + ||∇f ||22

=
∑
v∈V

|f(v)|2dv +
∑
u→v

|f(u)− f(v)|2ψu
du
W (u, v),

where u → v indicates that there is an edge from vertex u to vertex v; ψu is the entry

of vertex u in Ψ, the Perron vector, which is the invariant distribution upon convergence

of a random walk on the graph. The second term of the Sobolev norm, 〈f, Ldf〉 =∑
u→v |f(u)−f(v)|2 ψu

du
W (u, v) is the smoothness constraint enforced by the directed graph

Laplacian. Vertices with large values in Ψ will contribute more to the Sobolev norm. Thus,

if a function f is smooth then f(u) ≈ f(v) when u → v and ψu is large compared to

other vertices. As we have already discussed, the addition of options cause some states,

specifically those in the termination set of the options, to have significantly higher values

in the invariant distribution. Thus, for f to be smooth over the graph these states must be

similar to vertices they connect to.

5.3 Learning Value Functions in Semi-Markov Decision Processes

In this section, we describe how Q-learning approaches have been extended to SMDPs.

After experiencing a transition from state s to state s′ under option o with duration N and

experiencing reward r the following update is performed:

Q(s, o)← Q(s, o) + α[r + γN max
o′∈O(s′)

Q(s′, o′)−Q(s, o)],

where r is the cumulative discounted reward over the option’s duration.

84

We use SMDP Q(λ)-learning (Precup et al., 2000). We selected this method because

it was off-policy learning (we wanted to be able to learn from samples experienced during

our random walk) and because it learns more quickly than Q-learning. This method uses

an ε-greedy policy for action selection and accumulating eligibility traces. Traces are set to

zero when a random action is taken. The update rule for the parameters is given as:

θt+K = θt + αδtet (5.1)

where

δt = ros + γN max
o′∈O(s′)|θt

Q̂t(s
′, o′|θt)− Q̂t(s, o|θt),

and

et = γN
′
λet−N ′ +∇θt

Q̂t(s, o|θt), e0 = 0

and N ′ is the duration of the option selected immediately before transitioning to s. We

use the following parameters(γ = .9, ε = .1, α = .01, λ = .9) to learn a policy that

approximately maximizes the agent’s long-term reward.

We consider a learning problem in the four room gridworld domain. The agent may use

both the primitive actions and options to learn to reach the goal. We first allow the agent to

explore the environment selecting from primitive actions and available options randomly.

We used 2000 episodes with 50 steps per episode. During the exploration period the agent’s

initial state is selected randomly. We perform this exploration only once. The agent then

builds the graph from these samples and computes the basis functions. Figure 5.5 gives an

algorithmic description of the process we use. During learning the agent starts in a random

state and each episode is halted after 50 steps.

85

SA-RPI Algorithm (D, γ, ε, k, π0):
// D: Source of samples (s, a, r, s′)
// γ: Discount factor
// ε : Stopping criteria
// k: Number of basis functions
//π0: Initial policy specified as a weight vector w0

1. Sample Collection: Generate a set of samples D, which consists of a state, action, reward,
and nextstate, (s, a, r, s′). The samples are created using a series of exploratory trajectories
using π0 where π0 selects the least frequently used action in any state.

2. Representation Learning:

(a) Build a directed weighted graph G from D where V is the set of state-action pairs, E
is the edge set, and W is the weight matrix using the on-policy approach in Figure 5.1.

(b) Calculate the k lowest order eigenfunctions of the (combinatorial or normalized) graph
Laplacian operator on G. These k eigenvectors make up the basis functions φ.

i. Form the directed Laplacian per Equation 3.9 or 3.10.
ii. Calculate φ by computing the eigenvectors of the directed Laplacian.

3. Control Learning Phase:
Use Q(λ)-learning as the parameter estimation method to find the best policy π using the
weight update in Equation 5.1.

Figure 5.5. RPI Framework for learning representation and control using state-action
graphs in SMDPs.

We performed experiments to compare the two graph Laplacians on both state and

state-action graphs. In these experiments we systematically varied the number of basis

functions used in function approximation. In experiments using state graphs, we varied the

number of basis functions from 24 to 120 in steps of 12 and from 144 to 1200 in steps

of 24. In experiments using state-action graphs, we varied the number of basis functions

from 3 to 10 in one step increments and from 20 to 600 in increments of 10. The results of

each experiment was averaged over 200 trials and each experiment was performed for 300

episodes.

Figure 5.6 compares the number of steps taken by the agent to reach the goal when using

the two types of graph Laplacians on both state and state-action graphs. The performance

of the normalized and combinatorial graph Laplacians was similar on both the state and

86

state-option graphs, thus we plot only results using the normalized Laplacian. The best

performance was in experiments using the state-option graphs with 260 basis functions

(out of 616 possible basis functions). A similar number of basis functions created from the

graph Laplacians of state graphs did not yield similar performance. Instead, performance

using about 264 basis functions created from the state graph was similar to performing

table lookup. Using more basis functions did not improve performance noticeably. All

techniques using options outperformed experiments where the agent had access only to

primitive actions.

Basis functions created from state-action graphs performed the best; we were not able

to achieve similar performance with basis functions derived from the state graph. We also

performed experiments varying α; however, the results were not significantly changed.

Basis functions created from state-action graphs continually outperform basis functions

created from state graphs.

Figure 5.6. Steps to goal in the four room gridworld.

87

5.3.1 Eight Room Gridworld

We also ran experiments on an eight room gridworld shown in Figure 5.7 to demonstrate

how copying can become increasingly expensive as the number of actions available to the

agent increases. This domain consists of 325 states of which 210 are free states. In any free

state the agent can perform one of four primitive actions: north, south, east or west. There

is a 10% probability that an action will fail and the agent will remain in the same location.

If the agent moves into a wall it remains in the same location. Rewards are zero on all state

transitions except transitions into the goal state when the agent receives a reward of 100.

G

Figure 5.7. Eight room gridworld.

Hallway options are provided in each of four rooms. These options allow the agent to

navigate from any location within one room to one of the hallway states that lead out of

that room. Rooms adjacent to 3 doorways have 3 hallway options and rooms adjacent to 2

doorways have 2 hallway options. The initiation set, I , is comprised of all the states within

the room. A hallway option’s policy is optimal and cannot be terminated once selected until

it reaches the goal state. Hallway states do not have hallway options available to them.

The learning problem in this domain is that the agent must use the 20 multi-step hallway

options and primitive actions to learn to reach the goal. In this domain, the agent’s initial

state is always a random state. We first allow the agent to explore the environment selecting

from primitive actions and available options randomly. We used 4000 episodes with 50

steps per episode. We perform this exploration only once. The agent then builds the graph

from these samples and computes the basis functions. We use SMDP Q(λ)-learning(γ =

88

.9, ε = .1, α = .01). The agent is allowed 100 steps per learning episode and the Q-function

is initialized to zero.

Figure 5.8. Steps to goal in the eight room gridworld.

We performed similar experiments to compare the two graph Laplacians on both state

and state-action graphs in the eight room gridworld. In these experiments, we systemat-

ically varied the number of basis functions used in function approximation. The results

of each experiment was averaged over 200 trials and each experiment was performed for

600 episodes. Figure 5.8 shows that once again the state-option graphs out perform the

state graphs. In the eight room grid world we use 780 (out of 2520) basis functions on the

state-option graph. The best results using a state graph required 2400 basis functions. Both

results are shown using the normalized graph Laplacian.

5.3.2 Comparison of Graph Creation Techniques

Earlier in the chapter we proposed a set of weightings for state-action graphs. In this

section, we will discuss other techniques for weighting the graph and experimentally eval-

uate these approaches. In this experiment, we examine how weightings affect the ability

89

to learn. We examine weightings that take into account the average duration of the option,

weightings that use information about the likelihood of the transition and weightings that

combine these two measures as well as a baseline 0 or 1 weighting. Table 5.2 shows the

nine weightings we compared.

Weighting 1 W (i, j) = 1
avetime(i,j)

count(i,j)
count(i)

Weighting 2 W (i, j) = 1 if edge else 0
Weighting 3 W (i, j) = 1

avetime(i,j)

Weighting 4 W (i, j) = avetime(i, j)

Weighting 5 W (i, j) = count(i,j)
count(i)

Weighting 6 W (i, j) = (
∑time(i,j)

t=1 γt)−1

Weighting 7 W (i, j) = e−time(i,j)

Weighting 8 W (i, j) = (
∑time(i,j)

t=1 γt)−1 count(i,j)
count(i)

Weighting 9 W (i, j) = e−time(i,j) count(i,j)
count(i)

Table 5.2. Weightings used in comparison experiments.

Figure 5.9 displays an overview of the results from our weighting experiment. All

results used 260 basis functions and the only difference between the experiments is the

weightings for W . Our results demonstrate that using both information about time and

likelihood in the weight is the most successful approach. Weighting 7 and Weighting 9 are

not shown on the figure. However, experiments for Weighting 7 had similar performance

to Weighting 6 and the results for Weighting 9 were similar to Weighting 1. These results

indicate that adding in both time and likelihood information gave the best performance.

5.4 Conclusion

In this chapter, we extended our approach for automatically constructing basis functions

for action-value functions to SMDPs. We describe how both state and state-action graphs

can be modified to incorporate information about options.

We experimentally evaluated the performance of these basis functions for learning

action-value functions. Our results demonstrate that basis functions created from the state-

90

Figure 5.9. Weighting comparison

action graph significantly improve learning performance when compared to basis functions

created on the state-graph. Additionally, our results for state-action graphs show that the

best weightings for these graphs include temporal and likelihood information.

91

CHAPTER 6

REPRESENTATION DISCOVERY FOR HIERARCHICAL
REINFORCEMENT LEARNING

Chapter 5 introduced a technique for representation discovery when the agent has ac-

cess to macro actions, each with a fixed policy. In this chapter, we generalize basis function

construction to multi-level hierarchies where the agent learns at multiple levels of temporal

abstraction simultaneously. Multi-level task hierarchies allow problems to be decomposed

into smaller subproblems. There are several advantages to decomposing the problem into

smaller subtasks. First, policies learned in a subtask can be reused for multiple parent tasks.

Second, value functions for a subtask can also be shared, which significantly decreases the

time required to learn the value function of a new parent task. Third, task hierarchies create

opportunities for state abstraction, which allows the value function to be represented com-

pactly. These features all help speed up the learning process. In this chapter, we introduce

an approach to basis function construction for problems where the agent has access to a task

hierarchy. Basis functions can substantially speed up learning since they provide general-

izations, and task hierarchies can help automatic basis function construction approaches

scale to larger problems.

Definition 6.1 Automatic Basis Construction Problem for Multi-Level Task Hierar-

chies: Given a Markov Decision Process M = (S,A, P,R) and a task hierarchy H , auto-

matically construct a low-dimensional representation Φ. The construction method should

leverage H to create a compact representation Φ that respects the hierarchy. Φ should

be constructed such that the solution to M calculated using Φ closely approximates the

solution of the original MDP M .

92

Task Hierarchy for Taxi

Before continuing further, we describe the taxi task, which we will use as an example

throughout this chapter. The taxi task domain (Dietterich, 1998) is pictured in Figure 6.1.

The taxi task is defined as a grid of 25 states with four colored locations, red (R), green

(G), yellow (Y), and blue (B). The task is for the agent, the taxi, to pick up the passenger

located on one of the colored locations and drop the passenger at the desired destination.

The state can be written as a vector of variables. Each state contains the location of the

taxi, the passenger location, and the passenger destination. There are 6 primitive actions in

this domain. Four of these actions are navigation actions: north, east, south, and west. The

other two actions access the passenger location, pickup and putdown. Each action receives

a reward of −1. If the passenger is putdown at the intended destination, a reward of +20

is given. If the taxi attempts to pickup a nonexistent passenger or putdown the passenger at

the wrong destination, a reward of −10 is received. If the taxi runs into the wall, it remains

in the same state and receives a reward of −1.

Figure 6.1. Taxi Domain

The task hierarchy, pictured in Figure 6.2, is defined as follows. The root node is

defined over all states and state variables and can select one of two subtasks, get and put.

The get action can only be selected when the passenger is not located in the taxi and the put

action can only be selected when the passenger is located in the taxi. No learning occurs

93

at the root subtask because each state has only one action available to it at any given time.

The get action only considers the taxi location and the passenger location. It has access to

two actions, navigate(p), and pickup. The put action considers only the taxi location and

the passenger destination. It has access to two actions: navigate(p), and putdown. The

navigate action takes 4 parameters that indicate which of the 4 locations it can navigate to

and has access to the 4 navigation actions.

Root

Get Put

Pickup PutdownNavigate
(p)

North East South West

p:source p:destination

Figure 6.2. Hierarchy for the Taxi Domain

Considerations for Automatic Basis Function Construction Techniques

Task hierarchies provide opportunities to speed up learning through policy reuse, value

function reuse, and state abstractions. Function approximation techniques combined with

task hierarchies provide a powerful opportunity to create compact representations through

generalization. We describe some considerations that arise when constructing basis func-

tions for multi-level task hierarchies.

The first consideration is whether information about the reward function should be in-

corporated during basis function construction. Research on basis function construction

has largely been divided into two categories: reward sensitive approaches (Keller et al.,

2006; Parr et al., 2007; Petrik, 2007) and reward insensitive approaches (Mahadevan, 2005;

94

Sugiyama et al., 2007). Reward insensitive basis functions are an appropriate choice for

low level subtasks that are often parameterized because only one set of basis functions must

be built, rather than a set for each parameterization. For example, in the taxi task the nav-

igate subtask has four parameters; reward sensitive approaches would create four sets of

basis functions for this subtask that correspond to the different reward functions for each

parameterization.

The second consideration is that temporal locality and spatial locality may no longer

be correlated in hierarchical reinforcement learning (HRL) tasks. For some levels of the

hierarchy, states that are sequential in the agent’s decision making may no longer be close

in terms of spatial locality. Figure 6.3 shows an instance of the taxi get task where the

passenger is located on the green square. If the taxi is located at the darkly shaded state,

it can travel to one of the four colored states. Therefore in the state graph, this state will

be connected to the four colored states by the navigate(p) action. In the get task the agent

will not observe a transition from the darkly shaded state to the lightly shaded state. Thus

the states are not connected, even though these states have similar values for each of the

navigate actions.

R G

Y B

Figure 6.3. An example of the taxi get task where the taxi must pick up the passenger
located in the green square.

95

The third consideration is that task hierarchies are constructed to decompose problems

into simple subproblems. These subproblems allow both the policies and value functions of

subtasks to be shared. Figure 6.4(a) shows how theQ-value function decomposes under the

MAXQ framework (Dietterich, 2000) into two parts: Va(s) the expected sum of rewards

obtained while executing action a and the completion function Ci(s, a), the expected cu-

mulative reward for subtask i following the current policy πi after action a is taken in state

s. Figure 6.4(a) specifically visualizes the Q-function decomposition for the taxi task.

In order to scale, the representations created for HRL problems should decompose re-

cursively in a similar manner. Lower level representations could be reused when construct-

ing basis functions at a higher level. Figure 6.4(b) is a visualization of how basis functions

might decompose according to the hierarchy. For a subtask i, the basis functions for state s

can be decomposed into two parts: φ̄i(s) the “local” basis functions constructed at subtask

i and φa(s) the basis functions from child subtasks, where a is one of the child subtasks.

Figure 6.4(b) specifically illustrates how the basis functions decompose for the taxi task.

In this work, φ̄i(s) is automatically constructed using spectral analysis of a graph Gi that

is built for subtask i from the agent’s experience. However, other automatic basis function

construction approaches, such as BEBFs (Parr et al., 2007), could be used to construct the

basis functions.

Automatic basis function construction approaches must address these considerations.

In this chapter, we describe an approach to representation discovery for HRL using eigen-

vectors of the graph Laplacian. Our approach leverages the hierarchy by constructing basis

functions over the abstract state space introduced by the task hierarchy. It also constructs

basis functions that decompose according to the hierarchy. We evaluate our approach ex-

perimentally using the MAXQ learning framework (Dietterich, 1998).

96

. . .r1 r r r r r2 3 4 5 6 r r 2019r r r r 18171615

V (s)
root

V (s)
get

V (s)
nav

V (s)
N

C (s, a)
root get

C (s, a)
nav N

C (s, a)
get nav

(a) Value function decomposition due to the task hierarchy for the
taxi task.

root
ϕ(s)

get
ϕ(s)

root
ϕ(s)

get
ϕ(s)

nav
ϕ(s)

nav
ϕ(s)N

ϕ(s)

(b) Representation decomposition based on the task hierarchy for the
taxi task.

Figure 6.4. We explore an approach to basis function construction that exploits the value
function decomposition defined by a fixed task hierarchy.

97

6.1 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning algorithms constrain policies via a hierarchy (Barto

& Mahadevan, 2003). These algorithms allow the agent to select actions that take more

than one time step. Often hierarchical RL algorithms use semi-Markov decision processes

(SMDPs) as a model. SMDPs are a generalization of MDPs in which actions are no longer

assumed to take a single time step and may have varied durations. An SMDP is defined as

a tuple M = (S,A, P,R). All components have the same definition as in an MDP, except

the transition probability function P and the reward function R. S is the set of states, and

A is the set of actions the agent may take at each decision point. The transition probability

function P is modified to take into account the duration of the actions. P is now a multi-

step transition probability function, where P (s′, N |s, a) denotes the probability that action

a taken in state s will cause a transition to state s′ in N time steps. The reward function is

also modified to take into account the duration of the actions. Rewards can accumulate over

the entire duration of an action. The reward function R(s′, N |s, a) is the expected reward

received from selecting action a in state s and transitioning to state s′ with a duration of N

time steps. An SMDP can be seen as representing the system at decision points, while an

MDP represents the system at all times.

In this chapter, we are specifically interested in frameworks where the temporally ex-

tended actions are not assumed to have a fixed policy and the agent learns at multiple levels

of abstraction simultaneously. In HRL tasks, agents solve the SMDP by learning the func-

tion Q(s, a), which is the expected sum of discounted reward for taking action a in state s.

It is important to note that in this context a may be either a temporally extended action or a

primitive action.

6.1.1 Task Hierarchies for Reinforcement Learning

In this section, we formalize multi-level task hierarchies for RL. A task hierarchy de-

composes an MDP M into a set of subtasks {M0,M1, ...,Mn}, which can be modeled

98

as SMDPs. M0 is the root subtask that solves M . A subtask is defined to be a tuple

Mi = (βi, Ai, R̃i).

• βi is the termination predicate that partitions S into a set of active states Si and a set

of terminal states βi. The policy πi for subtask Mi can only be executed if the current

state s is in Si. If theMi ever enters a state in βi while executing, thenMi terminates.

• Ai is a set of actions that can be performed to achieve subtask Mi. Each action can

either be a primitive actions from A or another subtask. If a subtask is called from

Mi, it is called the child of subtask i. No subtask can call itself either directly or

indirectly.

• R̃i(s) is the deterministic pseudo-reward function. It is a reward function specific to

Mi. Ri is defined for all states s ∈ βi and tells how desirable a state is for the subtask.

The pseudo-reward is only used during learning.

Task hierarchies may also have parameterized subtasks. If Mj is a parameterized sub-

task, it is as if this task occurs many times in Ai, where Mi is the parent task. Each

parameter of Mj specifies a distinct task. βi and R̃i are redefined as βi(s, p) and R̃i(s
′, p),

where p is the parameter’s value. If a subtask’s parameter has many values, it is the same

as creating a large number of subtasks, which must all be learned. It also creates a large

number of possible actions for a parent task.

A hierarchical policy π = {π0, . . . , πm} is a set containing a policy for each subtask in

the task hierarchy. In each subtask, πi takes a state and returns a primitive action or subtask

to be executed. P π
i (s′, N |s, a) is the probability transition function for a hierarchical policy

at level i, where s, s′ ∈ Si and a ∈ Ai.

6.1.2 State Abstraction for Multi-level Hierarchies

One of the most significant advantages of HRL is that task hierarchies allow state ab-

stractions to occur through an abstraction function χ. Each state s can be written as a vector

99

of variables X . Xi is the subset of state variables that are relevant to subtask i. Xi,j is the

jth variable for subtask i. A state xi defines a value xi,j ∈ Dom(Xi,j) for each variable

Xi,j . χi is a function that maps a state s onto only the variables in Xi. Since subtasks can

ignore certain portions of the state space, the number of distinct values required to represent

the value function can be significantly smaller. This significantly speeds up learning.

Dietterich (2000) discusses three types of abstraction within HRL tasks. The first type

of abstraction eliminates irrelevant variables within a subtask. Subtasks higher in the task

hierarchy tend to have more relevant variables, while subtasks lower in the task hierarchy

tend to have fewer relevant variables. The second type of abstraction results from the

structure of the task hierarchy itself. Large parts of a subtask’s state space may not be

reachable due to the termination conditions of its ancestors in the task hierarchy. The third

type of abstraction involves funnel actions. Funnel actions are macro-actions that move

the agent from some large number of potential initial states to a small number of resulting

states. The abstractions Dietterich (2000) describes for funnel actions are more specific to

the completion function C, and may not be general enough to be included for hierarchical

Q-learning. They also do not hold true when the agent is maximizing discounted reward.

Dietterich (2000) assumed that χ is constructed by a human designer. Some research, such

as Ravindran and Barto (2003), examines automatically building abstractions. Ravindran

and Barto (2003) use homomorphisms to create abstractions when the agent has access to

temporally extended actions.

Definition 6.2 State-abstracted task hierarchy: Assume each state s can be written as

the values of a vector of state variables. Given an MDP M and a task hierarchy H , the

state variables for each subtask i can be partitioned into two sets Xi and Yi, where Yi is

the set of state variables irrelevant to the task. χi projects s onto only the values of the

variables in Xi. When combined with χ, H is called a state-abstracted task hierarchy.

A state-abstracted task hierarchy reduces the size of the learning problem because an

abstract hierarchical policy can be defined over the reduced space.

100

Definition 6.3 Abstract Hierarchical Policy: For MDP M with a state-abstracted task

hierarchy H and χ, an abstract hierarchical policy is a hierarchical policy in which each

subtask i has a policy πi that satisfies the following condition: for any two states s1 and

s2 such that χi(s1) = χi(s2) then πi(s1) = πi(s2). When πi is a stochastic policy, such as

during exploration, the probability distribution for action selection in s1 and s2 will be the

same.

6.1.3 Solving HRL tasks

Each subtask Mi has a value function Qi(s, a) that defines the value of taking an action

a in state s according to the real reward function R. Qi(s, a) is used to derive a policy πi,

typically by selecting the action with the maximum Q value for s.

In the MAXQ framework (Dietterich, 1998) the value function is decomposed based

upon the hierarchy. MAXQ defines Qi recursively as:

Qi(s, a) = Va(s) + Ci(s, a)

where

Vi(s) =

 maxaQi(s, a) if i is composite

Vi(s) if i is primitive.

Va(s) is the expected sum of rewards obtained while executing action a. The completion

function Ci(s, a) is the expected discounted cumulative reward for subtask i following the

current policy πi after action a is taken in state s.

C̃ is the completion function that incorporates both R̃i and R, and is used only inside

the subtask to calculate the optimal policy of subtask i. Q̃i is defined as Q̃i(s, a) = Va(s)+

C̃i(s, a). Q̃ is used to select the action. If R̃i is zero, then C and C̃ will be identical.

101

6.1.3.1 Function Approximation for HRL

When performing function approximation in HRL, each subtask has a set of basis func-

tions Φi and a set of k weights θi that are used to calculate the value function Q. φi(s, a)

is a k length feature vector for state s and action a.

In MAXQ, the completion function for subtask i at time t Ci,t(s, a) is approximated by

Ĉi,t(s, a) =
∑k

j=1 φi,j(s, a)θi,j,t. The update rule for the parameters is given as:

θi,(t+N) = θi,t + αi[γ
N(max

a′∈A(s′)
Ĉi,t(s

′, a′|θi,t) + Va′,t(s
′))− Ĉi,t(s, a|θi,t)] · φi(s, a).

In our experiments we use Q(λ) learning with replacing traces. The update rules for

this are:

θi,(t+N) = θi,t + αδi,tei,t, where

ei,t = γNλei,t−N + φi(s, a), e0 = 0

and

δi,t = γN(max
a′∈A(s′)

Ĉi,t(s
′, a′|θi,t) + Va′,t(s

′))− Ĉi,t(s, a|θi,t) (6.1)

δ̃i,t = γN(R̃(s, a)+ max
a′∈A(s′)

ˆ̃Ci,t(s
′, a′|θ̃i,t)+ Va′,t(s

′))− ˆ̃Ci,t(s, a|θ̃i,t).

6.2 Automatic Basis Function Construction for Multi-level Hierarchies

While the state abstractions that are often provided with task hierarchies can be ex-

tremely effective at creating compact representations, function approximation can still pro-

vide powerful opportunities for generalization. In this section, we describe an approach for

automatic basis function construction for multilevel task hierarchies.

We focus on the graph Laplacian approach to automatic basis function construction

(Mahadevan, 2005). In this approach, the agent automatically constructs basis functions

102

by first exploring the environment and collecting a set of samples. These samples are then

used to create a graph where the vertices are states and edges are actions. Basis functions

are created by calculating the eigenvectors of the Laplacian of the graph. We describe how

we adapted this approach for multi-level task hierarchies.

One of the reasons HRL is useful is that value functions have been shown to decompose

with the hierarchy, as long as the hierarchy is well constructed. The intuition behind our

approach to representation discovery for HRL problems is that basis function construction

should decompose in a similar way. The first step in our approach constructs a graph for

each subtask from the agent’s experience. We discuss how graph construction can leverage

the abstractions provided with the task hierarchy. We also introduce an approach to creating

abstractions based upon the graph structure. The second step in our approach constructs

basis functions recursively from child subtasks. Figure 6.5 shows our approach to HRL

with representation discovery.

6.2.1 Graph Creation for Multi-level Task Hierarchies

The first step to our approach for representation discovery for multi-level task hierar-

chies is to perform sample collection, such that each subtask i has a set of samples Di.

Each sample in Di consists of a state, action, reward, and next state, (s, a, r, s′). The agent

constructs a graph from Di. The agent can leverage a state-abstracted task hierarchy by

building the graph in the abstract space defined by χi. The graph is built such that χi(s1) is

connected to χi(s2), if the agent experienced a transition from χi(s1) to χi(s2) in Di. We

call a graph constructed over the abstract state space a state-abstracted graph. Figure 6.6

describes how a graph can be created; this approach is similar to the approach in Chapter 5

but uses the abstraction function χ.

Definition 6.4 State-abstracted Graph: For an MDP M with a state-abstracted task hi-

erarchy, a state-abstracted graph Gi can be constructed for subtask i over the abstract

state space defined by χi. The vertices V correspond to the set of abstract states χi(S) or a

103

HRL-RD Algorithm (Subtask i, State s, Initial Samples D, Number of basis functions ki,
Initial Policy π0,i, γ, λ, ε):

if i is a primitive subtask
execute i, receive r, and

observe the next state s′

Vt+1,i(s) := (1− αt(i)) · Vt(i, s) + αi(t) · rt
return s′, 1

else
if first time executing i call CreateBasis(i,D, ki, π0,i) found in Figure 6.6.
e = 0, N̄ = 0
while βi(s) is false do
a∗ = argmaxa′ [Q̃i,t(s′, a′|θi,t)]
choose an action a according to the current policy πi
if a = a∗

ei = γNλei
else
ei = 0

end
ei = ei + φi(s, a)
(s′, τ) = HRL-RD (a, s)
Use update rules from Equation 6.1
θi,(t+N) = θi,t + αiδi,tei
θ̃i,(t+N) = θ̃i,t + αiδ̃i,tei
s = s′

N̄ = N̄ +N
return s′, N̄
end // while

end // else

Figure 6.5. HRL Algorithm with representation discovery.

subset of the abstract states. An edge exists between v1 and v2 if there is an action a ∈ Ai

that causes a transition between the corresponding abstract states.

6.2.1.1 State-abstracted graph for the Get Task

We use the get task to show an example of a state-abstracted graph. Figure 6.7 shows

the state-abstracted graph for the get task. χget(s) maps each state s to an abstract state

104

CreateBasis Algorithm(Subtask i, Samples D, Number of local basis functions ki, Initial
policy π0)

1. Sample Collection:

(a) Exploration: Generate a set of samples Di, which consists of a state, action, reward,
and nextstate, (s, a, r, s′, N) for subtask, i according to π0. N is the number of steps a
took to complete.

(b) Subsampling Step (optional): Form a subset of samplesDi ∈ D by some subsampling
method.

2. Representation Learning:

(a) if GraphReduction will be performed
Build an edge labeled graph Gi = (V, E ,Z,W) from Di where Z are labels over
the edge set E . State v1 is connected to state v2 if χ(s1) and χ(s2) are linked
temporally in Di by an action a.
Z(χi(s1), χi(s2)) = a.

(b) else Build an graph Gi = (V, E ,W) from Di where state v1 is connected to state v2 if
χ(s1) and χ(s2) are linked temporally in Di.

(c) Gi=GraphReduction (Gi, ki) as found in Figure 6.8.

(d) Calculate the ki lowest order eigenfunctions of the graph Laplacian of Gi.

Figure 6.6. CreateBasis Algorithm for Hierarchical Reinforcement Learning.

xget ∈ Xget where Xget = {passenger position, taxi position}. Each vertex in Figure 6.7 is

an abstract state xget.

The four clusters of vertices correspond to a clustering of the states according to their

values for the passenger location. Since there are four different values for the passenger

location there are four cluster. Within each cluster, the darker vertices correspond to states

where the taxi is located on one of the colored grid states. The light vertices in the graph

are not connected to one another but only to the dark colored vertices. This is because

the get subtask can only execute the navigate and pickup actions, and the navigate action

leads to one of the four colored grid states. The light edges refer to edges caused by the

navigate subtask. Dark edges refer to edges caused by primitive actions, in this case the

pickup action. Each cluster has only one vertex with a dark edge. This vertex represents

105

Figure 6.7. State-abstracted graph of the get subtask.

the state where the taxi is located in the same state as the passenger location. The center

vertex represents the terminal state where the passenger is no longer in the taxi.

6.2.1.2 Building a Reduced Graph

In this section, we describe how state abstractions can be created using a graph reduc-

tion algorithm. The approach uses only properties of the graph to construct the abstraction.

Our approach to graph reduction requires that the original graph Gi be an edge labeled

graph. We define an edge labeled graph to be G = (V,E, Z,W), where V is the set of

vertices, E is the edge set, Z is a set of labels over E, and W is the weight matrix. Gi must

be constructed such that the Z is the action a that caused the transition between v1 and v2.

Gi may be a state or state-abstracted graph.

Definition 6.5 Reduced Graph: A reduced graph can be constructed for subtask i from

a graph Gi. Two vertices v1 and v2 correspond to states, or abstract states, s1 and s2. v1

106

and v2 can be represented as the same abstract vertex ṽ, if the state variables for Mi can

be divided into two groups Xi and Yi such that:

• s1 and s2 differ only in their values of Yi

• v1 and v2 are connected to the same set of vertices in the graph and the labels z ∈ Z

for the respective edges are the same.

v1 and v2 are merged into an abstract vertex ṽ corresponding to the subset of state variables

Xi.

The graph reduction algorithm creates a reduced graph if M does not have an abstrac-

tion function χ associated with H or if χ exists but the state-abstracted graph Gi can be

further compressed. If no nodes are merged, the graph will be the original graph. Figure

6.8 contains the algorithm used to transform the state graph into the reduced graph and

create basis functions from the reduced graph.

GraphReduction Algorithm(Original Graph Go, ki)
Create reduced graph, Gi = (V,E,W), from Go
V = Vo

For all v1 ∈ V
Loop through v2 ∈ V

V1 is the set of vertices such that v′ ∈ V1 =⇒ v1 → v′

V2 is the set of vertices such that v′ ∈ V2 =⇒ v2 → v′

If V1 = V2 and the labels over the edges are the same and s1 = (xi,y1) and s2 = (xi,y2)
Then merge v1 and v2 into an abstract node ṽ corresponding to the state variables Xi

Return Gi

Figure 6.8. Graph Reduction Algorithm

6.2.1.3 Reduced graph for the Get Task

The reduced graph for the get task is shown in Figure 6.9. The outer four nodes are

abstract nodes corresponding to states where the taxi is not in one of the colored grid

locations. The four inner states correspond to the bottleneck states when the agent is in

107

the same location as the passenger. The center state represents when the passenger has

been picked up and is in the taxi. Basis functions for the get task will be constructed using

eigenvectors of the reduced graph and basis functions from the navigate child subtask.

Pass Pos=R

Pass Pos=GPass Pos=B

Pass Pos=Y

Pass Pos=Taxi

Pass Pos=R
Taxi Pos=R

Pass Pos=G
Taxi Pos=G

Pass Pos=B
Taxi Pos=B

Pass Pos=Y
Taxi Pos=Y

Figure 6.9. Reduced graph for the get task.

The reduced graph in Figure 6.9 is just one of the reduced graphs that will be con-

structed for the taxi task. Figure 6.10 shows all of the reduced graphs for the taxi task.

6.2.1.4 Generating Hierarchical Basis Functions

The basis functions for a subtask i are automatically constructed by first generating the

local basis functions Φ̄i. Φ̄i is constructed from the eigenvectors of the graph Laplacian of

Gi, as described in Chapter 3. These basis functions are concatenated with basis functions

recursively gathered from the child subtasks. This means that the basis functions are no

longer guaranteed to be linearly independent. If necessary, the bases can be reorthogonal-

ized using Gram-Schmidt or QR decomposition.

We define ϕ to be a compression of the state space. Compressions can be abstractions

defined by χ, such as those proposed by Dietterich (2000) as well as those from the reduced

graph. Compressions can also be those constructed through spectral graph analysis. For

108

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Pass Pos=R

Pass Pos=GPass Pos=B

Pass Pos=Y

Pass Pos=Taxi

Pass Pos=R
Taxi Pos=R

Pass Pos=G
Taxi Pos=G

Pass Pos=B
Taxi Pos=B

Pass Pos=Y
Taxi Pos=Y

Pass Dest=R

Pass Dest=GPass Dest=B

Pass Dest=Y

Pass Pos≠Taxi

Pass Dest=R
Taxi Pos=R

Pass Dest=G
Taxi Pos=G

Pass Dest=B
Taxi Pos=B

Pass Dest=Y
Taxi Pos=Y

Pass Pos=TaxiPass Pos≠Taxi

Navigate

Get Put

Root

Figure 6.10. The reduced graphs for the taxi task.

a given subtask i, we define ϕχ as the compression given by the abstraction function χi,

ϕG is the compression created by the reduced graph, and ϕe is the compression of the

eigenvectors of the graph Laplacian. The basis functions φi(s) for subtask i and a state

s can be written as the concatenation of the local basis functions with the basis functions

from the child subtasks:

109

φi(s) = [ϕe(ϕG(ϕχ(s))) | ∀a ∈ Ai(s)φa(s)],

where a ∈ Ai(s) is a subtask, not a primitive action. Since our approach uses reward

independent basis functions, the basis functions from parameterized tasks are only used

once.

This approach allows methods, such as graph Laplacian basis functions, to be scaled to

larger domains. The reduced graph can greatly reduce the size of the eigen problem that

must be solved to create these basis functions.

In the introduction, we gave a generic description of how basis function decomposition

might occur for the taxi task. Figure 6.11 shows the actual decomposition of our recursive

basis function construction approach. For a subtask i the basis functions φi(s) are com-

posed of two parts: φ̄Gi
(s) are the basis functions constructed from the reduced graph Gi

and φa(s) the basis functions from all of the unique child subtasks a ∈ Ai(s). For exam-

ple, the basis functions for the get task are constructed from the basis functions from the

reduced graph Gget and the basis functions from the navigate subtask. For the root subtask,

the basis functions are constructed from the reduced graph Groot, the basis functions from

the get subtask, and the basis functions from the put subtask. The basis functions from

the navigate subtask could potentially be used twice by the navigate subtask. Both the get

and put subtasks construct their basis functions using the basis functions from the navi-

gate subtask. However, the “extra” set of navigate basis functions provide no additional

information and can be omitted.

In the previous chapters, we demonstrated that constructing basis functions directly in

state-action space can significantly speed up learning. Since actions at a lower level are

not available at a higher level, recursively generating state-action basis functions is not

necessarily straightforward. Thus, our recursive basis function approach constructs basis

functions over the state space.

110

root
ϕ(s)

get
ϕ(s)

Groot

ϕ(s)

Gget

ϕ(s)
nav
ϕ(s)

G
nav

ϕ(s)

put
ϕ(s)

G put

ϕ(s)

Figure 6.11. The recursive basis function decomposition from our proposed approach.

6.3 Analysis

In this section, we analyze our approach to basis function construction for HRL. We

start by examining the abstractions created using the reduced graph approach. We demon-

strate that the reduced graph approach is capable of finding abstractions similar to three

types of abstraction outlined by Dietterich (2000).

The first type of abstraction involves eliminating state variables that are irrelevant to a

subtask. We call this subtask irrelevance.

Definition 6.6 Subtask Irrelevance: Given an MDP M with a state-abstracted task hier-

archy H , a set of state variables Yi are irrelevant to subtask Mi, if the state variables of M

can be partitioned into two sets Xi and Yi. The set of state variables Yi are irrelevant if, for

111

any stationary abstract hierarchical policy π that can be executed by i and its descendants,

the following properties hold:

• at subtask i the transition probability distribution P π
i (s′, N |s, a) can be factored into

the product of two distributions P π
i (x′,y′, N |x,y, a) = P π

i (y′|x,y, a)·P π
i (x′, N |x, a)

• V π
a (s1) = V π

a (s2) and R̃i(s1) = R̃i(s2), for any child action a and any pair of states

s1 = (xi,y1) and s2 = (xi,y2) such that χi(s1) = χi(s2) = xi.

An intuitive way to think about this form of abstraction is if a set of state variables are

entirely irrelevant to a subtask, they do not play a role in the transition probability function

and the reward function for subtask i.

The reduced graph construction algorithm constructs a reduced graph containing this

abstraction. If the state variables in Yi have no bearing on the probability transition func-

tion, they will be irrelevant in terms of connectivity on the graph and only Xi will be used

to represent the state variables.

The second type of abstraction results from the structure of the hierarchy. Dietterich

(2000) refers to this as shielding.

Definition 6.7 Shielding: The value of s does not need to be represented for a subtaskMi,

if for all paths from the root of the hierarchy H to subtask i there is some subtask j whose

termination predicate βj(s) is true.

Our approach can automatically find this representation because the graph is constructed

over states in the set of samples Di collected during the agent’s initial exploratory period.

βj(s) causes j to terminate and j lies on all paths between subtask i and the root. Thus,

Di cannot contain s, because the agent cannot transition to s during the execution of this

subtask. Therefore, the graph will not include s, and s will not be represented in the basis

functions.

The third type of abstraction results from “funnel actions,” specifically the result distri-

bution irrelevance condition (Dietterich, 2000).

112

Definition 6.8 Result distribution irrelevance: For a given subtask i, result distribution

irrelevance constructs an abstraction for all pairs of state s1 and s2, where the state vari-

ables can be partitioned into two sets {Xj, Yj}, such that s1 and s2 only differ in their

values of Yj . The completion function for subtask i can be represented as an abstract com-

pletion function Cπ
i (xj, j), if the subset of state variables Yj are irrelevant for the result

distribution of child subtask j. Yj is irrelevant for the result distribution of subtask j, if

P π(s′, N |s1, j) = P π(s′, N |s2, j),∀s′ and N .

Result distribution irrelevance is an abstraction over state-action pairs. The graph re-

duction algorithm creates an abstract state for states s1 and s2 when Ai(s1) = Ai(s2)

and the state variables Yi are irrelevant to connectivity of s to next state vertices s′ for all

a ∈ Ai(s1).

The abstraction created by the reduced graph is more strict than that described in result

distribution irrelevance because it requires the constraint to be true for all available actions.

However, it does not require the probabilities to be identical, just the connectivity within

the graph.

In general, abstractions formed due to the graph reduction algorithm are no longer

“safe” state abstractions. The graph reduction algorithm does not use probabilities to con-

struct the abstractions but instead uses connectivity within the graph. This may lead to

abstractions that “overgeneralize.” For example, if P π(s′, N |s1, j) is slightly different than

P π(s′, N |s2, j) but both values are greater than zero, then both s1 and s2 could potentially

be collapsed into the same abstract vertex. Additionally, the reductions created by graph

reduction algorithm construct “funnel action” abstractions, which Dietterich (2000) shows

to be unsafe in the discounted reward setting. However, information is regained when basis

functions from child subtasks are used in constructing basis functions. This information

regains some of the “lost” information and allows the agent to learn appropriate policies.

113

6.4 Experimental Analysis

In the previous section, we analyzed the types of compressions generated by our ap-

proach. In this section, we experimentally evaluate the approach and compare them to

other techniques.

6.4.1 Taxi

We evaluated four different techniques on the taxi task: hierarchical recursive graph

Laplacian basis functions, graph Laplacian basis functions using the more traditional ap-

proach, RBFs, and table-lookup on the Taxi task. The results can be seen in Figure 6.12.

The results of each experiment are averaged over 30 trials. The results plot the average

number of primitive actions taken in the domain by the average cumulative reward received

by the agent.

Figure 6.12. Results for the Taxi domain

The function approximation techniques all use a similar number of basis functions.

Our results use the directed normalized graph Laplacian. The recursive basis function

approach calculated ten local basis functions for the navigate subtask, nine basis functions

114

for get, and seven basis functions for put. The basis functions of the graph Laplacian

approach were created by using the eigenvectors of the directed graph Laplacian of the

state-abstracted graph. Ten basis functions were used for all of the subtasks. It is important

to note that while a similar number of basis functions were used for both of the graph based

approaches the amount of effort required to calculate the eigenvectors of the reduced graph

is significantly less because the reduced graph is smaller than the state-abstracted graph.

The recursive approach also uses basis functions from lower levels in order to obtain a

better approximation.

The navigate subtask had a total of 17 basis functions created by uniformly placing the

RBFs with two states between each RBF. The get and put subtasks had 21 basis functions

created by placing the RBFs uniformly with five states between each RBF. We experi-

mented with different numbers of RBFs but even doubling the number of basis functions

did not greatly improve performance. Table 6.1 lists the number of basis functions used in

the experiments for the taxi experiments.

Navigate Get Pickup
Recursive Basis Function Construction 10 (local) 9 (local), 19 total 7 (local), 17 total
Graph Laplacian 10 10 10
Table Look Up 25 101 101
RBFs 17 21 21

Table 6.1. Number of basis functions used in the taxi experiments

6.4.2 Manufacturing Domain

We also evaluated our approach on a simulated manufacturing shown in Figure 6.13.

This domain a modified version of the domain found in Ghavamzadeh and Mahadevan

(2007). This domain models a manufacturing environment. The agent travels between the

33 locations. M1−M3 are workstations. The agent carries one part at a time to workstation

drop off buffersD1−D3 and the assembled parts are brought from the workstation pick up

115

buffers, P1 − P3, to the warehouse. A reward of -5 is given when the actions Put1-Put3,

Pick1-Pick3, Load1-Load3, and Unload actions are executed illegally. All other actions

receive a reward of -1. The task is complete when the agent drops of one of each type of

assembled part at the warehouse and a reward of 100 is given.

M3
M1

M2

P3

D3

P1

D1

P2

D2

Load

Unload

Warehouse

P: Pick up Buffer
D: Drop off Buffer
M: Machine

Figure 6.13. The Manufacturing Domain

The factored state consists of the number of parts in the pickup and drop off buffers,

if the warehouse contains the three types of parts, the agent’s location, the agent’s status,

and if each assembled part has been delivered. The flat representation of the state space

consists of 33 locations, 6 buffers of size 2, 7 possible states of the agent, 2 values for

each part in the loading area of the warehouse, and 2 values for each assembled part in the

unloading area of the warehouse. This gives a total of 33× 36× 7× 23× 23 = 10, 777, 536

states. There are 14 primitive actions: North, South, East, West, Put1-Put3, Pick1-Pick3,

Load1-Load3, Unload, and Idle. The total number of parameters that must be learned in

the flat case is 10, 777, 536× 14 = 161, 663, 040.

Figure 6.14 defines a task hierarchy. The Navigate task moves the agent throughout the

grid. DM1-DM3 tasks pickup the part from the warehouse and deliver it to the respective

116

machine. DA1-DA3 tasks pickup the assembled part from the correct machine and deliver

it to the warehouse.

Root

DM2DM1 IdleDA1 DA2

UnloadLoad1 Put1 Nav

North East South

Pick2

...

... ...
p: (navload, navput1) p:(navpick2, navunload)

...

West

Figure 6.14. Hierarchy for the Manufacturing Domain

We evaluated the recursive basis function approach and compared it to table look up

on this task. We cut off learning after 3000 primitive steps were taken in the domain. Our

results use the normalized graph Laplacian. The recursive basis function approach created

15 local basis functions for the Navigate subtask, 10 basis functions for subtasks: DM1-

DM3, and DA1 - DA3. The root subtask has 400 local basis functions. The results of

learning can be seen in Figure 6.15. The results of each experiment was averaged over 30

trials.

6.4.3 Discussion of Results

Our results demonstrate that automatically constructing basis functions for hierarchical

reinforcement learning significantly improve learning performance. Basis functions pro-

vide generalization over the state space of each subtask allowing the agent to learn about

similar states.

Our recursive basis function construction approach has several advantages that help its

performance. The reduced graph often has significantly fewer states and thus the agent

117

Figure 6.15. Results for the manufacturing domain

must learn fewer values. This is also beneficial when constructing the basis functions since

the size of the eigen problem that must be solved is reduced.

The recursive approach is also helpful when the state space is not fully sampled during

basis function construction and out of sample extension must be performed such as the

Nyström extension (Williams & Seeger, 2001). Out of sample extension techniques per-

form best when there are states in the graph that are similar to the new previously unseen

state. It also requires an accurate distance metric to link previously unseen states to states in

the graph. One of the common properties of task hierarchies is that lower level subtasks are

defined over a subset of the state variables. This means that while the agent may not have

observed the state at a higher level subtask, lower level subtasks will have a representation

for the state. Thus, even if out of sample extension for subtask i performs poorly the basis

functions from lower level subtasks are likely to be accurate.

Another benefit of using the reduced graph is that basis functions for higher level sub-

tasks are smoother. In Chapter 5 we noted that the smoothness of a function f can be

affected by the invariant distribution Ψ. We observed that vertices with large values in Ψ

will contribute more to the Sobolev norm and thus functions will be forced to be smooth

in these states. Higher level subtasks often have a small number of states with large val-

118

ues in Ψ because child subtasks lead to a small subset of the state space that we will refer

to as funnel states. In these subtasks, the eigenvectors of the graph Laplacian are forced

to be smooth for the funnel states, which are a small subset of the states. This results in

eigenvectors that are frequently delta functions even for low valued eigenvectors and thus

a significant number of eigenvectors were required for learning. Eigenvectors created from

the reduced graph are often significantly smoother since many of the vertices are merged.

These smoother basis functions are more useful for approximating the value function.

6.5 Conclusion

In this chapter, we introduced an approach for automatic basis function construction

when the agent has access to a task hierarchy. We discussed some of the issues that must

be considered when automatically constructing basis functions for hierarchical reinforce-

ment learning. We introduced an approach that constructs a graph over the abstract state

space. We describe an algorithm to construct state abstractions based upon graph proper-

ties. Our approach constructs basis functions for lower level child subtasks as well as the

eigenvectors of the reduced graph for the subtask.

We evaluated the performance of this approach experimentally and demonstrated that

automatic basis function construction can significantly improve the speed of learning for

traditional function approximation techniques as well as over exact methods.

119

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation demonstrates that leveraging information about the agent’s action

space during automatic basis function construction results in significantly improved per-

formance. In this chapter, we provide a summary of the methods and algorithms presented

in the dissertation, along with potential areas for future research.

7.1 Summary

In this dissertation, we investigated approaches for representation discovery in discrete

Markov decision processes and discrete time SMDPs. Representation discovery is an area

of vital importance for machine learning and artificial intelligence (Mahadevan, 2008).

There are many approaches to solving Markov decision processes, such as linear program-

ming (de Farias & Van Roy, 2003), policy iteration (Howard, 1960), value iteration (Puter-

man, 1994), and reinforcement learning (Sutton & Barto, 1998). All of these approaches

employ function approximation techniques to scale to domains that have large or continu-

ous state spaces. Most previous work on function approximation techniques employ hand-

engineered basis functions. In this dissertation, we explored approaches to automatically

constructing these basis functions and demonstrate that automatically constructed basis

functions significantly outperform more traditional, hand-engineered approaches.

This dissertation specifically examined two problems: how to automatically build rep-

resentations for action-value functions by explicitly incorporating actions into the repre-

sentation and how representations can be automatically constructed for hierarchical rein-

forcement learning problems in a way that takes advantage of the action hierarchy.

120

Our approach to basis function construction extends recent work that builds basis func-

tions on graphs induced by an MDP. This is a desirable approach because incorporating

actions into the framework is straightforward, and the approach captures the underlying

structure of the domain. We extended the spectral graph approach to basis function con-

struction (Mahadevan & Maggioni, 2007).

This dissertation focused on two approaches to leveraging information about the agent’s

actions when constructing the representation. The first examined explicitly incorporating

actions into the bases for MDPs and SMDPs using state-action graphs. The second intro-

duced an approach for automatic basis function construction when the agent has access to

a task hierarchy.

Chapter 4 described an approach to automatically constructing basis functions over

state-action space. Our approach extends the work of Mahadevan and Maggioni (2007)

in which basis functions were constructed using spectral analysis of the state graph in-

duced by an MDP. Basis functions are constructed using spectral analysis of the state-

action graph. This approach captures the underlying structure of the state-action space of

the MDP. We described two approaches to constructing these graphs and evaluated this ap-

proach for MDPs with discrete state and action spaces. Our results demonstrate that basis

functions created using the state-action graph significantly improve learning performance

when compared to basis functions created over the state space. This is due to the fact that

basis functions constructed over state-action space are able to simultaneously generalize

over both states and actions.

Chapter 5 extended work on automatic basis function construction to SMDPs. We

described how both state and state-action graphs can incorporate information about the

temporally extended activities or macro-actions, and demonstrated our approach using the

options framework, where the agent has access to options with a fixed predefined pol-

icy. We experimentally evaluated this approach for SMDPs with discrete state and action

spaces. Our results demonstrate that basis functions constructed from state-action graphs

121

significantly improve learning performance when compared to basis functions created over

the state-graph. Additionally, our results show that the best weightings for state-action

graphs include temporal and likelihood information.

Chapter 6 investigated how hierarchical reinforcement learning (HRL) can be used to

scale up automatic basis function construction. We extend automatic basis function con-

struction approaches to multi-level task hierarchies. The key idea behind our approach is

that basis function construction can exploit the value function decomposition defined by a

fixed task hierarchy. Once again, spectral graph based techniques was used for basis func-

tion construction. We demonstrated how graph construction algorithms can leverage ab-

stractions provided by the task hierarchy. We also introduced an approach to automatically

construct abstractions based upon graph properties, through a graph reduction algorithm.

Our approach decomposes basis functions for a subtask into two parts: the basis functions

generated from the graph constructed from the agent’s experience and the basis functions

of the children subtasks. Our results show that using function approximation combined

with HRL leads to a significant speed-up in learning.

7.2 Future Work

This area of research offers many interesting avenues for future research.

7.2.1 Representation Discovery Using State-Action Graphs

7.2.1.1 Extension of State-Action Graphs to Continuous Spaces

The algorithms presented in Chapters 4 and 5 focused on representation discovery for

MDPs with discrete state and action spaces. One important area of future work is to extend

state-action graph creation in domains with continuous state and discrete (or continuous)

actions. Mahadevan et al. (2006) extend the graph Laplacian basis function approach to

continuous spaces, and Johns and Mahadevan (2007) extended the directed graph Laplacian

approach to continuous state spaces. Their approach uses k-nearest neighbors to create a

122

graph and then prunes edges that do not respect the “directionality” of the actions. A

similar approach is likely to work well for creating state-action graphs over continuous

state spaces. In order to extend this approach to state-action graph construction, k-nearest

neighbors requires a distance metric over state-action space. This leads to a fundamental

question that needs to be explored: how to define an appropriate distance metric over a

continuous state-action space.

7.2.1.2 Action Representation using Alternative Feature Types

The techniques in Chapters 4 and 5 demonstrate the usefulness of incorporating actions

into features when creating basis functions using spectral graph analysis. An interesting

next step is to test the usefulness of incorporating actions when using other approaches to

feature creation on graphs, such as diffusion wavelets or shortest path measures. While

eigenvectors have been shown to be useful features for learning, they have some limita-

tions. One limitation is that eigenvectors are defined over the entire graph, creating global

features. Wavelet approaches provide techniques to create features at multiple temporal

and spatial scales. Incorporating actions into this type of representation will allow us to

analyze the joint space of states and actions at multiple scales.

7.2.1.3 Basis Function Construction for Other Action Value Functions

In this dissertation we primarily focused our attention to approximating Q-value func-

tions; however, there are other forms of action-value functions. Advantage functions

(Chandrasekaran et al., 1997; Hall et al., 1998; Winkeler et al., 1999; Hall et al., 2000;

Baird, 1993) are another type of action value function. Advantage updating was proposed

to cope with systems where the value of possible actions will not differ by a significant

amount. It was specifically proposed for systems working in continuous time or for dis-

crete time with small time steps.

Advantage functions store the value A(s, a) which represents the degree to which the

expected total discounted reward is increased by performing action a relative to the action

123

currently considered to be the best action. The update using advantage functions is defined

as:

A(s, a) =
Q(s, a)−maxa′ Q(s, a′)

∆t
.

This update requires that the maximum advantage in any state should converge to zero.

When this occurs for every state the advantage function is normalized. Originally it was

suggested that one learn both a value function and an advantage function. However, Baird

(1995) later demonstrated this is not necessary as the formula can be modified to not require

both functions:

At+1(s, a) = (1− α)At(s, a) +

α[
1

∆t
(r + γ∆t max

a′∈A(s′)
At(s

′, a′)) + (1− 1

∆t
) max
a∗∈A(s)

At(s, a
∗)].

The advantage function will not approach zero for all actions. Thus, the chance of

representing this function accurately with function approximation is increased. Since our

approach is particularly interested in distinguishing between actions it may be well suited

to advantage functions.

Another type of action-value function is the average reward function. Schwartz (1993)

proposed R-learning, an average-reward RL technique. This technique storesR(s, a) which

represents the average adjusted value of performing a in state s.

The update is defined as

Rt+1(s, a) = Rt(s, a)(1− β) + β(r − ρt + max
a′∈A(s′)

Rt(s
′, a′)

ρt+1 = ρt(1− α) + α[r + max
a′∈A(s′)

Rt(s
′, a′)− max

a∗∈A(s)
Rt(s, a

∗)].

124

Using the different action-value functions will give insight into this approach’s effective-

ness approximating different types of functions.

7.2.2 Representation Discovery for Multi-Level Task Hierarchies

7.2.2.1 Extension to State-Action Space

The technique described in Chapter 6 constructs basis functions over the state space.

Chapters 4 and 5 show that basis functions constructed over the state-action space sig-

nificantly improve learning performance. In order to extend the recursive basis function

approach to state-action space, an approach to recursively select basis functions from child

subtasks for a particular action must be resolved.

7.2.2.2 Multi-Scale Representations for Hierarchical Reinforcement Learning

The latter portion of the dissertation focused on constructing basis functions for HRL.

In this work, we assumed the task hierarchy was given to the agent. A substantial amount of

work has been done on skill learning (Thrun & Schwartz, 1995; McGovern, 2001; Hengst,

2002; Şimşek & Barto, 2004; Bonarini et al., 2006; Mehta et al., 2008; Şimşek & Barto,

2008; Konidaris & Barto, 2009; Zang et al., 2009; Neumann et al., 2009). An interesting

avenue of research is how features created during representation discovery may be useful

for subtask creation.

Muli-scale representations such as diffusion wavelets (Mahadevan & Maggioni, 2006;

Maggioni & Mahadevan, 2006a) and multigrid approaches (Ziv, 2004; Ziv & Shimkin,

2005) are approaches that automatically construct a hierarchy of basis functions. These

approaches may lead to new insights and new types of skill learning.

7.2.3 Theoretical Analysis of Basis Function Construction

In this dissertation, we introduced new approaches to basis function construction. We

evaluated our approach experimentally and provided some intuition about why these ap-

proaches should be expected to work. However, a more rigorous theoretical analysis of

125

this work is required. One question of interest is to derive convergence bounds for learning

algorithms using basis functions constructed from the agent’s experience. Another is to

provide analysis of the approach introduced for basis function construction for hierarchical

reinforcement learning in Chapter 6.

7.2.4 Extension to Partially Observable Markov Decision Processes

This dissertation has focused on situations where the agent has had full access to its

state. However, in many real world domains the agent will only have access to partial

information. Partially observable Markov decision processes (POMDPs) (Sondik, 1971;

Kaelbling et al., 1998) are a generalization of MDPs. POMDPs assume that the sequential

decision process can be modeled as an MDP but have the additional constraint that the agent

cannot directly observe the state space of the underlying MDP. The agent must learn from

local observations. POMDPs are often intractable to solve. The construction of appropriate

basis functions may make learning more tractable. There has been some investigation

of dimensionality reduction in POMDPs such as Poupart and Boutilier (2002); Roy and

Gordon (2003); Li et al. (2007). Extending the approaches discussed in this dissertation

may provide additional insight into value function approximation for POMDPs.

7.2.5 Incremental Basis Function Construction

Currently, much of the work on automatic feature creation generally assumes the agent

has explored a task and has access to a representative set of samples. An incremental

approach to feature creation is necessary in settings where an agent must begin learning

immediately, because experience in the domain is expensive. Since the eigen decomposi-

tion of the full matrix would no longer be required, an incremental approach should also

help scale spectral approaches, which are computationally expensive.

A naı̈ve approach would recompute the eigenfunctions each time the graph is changed.

However, if the graph was frequently being updated this would be quite expensive. Since

the graph’s overall topology should not drastically change when a small number of nodes

126

are added, it should be possible to update the eigenvectors without performing the full

eigenvalue decomposition. The problem of incremental eigenvector updates has been ex-

amined in the context of PCA (Artac et al., 2002). Law and Jain (2006) propose a technique

to perform incremental ISOMAP. In the paper they state that their technique extends to

techniques using eigenvectors such as Laplacian eigenmap. Kempe and McSherry (2008)

describe a decentralized approach for eigenvector computation when the nodes of the graph

only know their neighbors. This approach could potentially be modified to construct fea-

tures incrementally.

7.3 Closing Remarks

In this dissertation, we explored automatic basis function construction in discrete MDPs

and SMDPs. We developed approaches for basis function construction that incorporate

information about the actions into the representation. This dissertation introduces an ap-

proach to automatically construct basis functions over the state-action space of an MDP

using a state-action graph. We also extended this approach to SMDPs. Our research

demonstrates that basis functions constructed from state-action graphs significantly im-

prove learning performance. Additionally, we describe how automatic basis function ap-

proaches can be scaled up by leveraging multi-level task hierarchies. Our research shows

that task hierarchies can be used to scale automatic basis function construction to large

tasks, and that the use of these basis functions significantly improves learning performance

in hierarchical reinforcement learning problems.

Constructing these representations often requires a nontrivial amount of experience.

We envision these representations being used during the lifelong learning of an agent. The

agent will simultaneously build a repertoire of representations and skills based upon its ex-

perience. When faced with a new learning scenario, the agent can use the representations it

has already constructed to solve the task or leverage them to construct new representations.

127

In this chapter, we outlined a few directions of future research that are related to the

methods presented in this dissertation. Naturally, there many other questions that must

be answered before these approaches can be used to effectively represent large complex

systems. Our hope is that these methods will aid in the creation of techniques that will

solve large complex problems that require learning from experience.

128

BIBLIOGRAPHY

Albus, J. S. (1981). Brain, behavior, and robotics. Byte Books.

Amarel, S. (1968). On representations of problems of reasoning about actions. Machine
Intelligence 3, 3, 131–171.

Artac, M., Jogan, M., & Leonardis, A. (2002). Mobile robot localization using an incre-
mental eigenspace model. Proceedings of the 2002 IEEE International Conference on
Robotics and Automation (pp. 1025–1030).

Baird, L. C. (1993). Advantage updating (Technical Report WL-TR-93-1146). Wright-
Patterson Air Force Base Ohio: Wright Laboratory.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approxi-
mation. International Conference on Machine Learning (pp. 30–37).

Barto, A., & Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learn-
ing. Special Issue on Reinforcement Learning, Discrete Event Systems Jouranl, 13, 41–
77.

Belkin, M., Matveeva, I., & Niyogi, P. (2004). Regularization and semi-supervised learning
on large graphs. Proceedings of the International Conference on Computational Learn-
ing Theory (COLT) (pp. 624–638).

Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for em-
bedding and clustering. Advances in Neural Information Processing Systems 14 (pp.
585–591). Cambridge, MA: MIT Press.

Belkin, M., & Niyogi, P. (2004). Semi-supervised learning on riemannian manifolds. Ma-
chine Learning, 56, 209–239.

Bellman, R., & Dreyfus, S. E. (1959). Functional approximations and dynamic program-
ming. Math Tables and Other Aides to Computation, 13, 247–251.

Bjorck, A., & Golub, G. (1973). Numerical methods for computing angles between linear
subspaces. Mathematics of Computation, 27, 579–594.

Bonarini, A., Lazaric, A., Restelli, M., & Vitali, P. (2006). Self-development framework
for reinforcement learning agents. Proceedings of the Fifth International Conference on
Development and Learning.

129

Bowling, M., Ghodsi, A., & Wilkinson, D. (2005). Action respecting embedding. Interna-
tional Conference on Machine Learning.

Boyan, J. A. (1999). Least-squares temporal difference learning. Proceedings of the 16th
International Conference on Machine Learning (pp. 49–56). San Francisco, CA: Morgan
Kaufmann.

Bradtke, S., & Barto, A. (1996). Linear least-square algorithms for temporal difference
learning. Machine Learning, 22, 33–57.

Castañon, D. A., & Bertsekas, D. P. (1989). Adaptive aggregation methods for infinite
horizon dynamic programming. IEEE Transactions on Automatic Control, 34, 589–598.

Chandrasekaran, S., Manjunath, B. S., Wang, Y. F., Winkeler, J., & Zhang, H. (1997). An
eigenspace update algorithm for image analysis. Graphical Models and Image Process-
ing, 59, 321–332.

Chapman, D., & Kaelbling, L. P. (1991). Input generalization in delayed reinforcement
learning. Proceedings of the 12th International Joint Conference on Artificial Systems
(pp. 726–731).

Chung, F. (1997). Spectral Graph Theory. Number 92 in CBMS Regional Conference
Series in Mathematics. American Mathematical Society.

Chung, F. (2005). Laplacians and the Cheeger inequality for directed graphs. Annals of
Combinatorics, 9, 1–19.

Ciocarlie, M., Goldfeder, C., & Allen, P. (2007). Dimensionality reduction for hand-
independent dexterous robotic grasping. IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (pp. 3270–3275).

Dayan, P. (1993). Improving generalisation for temporal difference learning: The successor
representation. Neural Computation, 5, 613–624.

de Farias, D., & Van Roy, B. (2003). The linear programming approach to approximate
dynamic programming. Operations Research, 15, 850–856.

Dean, T., Givan, R., & Leach, S. M. (1997). Model reduction techniques for computing
approximately optimal solutions for Markov decision processes. Thirteenth Conference
on Uncertainty in Artificial Intelligence (UAI-97) (pp. 124–131).

Dhillon, I. (2001). Co-clustering documents and words using spectral graph partitioning.
Knowledge Discovery and Dating Mining Conference.

Dietterich, T. (1998). The MAXQ method for hierarchical reinforcement learning. In
Machine Learning: Proceedings of the Fifteenth International (pp. 118–126). Morgan
Kaufman.

Dietterich, T. (2000). Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research, 13, 277–303.

130

Dietterich, T., & Wang, X. (2002). Batch value function approximation via support vectors.
Proceedings of Neural Information Processing Systems (NIPS). MIT Press.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1, 269–271.

Driessens, K., Ramon, J., & Gärtner, T. (2006). Graph kernels and gaussian processes for
relational reinforcement learning. Machine Learning, 64, 91–119.

Drummond, C. (2002). Accelerating reinforcement learning by composing solutions of
automatically identified subtasks. Journal of Artificial Intelligence Research, 16, 59–
104.

Engel, Y., Mannor, S., & Meir, R. (2003). Bayes meets Bellman: The gaussian process ap-
proach to temporal difference learning. Proceedings of the 20th International Conference
on Machine Learning.

Farley, B. G., & Clark, W. A. (1954). Simulation of self-organizing systems by digital
computer. IRE Transactions on Information Theory, 4, 76–84.

Ferns, N., Panangaden, P., & Precup, D. (2004). Metrics for finite Markov decision pro-
cesses. Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence
(pp. 162–169).

Ferris, B., Fox, D., & Lawrence, N. (2007). Wifi-slam using gaussian process latent vari-
able models. Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI) (pp. 2480–2485).

Fodor, I. K. (2002). A survey of dimension reduction techniques (Technical Report).
Lawrence Livermore National Lab, Livermore, CA.

Foster, D., & Dayan, P. (2002). Structure in the space of value functions. Machine Learn-
ing, 325–346.

Gärtner, T., Driessens, K., & Ramon, J. (2003). Graph kernels and gaussian processes
for relational reinforcement learning. Inductive Logic Programming, 13th International
Conference, ILP 2003, Proceedings (pp. 146–163). Springer.

Ghavamzadeh, M., & Mahadevan, S. (2007). Hierarchical average-reward reinforcement
learning. Journal of Machine Learning Research, 8, 2629–2669.

Giunchiglia, F., & Walsh, T. (1992). A theory of abstraction. Artificial Intelligence, 57,
323–390.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence, 147, 163–223.

Givan, R., Leach, S. M., & Dean, T. (2000). Bounded-parameter markov decision pro-
cesses. Artificial Intelligence, 122, 71–109.

131

Goldstein, H., Poole, C., & Safko, J. (2002). Classical mechanics. Addison-Wesley.

Golub, G., & Loan, C. V. (1989). Matrix computations. Baltimore, MD: John Hopkins
University Press.

Gonzalez, J., Rojas, I., Ortega, J., Pomares, J., Fernandez, J., & Diaz, A. F. (2003). ,
multiobjective evolutionary optimization of the size, shape, and position parameters of
radial basis function networks for function approximation. IEEE Transactions on Neural
Networks, 14, 1478–1495.

Gorban, A. N., Kégl, B., Wunsch, D. C., & Zinovyev, A. (Eds.). (2007). Principal man-
ifolds for data visualization and dimension reduction. Lecture Notes in Computational
Science and Engineering. Springer.

Gordon, G. J. (1995). Stable function approximation in dynamic programming. Proceed-
ings of the 12th International Conference on Machine Learning (pp. 261–268).

Grudic, G., & Mulligan, J. (2005). Topological mapping with multiple visual manifolds.
Proceedings of Robotics: Science and Systems. Cambridge, USA.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003). Efficient solution algorithms
for factored mdps. Journal of AI Research, 19, 399–468.

Hall, P., Marshall, D., & Martin, R. (1998). Incremental eigenanalysis for classification.
British Machine Vision Conference (pp. 286–295).

Hall, P., Marshall, D., & Martin, R. (2000). Merging and splitting eigenspace models.
IEEE Transactions of Pattern Analysis and Machine Intelligence, 22, 1042–1048.

Ham, J., Lin, Y., & Lee, D. D. (2005). Learning nonlinear appearance manifolds for robot
localization. Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems (pp. 1239–1244).

Haykin, S. (1999). Neural networks - a comprehensive foundation. New Jersey: Prentice
Hall. 2nd edition.

Hengst, B. (2002). Discovering hierarchy in reinforcement learning with hexq. Proceedings
of the Nineteenth International Conference on Machine Learning (pp. 243–250).

Howard, R. (1960). Dynamic programing and markov decision processes. MIT Press.

Huber, P. J. (1985). Projection pursuit. Annals of Statistics, 13, 435–475.

Hyvvärinen, A. (1999). Survey on independent component analysis. Neural Computing
Surveys, 2, 94–128.

Jenkins, O. C., & Matarić, M. J. (2004). A spatio-temporal extension to isomap nonlinear
dimensionality reduction. Proceedings of the 21st International Conference on Machine
Learning (pp. 441–448).

132

Johns, J., & Mahadevan, S. (2007). Constructing basis functions from directed graphs for
value function approximation. Proceedings of Twenty-fourth International Conference
on Machine Learning (ICML).

Jolliffe, T. (1986). Principal components analysis. Berlin: Springer.

Jong, N. K., & Stone, P. (2005). State abstraction discovery from irrelevant state variables.
Proceedings of the 19th International Joint Conference on Artificial Systems.

Kaelbling, L. P., Littman, M., & Cassandra, A. H. (1998). Planning and acting in partially
observable stochastic domains. Artificial Intelligence Journal, 101, 99–134.

Karayiannis, N. B. (1999). Reformulated radial basis neural networks trained by gradient
descent. IEEE Transactions on Neural Networks, 10, 657–671.

Karni, Z., & Gotsmann, C. (2000). Spectral compression of mesh geometry. SIGGRAPH
’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques (pp. 279–286). ACM Press/Addison-Wesley Publishing Co.

Keller, P. W., Mannor, S., & Precup, D. (2006). Automatic basis function construction for
approximate dynamic programming and reinforcement learning. Proceedings of the 23rd
International Conference on Machine Learning. New York, NY: ACM Press.

Kempe, D., & McSherry, F. (2008). A decentralized algorithm for spectral analysis. Journal
of Computer and System Sciences, 74, 70–83.

Kondor, R., & Vert, J.-P. (2004). Kernel methods in computational biology, chapter Diffu-
sion, 171–192. MIT Press.

Konidaris, G., & Barto, A. (2009). Efficient skill learning using abstraction selection.
Proceedings of the Twenty First International Joint Conference on Artificial Intelligence.

Konidaris, G., & Osentoski, S. (2008). Value function approximation in reinforcement
learning using the Fourier basis (Technical Report UM-CS-2008-19). Department of
Computer Science, University of Massachusetts Amherst.

Kretchmar, R. M., & Anderson, C. W. (1999). Using temporal neighborhoods to adapt
function approximators in reinforcement learning. International Work Conference on
Artificial and Natural Neural Networks.

Lagoudakis, M., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine
Learning Research, 4, 1107–1149.

Law, M. H. C., & Jain, A. K. (2006). Incremental nonlinear dimensionality reduction.
IEEE Transactions of Pattern Analysis and Machine Intelligence, 28, 377–391.

Lazaro, M., Santamaria, I., & Pantaleon, C. (2003). A new EM-based training algorithm
for RBF networks. Neural Networks, 16, 69–77.

133

Li, L., Walsh, T. J., & Littman, M. (2006). Towards a unified theory of state abstraction for
mdps. Proceedings of the 23rd International Conference on Machine Learning.

Li, X., Cheung, W. K. W., Liu, J., & Wu, Z. (2007). A novel orthogonal NMF-based
belief compression for POMDPs. Proceedings of the 24th International Conference on
Machine Learning.

Maggioni, M., & Mahadevan, S. (2006a). A multiscale framework for Markov decision
processes using diffusion wavelets (Technical Report TR-2006-36). University Of Mas-
sachusetts, Department of Computer Science.

Maggioni, M., & Mahadevan, S. (2006b). A multiscale framework for Markov decision
processes using diffusion wavelets (Technical Report TR-2006-36). University of Mas-
sachusetts, Department of Computer Science.

Mahadevan, S. (2005). Proto-Value Functions: Developmental Reinforcement Learning.
Proceedings of the 22nd International Conference on Machine Learning (pp. 553–560).
New York, NY: ACM Press.

Mahadevan, S. (2008). Representation discovery using harmonic analysis. Morgan Clay-
pool Publishers.

Mahadevan, S. (2009). The learning of representation and control in Markov decision
processes: New frontiers. Foundations and Trends in Machine Learning.

Mahadevan, S., & Maggioni, M. (2006). Value function approximation using diffusion
wavelets and Laplacian eigenfunctions. Neural Information Processing Systems. MIT
Press.

Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A laplacian framework for
learning representation and control in Markov decision processes. Journal of Machine
Learning, 8, 2169–2231.

Mahadevan, S., Maggioni, M., Ferguson, K., & Osentoski, S. (2006). Learning represen-
tation and control in continuous Markov decision processes. Proceedings of the 21st
National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1995). Multivariate analysis. Academic Press.

McCallum, A. (1995). Reinforcement learning with selective perception and hidden state.
Doctoral dissertation, University of Rochester.

McGovern, A. (2001). Autonomous discovery of temporal abstractions from interaction
with an environment. Doctoral dissertation, University of Massachusetts, Amherst.

McLoone, S., Brown, M. D., Irwin, G., & Lightbody, G. (1998). A hybrid linear/nonlinear
training algorithm for feedforward neural networks. IEEE Transactions on Neural Net-
works, 9, 669–684.

134

Mehta, N., Ray, S., Tadepalli, P., & Dietterich, T. (2008). Automatic discovery and transfer
of MAXQ hierarchies. Proceedings of the 25th International Conference on Machine
Learning (pp. 648–655). Helsinki, Finland.

Menache, I., Mannor, S., & Shimkin, N. (2002). Q-cut - dynamic discovery of sub-goals in
reinforcement learning. Proceedings of the Thirteenth European Conference on Machine
Learning (pp. 295–306).

Menache, I., Mannor, S., & Shimkin, N. (2005). Basis function adaptation in temporal
difference reinforcement learning. Annals of Operations Research, 134, 215–238.

Meyer, C. (1989). Uncoupling the perron eigenvector problem. Linear Algebra and its
Applications, 114/115, 69–94.

Moody, J., & Darken, C. (1989). Fast learning in networks of locally tuned processing
units. Neural Computation, 1, 281–294.

Nedic, A., & Bertsekas, D. P. (2003). Least-squares policy evaluation algorithms with
linear function approximation. Discrete Event Systems Journal, 13.

Neumann, G., Maass, W., & Peters, J. (2009). Learning complex motions by sequenc-
ing simpler templates. Proceedings of the 26th International Conference on Machine
Learning.

Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm.
Proceedings of the Neural Information Processing Systems.

Olson, E., Walter, M., Teller, S., & Leonard, J. (2005). Single-cluster spectral graph parti-
tioning for robotics applications. Robotics: Science and Systems.

Ormoneit, D., & Sen, S. (2002). Kernel-based reinforcement learning. Machine Learning,
49, 168–178.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The PageRank citation ranking:
Bringing order to the web (Technical Report). Stanford University.

Parr, R., Painter-Wakefield, C., Li, L., & Littman, M. (2007). Analyzing feature genera-
tion for value-function approximation. Proceedings of the International Conference on
Machine Learning (ICML).

Parr, R., & Russell, S. (1998). Reinforcement learning with hierarchies of machines. Ad-
vances in Neural Information Processing Systems 10 (pp. 1043–1049). MIT Press.

Petrik, M. (2007). An analysis of Laplacian methods for value function approximation
in mdps. Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI).

Poupart, P., & Boutilier, C. (2002). Value-directed compression of POMDPs. Advances in
Neural Information Processing Systems 15 (NIPS) (pp. 1547–1554).

135

Powell, M. J. D. (1987). Radial basis functions for multivariate interpolation: A review. In
Algorithms for approximation. Oxford: Clarendon Press.

Precup, D., Sutton, R., & Singh, S. (2000). Eligibility traces for off-policy policy eval-
uation. Proceedings of the 17th International Conference on Machine Learning (pp.
759–766). Morgan Kaufmann.

Puterman, M. L. (1994). Markov decision processes. New YorkTemporal, USA: Wiley
Interscience.

Rasmussen, C. E., & Kuss, M. (2004). Gaussian processes in reinforcement learning.
Advances in Neural Information Processing Systems (NIPS) 16.

Ratitch, B., & Precup, D. (2004). Sparse distributed memories for on-line value-based rein-
forcement learning. Proceedings of the 15th European Conference on Machine Learning
(pp. 347–358).

Ravindran, B. (2004). An algebraic approach to abstraction in reinforcement learning.
Doctoral dissertation, University of Massachusetts.

Ravindran, B., & Barto, A. (2003). SMDP homomorphisms: An algebraic approach to
abstraction in semi Markov decision processes. Proceedings of the Eighteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 03) (pp. 1011–1016). AAAI
Press.

Rogers, D. F., Plante, R. D., Wong, R. T., & Evans, J. R. (1991). Aggregation and disaggre-
gation techniques and methodology in optimization. Operations Research, 39, 553–582.

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science, 290, 2323–2326.

Roy, N., & Gordon, G. J. (2003). Exponential family PCA for belief compression in
POMDPs. Advances in Neural Information Processing Systems.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3, 210–229.

Sanchez, D. (1995). Second derivative dependent placement of RBF centers. Neurocom-
puting, 7, 311–317.

Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted re-
wards. Proceedings of the Tenth International Conference on Machine Learning (pp.
298–205).

Shannon, C. (1950). Programming a computer for playing chess. Philosophical Magazine,
41, 256–275.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. EEE Transactions
on Pattern Analysis and Machine Intelligence, 22, 888–905.

136

Şimşek, Ö., & Barto, A. (2004). Using relative novelty to identify useful temporal abstrac-
tions in reinforcement learning. Proceedings of the Twenty-First International Confer-
ence on Machine Learning (pp. 751–758).

Şimşek, Ö., & Barto, A. (2008). Skill characterization based on betweenness. Neural
Information Processing Systems (NIPS).

Şimşek, Ö., Wolfe, A. P., & Barto, A. (2005). Identifying useful subgoals in reinforcement
learning by local graph partitioning. Proceedings of the Twenty-Second International
Conference on Machine Learning (ICML-05).

Singh, S., Jaakkola, T., & Jordan, M. (1995). Reinforcement learning with soft state ag-
gregation. Advances in Neural Information Processing Systems 8 (NIPS) (pp. 361–368).
MIT Press.

Smart, W. (2004). Explicit manifold representations for value-function approximation in
reinforcement learning. Prceedings of the 8th International Symposium on Artificial
Intelligence and mathematics.

Smith, A. J. (2002). Applications of the self-organising map to reinforcement learning.
Neural Networks, 15, 1107–1124.

Sondik, E. J. (1971). The optimal control of partially observable markov processes. Doc-
toral dissertation, Stanford University.

Sugiyama, M., Hachiya, H., Towell, C., & Vijayakumar, S. (2007). Value function ap-
proximation on non-linear manifolds for robot motor control. Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA’07). Rome, Italy.

Sugiyama, M., Hachiya, H., Towell, C., & Vijayakumar, S. (2008). Geodesic gaussian
kernels for value function approximation. Autonomous Robots, 25, 287–304.

Sutton, R., & Barto, A. (1998). Reinforcement learning. Cambridge, MA: MIT Press.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112, 181–211.

Tenenbaum, J. B., de Silva, V., & Langford, J. (2000). A global geometric famework for
nonlinear dimensionality reduction. Science, 2319.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning, 8,
257–278.

Thrun, S., & Schwartz, A. (1995). Finding structure in reinforcement learning. Advances
n Neural Information Processing Systems (pp. 385–392).

Tsitsiklis, J., & Van Roy, B. (1997). An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42, 674–690.

137

Tsoli, A., & Jenkins, O. C. (2007). 2D subspaces for user-driven robot grasping. Robotics:
Science and Systems - Robot Manipulation: Sensing and Adapting to the Real World.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Doctoral dissertation, Cam-
bridge University.

Wedin, P. A. (1983). On angles between subspaces of a finite dimensional inner product
space. In Matrix pencils, Lecture Notes In Mathematics 973, 263–285. Springer.

Williams, C. K. I., & Seeger, M. (2001). Using the nystrom method to speed up kernel
machines. Advances in Neural Information Processing Systems 13.

Winkeler, J., Manjunath, B. S., & Chandrasekaran, S. (1999). Subset selection for active
object recognition. IEEE Conference on Computer Vision and Pattern Recognition (pp.
511–512).

Wolfe, A. P., & Barto, A. (2006). Decision tree methods for finding reusable MDP homo-
morphisms. Proceedings of the 21st International Conference on Artificial Intelligence.

Yairi, T. (2007). Map building without localization by dimensionality reduction techniques.
Proceedings of the 24th International Conference on Machine Learning (pp. 1071–1078).

Ye, N. (2003). A comparative analysis of dimensionality reduction techniques. Human
Factors and Ergonomics Series. Lawrence Erlbaum.

Zang, P., Zhou, P., Minnen, D., & Isbell, C. (2009). Discovering options from example
trajectories. Proceedings of the 26th International Conference on Machine Learning.

Ziv, O. (2004). Algebraic multigrid for reinforcement learning. Master’s thesis, The Tech-
nion - Israel Institute of Technology.

Ziv, O., & Shimkin, N. (2005). Multigrid methods for policy evaluation and reinforcement
learning. International Symposium on Intelligent Control (pp. 1391–1396).

138

