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 Change in behavior and neural activity in skill acquisition suggests that control is
transferred from cortical planning areas (e.g., the prefrontal cortex, PFC) to the basal
ganglia (BG). Planning has large computational and representational requirements but
requires little experience with a task. The BG are thought to employ a simpler control
scheme and reinforcement learning; these mechanisms rely on extensive experience. Many
theoretical accounts of behavior in the face of uncertainty invoke planning mechanisms
that explicitly take uncertainty into account. We suggest that the simpler mechanisms of
the BG can also contribute to the development of behavior under such conditions. We focus
on learning under conditions in which sensory information takes time to resolve, e.g., when
a poorly perceived goal stimulus takes non-negligible time to identify. It may be
advantageous to begin acting quickly under uncertainty — possibly via decisions that are
suboptimal for the actual goal— rather than to wait for sensory information to fully resolve.
We present a model of skill acquisition in which control is transferred, with experience,
from a planning controller (denoted A), corresponding to the PFC, to a simpler controller (B),
corresponding to the BG. We apply our model to a task in which a learning agent must
execute a series of actions to achieve a goal (selected randomly at each trial from a small
set). Over the course of a trial, the agent's goal representation evolves from representing all
possible goals to only the selected goal. A is restricted to select movements only when goal
representation is fully resolved. Model behavior is similar to that observed in humans
accomplishing similar tasks. Thus, B can by itself account for the development of behavior
under an evolving sensory representation, suggesting that the BG can contribute to learning
and control under conditions of uncertainty.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

A skill is formed when the same task or sequence of tasks is
repeatedly accomplished; with experience, behavior becomes
proficient. In the realm of motor control, movements become
faster and more coordinated (Matsuzaka et al., 2007; Hikosaka
ah).
A. Shah).

er B.V. All rights reserved
et al., 1995; Kent and Minifie, 1977; Abbs et al., 1984; Klein-
Breteler et al., 2003; Engel et al., 1997; Baader et al., 2005;
Jeannerod, 1981; Jerde et al., 2003) and come to be guided by
sensory information gained while executing the task (Hiko-
saka et al., 1995; Messier et al., 2003; Tunik et al., 2003; Rao and
Gordon, 2001; Lackner and DiZio, 2002, 1998). For example,
.
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when typing a new password, a person's finger movements
are initially slow and uncoordinated and he relies on visual
information — watching his fingers on the keyboard — to
guide his movements. After typing the new password many
times, his movements are fast and coordinated, are made so
as to minimize errors, and he does not watch his fingers.

Much research in skill acquisition has focused on the
characteristics described above, but there are other facets. In
most accounts of skills composed of goal-directed move-
ments, it is assumed that the sensory information indicating
the goal of a task is known a priori. However, it may take time
to process sensory information to determine what the actual
goal is with enough confidence to make a decision (Britten et
al., 1992; Battaglia and Schrater, 2007; Schlegel and Schuster,
2008); sensory representation evolves over time from an
uncertain belief to a more certain one. For tasks that require
long movements or more than one decision, it may make
sense to act quickly even under uncertainty. For example,
Ledoux (1998) discusses how, when we encounter a snake-like
object (such as a stick) while on a walk, we may jump back
immediately rather than wait to let our sensory processing
better discriminate the object's identity. In the laboratory
setting, Hudson et al. (2007) forced subjects to begin goal-
directed reaches under uncertainty in goal location. A set of
horizontally-aligned rectangular goals, each of which was
composed of a grid of squares, was presented on a screen. The
probability that each goal will be selected as the true goal for
that trial was indicated by the proportion of squares colored
white. Hence, the subjects were aware of only the probability
distribution fromwhich goals were selected (which we refer to
as the goal selection distribution) when they began their reaches.
After one-third of the distance to the screenwas traversed, the
true goal was revealed with certainty. The initial direction of
the subjects' reaches approached the direction toward the
mean of the goal selection distribution; when the true goal
was revealed, the reaches veered toward it.

The strategy observed by Hudson et al. (2007) shows that
subjects make decisions that take the evolving sensory
representation into account: movements are influenced by
the goal selection distribution early in the reach, but are then
influenced by the more certain representation of the true goal
later in the reach. In this task, the explicit presentation of the
goal selection distribution and the true goal are separated in
time. Tassinari et al. (2006) investigated the effect on goal-
directed reaches of the simultaneous presentation of the goal
selection distribution and an uncertain representation of the
true goal (which we refer to as the goal belief distribution). The
subjects were asked to reach to a goal location on a computer
screen, indicated by a cluster of N dots chosen randomly from
the goal belief distribution (a two-dimensional Gaussian dis-
tribution centered on the goal location). The goal location itself
was chosen from the goal selection distribution, indicated by a
two-dimensional Gaussian “blob”, the center of which was
markedby cross-hairs. Subjects reached to a point between the
centers of the two distributions. As uncertainty in the goal
belief distribution increased (accomplished by decreasing N),
subjects' reaches were more biased toward the goal selection
distribution (see also Kording and Wolpert, 2004).

Theoretical and experimental work shows that human
behavior under these conditions is similar to that predicted by
Bayesian decision theory (BDT), in which the goal belief distri-
bution (referred to as the likelihood in BDT) and the estimate of
the goal selection distribution (referred to as the prior in BDT)
are combined such that the mean of the more certain (lower
variance) distribution is weighted more than the mean of the
less certain (higher variance) distribution (Wolpert, 2007;
Kording and Wolpert, 2006, 2004; Tassinari et al., 2006). Thus,
both distributions are represented and there is a trade-off
between them (a useful strategy in optimal control problems,
cf., Kalman, 1960). Similarly, subjects engaged in tasks of
economic game theory take uncertainty into account when
combining sensory information and prior expectations (Platt
and Glimcher, 1999; Glimcher, 2003).

The experimental results of Hudson et al. (2007), Tassinari
et al. (2006), and Kording and Wolpert (2004) were interpreted
as evidence that the subjects developed amovement plan that
took into account the trade-off between the goal belief distri-
bution and the goal selection distribution. Such a scheme is
attractive because of the agreement between observed beha-
vior and behavior predicted by the theoretical models
referenced above. Many variables used in these models are
represented in cortical neural activity (Yoshida and Ishii, 2006;
Glimcher, 2002), suggesting that such behavior can be
accounted for by a cortical planning mechanism that uses
explicit estimates of uncertainties. The subjects of Hudson
et al. (2007) and Tassinari et al. (2006) were presented with an
explicit representation of the goal selection distribution; thus,
they were aware of it and did not have to estimate it. In
addition, Tassinari et al. (2006) reported only very weak
improvement with experience, suggesting that themovement
plan was developed based on the available information rather
than information gained through experience.

The previous discussion suggests that planning mechan-
isms are well-suited for controlling behavior under some
conditions of uncertainty. However, the brain employs multi-
ple learning and memory systems (Milner et al., 1998). For
example, the famous patient H.M., who suffered from severe
anterograde amnesia due to a bilateral medial temporal
lobectomy, was able to learn skilled movements even though
he was unaware of ever practicing such movements (Milner,
1962; Corkin, 1968, 2002). In skill acquisition, in which the task
is repeatedly accomplished, there is evidence that controlmay
be transferred from cortical areas such as the prefrontal cortex
(PFC) to the basal ganglia (BG) (Doyon and Benali, 2005; Packard
and Knowlton, 2002; Jog et al., 1999; Puttemans et al., 2005;
Graybiel, 1998). The two areas employ different learning and
control schemes. Briefly, the PFC is thought to employ plan-
ning mechanisms (Tanji and Hoshi, 2008; Mushiake et al.,
2006; Miller and Cohen, 2001; Miller, 2000), while the BG are
thought to employ a simpler scheme in which the expected
value of each control choice — how “good” it is — is learned
through experience and the choice with the highest value is
selected more often than others (Graybiel, 2005; Samejima et
al., 2005). Based on models learned through previous experi-
ence that does not necessarily include the current task,
cortical planning mechanisms produce reasonable behavior
with little experience with a particular task. Thus, planning is
useful as a general-purpose control scheme. However, it is
expensive: it requires computational, representational, and
attentional resources. The scheme used by the BG requires
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fewer resources, but initial value estimates may be inaccurate.
Task-specific experience is required before it can produce
reasonable behavior. The change in behavioral and neural
activity, alongwith the functional differencesof the two control
schemes, suggests that as experience with a task is gained,
control is transferred from the planning scheme used by the
PFC to the simpler scheme used by the BG (cf. Daw et al., 2005).

Thus, although behavior under uncertainty is well des-
cribed by planning mechanisms, BG-mediated mechanisms
may also contribute to its development, especially when the
task is repeatedly accomplished. Experimental evidence
suggests that such repetition enables the experiential learning
mechanisms of the BG to participate in developing behavior
(Knowlton et al., 1996, 1994; Packard and Knowlton, 2002;
Bayley et al., 2005), in some cases in ways better than cortical
planning areas. One such task is the probabilistic classification
task of Knowlton et al. (1994), during which stimuli correctly
predicted events only 60–85% of the time. Subjects learned to
predict events based on presentation of the stimuli, although
many reported that they were just guessing (i.e., they were
unaware of the probabilistic associations between stimuli and
events). Patients with damage to the BG were unable to learn
the task (Knowlton et al., 1996). These results show that for
some tasks in which uncertainty is not explicitly represented,
the learning and control schemes of the BG may be better
equipped than planning mechanisms to develop appropriate
behavior. In addition, machine learning techniques have been
devised that enable learning in the face of uncertainty with a
control scheme similar to that of the BG (Littman et al., 1995;
Kaelbling et al., 1998).

In light of these studies, we suggest that the learning
mechanisms of the BG can aid in developing behavior appro-
priate for conditions of uncertainty, including an evolving
sensory representation. To support our claim, we present a
multiple controller model of skill acquisition based on the
computational properties attributed to cortical and ganglionic
motor systems (see also Shah (2008); our model is similar in
some respects to that of Daw et al. (2005)). Actions, analogous
to movements, are chosen as the result of one of two
controllers: a Planner (denoted A), based on the PFC, and a
Value-based controller (B), based on the BG. Because of the
computational requirements of planning, A takes longer to
select actions than B, but, given a model of the environment,
requires no experience with a particular task. B can select
actions faster than A, but it requires experience before it is
trained enough to do so. Thus, with repeated exposure to a
task, control is transferred from A to B.

The model is exposed to a task in which a learning agent
must move from a fixed starting spatial position to one of
several goal positions. The task combines two of the experi-
mental manipulations discussed above: 1) the goals are
chosen randomly according to a probability distribution over
all possible goals (the goal selection distribution), and 2) a
representation of the goal (the goal belief distribution) evolves
over the course of a trial from representing all possible goals
with non-zero probability to one that represents the chosen
goal with certainty. Thus, the variance of the goal belief
distribution decreases over the course of a trial. We examined
model behavior under different goal selection distributions
and different rates of evolution of the goal belief distribution.
Although human behavior examined in Hudson et al. (2007)
and Tassinari et al. (2006) was dictated by dynamics and other
variables we do not consider here, the general strategies
observed serve as examples of appropriate behavior under
similar conditions.

A realistic A would be able to incorporate uncertainty in its
planning process. However, this may mask the contributions
of B to behavioral development. Thus, to expose the capabil-
ities of B, A is restricted to select movements only under
conditions of goal certainty, i.e., after the goal belief distribu-
tion has fully resolved. Though such a restriction is unlikely in
the planning mechanisms of normal humans, it removes the
possibility that planning mechanisms in the model are
responsible for any behavior incorporating uncertainty. In
addition, given enough trials, B alone can develop appropriate
behavior, though behavior during learning would have little
connection to that observed in humans. We include A to
examine how behavior develops given a simple yet restricted
planner.

Early in learning, by design, A dominates control: the agent
does not move until the goal belief is fully resolved, at which
point it moves directly to the chosen goal. The behavior
dictated by A provides the experience necessary to train B.
Thus, B is able to learn the values of the actions selected by A
at positions visited by A and eventually assumes control at
those positions. Due to exploration inherent to its control
mechanism, B is also able to select actions other than those
selected by A, including opting to move while the goal belief
distribution is unresolved. As B gains experience and assumes
control, it selects actions toward the mean of the goal
selection distribution early in a trial while the variance in
the goal belief distribution is high. As the goal belief distri-
bution resolves, actions toward the chosen goal are taken. The
shift in movement from the direction toward the mean of the
goal selection distribution to the direction toward the chosen
goal occurs early in the trial for fast rates of evolution in the
goal belief distribution. For slow rates, the shift occurs later in
the trial. Thus, the influence of the goal selection distribution
on movement direction is stronger when the variance in the
goal belief distribution is higher. Learned model behavior is
qualitatively similar to that predicted by Bayesian decision
theory and observed experimentally by Hudson et al. (2007)
and Tassinari et al. (2006). In addition, we examined the effect
of training under one type of evolution in the goal belief dis-
tribution and then testing with another (analogous to training
and testing with goal stimuli of different sensory properties).
Behavioral implications of these results are described in the
Discussion section.

In the next section, we describe the task and conceptual
aspects of the model in greater detail. The algorithmic de-
tails of the model are described in Section 5, Experimental
procedures.
2. Conceptual description of task and model

2.1. Environment and task

Decision-making under an evolving sensory representation
occurs in many types of tasks. To keep the focus of our model
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on decision-making and to avoid complications which may
arise with more realistic environments, we test our model in a
simple discrete-state discrete-action environment in which
executing an action causes a transition from one state to
another. Such environments can be represented in different
ways. We use the “grid-world” representation common in
computational reinforcement learning literature (cf. Sutton
and Barto, 1998), shown in Fig. 1. Although this representation
suggests amaze to test navigational abilities, it ismisleading to
think of it in this way. It merely provides a visually-accessible
representation of an abstract sequential decision task.

The underlying environment is a Markov decision process.
A learning agent must choose an action, a∈A, to move it from
its current spatial position, p∈P, toward a goal, labeled g∈G.
The position of each goal is also within P. To select the best
possible action for a given goal, the agent must know both its
current position and the goal it must reach. Thus, the state of
the agent is (p,g) and there are |P|×|G| states.

Each trial begins with the agent in a fixed starting position;
the goal for that trial is chosen randomly from the goal
selection distribution (which is over five possible goals). We
refer to the goal chosen for the trial as the true goal, g⁎. Nine
actions are available to the agent: a null action, which results
in no movement, four cardinal directions, and four diagonal
directions (the effect of each action is shown in Fig. 1). When
the agent chooses action a, it incurs an immediate action-
dependent cost, represented as a negative numerical reward
ra (ra=�

ffiffiffi
2

p
for the four diagonal actions and=–1 for all other

actions, including the null action). If the agent chooses an
action that would cause a transition off the grid, it incurs the
cost of the selected action and does not change positions. A
trial ends when the agent reaches the position of the true goal.
The agent's objective is to maximize the cumulative reward
over each trial by reaching the position of the true goal with
the smallest number of actions.

2.2. Evolving sensory representation

Actions are deterministic, e.g., selection of action north will
cause a transition to the position just north of the current
position 100% of the time (unless the current position is along
the northern boarder of the environment, in which case
position will not change). Also, the agent knows its current
position with certainty. The only source of uncertainty in this
Fig. 1 – Representation of the “grid-
task is the true goal for the trial. Such a restriction is imposed
so that we can focus on decision-making under uncertainty in
goal; the possibility that behavioral characteristics are due to
noise in the motor system or uncertainty in the position
dimension of state is removed (e.g., motor noisemight bias the
agent to stay away from the borders of the world.)

The agent's knowledge of the goal, the goal belief distribu-
tion, denoted b, is a five-element vector with each component,
b(g), 0≤b(g)≤1, specifying the agent's belief that goal g is the
true goal and whose components sum to one. Over the course
of a trial, b evolves such that b(g⁎) increases while all other b(g)
decrease; when b(g⁎)=1, the evolution of the goal belief
distribution stops. We describe several types of evolution in
the Experiments section.

Importantly, the evolution of the goal belief distribution
(henceforth referred to as the goal belief evolution) is indepen-
dent of any action the agent chooses and is assumed to occur
through unmodeled sensory processing mechanisms (such as
those that dictate behavior in Britten et al., 1992, Battaglia and
Schrater, 2007, and Schlegel and Schuster, 2008). At each time
step, b is in the form of a pre-specified distribution, in contrast
to the agent creating it through some othermethod.We do not
attempt to investigate how sensory information is processed
or evidence is accumulated. Rather, we present the agent with
a simple form of an evolving goal belief distribution and
investigate how the agent makes decisions based on such a
representation.

2.3. Multiple controller model

We describe here our multiple controller model on a con-
ceptual level, including the biological inspiration for each
controller and important functional aspects. Further details
are found in the Experimental procedures section.

2.3.1. Planner (A)
Planning, a major focus of research in its own right, is the
result of the interaction of many cortical areas (cf. Opris and
Bruce, 2005; Glimcher, 2002). In particular, the PFC is thought
to play a major role in planning by taking into account the
current state of the animal, immediate goals, and future goals
(Tanji and Hoshi, 2008;Mushiake et al., 2006;Miller and Cohen,
2001; Miller, 2000). While we will not attempt to model the
neural processes of cortical planning, we can imitate some of
world”, a 21×9 grid of positions.
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its capabilities with a controller that selects actions by con-
sidering current position and the position of the true goal. In
our implementation, A searches through possible sequences
of actions and chooses its estimate of the best action from the
current position. To do so, it requires an accurate model of the
environment (including knowledge of how each action
changes position; we assume such knowledge was learned
through earlier exposure to the environment), knowledge of
the true goal (i.e., b(g⁎)=1), and the spatial position of the
goal. A more realistic cortical planning mechanism would
take uncertainty into account. However, as mentioned
earlier in the Introduction, since we wish to show that the
learning mechanisms of B can produce appropriate behavior,
we remove that capability from A. For every position the
agent visits, if b is not fully resolved, A selects the null
action; otherwise, A conducts the search process to select an
action.

2.3.2. Value-based controller (B)
B selects actions by comparing the estimated value — the
expected cumulative sum of future rewards in a trial— of each
action when the agent is in state (p,g); the action correspond-
ing to the maximum value is selected more often than other
actions. We assume that the comparison is computationally
cheaper than the search process used in A, but B requires
experience before its value estimates are accurate enough to
produce reasonable behavior for the task. Such experience is
initially guided by A.

B is suggested by the functional and anatomical properties
of the basal ganglia (BG) (Graybiel, 2005; Doya, 2007; Bolam
et al., 2000; Mink, 1996; Packard and Knowlton, 2002). The
striatum of the BG receives projections from the thalamus and
many areas of cortex, providing it with a representation of
state. In addition, some corticostriatal projections may be
branches from other descending cortical projections (Zheng
and Wilson, 2002), providing the BG with a copy of cortical
motor commands. Dopamine (DA) neurons also send projec-
tions to the striatum and modulate the plasticity of corticos-
triatal synapses (Centonze et al., 2001; Wickens et al., 2003).
One hypothesized computational role of DA neuron activity is
that it encodes reward prediction error — the difference
between reward received and reward expected (Schultz, 1998;
Waelti et al., 2001; Houk et al., 1995).

The DA signal combinedwith DA-dependent plasticitymay
allow the BG to learn in ways similar to the algorithms of
reinforcement learning (RL) (Sutton and Barto, 1998), a
computational formulation of learning from the consequences
of actions. In essence, if an action is followed by a favorable
outcome (e.g., a reward greater than the expected reward) the
tendency to select that action is increased (cf. Thorndike, 1911;
in the language of psychology, that action is reinforced). RL is
typically applied to optimal control tasks, such as the type we
use in this paper. Accordingly, our implementation of B
incorporates ideas from the RL literature. What follows is a
conceptual description of the basic algorithm we use. Some
details are left out here for clarity; a full description is provided
in the Experimental procedures section.

When the agent is in state (p,g), it has an estimated value of
each action a, Q(p,g,a), which can be thought of as the weight
of the connections from the neural representation of (p,g) to
the striatal neurons that implement a. When the agent selects
an action, Q(p,g,a) is updated with the immediate reward
received (ra) and the value of the next action (a′) chosen by the
agent at the next position (p′):

Q p; g;að ÞpQ p; g;að Þ + a ra +Q pV; g;aVð Þ � Q p; g;að Þð Þ;
where α is a step-size parameter. By gaining experience —
updating Q(p,g,a) for states visited and actions chosen — the
agent's estimate of the values become accurate enough to
allow it to choose actions appropriate for a given task. These
values may be represented in the activity of striatal neurons
(Samejima et al., 2005), and recent experimental work and
analysis suggests that they may be learned in ways similar to
that described by the above equation (Morris et al., 2006; Niv
et al., 2006). The above equation can be modified to take into
account uncertainty in the identity of the goal by using the
goal belief distribution, b: for each goal g,

Q p; g;að ÞpQ p; g;að Þ + ab gð Þ ra +
X
gVaG

b gVð ÞQ pV; gV; aVð Þ�Q p; g;að Þ
0
@

1
A;

ð1Þ
where g′ is a “dummy” index (not the next goal). Note that the
Q-values for each g are updated toward the same value and
that the magnitude of the update is weighted by b(g).

There is evidence of lateral inhibition in the striatum
(Bolam et al., 2000; Wilson and Oorschot, 2000), which may
allow actions to compete with each other for execution. When
the agent is in position p, the value for each action, a, is
calculated (weighted by b):

valueof a =
X
gaG

b gð ÞQ p; g;að Þ: ð2Þ

In our implementation, actions are selected via anoisywinner-
take-all (WTA) network in which actions associated with
higher values are more likely to be selected than actions with
lower values.

2.3.3. Arbitration
We assume that the more computational resources a con-
troller requires, the more time it needs to select an action.
When the agent is in position p, theWTA network is activated.
At states (p,g) with which the agent has little experience
(including all states early in learning), the weights of the
connections comprising B are weak. Hence, the WTA network
is activated very weakly and no action “wins” within a fixed
time-limit. At this point, we assume enough time has passed
to allowA to select an action: the null action if b is unresolved,
and an optimal action if b is fully resolved. Early in learning, A
dominates control at all states. As the agent gains experience,
the weights of B corresponding to visited states become strong
enough for an action to win in the WTA network within the
fixed time-limit. Thus, B assumes control by selecting actions
faster than A. If, through exploration (provided by noise in the
WTA network), the agent moves to a state with which it has
little experience, the weights of B are not strong enough for it
to select an action and A is used. Thus, B is only recruited at
states with which the agent has some experience, preventing
the agent from “wandering around” as it would do if A were
not employed.



Fig. 2 – Illustration of each type of goal belief evolution for
each goal selection distribution. b is represented as five
horizontally-aligned squares, shaded according to b(g). The
darker the square, the closer b(g) is to 1 (see guide in the
bottom right of the figure); if b(g)≤0.001, the square is drawn
as a smaller white square. In each graph, time during a trial
progresses from bottom to top, and the top row of squares
illustrates the fully resolved b; b at later time steps is also
fully resolved. Shown is the case for g*=1.
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2.4. Experiments

Learning agents using the mechanisms of the multiple
controller model accomplished the task under two types of
goal selection distributions:

1. 5 Goal Biased, in which Goal 5 is much more likely to be
selected than the other four goals. The probability of Goals
1 through 5 being selected are, respectively, 0.067, 0.067,
0.067, 0.13, and 0.67.

2. 2 Goal, where the probability of Goals 1 and 5 being selected
is each 0.5 and that of the others are zero.

In addition, for each goal selection distribution, we examine
three types of goal belief evolution:

1. delayed, in which goal belief distribution during the first
three time steps represents all possible goals equally. For
the 5 Goal Biased goal selection distribution, b(g) is 0.2 for
each goal; for the 2 Goal goal selection distribution, b(g) is
0.5 for Goals 1 and 5 and zero for the others. After the delay,
b resolves according to a pre-specified schedule to repre-
sent the true goal with certainty by time step 8.

2. slow, in which goal belief distribution resolves slowly.
3. fast, in which goal belief distribution resolves quickly.

These conditions are analogous to goal stimuli that are
discernible to different degrees. b was always fully resolved
within the first 8 time steps of a trial (thus, as the agent
approached the northern border of the grid, b(g⁎)=1). Fig. 2
illustrates goal belief evolution for each of the six conditions
(described in more detail in the Experimental procedures
section) we examine. In the figure, b at a time step is repre-
sented as five horizontally-aligned squares (one for each goal);
the squares are shaded in grey according to b(g), where the
darker the square, the closer b(g) is to 1. Time advances from
bottom to top in each graph. At a particular time-step, con-
ditions are similar to those used in Tassinari et al. (2006) in that
the agent must make a decision based on an uncertain goal
belief. Over the course of a trial, conditions are similar to those
used in Hudson et al. (2007) in that the goal belief distribution
evolves to represent the true goal with certainty. The delayed
conditions we use share an additional characteristic with
conditions used in Hudson et al. (2007): the true goal cannot be
discerned by b during the first few steps of the trial. However,
conditions under both Hudson et al. (2007) and Tassinari et al.
(2006) explicitly present the subjects with the goal selection
distribution. In contrast, in no case does b contain any
information regarding the goal selection distribution.

Twenty runs for each condition were performed, where a
run consisted of having the agent solve the task for 30,000
trials. We examine three facets of behavior. First, we examine
in detail the progression of behavior — how behavior changes
with experience — for the slow goal belief evolution for both
types of goal selection distributions. Early in learning, A domi-
nated control: it selected the null action until b was fully-
resolved and then selected actions that moved the agent
directly to the true goal. As experience was gained, B was
trained enough to assume control at positions visited by A.
Through exploration and reward-mediated learning, B learned
to place a high value on actions that moved the agent toward
themeanof the goal selectiondistributionwhenuncertainty in
bwashigh. Thus,B selected a greater proportion of actions and
behavior gradually shifted to immediately moving toward the
mean of the goal selection distribution. As b resolved, actions
toward the true goal were chosen. Second, we describe fully-
learned behavior under each of the six conditions and show
that the model learned to select actions appropriate for the
goal selection distribution and goal belief evolution. Actions
toward the true goalwere chosen earlier in the trial for fast goal
belief evolution condition than for the slow or delayed condi-
tions. Third, we exposed agents trained under one type of goal
belief evolution to another type; the conditions under which
they were trained affected their strategies.
3. Results

Many of the graphs we present plot model behavior for a
particular condition, goal, and trial. Behaviors were taken
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from “test” trials (performed periodically for each goal
during a run), during which all exploration and learning
parameters were set to zero. Most graphs are a representa-
tion of the grid-world (Fig. 1). Unless otherwise noted, the
grey-scale coloring of a position indicates the proportion of
the 20 runs for which that position was visited (greater
proportions are darker, and positions not visited are not
plotted).

3.1. Progression of behavior

Fig. 3 plots behavior en route to each goal for the slow/5 Goal
Biased condition at different points in learning. Early in
learning (Trial 1, bottom row of Fig. 3), an agent waited until
b was fully resolved and then took the optimal path toward
each goal (for Goals 2 and 4, there are several optimal paths).
Behavior changed with experience. At Trial 2100 (second row
from the bottom, Fig. 3), agents in a large portion of the runs
selected actions north or northeast from the starting position
en route to each goal, including Goal 1 (for which action
northwest is optimal). At later trials, action northeast was
selected from the starting position for most runs. Behavior
gradually shifted, with experience, to moving toward the
mean of the goal selection distribution early in the trial. Later
in the trial, as b resolved, actions toward the true goal were
selected.

The change in behavior is accompanied by controller B
selecting a greater proportion of actions. Fig. 4 (top left)
plots the proportion of actions selected by B as a function of
trial for each goal. As experience was gained, B selected a
greater proportion of the actions. Note that the increased
contribution of B to action selection for goals closer to the
Fig. 3 – Illustration of behavior across all 20 runs for the slow/5 G
the left). Each rectangle is a representation of the grid-world (Fig
the shading, the greater the proportion of the 20 runs visited that
mean of the goal selection distribution is indicated by a black do
mean of the goal selection distribution (e.g., Goal 5, thin
black line) required less experience than that for goals
farther from the mean (e.g., Goal 1, thick black line). This is
partly because the goal selection distribution dictated the
probability that each goal was chosen to be the true goal;
the agents simply had more experience with goals closer to
the mean of the goal selection distribution than with goals
farther from the mean. Another reason for the discrepancy
is that the change in behavior was greater for goals farther
from the mean of the goal selection distribution than that
for goals closer to the mean. Thus, agents visited more
positions with which they had little experience en route to
goals farther from the mean of the goal selection distribu-
tion. The recruitment of A at these positions enabled the
agents to select appropriate actions until B was trained. As
illustrated in Fig. 4 (top left) around Trial 10,000 for Goal 1,
the visitation of novel states led to a temporary decrease in
the contribution B.

Due to the availability of both A and B, as experience was
gained, the agents' paths early in a trial deviated gradually
from the direct path (the line between the starting position
and the true goal) to a path toward the mean of the goal
selection distribution. Fig. 4, top middle, plots the mean
distance between the paths taken by the agents and the direct
path for each goal as a function of trial. Note that the distance
gradually increased for each goal (except for Goal 5, whose
position is very close to the mean of the goal selection
distribution) and was greater for goals farther from the mean
of the goal selection distribution. The shift in strategy is
accompanied by the recruitment of B. Fig. 4, bottom row,
plots, for each position, how early in learning B was able to
select an action en route to each goal (darker squares indicate
oal Biased condition at different points in learning (labeled on
. 1). Shaded squares indicate positions visited; the darker
position. Positions not visited are notmarked. In addition, the
t.



Fig. 4 – Progression of behavior under the slow/5 Goal Biased condition averaged across the 20 runs. For each of the top graphs,
lines drawn in thick black refer to g*=1, lines drawn in thin black refer to g*=5, and lines drawn in grey refer to the other
three goals. Also, themaximumstandard deviation (s.d.) is indicated in the graph. Top left:Mean (across the 20 runs) proportion
of actions chosen by B as a function of trial. Top middle and top right: Mean (across the 20 runs) distance between the
chosen path and the direct path as a function of trial. For each run, distance was the mean distance between each position
visited and the closest position along the direct path (the line from the starting position to the goal). Each position was only
counted once (e.g., when A controlled behavior, the agent “visited” the starting position until b was fully resolved; the starting
position was only counted once). Topmiddle graph indicates the mean distance from the direct path for the multiple controller
model, top right graph indicates that for a model in which only a controller similar to B was used (i.e., A was not used).
Note the difference in scale on the y-axis. Bottom row: Earliest recorded trial that B selected an action from each position. The
darker the shading, the earlier the trial. Positions at which B never selected an action are not marked.

Fig. 5 – Progression of behavior for the slow/2 Goal condition.
Follows same conventions as Fig. 3.
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earlier in learning). B was first recruited at positions visited
while A controlled behavior.

The gradual shift away from the direct path is due to the
interplay between A, which favors the direct path, and B,
which favors a path toward the mean of the goal selection
distribution when variance in b is high. Fig. 4, top right, plots
mean distance between the chosen path and the direct path
as a function of trial for agents equipped only with a
controller similar to B (details are found in the Experimental
procedures section); A was disabled. Final strategy for each
goal (not shown) was similar to that developed by the
multiple controller model, but early performance was poor
and the progression of behavior was very different than that
of the multiple controller model. In particular, the gradual
shift from the direct path to the final strategy was not
observed.

The general progression of behavior described for the
slow/5 Goal Biased condition is seen for the other conditions as
well. Thus, we include only one additional noteworthy
illustration: Fig. 5 shows, in a manner similar to Fig. 3,
progression of behavior for the slow/2 Goal condition, for
which only Goals 1 and 5 were selected (with equal
probability). Action north is not highly-valued for either
goal, yet behavior gradually progressed to immediately
moving north — toward the mean of the goal selection
distribution — when variance in b was high. This strategy
was discovered only through the exploration mechanisms of
B the agents had to experience action north from the starting
position in order to learn that it is valuable when uncertainty
in b is high.

Another general trend is also seen in Fig. 3: the behavioral
effects of the evolving goal belief distribution are greater for
goals farther from the mean of goal selection distribution.
Thus, for brevity, presentation in the rest of this paper is
restricted to behavior en route to Goal 1.

3.2. Fully-learned behavior

As the top rows of Figs. 3 and 5 show, the trained agents
selected actions toward the mean of the goal selection
distribution early in the trial, when variance in the goal belief
distribution bwas high. As b resolved, actions toward the true
goal were taken. Behavior was different for the different types
of goal belief evolution. Fig. 6 illustrates learned behavior for



Fig. 6 – Fully-learned behavior, en route to Goal 1, for each of the six conditions. Follows the same conventions as Fig. 3.
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all six conditions en route to Goal 1. The faster b resolved, the
less time the agents spentmoving toward themean of the goal
selection distribution. Thus, B selected actions based on a
weighted combination of the goal belief distribution and the
goal selection distribution, in general agreement with beha-
vior predicted by Bayesian models and observed in experi-
mental studies (Kording and Wolpert, 2004, 2006; Tassinari et
al., 2006). However, in contrast to the experimental protocols
used in Tassinari et al. (2006) or Hudson et al. (2007), b does not
contain any information regarding the goal selection distribu-
tion — the agent is not provided with an explicit representa-
tion of it. Instead, the influence of the goal selection
distribution is developed through the learning mechanism of
B, which estimates values based on experience.

Because B adopted a strategy ofmoving toward themean of
the goal selection distribution immediately, learned behavior
controlled by B generally incurred less cost (Σ|ra|) than
behavior controlled by A. However, when considering some
goals in isolation, this strategy resulted in behavior more
costly than behavior controlled by A alone. Fig. 7 plots the
mean cost for each condition under the 5 Goal Biased goal
selection distribution. The dashed line indicates the cost for
behavior controlled by A alone. When considering only Goal 1
Fig. 7 – Mean (across the 20 runs) cost (Σ|ra|) of learned
behavior for the three goal belief evolution conditions for the
5 Goal Biased goal selection distribution. Standard deviation
(s.d.) is indicated as error bars; if s.d. was <0.01, it was not
shown. The dashed line indicates cost under control of A
only. Left: Cost for Goal 1 only. Right: Mean cost over all goals,
weighted by the probability that each goal is selected.
(Fig. 7, left), learned model behavior was more costly than
initial behavior for the delayed and slow conditions (single-
sample t-test, p<0.05). However, under a fast evolution, or
when considering the entire task (i.e., weighing mean cost for
each goal by the probability that that goal will be selected),
learned model behavior was significantly less costly (Fig. 7,
right).

3.3. Effect of training under one condition when presented
with another

The type of goal belief evolution under which an agent was
trained affected the agent's behavior when it was presented
with another type of goal belief evolution. To examine this
effect, 20 runs were performed under a goal belief evolution
that we term instant: b(g⁎)=1 at the first time step of each trial
(and remains at 1 throughout the trial). Thus, behavior for
each goal was learned independently of all other goals. Agents
trained under the instant condition were then tested with an
evolving goal belief distribution condition, and vice versa.
During a test, all learning and exploration was removed and
behavior en route to each goal was observed.

Fig. 8 plots learned behavior en route to Goal 1. The first
(top) row plots that for agents trained under the instant
condition but then tested with each of the three other goal
belief evolution conditions for the 5 Goal Biased goal selection
distribution. Behavior was determined entirely by b. Under the
delayed condition, for which b(g) is 0.2 for each goal for the first
three time steps, the agents moved north and then veered
toward Goal 1, with some variance in behavior. Under the slow
and fast conditions, for which b(g⁎)>b(g) for g≠g⁎ at the first
time step, the agentsmoved directly toward Goal 1, with some
variance in behavior. In contrast, agents trained with an
evolving goal belief distribution did not alter their behavior
much when later presented with an instant condition (second
row, compare with Fig. 6).

Similar analysis for the 2 Goal goal selection distribution
is illustrated in the bottom half of Fig. 8. Of particular note,
agents trained with an instant condition but tested with the
delayed condition did not move toward the mean of the
goal selection distribution. Rather, some of the agents
moved straight toward Goal 1, but others moved straight
toward Goal 5. This is because, due to their training with an
instant condition, the value of action north from the starting
position was not estimated to be high in value in compar-
ison with actions northwest or northeast (for Goals 1 and 5,



Fig. 8 – Agents trained under one condition were tested (for one trial with no learning or exploration) with another condition.
Shown is the proportion of runs that visited each position (follows same conventions as Fig. 3) en route to Goal 1.
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respectively). When presented with the delayed condition, for
which the belief that Goals 1 and 5 are the true goals are
each 0.5 for the first three time steps, and that of the others
are zero, the value for action north was still very low and the
values for actions northeast and northwest were approxi-
mately equal.

Thus, when tested with conditions for which some
information is available through b (e.g., slow and fast), it may
actually be advantageous to train under an instant condition.
On the other hand, when tested with conditions for which no
information is immediately available through b (e.g., delayed),
it may be advantageous to train under an evolving goal belief
distribution. Fig. 9 plots the mean cost for all goals, weighted
by the probability that each goal was selected, for all condi-
tions presented in Fig. 8. Behavior of agents trained under a
delayed condition but tested with an instant condition was
less costly, on average, than agents trained with an instant
condition but testedwith a delayed condition (two-tailed t-test,
p<0.05). For most other cases, behavior of agents trained
under an instant condition and tested with an evolving
Fig. 9 – Mean cost of behaviors (for all goals, weighted by the prob
in Fig. 8. Standard deviation (s.d.) is indicated as error bars. If s.d
condition was less costly than behavior of agents trained
under an evolving condition but tested with an instant con-
dition. The exception was for the fast/5 Goal Biased condition,
for which there was no significant difference.
4. Discussion

This paper examines how behavior develops to take into
account two aspects of uncertainty in sensory information: 1)
sensory information that evolves over time from a wide,
uncertain representation to a sharper one (Hudson et al., 2007;
Britten et al., 1992; Battaglia and Schrater, 2007; Schlegel and
Schuster, 2008), and 2) the trade-off between immediate
sensory information and a prior expectation (Tassinari et al.,
2006; Kording and Wolpert, 2004). Many theoretical des-
criptions of decision-making under uncertainty are couched
in terms of a planning process that explicitly combines imme-
diate sensory information with prior expectations based on
their relative uncertainties (Kording and Wolpert, 2004, 2006;
ability that each goal was selected) for each condition plotted
. was <0.01, it was not shown.
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Tassinari et al., 2006; Kalman, 1960). However, given sufficient
experience, the simpler learning and control mechanisms
of the BG can also participate in developing appropriate
behavior (Knowlton et al., 1996, 1994; Packard and Knowl-
ton, 2002; Bayley et al., 2005). We present a computational
model demonstrating that it is possible for the learning and
control mechanisms of the BG to produce behavior that
takes into account such uncertainties. Below, we briefly
review our results and then discuss behavioral and neural
implications.

There is evidence that as a skill is acquired, control of
behavior shifts from cortical planning mechanisms, such
as the PFC, to the simpler scheme implemented by the BG.
Based on this evidence, our model uses a multiple controller
scheme in which control is transferred with experience from a
Planner, A, based on the PFC, to a Value-based controller, B,
based on the BG. A was designed to select appropriate actions
given the current state and a desired state through a
computationally and representationally expensive search
process. B learned how valuable each action is from each
state through a reinforcement learning scheme (Sutton and
Barto, 1998) that incorporated uncertainty. To isolate learning
under uncertainty to B, A was restricted to select movements
only if sensory representation was fully resolved; otherwise it
chooses to not move. B, on the other hand, can select move-
ments while sensory information was unresolved.

The model was tested in a discrete-state discrete-action
task with an evolving sensory representation. A learning
agent must move from a set starting position to one of
several possible goal positions. The agent's representation of
the goal was in the form of a goal belief distribution, which
evolved over the course of the first several time steps of a
trial from representing all possible goals with a non-zero
probability to representing only the true goal for that trial.
The true goal was selected randomly from a goal selection
distribution.

The model was presented with different goal selection
distributions and several different evolution schedules for the
goal belief distribution (Fig. 2). In no case was information
regarding the goal selection distribution represented in the
goal belief distribution. Behaviors exhibited by trainedmodels
conformed with that exhibited by humans during a reaching
task under an evolving goal representation (Hudson et al.,
2007): while belief in goal was uncertain, movement was
toward themean of the goal selection distribution. As the goal
belief distribution resolved, movement veered toward the
goal. The change in direction occurred earlier in a trial for
faster rates of goal belief evolution. Thus, like behavior
observed in humans and that predicted by Bayesian decision
theoretic models (Kording and Wolpert, 2004, 2006; Tassinari
et al., 2006), our model was able to appropriately weigh the
influence of the goal selection distribution with the goal belief
distribution.

The similarity in strategy supports our claim that the
learning and control mechanisms of the BG can contribute to
learning under such conditions. Our results also indicate that
an explicit representation of the goal selection distribution
may not be needed. Rather, in our model, the influence of the
goal selection distribution was felt only through the experi-
ential learning mechanisms of B.
4.1. Behavioral and neural implications

How behavior under such conditions is learned has not been
described (to the best of our knowledge) in the experimental
literature. According to the computational scheme of our
model, behavior will progress gradually, over the course of
learning, from waiting until the goal belief distribution is fully
resolved and then moving directly toward the true goal to
immediately moving toward the mean of the goal selection
distribution (Figs. 3, 4, and 5). Deviation from a direction
toward the mean of the goal selection distribution to a
direction toward the true goal will occur earlier in a trial as
goal belief distribution resolves more quickly (Fig. 6). The
different types of goal belief evolution used in this paper serve
as surrogates for sets of goal stimuli with different perceptual
qualities. The dependence of behavior on goal stimuli
displayed in our model offers a way to indirectly assess the
perceptual qualities of stimuli.

The stimuli with which an agent was trained affected
behavior when the agent was presented with stimuli of
different perceptual characteristics (Fig. 8). Agents trained
under an evolving goal belief distribution (analogous to poorly
discernible goal stimuli) but tested with a fully-resolved one
(easily discernible) did not change their behaviors. Such a
strategy reveals the strong influence of the goal selection
distribution on behavioral control when the goal stimuli are
poorly discernible, even when easily discernible stimuli are
later presented. The strong influence is due to the learning
mechanism of B, which estimates values of actions based on
experience (dictated by the goal selection distribution) and the
goal belief distribution. In the opposite case, agents were
trained with a fully resolved goal belief distribution but tested
with an evolving one. Because of the perceptual clarity under
which agents were trained, the goal selection distribution had
no influence on behavior; behavioral control was influenced
entirely by the goal belief distribution.

These results provide an interesting analogy to Bayesian
decision theory (BDT), which requires an explicit representa-
tion of both the goal belief distribution (the likelihood in BDT)
and the goal selection distribution (the prior). As discussed in
Tassinari et al. (2006) and Kording andWolpert (2004), reliance
on the prior increases as variance (representing uncertainty)
in the likelihood increases. Similarly, as suggested by the
results of our model, reliance on experience is strong when
training with imprecise sensory information (e.g., poorly
discernible goal stimuli). Behavior as controlled by planning
mechanisms that use explicit estimates of uncertainties can
quickly adapt when precise sensory information is later
presented. Behavior as controlled by experiential learning
mechanisms, such as our B, cannot. Thus, although learned
behavior under a constant set of stimuli may be similar under
both schemes, we would expect that behavior when the
stimuli change would be different.

The type of goal belief evolution under which an agent is
trained, and the goal selection distribution, affects the Q-
values (the estimate of how “good” each action is from each
state) B uses to make decisions (Eq. (2)). The dependence on
the goal belief distribution is a design of the learning
mechanisms of B (Eq. (1)), while the dependence on the goal
selection distribution results from experience with the task.
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As striatal neuron activity may represent Q-values (Samejima
et al., 2005), we would expect that it would reflect the trade-off
between the two distributions. In particular, when subjects are
trained with an evolving goal belief distribution and tested
with a fully resolved goal representation, we would not expect
striatal neuron activity to change in response to the new
stimuli. In the opposite case, in which subjects trained with
easily discernible stimuli are tested with poorly discernible
stimuli, we would expect striatal neuron activity to be very
different (and thus reflect the perceptual qualities of the new
stimuli). An extreme example of this is inferred from the
behavior ofmodels trainedwith an instant goal belief evolution
but tested with a delayed evolution for the 2 Goal goal selection
distribution (left, second from the bottom graph of Fig. 8).
Resulting behavior suggests that, under behavior controlled by
B, striatal neurons representing action northwest and those
representing action northeast would be active to similar
degrees, while all other actions (including north) would be
close to baseline activity.

4.2. Consideration of a more sophisticated planner

Recall that our planner,A, has amodel of the environment, but
is unable to select non-null actions until the goal belief
distribution is fully resolved. Its capabilities were artificially
restricted to isolate learning under uncertainty to B. However,
as evidencedby the results ofHudsonet al. (2007) andTassinari
et al. (2006), a planner would be able to take uncertainty into
account in selecting actions, including selection of an action
not optimal for any possible goal. For example, with the 2 Goal
goal selection distribution, action north from the starting
position is not optimal for either Goal 1 or Goal 5. B required
experience to discover it as an appropriate action given an
uncertain goal belief distribution (Fig. 5), but a planner more
sophisticated than our A would be able to select it with little
experience. In general, we would expect behavior under
control of a more sophisticated planning mechanism early in
training to take the goal belief distribution into account when
selecting actions, i.e., movement would be toward themean of
the goal belief distribution at a given time step.

How would behavior under a planner develop, especially if
the distribution from which the goals were selected was not
uniform? In Hudson et al. (2007) and Tassinari et al. (2006), the
subjects were explicitly presented with the goal selection
distribution; thus, a planner could easily integrate it in
forming a plan. Kording and Wolpert (2004) describe a task
inwhich their equivalent of the goal selection distributionwas
not explicitly presented to the subjects; learned behavior (after
1000 trials) was well-described by BDT, but analysis on how
behavior was developed was not conducted. Given the large
number of training episodes, it is possible that mechanisms
attributable to the BG participated in developing behavior (as
was done in ourmodel, see also Packard and Knowlton (2002)).

For the purpose of discussion, let us assume that a more
sophisticated planner estimates goal location as suggested by
BDT (Kording andWolpert, 2006). Current sensory information
(which we refer to as the goal belief distribution in this paper)
and the goal selection distribution are combined, weighing the
influence of lower variance (more certain) distribution more
than the influence of the higher variance (less certain)
distribution. If the goal selection distribution is not given, it
must be estimated through experience (though the results of
Knowlton et al. (1994) and Knowlton et al. (1996) suggest that
such an estimate of probabilistic information may not be
possible in some cases). Assuming that the variance of the
estimated goal selection distribution decreases from very
large to the true variance with experience, its influence on the
planner's decisions would increase with experience. Thus,
behavior would develop gradually from moving toward the
mean of the current goal belief distribution to a combination
of current goal belief distribution and the estimated goal
selection distribution as suggested by BDT.

Given that a gradual shift in strategy is likely to occur under
both a cortical planning mechanism and a BG-mediated
mechanism, it may be difficult to distinguish development
of behavior as dictated by either type of mechanism. If
planning requires an explicit awareness of relevant variables,
one can simply ask the subject if he is aware of the perceptual
qualities of the stimuli and the goal selection distribution.
However, such a strong assumption is unjustified given our
current understanding of cortical planning mechanisms.
Furthermore, awareness of task-relevant variables, such as
predictable perturbations, may diminish as the subject
incorporates such variables in his behavioral strategy (Lackner
and DiZio, 1998, 1994).

Other characteristics of planning mechanisms may enable
us to determine which system is responsible for behavior. In
particular, planning mechanisms are flexible. For example,
when characteristics of the goal, such as perceived value or
relative location, are changed, behavior as controlled by plan-
ningmechanisms changes quicklywhile behavior as controlled
by BG-mediated mechanisms changes slowly (Packard and
Knowlton, 2002; Dickinson, 1985; Yin and Knowlton, 2006; Daw
et al., 2005). Similarly, we described earlier in the Discussion
how behavior as controlled by BG-mediatedmechanisms relies
more heavily on experience than it does on stimuli when
trained with stimuli of poor perceptual qualities. To explore
this influence in more detail, we exposed the models trained
with the delayed/5 Goal Biased condition (Figs. 2 and 6, top left) to
a different type of delayed goal belief. For the first three time
steps, the new goal belief distribution represented a strong bias
toward Goal 1 (as opposed to Goal 5, for which themodels were
trained) and then evolved according to the delayed goal belief
evolution. Despite the radically different goal belief distribu-
tion, behavior did not changemuch (not shown). Although such
behavior may be dependent to some degree on parameters
used in our implementation (e.g., the temperature, τ, used in
the soft-max transformation, as described in the Experimental
procedures section), these results further demonstrate the
strong influence of experience on behavior as controlled by B
when B is trained under conditions of high uncertainty. In
contrast, we would expect behavior as controlled by planning
mechanisms to reflect the new information (Hudson et al.,
2007): movements early in the trial would be toward the mean
of the goal belief distribution, i.e., toward Goal 1.

Finally, Hikosaka and colleagues (Hikosaka et al., 1999;
Nakahara et al., 2001) describe amodel in which early learning
of skilled movements occur in an abstract coordinate frame,
while later learning occurs in an intrinsic coordinate frame.
Thus, the abstract information can be used by a planning
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mechanism to allow some aspects of learning on one effector
to transfer to another during early learning (as seen in
behavior, Hikosaka et al. 1995; DiZio and Lackner 1995). Such
a transfer would be unlikely if behavior were controlled by BG-
mediated mechanisms.

Overall, a planning mechanism is expected to respond to
change faster than a BG-mediated mechanism (Daw et al.,
2005). Such change may be in the information used to make
decisions (e.g., immediate sensory information or character-
istics of the goal) or in the motor system (e.g., the use of a
different effector). The difference in behavior may lie in how
each mechanism incorporates information. A planning
mechanism is thought to explicitly represent relevant infor-
mation andmake decisions with a computationally expensive
process. If such information is readily available, little expe-
rience is necessary to make reasonable decisions. A BG-
mediated mechanism, on the other hand, is thought to learn
from experience. Decisions appropriate for that experience are
formed, but the relevant information may not be explicitly
represented. Thus, when information changes, more experi-
ence is required to correctly make new decisions.

4.3. Multiple controller schemes

The concept of a human or animal usingmultiple controllers to
solve the same task is not a new one. Indeed, it is beneficial to
use different types of control schemes, each with their own
advantages and disadvantages, to learn and control behavior.
Thoughwedonot explore it in this paper, there is evidence that
cortical areas incorporate information provided by the basal
ganglia (Pasupathy and Miller, 2005; Seger and Cincotta, 2006);
computational models suggest how such information may aid
cortex-based mechanisms (Houk and Wise, 1995; Frank et al.,
2001). In our model, A is used as a general purpose controller: it
uses computational and representational resources to develop
reasonable behavior with no prior experience with the parti-
cular task. B, on the other hand, learns from experience
(including that as guided by A) and develops behavior more
appropriate to the specific task. With experience, control is
transferred to the relatively cheaper mechanisms of B. Thus,
rather than use one complicated and expensive controller, our
model employs a multiple controller scheme that allows a
simpler controller to dictate behavior where appropriate.

Several other models use a multiple controller scheme in
which behavior can be controlled by a general controller, which
solves tasks reasonably well by using a control mechanism
designed to solve awide variety of tasks, or a specific controller,
designed to learn to solve a specific task. For example, in the
model described in Nakahara et al. (2001), discussed earlier,
control is transferred from the controller based in an abstract
coordinate frame to one based in an intrinsic coordinate
frame. The different models all show the utility of using a
multiple controller scheme, but they differ in how themultiple
controllers are coordinated. Below, we discuss some of these
models and compare their differences.

Our model is similar in many respects to that presented in
Daw et al. (2005), who describe a computational model in
which a Tree-search controller, to which our A is similar, and a
Cached-values controller, to which our B is similar, represent
control mechanisms of the PFC and BG, respectively. (We refer
to their Tree-search controller as a general controller in this
discussion because it makes decisions based on a search
through many possible outcomes; thus, a change in outcome
is detected quickly and the controller can change its decisions.
Although it does require some experience, it is designed to
learn quickly through a planning process.) Arbitration
between the two controllers is based on the relative level of
uncertainty of each controller: the uncertainty of their Tree-
search controller decreased faster but had a higher lower limit
than that of their Cached-values controller. Thus, similar to our
model, the Tree-search controller dominated control early in
learning, but the Cached-values controller dominated later.
They showed that their model explains behavior seen in
instrumental conditioning tasks with goal-devaluation.

We limit our description of other models to aspects
relevant to this discussion. Two models suggest that the
control signal is a combination of signals generated by diffe-
rent controllers: feedback-error-learning (Kawato, 1990; Kawato
et al., 1987; Kawato and Gomi, 1992) and supervised actor-critic
RL (Rosenstein and Barto, 2004; Rosenstein, 2003). In both
models, the general controller uses a generic control policy,
which is suboptimal for the specific task, to control behavior
early in learning. Meanwhile, a controller specific to the actual
task is trained, using the signals of the general controller as a
starting point. Overall control is a combination of the two.

Two other models suggest that control signals from
different controllers can be used in sequence: hybrid RL/SL
(Fagg et al., 1997a,b, 1998) and amodel presented in Shah et al.
(2006) (see also Shah, 2008). In both models, a general
controller suggests initial control signals. A specific controller
modifies those signals according to exploration and reward
information; if the commands specified by the specific con-
troller fail to accomplish the task, the general controller
specifies additional signals to ensure the task is accomplished.
Resulting behavior is closer to optimal than behavior pre-
scribed by the general controller alone.

In all the models described in this section, the use of a
general controller enables the agent to make reasonable
decisions early in learning. Meanwhile, a controller designed
to learn from experience is trained and eventually dominates
control, possibly with better control signals. In some tasks,
such as those presented in this paper, a specific controller on
its own can eventually accomplish the task; however, early
performance will be very poor. Also, it is reasonable to assume
that the specific controller will be biased to produce behavior
similar to the general controller when it is first engaged. In the
case of our model, B was biased to initially follow behavior
dictated by A (Fig. 4, bottom row). (Such a bias in our model is
the result of a pessimistic initialization of the Q-values, described
in the Experimental procedures section.) In addition, a general
controller can enable reasonable behaviorwhere the agent has
little experience; in the case of our model, A selects actions at
positions at which the agent has little experience, preventing
the agent from “wandering around” due to a poorly trained B
at those positions. The computationally expensive A ensures
reasonable behavior, but is only recruited when needed.

Because it learns from experience, a specific controller does
not necessarily need an explicit representation of all relevant
aspects of the task once it is trained. For example, our B selects
actions toward themean of the goal selection distribution even
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though the goal selection distribution is not explicitly repre-
sented. While this may be advantageous when solving the task
for which it was trained, it results in a slow adaptation when
conditions change (and, as illustrated in Fig. 9, results in
potentially poor behavior). Behavior under a change in condi-
tions is the focus of studies in goal devaluation (Dickinson,
1985; Yin and Knowlton, 2006; Daw et al., 2005). The continued
selection of actions to achieve a goal that has been devalued is
taken as evidence that a specific controller (referred to as ha-
bitual in most studies of goal devaluation) is dominant.

Most of the models discussed in this section, as well as
ours, do not offer a method to immediately disengage the
controller trained for the specific task and revert control back
to the general controller, as would be beneficial if the task
suddenly changes. Though such a reversion is not explicitly
discussed in Daw et al. (2005), their scheme will revert control
from their Cached-values controller to their Tree-search con-
troller once the confidence of each controller reflects their true
inaccuracies. However, such confidence is determined by
evidence; if the task changed, but the confidence measure is
based on a long history of previously accurate predictions, it
may require some experience for reversion to occur.

The different models use different arbitration schemes.
Some (Kawato, 1990; Shah et al., 2006; Fagg et al., 1997a) recruit
the general controller only if it is needed; others (Nakahara et
al., 2001; Rosenstein and Barto, 2004) increase the contribution
of the controller trained for the task as it gains experience; the
model presented in Daw et al. (2005) recruits the controller
with the most confidence. Dickinson (1985) suggests that
control is transferred from a general controller to a specific
onewhen the rate of reward no longer increases in response to
an increase in the rate of behavior. In our model, we assume
that a controller with higher computational requirements
requires more time to make a decision. Thus, we designed our
model so that simpler controllers make decisions earlier if
they are sufficiently trained, resulting in an arbitration
scheme that is essentially based on experience. However,
our design does not include any advantage in using a simpler
controller to make the same decision as a more complicated
one. One area of active research is to include such advantages
in the arbitration scheme.

We confined the previous discussion to multiple controller
schemes in which a general controller is responsible for
Fig. 10 – Left: Goal belief distribution (b) for σ=1 when the true go
σ over the first eight time steps of a trial for each condition of go
distribution. For the delayed case, b(g) is equal for each goal for th
of b(g*) for each condition of goal belief evolution for the 2 Goal g
not plotted.
behavior early in learning and, by providing reasonable
behavior, helps train a controller designed to learn from
experience. As discussed throughout this paper, there is
evidence that the brain uses multiple control schemes in
learning and controlling behavior. How to best coordinate
them is a topic of much current research. In this paper, we
examined behavior under an evolving sensory representation.
Although such behavior is well-described by planning
mechanisms, we showed that BG-mediated learning and
control schemes can also contribute to its development.
5. Experimental procedures

In this section, we provide details of the evolving sensory
representation and multiple controller model. A descrip-
tion on a conceptual level for each section here is pro-
vided in Section 2 of this article under headings of the same
name.

5.1. Evolving sensory representation

In tasks with the 5 Goal Biased goal selection distribution, for
the purpose of calculating the goal belief distribution, b, Goals
1 through 5 are assigned an integer value corresponding to
their labels (i=1, 2, …, 5, respectively). Then, a two-stage
process is used to calculate b. For each goal, b̃ gð Þ is determined
by the normal distribution (with standard deviation σ)
centered on μ, the integer value of the true goal:

b̃ gð Þ = 1
r

ffiffiffiffiffiffi
2p

p e
� i�lð Þ2

2r2 :

However, because the normal distribution is continuous and

has infinite support,
P5
g = 1

b̃ gð Þ<1: Thus, b is calculated from a nor-

malized version of b̃ :

b gð Þ = b̃ gð Þ
P5

gV= 1
b̃ g′ð Þ

:

Fig. 10, left, illustrates b with σ=1 when the true goal, g⁎, is
Goal 1, Goal 2, and Goal 3 (labeled in Fig. 10). b for g⁎=4 and
al (g*) is 1, 2, and 3 (labeled in the graph). Middle: Evolution of
al belief distribution for the 5 Goal Biased goal selection
e first three time steps; thus, σ is not plotted. Right: Evolution
oal selection distribution. b(g) for g≠g* is 1−b(g*) and thus is
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g⁎=5 are symmetrical with b for g⁎=2 and g⁎=1, respectively,
and thus are not shown.

Sensory representation evolves by setting σ (by hand) to
decrease over time to σ=0, at which point we set b(g⁎)=1
and all other b(g)=0. Fig. 10, middle, plots the decrease of σ
for each type of goal belief evolution (the corresponding b
for each case is illustrated in Fig. 2). For the delayed case, b
is defined to be 0.2 for all goals for the first three time steps
and then is determined as described above. In tasks with
the 2 Goal goal selection distribution, we simply set the
value of b(g⁎) (Fig. 10, right), and the belief of the other goal
is 1−b(g⁎).

5.2. Multiple controller model

The functional connectivity of our model is illustrated in
Fig. 11. Parts of this model employ connectionist-style me-
chanisms using abstract neuron-like units (referred to simply
as units hereafter). There are two arrays of units: State and
Action arrays. The State array is a |P|×|G|-element array of
units labeled (pi, gj). The activation of unit (pi, gj), [(pi, gj)], is
simply b(gj) when the agent is in the position represented by
pi. The activations of units corresponding to other positions are
zero. (This representation is essentially that used in machine
learning research in partially-observable domains, where
agents make decisions based on a belief state, a vector over all
possible states in which each element is the belief that that
state is the actual state, Littman et al., 1995; Kaelbling et al.,
1998).
Fig. 11 – Functional connectivity of the model. Unfilled closed
arrows indicate excitatory connections and open arrows
indicate unrestricted connections. For clarity, ascending
projections are drawn with dashed lines. Arrays of
neuron-like units are represented by boxes with rounded
corners and labeled with italics.
State serves as input to both the Planner (A) and the Value-
based controller (B). Each controller excites the Action array,
an |A|-element array of units (labeled ai) where activation of
unit ai corresponds to the selection of action i. B excites the
units in the Action array via the excitatory mapping Q̃ from
State units to Action units (Q̃ is described later under the
description of B). The Action array is a winner-take-all (WTA)
network (also described later). When an Action unit is excited
to, or above, a threshold (θ, set to 5), that action is taken. If no
action is taken within a time-step limit, as would be the case
if the connections of Q̃ are weak, A selects an action by
exciting an Action unit to threshold. If no State unit has an
activation of 1 (i.e., if the goal belief distribution is not fully
resolved), A selects the null action. Next we describe the two
controllers.

5.2.1. Planner (A)
When b is fully resolved, the Planner selects the optimal
action via the well-known heuristic search algorithm A⁎ (Hart
et al., 1968). Briefly, A⁎ searches through possible positions (p′)
reachable from the current position (p). For each p′, A⁎
calculates the cost incurred traveling from p to p′ and the
heuristic function of p′ (we use the negative of the Euclidean
distance between p′ and goal position). It then expands on
this search until the goal position is reached, keeping track of
the best sequence of actions. The best action from p is
selected; in the case of ties, an action is chosen randomly
from the set of best actions. We assume that this search
process takes longer than the time-step limit of the WTA
network. This is not meant to be a realistic representation of
cortical planning mechanisms. However, it captures the
functional properties we wish to implement in A: provided a
model of the environment, a fully-resolved representation of
the goal, and sufficient computational resources, it suggests a
reasonable action without any prior experience with the
specific task.

5.2.2. Value-based controller (B)
The Value-based controller can make decisions based on
uncertain goal information by incorporating the goal belief
distribution, b: unlike A, it can select non-null actions while b
is not fully resolved. This section describes how Q̃ is trained
and the WTA network is implemented. We discuss some of
our choices in the next sections.

B uses a Q-table, a |P|×|G|×|A| table with elements Q(p,g,a)
that are estimates of how valuable action a is in state (p,g)
(Sutton and Barto, 1998). The values are learned through
experience. If the state (p,g) is known with certainty, Q(p,g,a)
can be updated via the Sarsa algorithm of reinforcement
learning (Rummery and Niranjan, 1994; Sutton and Barto,
1998). However, because the state is uncertain, we modify the
Sarsa algorithm to incorporate uncertainty in state: when
action a is selected from position p, and then action a′ is
selected from the next position p′, for every goal g,

Q p; g;að ÞpQ p; g;að Þ + ab gð Þ ra +
X
gVaG

b gVð ÞQ pV; gV; aVð Þ�Q p; g;að Þ
0
@

1
A;

where α is a step-size parameter (set to 0.1) and g′ is a
“dummy” index, not the next goal. Note that Q(p,g,a) for every
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goal is updated toward the same scalar target value,
ra +

P
gVaG b gVð ÞQ pV; gV;aVð Þ; which represents the immediate

cost and the estimated value of the next action chosen. The
magnitude of the update is weighted by b(g). For example, if
the belief that Goal 1 is the true goal, b(1), is low, then Q(p′,1,a′)
will contribute little to the target value of the update and
Q(p,1,a) will not change by much. This method of incorpo-
rating b is similar to some methods described in the machine
learning literature (Littman et al., 1995; Kaelbling et al., 1998;
Chrisman, 1992).

The values of the Q-table, referred to as Q-values, are used
to train Q̃ , which is initialized to 0. (We discuss how the
elements of the Q-table are initialized, and why we do not use
Q-values directly, in subsequent sections.) First, a soft-max
function is used to transform the Q-values into positive
numbers normalized across actions. For position p and all
goals and actions,

W p; g;að Þ = eQ p;g;að Þ=s
P
aaA

eQ p;g;að Þ=s ;

where τ is the temperature (set to 0.3). When the agent is in
position p, for all goals and actions,

Q̃ p; g; að Þp Q̃ p; g;að Þ + aqb gð Þ W p; g;að Þ � Q̃ p; g;að Þ
� �h i +

;

where αq is a step-size parameter (set to 0.001) and [x]+ returns
0 if x negative and x itself if x is non-negative. Note that
because Q̃ is initialized to 0 and its elements increase at a slow
rate, it is not normalized across the actions during early stages
of learning.

Action unit ai is excited by the State units via Q̃ as follows:

ai½ � =
X
jaP

X
kaG

pj; gk
� �� �

Q̃ j; k; ið Þ + g

2
4

3
5

+

;

where [ai] is the activation of Action unit ai and η is a random
number (described in subsequent sections). The Action units
comprise aWTA network with the connectionmatrixU: for all
i≠ j, Uij=−1 / |A|, while each Uii=1. The WTA network is
implemented as follows:

tU = 0
Calculate ai½ � for each i¼ 1; N jAj
while all ai½ �< h and tU < tmax

tU = tU + 1
for each j = 1; N ; jAj

aj
� �

tUð Þp aj
� �

tU � 1ð Þ +
X

kaA
Ujk aj

� �
tU � 1ð Þ

h i +
;

where [aj](tU) is the activation of unit aj at time step tU. The
WTA circuit runs until an Action unit is activated (some [ai]≥θ)
or a step number limit (tmax, set to 60) is reached (note that tU,
the time step within theWTA, is distinct from the time step in
a trial). The use of η causes the excitation of the Action units to
behave similar to a soft-max function in which the probability
that action a is selected increases as the value of a relative to
the other actions increases. This leads to a form of exploration
inwhich actions associatedwith a lesser value are chosen part
of the time.
5.3. Further details

5.3.1. Initialization of the Q-table
Most of the Q-values are initialized to zero. Those correspond-
ing to a goal (i.e., the goal states, where p is the position of goal
g) are given a value of +30. Because a trial is terminated when
the true goal is reached, these values do not change. Because
the Q(p,g,a) corresponding to the action immediately preced-
ing transition into the goal state is updated by the Q-value of
the goal state, the Q-values of the goal states act as additional
rewards. We chose +30 because it is roughly twice the number
of steps required to move from the starting position to the
farthest goal position (Goals 1 or 5) using only the cardinal
actions (north, south, east, and west). (Recall that the costs of
the cardinal actions and the null action are each ra=−1, while
the costs of the diagonal actions are each ra=�

ffiffiffi
2

p
.) This

results in a pessimistic initialization, i.e., the initial Q-values are
less than their accurate optimal values. For example, in
moving directly from the starting position to Goal 1, the
agent must select action northeast a total of eight times. The
accurate optimal Q-value for p=“the starting position”, g=1,
and a=“northeast” is (−8

ffiffiffi
2

p
+30)=+18.7. Thus, as A selects

action a from position p in order to reach goal g, Bwill learn to
place a higher value on Q(p,g,a) than that of actions not
selected. When B is trained enough to select actions, it will be
biased to choose actions selected by Awhen it is first engaged.
In contrast, with optimistic initialization, where Q-values are
initialized to be greater than their likely accurate optimal
values, Q-values will only decrease with experience and Bwill
be biased to choose actions not selected previously. We
suggest that B should be biased to follow the strategy
suggested by A when it is first engaged.

5.3.2. Why the Q-table is not used directly
We suggest that at states for which the agent has little
experience, B is not trained enough to select actions; thus A is
used at these states. One could implement such an arbitration
scheme by keeping count of the number of times the agent has
visited each state (e.g., Brafman and Tennenholtz, 2002); once
a threshold is reached, B is enabled at that state. However,
doing so requires some higher level “decision-maker” to
explicitly choose which controller to use at each state.

We wish to show that arbitration between the two
controllers can be implemented by using a competitive
network such as our WTA network. In our model, the level
of experience at a state is contained within the weights of Q̃
(the weights corresponding to state (p,g) increase as the agent
visits that state). No Action unit wins in the WTA network
(within the time step limit) when they are weakly excited. As
the weights of Q̃ increase, the likelihood that an Action unit
wins in the WTA network increases. Thus, the arbitration
scheme between the two controllers emerges as a conse-
quence of network dynamics.

Q̃ is trained by Ψ, a soft-max function of the Q-values. The
Q-values are not used directly because they can potentially
vary across a large range, include both positive and negative
numbers, and will change drastically depending on the task
and size of the environment. The Q-values capture experience
(especially with a pessimistic initialization), but the weights
within the WTA network would have to be tuned carefully. Ψ
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transforms the Q-values into values between 0 and 1, but, by
definition, they are normalized across the actions — the
normalized values are high enough such that some Action unit
would win in theWTA network without any experience. Thus,
we use Ψ to train Q̃ , which represents experience (by growing
from 0) with values between 0 and 1.

5.3.3. A model with only controller B
The graph in Fig. 4, top right, illustrates behavior of a model in
which only a controller similar to B was used (i.e., A was not
used). For this model, behavior was dictated purely by the Q-
table. When the agent was in position p, the action corre-
sponding to the maximum of Σg∈Gb(g)Q(p,g,a) was selected
most of the time (ties were resolved by randomly choosing
from the set of maximum-valued actions). A random action
was chosen 10% of the time.

5.3.4. Exploration
The exploration parameter, η, depends on experience and the
values of Q̃ . A trial-dependent value, κ, decreases monotoni-
cally from 1 to 0.2 from the first trial to 3/4 of the total number
of trials, after which it remains at 0.2. η is the minimumof two
numbers: 1) a number randomly chosen from a zero-mean
normal distribution with standard deviation κ, and 2) the
quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
aaA

X
gaG

b gð ÞQ̃ p; g;að Þ
0
@

1
A

2

;

vuuut

when the agent is in position p. Because a normal distribution
has infinite support, there is a small chance that very large
numbers will be chosen from it, resulting in an Action unit
winning in the WTA network even at positions with which B
has very little experience. To prevent this, we impose a max-
imum value on η based on the values of Q̃ . As the values of Q̃
increase, so does the maximum value imposed on η. Thus,
noise is signal-dependent (signal-dependent noise is
assumed to exist in biological systems; Harris and Wolpert,
1998).
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