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ABSTRACT

BASIS CONSTRUCTION AND UTILIZATION FOR MARKOV
DECISION PROCESSES USING GRAPHS

FEBRUARY 2010

JEFFREY T. JOHNS
B.Sc., UNIVERSITY OF VIRGINIA
M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

The ease or difficulty in solving a problem strongly depenithe way it is represented.
For example, consider the task of multiplying the numberaid@ 24. Now imagine mul-
tiplying XII and XXIV. Both tasks can be solved, but it is ctgamore difficult to use
the Roman numeral representations of twelve and twenty-fBlumans excel at finding
appropriate representations for solving complex problefkis is not true for artificial
systems, which have largely relied on humans to provide@pjate representations. The
ability to autonomouslyonstruct useful representations and to efficiently exple@m is
an important challenge for artificial intelligence.

This dissertation builds on a recently introduced grapsedaapproach to learning rep-
resentations for sequential decision-making problemseateatas Markov decision pro-
cesses (MDPs). Representations, or basis functions, fd?$/de abstractions of the prob-

lem’s state space and are used to approximate value fusctidnch quantify the expected
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long-term utility obtained by following a policy. The grafifased approach generates ba-
sis functions capturing the structure of the environmerdandfling large environments re-
quires efficientlyconstructingand utilizing these functions. We address two issues with
this approach: (1) scaling basis construction and valuetiom approximation to large
graphs/data sets, and (2) tailoring the approximation feegific policy’s value function.

We introduce two algorithms for computing basis functioraf large graphs. Both
algorithms work by decomposing the basis construction lprabinto smaller, more man-
ageable subproblems. One method determines the subpmbleenforcing block struc-
ture, or groupings of states. The other method uses recutsisolve subproblems which
are then used for approximating the original problem. Béglodthms result in a set of ba-
sis functions from which we employ basis selection algongh The selection algorithms
represent the value function with as few basis functionsassiple, thereby reducing the
computational complexity of value function approximatenmd preventing overfitting.

The use of basis selection algorithms not only addressescileng problem but also
allows for tailoring the approximation to a specific polichhis results in a more accurate
representation than obtained when using the same subsasisfflanctions irrespective of
the policy being evaluated. To make effective use of the,da¢adevelop a hybrid least-
squares algorithm for setting basis function coefficienbis algorithm is a parametric
combination of two common least-squares methods used fdP84Ve provide a geomet-
ric and analytical interpretation of these methods and detnate the hybrid algorithm’s
ability to discover improved policies. We also show how thgpathm can include graph-
based regularization to help with sparse samples from agithenvironments.

This work investigates all aspects of linear value funcapproximation: constructing
a dictionary of basis functions, selecting a subset of basistions from the dictionary,
and setting the coefficients on the selected basis functidfesempirically evaluate each

of these contributions in isolation and in one combined iéeckure.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Herbert Simon [90] wrote, “solving a problem simply meanpresenting it so as to
make the solution transparent.” This statement undersdbeeimportance ofepresenta-
tions and, in particular, how the right representation can makdblems simple. This is
particularly true for artificial intelligence agents thatist effectively operate in complex,
stochastic environments. Although some knowledge can bednafted by those designing
the agents, truly autonomous agents must be able to constaicown representations to
deal with unique and unforeseen problems they invariabliyemcounter. But how can an
agent construct its own representations?

We consider the problem of representation discovery in trgext of sequential deci-
sion making. Stochastic sequential decision making problare most often studied using
the mathematical formalism of Markov decision processeBDRY) [85]. In this frame-
work, an agent chooses which action to perform thereby ngukie agent to transition
(stochastically) from one state of the environment to aeo#tate. The agent receives a
numerical reward for each transition. The agent’s goal ie#on which action to perform
in each state (i.e. a policy) so as to maximize expecteadulativereward. To help make
these decisions, an agent can estimate the value of states @amvironment. The agent’s
representatiorof the value of a state strongly influences its behavior.

To ground this problem in a concrete example, consider tHekmewn game of Tetris.
A standard Tetris board consists of 200 cells (20 columnspi@) that are either occupied

or vacant; therefore, there aé¥22°?) possible states of the game. It is clearly infeasible



trying to learn a value for each unique state. Instead, lal-&mnd-error, humans have

devised features that encode concepts like “column heigid’ “number of holes” [12].
The value of a Tetris state is then a weighted sum of the feat(ire.,w; x (column
heigh) + w, x (number of holes+ ..., wherew; € R,i = 1,2,...) where the agent is
free to set the weights appropriately. This is known as livadue function approximation
and the features are referred to as basis functions. Bféeg®tris policies can be learned
with these features [100], but the difficult task of abstragtthe raw Tetris state space
has been solved by humans rather than the agent. A flow diadegnsting this typical
approach to solving complex MDPs is shown in Figure 1.1. lulddbe beneficial to

remove the designer from this loop entirely and leave thenagith the challenging task

of constructing useful features.

Environment Designer Learning Agent

T Problem Space Feature Space Optimization T

Figure 1.1. The typical framework for solving complex sequential dasmaking prob-
lems.

The importance of forming abstractions and generalizirgeeience in one setting to a
different, but similar, setting is well known in the field atiéicial intelligence (Al). Indeed,
one of the earliest Al demonstrations dating back to 1959 Ardlsur Samuel’s famous
checkers player [87]. Samuel used a polynomial functiorr@pmator to represent the
value of a checkers board. Other common function approximanclude radial basis
functions, tile codings, and neural networks [98]. Theseganeric basis functions that do

not (automatically) account for regularities that may exighe agent’s environment.



1.2 Overview

In this dissertation, we build on a recently introduced @rjased approach to auto-
matically constructing representations for MDPs [67, 6&]ttices in the graph correspond
to states of the environment and edges connect similarsstahadevan and Maggioni
proposed taking samples from a MDP, forming a graph from #mpes, and computing
either graph Laplacian eigenvectors [67] or diffusion wate[63] which are then used as
basis functions. Laplacian eigenvectors, which have dlebpport (i.e. every vertex in
the graph has a value), are thmootheseigenvectors of the Laplace operator (e.g. those
with the smallest corresponding eigenvalue). Diffusiovelats are localized functions at
multiple scales. These basis functions capture the steicfithe environment as modeled
by the graph. Similar states in the graph have similar basistfon values. Two strengths
of the graph-based approach to basis construction aret ffiatdreates basis functions that
can be used for representing many functions over the statespnd (2) allows for model-
ing theintrinsic dimensionality of the environment. While an environment mayninally
be very high dimensional, often times lower dimensionaldtire exists in the problem’s
dynamics. The graph-based approach leverages such séractd can thus circumvent the
“curse of dimensionality.” Figure 1.2 shows a chain graplvelt as a few graph Laplacian

eigenvectors and diffusion wavelets.

0. 0. o. o.
0.45| 0.45|
0.15| 0.15|
03 03
0| 0| 0.15| 0.15|
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0.1 -0.15|
-0.15| -0.15|
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o. 0 0. 0.

0.45| 0.45]

0.15] 0.15]
03] 03]
0| 0 0.15] 0.15]
0 t 0]

0.15] -0.15|
-0.15 0.15]

@@@ ° 0 20 a0 40 s @ ° 10 20 30 40 50 - 0 2 3 4 s ° 10 20 30 40 50

(a) Chain graph (b) Laplacian eigenvectors (c) Diffusion wavelet scaling func-
tions
Figure 1.2. (a) 50 vertex chain graph, (b) first four graph Laplacian sigetors, and (c)
four diffusion wavelet scaling functions at different sesl



This dissertation focuses on both basis construction alug yanction approximation.
Our goal is to efficiently use a set of MDP samples to genenatplgbased features and
utilize those features to learn good policies. This requjfg scaling basis construction and
value function approximation to large graphs/data sets,(aptailoring the representation
to fit specific value functions.

For the graph-based approach to basis construction to &ckme problems, we must
address the computational efficiency of the algorithmshé&worst case, the graph-based
methods have cubic complexity in the number of vertices@gitaph. This calls into ques-
tion the scalability of the methods to large graphs (and thrge state spaces). We propose
two algorithms for generating basis functions that apprate those computed using exact
methods defined in previous work [67, 63]. Both algorithmsknwy decomposing the ba-
sis construction problem into smaller, more manageableralilems. The first algorithm
we present uses the Kronecker product to automatically feasis construction subprob-
lems. The Kronecker product is useful because it presemeaic properties associated
with the original basis construction problem. We demonstteow this method can sig-
nificantly improve computational efficiency and memory wsaghe second algorithm we
present uses a multiscale recursive approach to basigeotish. The state space graph is
automatically decomposed into smaller subgraphs. Thisrdposition occurs recursively
until the subgraphs are of a manageable size. Basis cotistruccurs on the subgraphs.
The recursion then unwinds and the basis functions from tihgraphs are used to ap-
proximate the basis construction problem on the largerlggapMe compare these two
algorithms empirically.

Given a set of MDP samples and the graph-based basis fuscti@nuse least-squares
algorithms for learning the basis function weights. Lesgtiares techniques are used to fit
data to a model by minimizing an objective function. Thesgtéques are important in
the context of MDPs due to their sample efficiency. Therewawmedommon least-squares

methods used for MDPs which behave very differently in pcact We develop a hybrid



least-squares algorithm that is a parametric combinatidheotwo common methods’ ob-
jective functions. A geometric interpretation of the hybkeast-squares algorithm along
with empirical evidence suggests the hybrid algorithm chimately lead to the agent
discovering better policies. We also extend the hybridtlegsares algorithm to include
graph-based regularization. This form of regularizatiwhjch is used to prevent overfit-
ting, helps to ensure the approximate value functions vanyathly according to the graph
structure.

We propose algorithms that tailor the graph-based basigtifuns to fit specific value
functions. Prior work with graph-based features used alsitng@uristic to determine which
features to use when approximating a value function [67683,79, 44, 95]. The heuris-
tic is to always use the smoothest basis functions accotditige graph’s structure. This
mechanism is independent of the particular value functieimdp estimated, meaning all
value functions are estimated with the same set of featlit@s.is a computationally sim-
ple technique and is robust to overfitting (although too mmegjularization is problematic),
but it does not exploit the full power of the graph-baseddesd. We treat the features as
a dictionary from which a subset can be used to approximat@articular value function.
This is important for two reasons. First, it allows for a m@ecurate representation of
the value of a state. Second, by selecting a subset of fsatweecan use as few as pos-
sible which improves the computational efficiency of the inyleast-squares algorithm.
We evaluate four different basis selection algorithms. Cammg the performance of the
different selection algorithms allows for an understagdai the challenges involved in
combining value function approximation and basis sel@ctio

To summarize, we make the following three contributionshis tlissertation:

1. We derive a regularized hybrid least-squares algoritbnapproximate policy eval-
uation. This is a sample efficient algorithm that combines te@mmon least-squares
methods used for MDPs. Experimental results demonstratéybrid algorithm’s

ability to discover improved policies.



2. We propose and evaluate two algorithms for scaling uplgtssed basis construc-
tion to large problems. Both algorithms decompose the lmasistruction problem
into smaller, more manageable basis construction subgmobl This improves the

computational efficiency over previous methods.

3. Using the graph-based basis functions as a dictionaryemwweloy basis selection
algorithms that tailor the representation to the specifilcpdeing evaluated. We
demonstrate this can lead to a more accurate represent#Htite value function

provided the policy evaluation procedure remains stable.

When combined, these three contributions form a policy ttenaframework that takes as
input a set of samples from a MDP and ultimately outputs ama@mate value function

used to determine an agent’s policy.

1.3 Outline

We provide the necessary background on Markov decisiorggs®s and reinforcement
learning in Chapter 2. Value function approximation andeaéht types of basis functions
are also presented. Chapter 2 contains much of the notatemhtbsoughout this disserta-
tion.

In Chapter 3, we describe how samples from a MDP can be usednoafatate space
graph. A detailed description of Laplacian eigenvectors @diffusion wavelets, two types
of graph-based basis functions, is provided with illusteexamples.

We introduce hybrid least-squares algorithms for appratépolicy evaluation in Chap-
ter 4. Given a set of basis functions and samples from a M@Bgthlgorithms produce an
approximate value function. Policy iteration experimetésnonstrate the efficacy of hy-
brid methods. We also describe how the least-squares tdgodan employ graph-based

regularization.



Chapter 5 proposes two techniques for scaling basis cotistnuo large graphs. The
utility of basis functions generated using these two tegph@s is determined empirically.
In Chapter 6, we use the graph-based basis functions as angigtiand evaluate several
basis selection algorithms. Basis selection algorithnis¢cvchoose a subset of basis func-
tions from the dictionary, tailor the representation to dipalar value function. Chapter 7
summarizes the work presented in this dissertation. Comelaand ideas for future work

are discussed.



CHAPTER 2
BACKGROUND

This chapter introduces Markov decision processes antbreement learning, which
provide the mathematical structure for studying sequedéeaision making. We also cover

function approximation and least-squares methods as fhay to reinforcement learning.

2.1 Markov Decision Processes

A Markov decision process (MDP) is a mathematical model qtisatial decision mak-
ing under uncertainty [85]. A finite MDP is defined by a foupkei M/ = (S, A, P, R)
whereS is a set of statesd is a set of actionsl’ is a probability function with”?, being
the probability of transitioning from stateto states’ upon executing action, and R is
the reward function with?,, being the expected immediate reward obtained as a result of
taking actionz in states and transitioning to stat€. We use the notatioA, to refer to the
set of admissible actions in state The Markov property dictates that future states of the
MDP are conditionally independent of past states given tingent state.

A policy = is a mapping from states to a probability distribution oveti@ans. The
value functionV/™ associated with policy defines the expected long-term discounted sum

of rewards. This is defined mathematically as

V7T(s) = Eﬂ{z Veriiri]se = s}
k=0

= Ex{ripr + YV (s041) |50 = s}

=Y w(s,a) Y PL(RL, +V7(s)),

a€As s'esS



whereE, {-} denotes the expected value by following policyr; is the immediate reward
received at timeg, and~y € [0,1) is a discount factor controlling the trade-off between
immediate and long-term rewards. An optimal policy associated with the optimal value
function IV*, has the property that*(s) > V™ (s) for every states € S and any other

policy 7’. The optimal value functior* is defined as follows:

V*(s) = max V™ (s)

™

= max P%(Re, +~+V*(s)).
acAs
s'eS

A policy can be determined from a value function by perforgrame step of lookahead
using the transition and reward modé?sand R and selecting the action with the highest
expected value. Alternatively, a policy can be determiné@taut relying on lookahead by
defining an action-value functio@™ explicitly over state-action pairs. The action-value
function@™ (s, a) is defined as the expected return when starting in statking actiorn,

and following policyr thereafter:

Q"(s,a) = Eﬂ{z ’Ykrt+k+1’3t =s,a, = a}

k=0

= Eﬂ'{rt+1 =+ ’YQW(StH, W(5t+1))|3t = S,0¢ = a}

:ZPSC;, /—l—”yz (s',a)Q™ (s, a')).

s'esS a’'€Ay

Similarly, the optimal action-value functio* is defined as

Q*(s,a) = max Q" (s, a)
:Z ss’ ss’+’7maXQ(S CL))

a’'€Ay
s'esS

A policy can be determined easily from an action-value fiomctvithout use of a model

simply by selecting an action that has the larggsialue.



Broadly speaking, there are two approaches to learningieypdlhe first approach es-
timates the value function (or the action-value functiomj ¢hen derives a policy, whereas
the second approach searches directly in the space ofgmli€here are many learning al-
gorithms within each approach. In this dissertation, weifoan the value-based technique.

It is convenient to abbreviate the equations in this seaiging matrix notation. The
value function can be represented as a vettore RI°l where we assume an ordering of

states such that:

T

Vﬂ- = [Vﬂ-<81), Ce ,Vﬂ-<8|5‘)}
The value function solves the Bellman equation:
VT =R"4+~P"V" :=T"(V"),

whereT™ : RISl — RISl is the Bellman operator. In this formaB” is a matrix of size
S| x |S| with elementsP]; = ZGGASZ_ (si,a) Py and R™ is a vector of dimensionality

S;i S

S| with elementsRT = > ., 7(si;a) ) g PoyRe . All vectors are assumed to be

column vectors. The action-value function can be expressadsimilar way withQ™ €

RIS where the actions are ordered such that:

T

Qﬂ = [Qﬂ-(sh a1)7 s 7QW(S|S|7 al)v Qﬂ<817 a2>7 ey QW(S\SM G|A|):|
We reuse notation and write the Bellman equation as:
QT( — RW + ’YPTFQW = TW(QW)

Note that in this case, the vect&f and matrixP™ have dimensiofnS||AJ, but are defined
analogously as above. The dimensionalityfand P™ will be obvious from the context

depending on whether value functions or action-value fonstare being used.
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2.2 Reinforcement Learning

The reinforcement learning (RL) [98] framework involves agent interacting in an
environment attempting to maximize a reward signal. Theegaity of this framework
allows its application to a wide array of problems. For Majilem environments, RL prob-
lems can be modeled as MDPs. In the RL framework, the agemillysipes not have
access to the MDP model, but it receives samples from the hhydateracting with the
environment.

Many of the algorithms for solving RL problems are instanoetemporal difference
(TD) learning [96]. TD learning combines dynamic programgiand Monte Carlo meth-
ods. The TD(0) algorithm estimat&s" using the following update upon transitioning from

states to s’ given actionr(s) with rewardr:
V(s) —V(s)+ar+~V(s) —V(s)]

wherea € (0,1] is a step-size parameter. The estimated v&fge) is updated based on
the estimated valu¥(s'), i.e., TD(0) bootstraps. Under appropriate conditions, TD(0)
algorithm converges to the true value functigh.

RL algorithms can also compute the optimal value functidme Q-learning algorithm

[106] estimates the action-value function using the foitaywpdate rule:
Q(Sa CL) A Q<S7 a) +o|r+ 8 m?&X Q(Slv CL/) - Q(S7 CL)
a'e s/

upon a taking actiom, transitioning from state to s/, and receiving reward. The Q-

learning algorithm converges ©* under appropriate conditions.

2.3 Linear Value Function Approximation
An exact representation of the value function (action-gdlunction) stores one value

for every state (state-action pair). This representatgmmipractical for problems with
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large, discrete state spaces or continuous state spacestefligent agent must be able to
use its experience to generalize to states it has never €sameralization can be accom-
plished using function approximation. Function approXiorahas been used extensively
in reinforcement learning dating back to Arthur Samuel'mméaus checkers player [87]
which used a polynomial approximator to represent the vafisecheckers position.

A simple yet very useful architecture for approximatingdtions is to use near com-
bination of basis functions.For example, in the context of value function approximation

a linear approximation has the form

K

Vissw) =Y ¢(s)uy = ¢(s)"w
j=1

whereg(s) is a lengthK state feature vector andis a parameter vector of lengti. The
features of a state allow for generalization. For examplies, common for states that are
similar to have similar feature vectors. Usually the number of festik’ < |S| to ensure
the representation is compact. The parametease adjusted during the course of learning
to fit the value function using some error metric, such as reeprared error (MSE). In
matrix notation, the approximate value function is writtén= (61, P2y ..., O] w = Pw
where® € RI°*X is a basis function matrix.

There are other techniques for approximating functionagisionlinear architectures.
One example is a neural network which maps inputs to outgitgyunonlinear functions,
such as the sigmoid or hyperbolic tangent functions. Theaaihges of the linear archi-
tecture are simplicity in terms of updating the weightgwhich also facilitates theoretical
analysis) and, when using MSE, there is only one setting thfat achieves the global min-
imum MSE (barring degenerate cases). This dissertatiamstgexclusively on the linear

function approximation architecture.

Throughout this dissertation, we use the wobdsis functionfeature andrepresentatiorinterchange-
ably.
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2.4 Basis Functions

The linear function approximation architecture maps stétem the MDP to feature
vectors¢(s) € RE. Each of theK components represents a feature or basis function.
Given the basis functions, reinforcement learning algpong change the weightsin order
to learn an approximate value functibh= ®w. The feature® dictate what type of value
functions an agent can represent. The choice sfrongly influences the agent’s ability to
compute a useful policy.

The majority of successful, large-scale RL application®iving function approxima-
tion required humans to design features. Manually constrgi¢eatures is often a tedious
trial-and-error process. Moreover, many hand-enginefatiires are tied to a specific do-
main and are therefore not useful for solving other problefs agent must generate its
own representations for it to be truly autonomous. Thereldees some recent research
on algorithms for automatically generating features. kst of this section, we discuss

features used in RL that are manually devised and thoserthatl@omatically generated.

2.4.1 Hand-coded Basis Functions

e Domain specific features

There are many examples in the literature of researchefSngrdnand-engineered
features that are domain specific. These features are ysedéicted by the de-
signer’s intuition, an expert’s knowledge of the domain,sonple trial-and-error.

Three examples are:

1. Tesauro’s backgammon player, TD-Gammon [102]. Afteri@thg moder-
ate performance using just a raw state encoding, severartefgatures (e.g.
strength of a blockade, probability of pieces being hit)evadded to the state
representation. These extra features boosted performamteltimately re-

sulted in a backgammon player that achieved world class play
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2. Crites and Barto’s elevator dispatcher [23]. Forty-sefeatures were created
for this domain that dealt with the status of the buttons ia éhevator, the
locations of the elevators relative to each other and toimgpassengers, et

cetera.

3. Bertsekas and Tsitsiklis’ Tetris player [12]. Twentyetfeatures were designed
including information about the height of columns, the eliéince in adjacent
column heights, and the number of holes. These featurekedsao mediocre
performance using a temporal difference learning learalggrithm [12]; how-
ever, the same 22 features were recently used in conjunefitnthe cross-
entropy method (which is a type of Monte Carlo algorithm) impng perfor-

mance by two orders of magnitude [100].

These examples are obviously domain specific and thus céenased for general

MDPs.

Polynomial functions

In the context of Markov decision processes, polynomiatfiom approximators take
the formg(s) = [1,s,s%,... ,s%]T where K < |S|. Polynomials areylobal basis

functions. Although these functions are computationatype to generate, they do
not efficiently represent smooth functions. These fundtican also be numerically

ill-conditioned depending on the valuessand K.

Tile coding

Tile coding is a type of local function approximator overtitaons of the state space.
A tiling is a partition of the state space. Each tiling contamany tiles (features)
with the property that only one tile (within a tiling) is ae#i for any given state.
Since tiles are either active or inactive, the features a@dan-valued. The total
number of active features is equal to the number of tilings. é&xample, consider a

two dimensional state spa¢e, y) covering the square regidfy, 1J*. A tiling could
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cover the regiorf0, 1]> and contain tiles with a rectangular shape (e.g. a tile could

have 0.1 length in the direction and 0.2 length in thedirection).

There are several considerations that can make tile codesggd intensive: how
many tilings to use, what are the shape of the tiles withifiregtiand how to choose
the dimensions for the tiling in high dimensional problenfnother challenge is

efficiently representing these functions, which is usudbfiye using hashing.

Radial basis functions

Radial basis functions (RBFs) are real-valued featuresevtiee value depends on
the distance to the RBF center. The feature value becongar las the distance to
the center decreases. RBFs have the nice property that #mgysmoothly and are
differentiable. The simplest type of RBF takes the faffr) = exp(—%) where

c is the center of the RBF ant is its variance. The variance dictates the support of
the RBF (i.e. how far from the centerbefore¢(s) becomes negligible). There are
also more complicated forms for RBFs where the distanceionedn differ from the

Euclidean metric and/or the support can be determined byariemce matrix rather

than a scalar variance’.

The RBF parameters are the number of basis functions, tlaidocof the centers,
the distance function, and the covariance matrix. Dependmthe MDP, there can
be significant engineering of the parameters to ensure this banctions allow for
appropriate generalization. That said, there has beemtr@aak on automatically
adapting RBF parameters using the cross-entropy methgdife information on

RBFs and tile coding can be found in Sutton and Barto’s teoklj68].

Fourier basis functions

Konidaris and Osentoski [53] evaluated the use of Fourisrsblanctions for rein-
forcement learning tasks with continuous state spacesFobger basis consists of

sines and cosines defined over the range of the state spaaielesar For example, in
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one dimension, @™ order Fourier basis function takes the fori{s) = cos(is)

fori = 0,..., K. This formulation is easily extended to multiple dimensiofror
example, if the state space is three dimensional, th¢n) = cos(wc!s) where

ci = [ci1, Cig, cig] With ¢; 1, ¢;0, @nde; 3 € 0,1, ... , K|. There aré K + 1) possible
coefficient vectorg; when the state space is three dimensional. Since the nurhber o
potential basis functions grows exponentially with theestgpace dimensionality, a

method for selecting appropriate functions from this exgral set is required.

2.4.2 Automatically Learned Basis Functions
There have been several attempts to automatically lears toestions for MDPs. Here
we briefly review the relevant literature with an emphasistio®m main ideas underlying

these methods.

e Successor represe ntations

Dayan [27] proposeduccessor representatiotssapproximate value functions. The
main idea behind this work, as well as the majority of functapproximators dis-

cussed in this section, is that representations shoul@cefipe MDP dynamics. The
rationale is that, since a state is linked to its successtesty the Bellman equa-
tion, these states are similar and should allow for gereatadin. The successor rep-
resentation essentially predicts future state occupagdsebping track of observed

transitions. This technique was designed for MDPs withrdigcstate spaces.

e Temporal neighborhoods

Kretchmar and Anderson [55] proposed creating basis fanstbased on temporal
neighborhoods. This work can be seen as an extension ofssaraepresentations
to problems with continuous state. To do so, they use tilowgs the state space and
then monitor the transitions between tiles. This can work areproblems with low

state space dimensionality, but encounters difficulty adieg to higher dimensions.
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e Spatial neighborhoods

Drummond [31] considered the problem of transfer learnnmy should information
about several tasks in one domain be used to acceleraténiganna new task. He
used techniques from computer vision to detect nonlinearih the state space. The
nonlinearities allow for partitioning the state spaceutsg in a set of features that

can be reused for solving new tasks.

e Multiple value function decomposition

In the same vein as Drummond’s work, Foster and Dayan [30] stisdied how to
efficiently reuse information when solving multiple tasksa single domain. The
goal of their work was to find common structure amongst a setbfe functions.
They used a probabilistic generative model of a value famctising a mixture of

Gaussians. The learned models allowed for decomposititimecftate space.

e Manifold representations

Smart proposed using manifolds to model the state spacpp@1]. His rationale
followed the same logic of Dayan [27] and Kretchmar and Aader{55] that func-
tion approximation in MDPs must respect this topology. $pely, the state space
is partitioned into charts, where each chart has an embgddirction that provides
a basis for representing a value function. There are mangtiquns left unaddressed
in this work: how to allocate charts, the size of charts, tpetof embedding func-
tions to use, et cetera. However, the idea of using manifalidsvs for a rigorous

framework that previous approaches lacked.

e Bellman error basis functions

The Bellman error, which is the difference between the aurestimate of the value
function and the “backed up” value function, can be used toraatically construct

basis functions. This is useful because the Bellman errortpan the direction of
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the target value function. Recently, Keller et al. [50] pyeed iteratively adding
basis functions that are tuned to estimates of the Bellmeor.eSpecifically, the
Bellman error was mapped to a low dimensional space (witlcdnstraint that states
with similar Bellman errors should be mapped close togétlzerd then states were
aggregated in the low dimensional space to form new basigiturs. Their work
builds on ideas proposed by Bertsekas and @Gastd11], who were interested in
accelerating the value iteration algorithm by exploitimformation in the Bellman

error.

Parr et al. [81] considered Bellman error basis functioredthtically without the
complications of approximations and sampling. They proved iteratively adding
basis functions tuned to the exact Bellman error improvesthund on the distance
from the optimal value function provided the MDP model pagaens are known. If
the model parameters are unknown, they described necessaajtions where the

basis functions derived from samples would still improve biound.

Petrik [83] used the MDP parametefs and R™ to generate basis functions using
Krylov methods. This technique generates bases by muhigplthe reward func-
tion by powers of the transition matri¥R™, P*R™, (P™)?R™, (P™)3R™,...]. This
method results in basis functions that span the same subggate Bellman error

basis functions considered by Parr et al. [81].

Graph-based basis functions

The following three methods generate basis functions freaplys. Each method
models the state space topology using a graph. An undirgcsgthG = (V, £, W)
is formed wheré/ is the set of vertices (representing MDP statds)s the set of
edges that capture a local neighborhood relationship, J&ni a matrix of edge
weights. Please note that we udéto represent a graph’s weight matrix andto

represent weights in the value function approximafioa: dw.
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We provide a brief sketch here of proto-value functionsfudibn wavelets, and
geodesic Gaussian kernels. A more detailed descriptiomediitst two techniques is

provided in Chapter 3.

1. Proto-value functions

In a similar fashion to the manifold representation [91]adsed above, Ma-
hadevan [64] proposed modeling the state space topology agiraph (instead
of charts). Basis functions are automatically generateddmputing eigen-
functions of a Laplace operator on the graph. For exampkectimbinatorial

graph Laplacian [20] is defined ds= D — W whereD is a diagonal matrix of
the row sums of weight matrix” (i.e. D(i,i) = >, W (4, j)). Spectral anal-
ysis of the Laplacian operator finds the matrix’s eigenvecsmd eigenvalues:
L¢; = )\;¢;. These eigenvectors, or proto-value functions (PVFs)eltgwbal

support on the graph and are ordered by their smoothness isatine spirit as

the smooth trigonometric functions in Fourier analysis.

2. Diffusion wavelets

Diffusion wavelets [22, 63] are a generalization of wavwelg5] to graphs.
They are multiscale basis functions derived from a graphaipe such as the
stochastic matriXD 1. The multiple scales come from representing different
powers of the diffusion operator; smaller powers producefions with more
localized support on the graph while larger powers produoetions with more
global support.

A well known issue with global basis functions like PVFs iattkhey can have
difficulty representing functions with discontinuitiesddar different degrees
of smoothness. The multiscale nature of diffusion wavedditavs for a more

efficient representation of functions with discontinustie
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3. Geodesic Gaussian kernels

Sugiyama et al. [94] also used a graph defined over the MDP spaice. They
proposed placing radial basis functions on the graph. TR&es were termed
geodesic Gaussian kernels (GGKSs). The distance betweeeitier of a GGK
and another vertex in the graph is computed using Dijkssh@rtest path al-
gorithm. It is important to point out that the shortest patbsputed using Di-
jkstra’s algorithm can produce unexpected results if tlesist shortcutedges,
whereas just using local distances (as used by PVFs andidiffwavelets)

tends to be more robust to shortcut edges.

2.5 Least-Squares Learning Algorithms

Reinforcement learning algorithms can differ in how samgtem an environment are
used to learn a value function. Online RL algorithms use eachple to directly update
an estimated value function and then discard the sampleoritrast, least-squares RL al-
gorithms [17, 16, 56] store statistics that capture infaroraabout the MDP. Each domain
sample is used to update the statistics. When the value &unoti action-value function
is needed, the statistics are used to generate an estimaasi-squares algorithms make
more efficient use of MDP samples and eliminate the need ® thum step-size parameter
a (o was described in the TD(0) and Q-learning update equatior&ection 2.2). The
experiments in this dissertation are conducted using-Egstres algorithms because of
these benefits.

There are two common least-squares algorithms for RL: thedfpoint (FP) method
[17, 16] and the Bellman residual (BR) minimization methddhese algorithms differ in
the objective function that the least-squares method nizgisn The objective functions for
both BR and FP involve functions of the Bellman resid(@i (V') — V). We explain these

algorithms and their differences in further detail in Chapte
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CHAPTER 3
GRAPH-BASED BASIS FUNCTIONS

In Section 2.4, we briefly introduced techniques that gdeebasis functions from
graphs which represent a MDP state space. Here we providéadededescription of

two of these basis construction algorithms: proto-valuefions and diffusion wavelets.

3.1 From MDPs to Graphs

The first step to generating graph-based basis functiorsfain a graph from MDP
samples. We focus here on weighted, undirectgdphsG = (V, E, W) whereV is a set of
vertices,F is a set of edges, aidl is a|V'| x|V| weight matrix withiV (u, v) > 0if (u,v) €
E.If (u,v) ¢ E,thenWW(u,v) = 0. The main idea is that the graph represents the topology
of the state space. The vertices in the graph correspondatessin the MDP. Edges
are inserted between a pair of vertices depending on a useifiggl distance function
(although the distance function itself can be learned froenMIDP dynamics). A valuable
aspect of the graph-based framework is that it works equaéil in both discrete and
continuous state spaces. For example, with a discrete sgatee, an edge can be placed
between two vertices/states if one state can transitiohdmther. More general distance
functions can also be used with discrete states. For canisatate spaces, there are two

common approaches to building a graph from a set of sampled idiates. Given an

it is also possible to definedirectedgraphs from MDPs. We discuss the use of directed graphs at the
end of Section 3.2.

20Osentoski [79, 78] has explored graphs representing the StBfe-action space topology. Basis func-
tions from such graphs can be directly used to approximateragalue functions.
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appropriate distance function comparing two states (euglitean distance), each sampled
state can be connected to ksearest neighboring states or it can be connected to every
sampled state within a specified minimum distance. Edgem®igan either be set to a
default value (e.g. 1) or can be set based on the distanc&cmiédr a Euclidean distance
metricd(s;, s;) = ||s; — s;]|?, it is common to set the weight a8 (i, j) = exp(@)

for someo > 0.

As a running example throughout this chapter, we use a gridPNith 446 discrete
states and the mountain car task which is continuous and itwergsional. All of the do-
mains used in this dissertation are described in AppendixTAe graph for the discrete
MDP simply contains edges between states adjacent via athwe ddur canonical actions.
We use ak nearest neighbor graph for the mountain car MDP based on ghtesi Eu-
clidean distance metric. Figure 3.1 shows the structuré@filiscrete MDP and the graph

used for the mountain car domain. For the mountain car pha,iack circles are the

graph’s vertices (sampled states) and the blue lines aredipes.
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Figure 3.1. The discrete grid MDP (left) and graph constructed from theuntain car
MDP (right) are running examples throughout Chapter 3.
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3.2 Graph Laplacian

We make the simplifying assumption that the graph= (V, £, W) formed from the
MDP samples is undirected, weighted, and connected. Theseoh restrictive assump-
tions. If the graph is disconnected, then each componenbeaonsidered individually.
Directed graphs can also be used which we describe at theféhts section. The com-
binatorial graph Laplacian [20] is defined &s= D — W where D is a diagonal matrix
of the row sums o#V" (i.e. D(i,i) = >_; W (i,7)). The graph Laplacian has proven ex-
tremely useful in machine learning. The structure of theadaticoded in the graph has
been exploited for nonlinear dimensionality reduction,[861, 5], clustering [76], and
semi-supervised learning [7]. The theoretical underpigraf the graph Laplacian is based
on its convergence to the Laplace-Beltrami operator ontigetlying manifold from which
the data samples (graph vertices) are drawn [41, 6].

The combinatorial Laplaciah is symmetric and positive semidefinite; therefaidhas
all real and non-negative eigenvalues. The Laplacian acis aperator for functions on the
graph. Given a functiorf € RV which has a value at each graph vertex, the multiplication
Lf outputs a new function. Thé& ivalue of the vectol. f, which we abbreviate ag.f);,

is equal tod . . W (i, 5)(f(i) — f(j)) wherej ~ i indicates an edge between vertices

g~

andj. Thus, the Laplacian acts as a difference operator. Thisafuliin determining how

smooth a function is according to the graph topology. Théchiet sum is defined as:

(L) = fTLE =) Wi, ) (f(i) = 1()*. (3.1)
inj
Notice the squared differencég(:) — f(j))? are weighted by the strength of the connec-
tion. If the Dirichlet sum is small, then we know the functigns relatively smooth on
the graph (i.e. neighboring vertices have similar valuethenfunctionf). We show in
Chapter 4 how the ability to measure the smoothness of a imctn be put to use as a

regularization tool.
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The normalized Laplacian [20] is defined As= D-:LD~:. The normalized Lapla-
cian, which is also a difference operator, accounts for t#grek of each vertex individually.

. . . o 1 . @ f0)
This can be seen by consideriogf); oY) > i Wiy 9) (\/D(i,i) \/D(M)). The

normalized Laplacian is a symmetric matrix. It is relatedhe (possibly nonsymmetric)

stochastic matri¥> = D~'1¥, which can be though of as a random walk matrix, by the
equationP = D‘%(I —E)D% 2 This ensures that andP have similar spectral properties.
If P has an eigenvalug with associated eigenvector then£ has an eigenvalug — \)
with associated eigenvect@r%.

Mahadevan defined the term proto-value functions [64, 6Bktthe eigenvectors of the
graph Laplacian. The eigendecomposition of the combiratbaplacian is writtenL¢; =
Xig; fori =1,... |V or, in matrix format,L® = ®A. The matrix® = [¢1, ¢s, ... , ¢pv]
contains (orthogonal) eigenvectors akds a diagonal matrix with\(z,7) = \;. Note that
all of the eigenvectors and eigenvalues are real-value@. mtrix® is a complete basis
in that it can be used to represent any function on the gramt.the numbering of the
eigenvectors and eigenvalues be in terms of increasingneadige. Given the properties
of the Laplacian, we know = X\ < Xy < A3 < ... < Ayj. Furthermore, is a
constant vector. The increasing order of eigenvalues leeals ordering of the eigenvectors
by “smoothness.” We can see this by considering the Diricblen of an eigenvector
oir ¢F Lo, = ¢l Ni¢; = ). To visualize the idea of smooth eigenvectors, Figure 3.2
shows the second through fourth eigenvectors of the cortdriahgraph Laplacian for
the discrete grid MDP and the mountain car task (the firstreigetor is omitted since it
is just a constant function). Mahadevan and Maggioni pregassing the smoothegf
eigenvectors as a basis for representing value functiotsetion-value functions [67]. If

value functions are smooth with respect to the graph topgokbgn this basis will be useful

3To clarify, we use the notatiof® to refer to a MDP transition functionP™ to refer to a probability
transition matrix associated with poliey; and? = D~'W to refer to a random walk matrix on a graph.
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for approximation. The construction of the basis functiovess one step in an overall

approximate policy iteration algorithm which we descriheSection 4.5.2.
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Figure 3.2. Second to fourth Laplacian eigenvectors for the discreiek IDP (top row)
and the mountain car MDP (bottom row).

Note that the graph Laplacian was defined using sampledssbhtine MDP. There-
fore, the Laplacian eigenvectors are featupes) defined over the MDP state space. It is
straightforward to use these features for approximatirigevéunctions:V (s) = ¢(s)”w.
For MDPs with discrete actions, the same set of basis fumetcan also be used to ap-
proximate the action-value functiaf(s, a) = ¢(s, ) w. The idea is to use the same set
of features for each action separately by padding the feataith zeros. For example,
consider a MDP with two actiong,; anda,. The approximate action-value function can

take the form:

If & hasK columns, then the feature vectofs, a) hasK-|A| values of which onlyK are

(potentially) nonzero.

25



To be complete, we point out two generalizations of the waded graph Laplacian.
The Laplacian is well-defined for directed graphs [21]. Gieeweight matrixil; and di-
agonal row sum matriXD, associated with a directed graph,= D;'W, is a stochastic
matrix. We denote the dominant left eigenvectoridfaisy (i.e. TP = T), which is
also known as the Perron vector. If the directed graph isigtyoconnected and aperiodic
(properties which can be guaranteed using a technique kaewhe teleporting random
walk [80]), then the Perron-Frobenius theorem ensuresunique and contains only posi-
tive real values. The vectar is the invariant distribution upon convergence of the rando

walk. The combinatorial and normalized Laplacians are eefirespectively as:

v Ty
Lmy YLD

\1,1/27311171/2 + \ijl/QIPT\IJl/Q
Ed - I - 9 )

where W is a diagonal matrix withl(i,7) = (). In previous work [44], we compared
using directed and undirected Laplacian eigenvectors sis hanctions for RL tasks. Both
directed Laplacians, though starting from a nonsymmetatrixP, are in fact symmetric
matrices. Essentially, the matrices are made symmetrib®yerron vector. There is also
a notion of nonsymmetric Laplacian matrices [1]. These aagriges with (1) non-positive
off-diagonal elements, and (2) zero row sums. There is ataennection between these
matrices and MDPs [65]. Lastly, we note there is a connedt@ween the graph Laplacian
and reproducing kernels [92, 65]. Specifically, the psemmise of the Laplacian is a
reproducing kernel. The field of spectral graph theory sisidither properties associated

with the Laplacian and its spectra [20].

3.3 Diffusion Wavelets
Diffusion wavelets [22, 63] are a generalization of clagbwavelets [25] to graphs and

manifolds. They are a representation of powers of a difftupimcess on a graph. At small
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powers, the diffusion process has local effects while gieapowers the diffusion has more
global effects. By representing multiple powers of a diifursprocess, diffusion wavelets
allow for a multiscale analysis of graphs.

An intuitive way to understand diffusion wavelets is to carg and contrast them
with graph Laplacian eigenvectors. The similarity of Lajien eigenvectors and diffusion
wavelets is that they are both basis functions generated &@raph. Both sets of basis
functions are adapted to the topology of the graph (MDP stptee) and can be used
as a basis for approximating functions on the graph. Laafaeigenvectors have global
support on the graph. In other words, each eigenvector takes value at every vertex
in the graph. Diffusion wavelets, on the other hand, are isudte basis functions. By
multiscale, we mean they have varying degrees of supporhergtaph. The functions
range from having very localized support (i.e. only a fewtieers on the graph take on a
value) all the way up to global support. There gréLaplacian eigenvectors which provide
a complete basis for functions on the graph. There are mane|il| diffusion wavelet
basis functions which means they provide an overcompledesbdhe extra flexibility of
an overcomplete, multiscale basis means diffusion wavebs represent certain functions
more efficiently than Laplacian eigenvectors. It is well wmofrom Fourier analysis that
global functions like the Laplacian eigenvectors can haffeedlty representing functions
with discontinuities and/or varying degrees of smoothnessfferent regions. This issue
in fact prompted the construction of wavelets.

Before describing the diffusion wavelet construction, wesent a few examples for the
discrete grid MDP and the mountain car MDP. Figure 3.3 shdweet diffusion wavelet
scaling functions for the two domains. The three functiardbth domains consist of one
function with local support, one function with an intermai level of support, and one
function with global support. Notice in particular that thenctions with global support

look very similar to the eigenvectors shown in Figure 3.2.
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Figure 3.3. Functions (from local to global) in the diffusion waveletérfor the discrete
grid MDP (top row) and the mountain car MDP (bottom row).

Figure 3.4 gives a high level description of the diffusionvelat algorithm. The QR
decomposition of a matrix is needed in the constructioneG& matrixA4, its QR decom-

position is writtenA = QR where() is an orthogonal matrix anf is an upper triangular

matrix.

STEP 1 STEP 2 STEP 3

Compute the QR decomposition (denoted Q’, R’) of
the matrix (I—Q Q). This matrix captures the space
orthogonal to Q.

Compute T2 Note this is not done simply by

Decompose the diffusion operator T using QR decomposition.
multiplying T by itself. Rather, T2 is computed on the

The orthogonal columns of Q are the scaling functions. They basis Q.
provide a basis (up to precision €) for the matrix T. The upper

triangular matrix R is the representation of T on the basis Q. The columns of Q’ are the wavelet functions.

Since Q may have fewer columns than T, T2 may be a
smaller (square) matrix.

T |=|Q R T2|=| R RT -aQ’ =E

T2 = ... repeatthe same process as above for the 2" level of the diffusion wavelet tree, etc.

Figure 3.4. High level description of the diffusion wavelet tree constion. The square
and rectangular boxes represent matrices. The shadingtotesR and R’ indicate the

location of nonzero values.
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The diffusion wavelet construction begins with the defontof the diffusion operator
asT = (I — L) with powersT™, ¢t > 0. To make the diffusion aspect more obvious, this can
be rewritten]’ = D=%W D% = D%PD=%5 whereP = D~'W is a stochastic matrix
representing a random walk (diffusion process) on the grdgbte thatP is conjugate
along with its powers td’; thus, studyingl” andP are equivalent in terms of spectral
properties. Itis computationally easier to deal witkince it is symmetric. Small powers of
T* correspond to short-term behavior in the diffusion proaess large powers correspond
to long-term behavior. Diffusion wavelets are naturallyltisgale basis functions because
they account for increasing powersof (in particular, the dyadic powers= 27). We give
a brief sketch of the diffusion wavelet algorithm; a morerthayh description can be found
in the original paper [22]. Aside from matrik, the other inputs to the algorithm asethe
maximum number of levels to computga precision parameter, aSpQR(A, €), a sparse
QR algorithm that outputs (sparse) matrié¢gand i such thatd =, QR (i.e. the columns
of @ e-span the columns of). The outputs of the algorithm are a set of scaling functions
{¢;} and wavelet functiong);} at different levels/scales. As the levebets larger, the
number of scaling and wavelet functions gets smaller bextnesdiffusion process spreads
out and becomes more compressible. Algorithm 1 shows treslsletf the construction
and uses the following notatioﬂ]ig is a matrix representing’ with respect to the basis
¢, In the domain and, in the range§, x n, matrix) and|¢,, is a set of functions,
represented on the basis (n, x n, matrix). Typically the initial basis for the algorithm is
¢o I1s assumed to be the delta functions, but this is not strielyessary.

The diffusion wavelet construction proceeds by computhrgdparse QR decomposi-
tion (up to a precision of) of [T]jg. This provides (1) a new basig; |4, which is defined
in the range of the old basis, and (2) a representation of the diffusion operﬂdgf de-
fined in the range of the new basis. The second power of the diffusion operator (defined
completely in the new basi) is computed a§l?|5! = [T])5°([T]5°)* where the symbol

b1
indicates the conjugate transpose. Notice that the sizetbT™? may be smaller than the
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Algorithm 1 : Di ffusi on Wavel et Tree

Input: [T]ig, diffusion operator in the basis
¢o, Iinitial basis forT" (usually unit basis vectors)
J, maximum number of levels in tree
SpQR, a sparse QR algorithm with two inputs: a matrix and parameter
e > 0, determines precision level of QR decomposition

Output: {¢;}7_,, scaling functions by level

{1; 3]:‘01 wavelet functions by level

for j=0to(J—1)do _
[0501)e,. [T — SPQR(T . €)
[T2J+l]$ji - [TQJ]i;H([TzJ]z;H)*
[ils; — SPQR(L 1,y — [j11]g; ([Pi41]8,)"5€)
end for

size ofT". The last step is to compute the wavelet functipfs,,. This is accomplished by
using the sparse QR algorithm on the matix— [¢1],,[¢1]7, ). Notice that the span of the
scaling functionsiy|,, is the orthogonal complement of the sparjgaf] into [¢,]. In other
words, the wavelet functions at level= 0 capture the detail lost in going from basis|
to the new basi§p, | (i.e. the wavelet functions act as a high-pass filter). l{$e possible
to further decompose the wavelet functions into wavelekeesc[18]. This procedure then
proceeds iteratively until the maximum levélis reached or until the number of scaling
functions goes beneath a minimum threshold. Note that thkngcfunctions(¢;|,, , pro-
vide a mapping from leve] — 1 to level j. In order to view the functions in the original
basis¢, (which is usually assumed to be the unit basis), the mapginmiolled to give
(03100 = (36,1 [D-1]0,—2 - - [D1] 60 [D0] -

Maggioni and Mahadevan [63] proposed using diffusion wetgefor value function
approximation. They used a heuristic for selecting a seunttions from the diffusion
wavelet tree. Given a desired number of basis functinghey selected the scaling func-
tions at levelJ, then the wavelet functions at levél- 1, then the wavelet functions at level
J — 2, etc. until K functions are selected. This heuristic generates an aotieddoasis
consisting of the most global functions in the diffusion g@es. This is very similar in

spirit to selecting thel “smoothest” Laplacian eigenvectors as a basis. Both theszp
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dures are independent of the value function being estimdteid can be an inefficient use
of the diffusion wavelet and Laplacian eigenvector dictines. In Chapter 6, we explore
algorithms for selecting basis functions from both dicddas based on a specific policy’s

value function.
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CHAPTER 4

HYBRID LEAST-SQUARES METHODS AND GRAPH-BASED
REGULARIZATION

In this chapter, we develop hybrid least-squares algostfonapproximate policy eval-
uation [48]. Least-squares methods are important bechegeate sample efficient and do
not require tuning a step-size parameter. The hybrid alyms are a parametric com-
bination of two common least-squares RL methods. When ust#dmpolicy iteration,
we show the use of hybrid algorithms can, in some instaneasl|, fo better policies. We
also describe how the graph Laplacian can be used to progegldarization and prevent

overfitting from noisy samples.

4.1 Previous Work

Least-squares reinforcement learning algorithms [1756pstore statistics from MDP
samples. The Bellman residual (BR) minimization methodtaedixed point (FP) method
both store a matrixi € RX*X and a vectob € R whereK is the number of basis func-
tions. Informally, the matrixA captures information about state transitions and the vecto
b stores information about the reward function. When the axprate value function is
needed, the least-squares probletas= b is solved to givel/’ = dw.

Below we describe the BR and FP methods as well as two otheoxipmate policy

evaluation techniqueé's.

1The first three techniques were similarly described by MUiid$
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4.1.1 Optimal Approximate Method

If the target value functio”’™ were known, then it is easy to find an approximation
V simply by projectingl’™ onto the space spanned by the basis functions. This directly
minimizes the loss functio,»(w) = ||V — V7||,, where the errors for each state are
weighted according to distribution Thus, the solution i¥ = ®w = IL,V™ wherell,, =
®(¢* D,®)~*®* D, is a projection matrix and,, is a diagonal matrixD,(i,7) = p(i). The
difficulty of this method is in computing/™, which can in principle be done using Monte

Carlo methods.

4.1.2 Fixed Point Method

This technique, originally proposed by Bradtke and Bartd |ind later generalized by
Boyan [16], computes a solution by forcifg to be a fixed point of the Bellman opera-
tor. Since the Bellman operator can back up values out offiheesspanned by the basis
functions, it must be followed by a projection onto the cotugpace ofp (written [®]) to

ensurel is a fixed point. Thus, the solution is to minimize the lossction L., (w):

min Lyp(w) = min ||T1,77(V) — VH%
= min |[IL,(T™(V) = V)II;

=min [[IL,(R" +~vP"dw — dw)|?. (4.1)

In the third line above, note that = pr/. The least-squares solution to this problem is to

find w such thatd . ,w = b, where:

App = "D, (I —yP™)®

brp = ®"D,R".

We refer to this technique as the FP solution to be consistghtprevious work [56], but

it has also been referred to as least-squares temporatatitfe (LSTD) learning [17, 16]
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and as the temporal difference method [88, 74]. Unbiasechatds of the matrixd ., and

vectorb,, can be obtained from a single sampier(s),r’, s') by the following updates:

4.1.3 Bellman Residual Minimization
This technique computes a solution by minimizing the magiatof the Bellman resid-
ual where the errors for each state are weighted accordirdistabution p. Thus, the

solution is to minimize the loss functiafy . (w):

min Lyp(w) =min ||T7(V) — V||i

= min [|R" +~P 0w — duw||?. (4.2)
The least-squares solution is to minimize,, ,w — b,,||% where:

App =0"(I —yP")"'D,(I —yP™)®

byr = ®"(I —yP")"D,R".

This technique, proposed by Schweitzer and Seidmann [88]also been referred to as the
residual-gradient method [3, 88], the quadratic residualhod [74], and as the Bellman
residual method [56, 2]. To achieve anbiasedestimate ofA,; andb;, two samples
from each state are required (see Chapter 8.5 [98]). Thebliésof getting two samples
depends on the application. Given double samples(s), ', s’) and(s, w(s),r",s"), the

updates are



If only a single sample is available, then replacifig”) with ¢(s’) in the equation above for
A, results in a biased estimate 4f.,.. This occurs because the tend” (P™)"D,P™®

in Az, cannot be estimated from just a single transition. Two commneuristics for deal-
ing with this issue are to hypothesize a second sample usimggeest neighbor of and

to not updated , , until a states has been visited at least twice. Recently, Antos et al. [2]
proposed a technique for avoiding double samples by addiraailiary function which

itself must be optimized.

4.1.4 Residual Algorithms

The BR solution minimizes the Bellman residual (Equatio®) 4nd the FP solution
minimizes the projected Bellman residual (Equation 4.13ir@®[3] proposedesidual al-
gorithmsas a way to combine these techniques. The term “residuaditiéthgn was used
to emphasize that it was different from a “residual-gratfietgorithm (his terminology
for BR). To avoid any confusion, we refer to residual aldamt ashybrid algorithms
This name also emphasizes the fact that it is a combinati®Ro&nd FP. Baird’s original
version was an incremental algorithm. An update to the weigltor was computed by
linearly combining the updates due to the BR and&R;;, = {Awgz+(1—&)Awp» Where
¢ € [0,1]. In the next section, we introduce two ways to formulate thlerid technique

using least-squares methods.

4.2 Hybrid Least-Squares Algorithms

The hybrid approach accounts for both the Bellman residwhidh is minimized by
the BR in Equation 4.2dndthe projection of the Bellman residual oritk] (which is mini-
mized by the FP in Equation 4.1). In this section, we examireevways of combining these
objectives to derive hybrid least-squares algorithmshkd H,. The difference between the

H, and H derivations is when the fixed point constraint (ilé.= HT”(V)) is enforced

2We thank Marek Petrik for help with the Halgorithm.
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Both methods when used with an exact representation prahectarget value function
V7. When using an approximate representation, they produberelit results and have
different storage and computational requirements. Theoritgjof this section, Section

4.3, and the experiments in Section 4.6 appeared in ourquswvork [48].

4.2.1 Motivation

There are three factors that motivate hybrid algorithmsstFas pointed out by Baird
[3], hybrid algorithms are a general class of algorithmd thelude the BR and FP algo-
rithms as special cases at opposite ends of a spectrum. rdirstanding this spectrum
is worthwhile in its own right. Also, as least-squares taghes have been applied to the
BR and FP algorithms [17, 16, 56] to make them more data aifitien their incremental
counterparts, it makes sense to design a least-squarésnvefdybrid algorithms. These
least-squares algorithms have an intuitive geometricgeets/e. The BR and FP methods
minimize the length of different sides of a triangle defingdtie Bellman equation [56].
Hybrid algorithms naturally complete this perspective.

The second factor motivating hybrid least-squares algoritis the empirical behavior
of approximate policy iteration. The FP algorithm tendstoduce better policies than the
BR algorithm [56]. However, this increase in performancmes at the expense of stability
[3, 74]. Li[61] analyzed incremental versions of the FP atiBethods under a particular
learning model and concluded that the BR method can achreaéles residuals while the
FP method can make more accurate predictions. It is alschwating that the Bellman
residual is used to provide theoretical performance bo{h@3, 74]. In other words, hav-
ing a small magnitude of the Bellman residual (which the BRhoe focuses on) translates
into guarantees on the quality of the approximate valuetfans. It is more difficult to pro-
vide such guarantees using the FP method [74]. Table 4slsiishe properties associated

with the BR and FP methods.
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BR FP

e Minimizes the norm of the Bellman resid-e Minimizes the norm of the projected Bellman
ual which is directly related to performanceresidual

bounds
e Least-squares solution Hasedwhen only| e Least-squares solution ignbiased when
single-samples from MDP are available single-samples from MDP are available

e Performs backward-bootstrapping (i.e. the Does not perform backward-bootstrapping
value of a state is influenced by its predecges-

sors as well as its successors)
e Empirically performs worse than FP where When used in policy iteration, often finds
used in policy iteration much better policies than BR provided policy
iteration converges

Table 4.1. Properties and behavior of two common RL least-squaresidigus: the Bell-
man residual (BR) minimization method and the fixed point)(fthod.

Hybrid algorithms have the potential to achieve both sigbdnd improved perfor-
mance. To illustrate this on a concrete example, considesithstate MDP shown in Fig-
ure 4.1 with discount factoy = 0.99. The optimal policy is to move right in the first three
states and left in the last three state$ € rrrrrz). Let the initial policy berg = rrrrrr
and assume there are three basis functions correspondihg fwst three eigenvectors of
the graph Laplacian [64]. These basis functions are synicretid expressive enough to
represent an approximate value function whose correspgngitieedy policy ist*. The
basis functions are shown in Figure 4.2. The distribugi@an be set to either the invariant
distribution of P™ or the uniform distribution (which is appropriate when erhing pol-
icy iteration [51]); the results hold for both distributisnThe approximate value functions
v and Vo were computed according to the least-squares solutionsibed in Section
4.1. Then the model was used to determine a paficyhat is greedy with respect .
The BR method produces a poliay = rzrrrr while the FP method produces a policy
71 = RRRRRR. Thus, after one round of policy iteration, the BR methodverges on the
initial policy and the FP method completely flips the polidyloreover, since the model
and basis functions are symmetric, the FP method oscilfateser between...rrr and

RRRRRR. This example demonstrates the stability of the BR methatithe FP method’s
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potential instability. We will revisit this example latev show that hybrid least-squares

algorithms find solutions between these two extremes.

Action=R Action=L
0.9 0.8 0.6 0.6 0.8 0.9 0.9 0.8 0.6 0.6 0.8 0.9
0.1 0.2 0.4 0.4 0.2 0.1 0.1 0.2 0.4 0.4 0.2 0.1

Figure 4.1. Reward and transition functions for a six state MDP with tvesgible actions.
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Figure 4.2. First three Laplacian eigenvectors associated with the MCHgure 4.1.

The third motivating factor is the bias associated wit, when only a single sample
is available from each state. Denote the sampled Bellmaataddr a fixed policyr as
7. Note this is a random variable which depends on the samjiles.expected value is
E[T] = T7™. Antos et al. [2] showed that the expected value of the estichBellman
residual when using single samples is equal to the true Bellrasidual plus the variance

of the sampled Bellman update. This takes the form:
E|7(V) = VI = IT°(V) = VI + o Var [T(V)]

where the varianc®ar[-] is point-wise ang is a distribution vector. Practically, this means
that in minimizing the estimated Bellman residual, funetepproximation resources are

spent minimizing the variance @f(V'). Clearly, this is undesirable. On the other hadd,
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is unbiased when only a single sample is available from etath.sHybrid algorithms, by

naturally combining the BR and FP methods, offer controkalie impact of the bias.

4.2.2 Algorithm H;

We combine the BR minimization problem (Equation 4.2) anel B minimization
problem (Equation 4.1) with a parametgre [0,1]. The loss function isL, (w) =
ELgr(w)+(1—&)Lep(w). Simply combining these two problems results in a mininmiaat
over two separate norms; however, these can be combined sitgle norm as we prove

below:

min [§Lpp(w) + (1 = &) Lep(w)]

= min [¢|T7(V) ~ VI2 + (1 - OIIL@(7) - V)]

w

w

= min [€](1 =T, + TL)(T*(V) = V)| + (1 - I, (V) - V)]

= min [¢][(7 ~ )T (V) = V) + 1,7 (V) — V)]2]

w

— min [|\E(I = IL,)(T™(V) = V) + TL(T™(V) = V) |2

w

= min [|(VEI + (1 — VEOIL)(T™(V) - V)|

w

=min [(v&I + (1 — EIL)(R™ + 7P dw — dw)|[2. (4.3)

w

The chain of steps relies on the Pythagorean theorem (usedhrthe fourth and fifth lines)
and the fact tha/ — I1,] and[I1,] are orthogonal subspaces. A least-squares equation of

the form|| A, w — by, || can be derivetifrom the minimization problem in Equation 4.3:

Ay, =®T(I —yP")'D (1 + (1 = OIL,) (I — yP™)P

by, = T (I —yP™)'D, (&1 + (1 — E)IL,)R™.

3In expanding Equation 4.3 to form4,, and b,, we use the following simplification:

(VEI + (1= EI,)" D, (VEI + (1 = VOIL,) = D, (6 + (1 — £)IL,) .
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To estimated,,, andb,, from samples, it is necessary to store thf¢e< K matrices and

two lengthK vectors. This can be seen by rewriting the equations:

Ay, = EApn+ (1 = ALC Ay

le - gbBR + (1 - g)AEPO_leﬁ

whereC = ®"D,®. Thus,4,, can be estimated by incrementally updatifg,, A,
bor, ber, as well as the matrig' via C' = C + p(s)¢(s)p(s)” given samplés, 7(s), /. s').
If only a single sample is available from each state, tlflelp will be a biased estimate of
Ay, because of the bias ih, .. However, as mentioned in Section 4.2.1, hybrid algorithms
can reduce the impact of the bias. This is achieved simplyekyng ¢ to a value less than
one, thereby reducing the bias of the teE{fHT(V) ~VI2|.

Both the BR and FP least-squares problems only need to stmd{ox K matrix
and one lengthi vector, whereas the Hnethod requires three matrices and two vectors.
Moreover, the matrix’ must be inverted when computinty,, . These issues motivated our

second implementation.

4.2.3 Algorithm H,

The algorithm H was derived by linearly combining the loss functiohs;(w) and
Lyp(w). The loss functiorL ., (w), by virtue of using the projection matrii,, directly
enforces the fixed point constraint. An alternative opt®toi enforce the fixed point con-
straintafter finding a solution to the minimization problem. More spedifig, consider the

following combined loss function:

1—
Lug(u) = [$ Lin(w) + 15 S Lyp(on, )]
where Lp(u,w) = [|[T7(®u) — ®w|2. We first find the coefficient vectar that mini-

mizesL,,(w) for an arbitrary vector, and then enforce the fixed point constraint w.
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This technique was recently described by Kolter and Ng [B#ferentiating L, (w) with

respect tav, we obtain:

0L, (w)

1) _ ¢ [2(T™(dw) — dw)]" D, (T™(dw) — dw) +

(1—&) [ (T™(®u) — Pw)]" D, (T7™(Pu) — dw)
= £(P™® — ®)" D, (T™(dw) — dw) + (1 — &) (—)" D, (T™(du) — dw)

= £(® —yP"®)" D, (dw — yP ®w — R™) + (1 — )" D, (dw — yP*du — R™),

whereD,, is a diagonal matrix with elements To find an extrema, we 58% to 0 and

solve forw:

[5 (@ — 7 P"®)" D, (& — yP™®) + (1 — E)QDTDp@} w =
[g (@ —~P"®)" D, + (1 — g)@TDp] R + (1 - €)3TD,(vP ®)u.
By first adding and subtracting — £)®” D,(vP™®)w from the left-hand side of the equa-
tion and then simplifying both sides of the equation usji@ — vP™®) + (1 — )® =

(& —&{yPTd), we get:

(@ —&yP™®)" D, (& —yP"®) + (1= )" D, (yP"®)| w =

(® —&yP™®)" D,R™ + (1 — &)®"D,(yP"®)u.
Finally, we enforce the fixed point constraint= w to get the final result:
(@ — &yP™®) D, (® — yP"®)w = (& — E&yP™®)" D, R™.

This is a least-squares problem with the fain,w = b,, where:
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Ay, =T (I =&y PT)'D,(I —~P™)®
- fABR + (1 - f)AFP
by, = @7 (I — &yP™)"D,R”

= beR + (1 - f)bFP-

By definition, this technique returns the BR solution wijea 1 and the FP solution when
¢ = 0. Importantly, only onek” x K matrix and one lengtti vector are required. The

incremental update given double samplesr(s),r’, s') and(s, w(s), ", s”) has the form:

>

iy + p(5)(0(s) — Eve(s))(B(s) — vo(s"))"
i, + P(8)(@(5) — Evo(s)r'.
It is worthwhile noting that these updates are nearly idetio those ford,, and b,

except for the extra parameter

4.2.4 Difference Between Hand H, Methods

It is useful to elucidate the differences between the hyakpbrithms. The most im-
mediate difference is that the, Hinethod requires three matrices and two vectors whereas
the H, method only uses one matrix and one vector. We show later ipt€h& that when
a subset of basis functions frofinis used (i.e. using’ < K columns from®), the H
method still requires formingC x K matrices whereas the,-HHBR, and FP algorithms only
needk’ x k' storage. This can severely limit the use of algorithmad it will not scale up
to large numbers of basis functions.

To make the comparison of the hybrid methods more obviossleghst-squares equa-

tions can be rewritten as follows:
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App = Apr — YT (P)'D,P"® + v &' (P™)" D,
A, = App — (1= 7" (PT)' D,PT@ + (1 = §)7°@" (P7)" D,IL,P"®

Ay, = Apr — (1 = ¥*@T(P)"D,P™® + (1 — &)y @7 (P™)"D,®.

MatricesA,, andA,, are symmetric by definition whereals., andA,, (except when
¢ = 1) are not symmetric. Consider the extreme valueg.ofBoth A, and A,, are
clearly the same ad;, when¢ = 1. When¢ = 0, it is obvious thatA,,, and A, are
identical. It is less obvious that algorithm; froduces the same solutianto the least-
squares minimization as algorithms Hnd FP wherg = 0, but this can in fact be shown.
The interesting case occurs wher: ¢ < 1 because the hybrid solutions differ. Notice the
only difference between,, andA,, is in the final term shown above. The final term in
Ay, is v®T(P™)TD,®, while Ay, includes the same term times its transpose. This occurs
during the least-squares derivation4f, .

As shown in Equation 4.3, the;Hnethod can be written as a minimization over the
sum of two loss functions: the norm of the Bellman residual e norm of the projected
Bellman residual. Algorithm Kuses a slightly different way of enforcing the fixed point
loss function. The fixed point constraint is applied onlyeathe optimization problem is

solved.

4.2.5 Other Possible Algorithms

The two proposed hybrid algorithmsaplicitly constrain the Bellman residual by the
choice of the paramete&r. This constraint could be made explicit. The problem would
be to minimize the projection of the Bellman residual subjecan inequality constraint
on the Bellman residual (either on its magnitude or comptmese). This constrained

optimization would take the form:
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mui)n [Arpw—=brpl|,

or: + (Agrw —bgr) < A.

The parameters ¢ Rt andA € RX*+ must be set appropriately based on the minimal
value of the Bellman residual magnitude attained using tReri@thod. We point out the
possibility of explicitly controlling the Bellman residuto be thorough. However, since
this increases the computational complexity, we limit oigcdssion to the two simple

least-squares algorithms, ldnd H.

4.3 Analysis
4.3.1 Projection of the Target Function

The first three approximate policy evaluation techniquesevalown to be images of
the target functio/™ under different projection operations [88]. More specificaeach
methodX = {OPT, BR, F'P} produces an approximate value function with the following
form: V = dw = ®A by = (T Dx®)"'®T Dy V™. The matrixDx controls the

weighting of the projection and takes on the following val(@8]:

DOPT = Dp
Dgr = (I _VPﬂ)TDp(I _IYPW)

Dyp = D,(I —yP™).
The hybrid methods have a similar characterization:

= (I —yP")"'D, (1 4 (1 = OIL,) (I —PT)

Dy, = (I —&yP™)'D,(I —vP7).
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4.3.2 Geometry of the Bellman Equation

Each approximate policy evaluation algorithm uses therBat equation in different
ways to compute a value function. There is an intuitive ggomperspective to the algo-
rithms when using linear function approximation. We expandhe original presentation
of this perspective [56].

The Bellman equation with linear function approximatiors ltaree componentsy,
T™(V), andTI,77(V). These components geometrically form a triangle wherand
HPT”(V) reside in the space spanned®yvhile 7™(V') is, in general, outside this space.
This is illustrated in the leftmost triangle of Figure 4. hélthree-dimensional space in the
figure is the space of exact value functions while the twoathigional plane represents the
space of approximate value functiongdr). The angle between subspa®éand the vector
T™(V) — V is denoted). The BR and FP solutions minimize the length of differenesid
of the triangle. The second triangle in Figure 4.3 shows tResBlution, which minimizes
the length oiT’T(V) — V. The third (degenerative) triangle shows the FP solutidmicv
minimizes the length of 1,77 (V) — V. This length is0 which meand),, = 90°. The
fourth triangle shows the H solution, which minimizes a camaktion of the lengths of
the two sides. In general,, lies betweerd,, and90°. The hybrid solution allows for
controlling the shape of this triangle. We purposefullyvdrhe triangles in Figure 4.3
suggestively to not only accentuate their angles, but aleoiphasize that the length of the
Bellman residualr’f(f/) — V) can become large at times for the FP method. By including
the norm of the Bellman residual in their objective funcgphybrid algorithms can protect
against such large residual vectors. They also have thdiligxiof finding solutions that

are almost fixed points but have more desirable propertraal(sr Bellman residuals).

4.3.3 “Backward Bootstrapping”
In RL, bootstrapping refers to the process of updating estoh values based on sub-

sequent estimated values. (i.e. making the value of a stakdike its successor states). It
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v

Figure 4.3. The triangle on the left shows the general form of the Bellraguation. The
other three triangles correspond to the different appraxepolicy evaluation algorithms
where the bold lines indicate what is being optimized.

has been pointed out by Dayan [26] and again recently by Settal. [99] that algorithms
using thelL;(w) loss function perform “backward bootstrapping,” i.e.,ttedso make a
state look like its preceding states. To visualize thisaffee consider the simple example
shown in Figure 4.4. This is the sample problem used by Dag@jgnd Sutton et al. [99].
There are four states, an equal likelihood of starting itesfel or A2, and deterministic
transitions to terminal states ending with a reward of 1 driere are three basis functions:
one distinguishing state B, one distinguishing state C, aredrepresenting both states Al

and A2. Thus, states Al and A2 are indistinguishable bas¢deofeatures.

‘ A
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Figure 4.4. Small example from [26, 99] to illustrate backward bootgpiag. States Al
and A2 have the same feature representation.

Since state A1 (which should have value 1) and state A2 (wshduld have value 0)
are indistinguishable given the features and since theyragith equal likelihood, they are

assigned a value c%f by the FP, BR, and hybrid algorithms. The least-squaresiéhgas
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State|| V™ | Vip | Vi, (€ =3) | Vi, (€ =32) | Vi
AL || 1|1 : 3 3
A2 | 0| 1 : 3 3
B | 1] 1 I 5 1
c ol o 1 i i

Table 4.2.Value functions associated with the example in Fig. 4.4.

differ though in the values they assign to states B and C. Thad&?ithm avoids backward
bootstrapping and assigns the appropriate values of 1 t® Btand O to state C. The BR
algorithm assigns values gfand . This is because having a Bellman residuattgf at
all four states is cheaper according to loss functign (w) than having a Bellman residual
of +1 at just the two states Al and A2. The hybrid algorithms findiSohs between the
FP and BR extremes. The exact value function and approxivadte functions using the
various least-squares methods are shown in Table 4.2.

Sutton et al. [99] argue that backward bootstrapping is tavzéded. We are not aware
of any theoretical argument for avoiding Bellman residugbdathms. As mentioned in
Section 4.2.1, the argument for using the Bellman residosd Function has to do with
BR'’s stability [74] and that associated performance bowarésdescribed in terms of the

Bellman residual [109] (smaller Bellman residuals resulightening of the bounds).

4.4 Laplacian Regularization

This chapter describes four least-squares algorithmsjeraximate policy evaluation.
The algorithms compute approximate value functions thaimize a loss function associ-
ated with the Bellman residual. Here, we include an addatitoss function thategularizes
the solution. Regularization entails using an additionaklfunction to either help solve
an ill-posed problem or prevent overfitting. The concept eflywosedness of a problem
dates back to Hadamard [40]. He deemed problems well-pdg&ja solution exists, (2)

the solution is unique, and (3) the solution depends coatisly on the data. If a problem
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is not well-posed, then it is ill-posed. There is also a samitotion of a problem being
ill-conditioned. For example, in least-squares probletas= b, if the solutiomv changes
drastically for minor changes to the matti then the problem is ill-conditioned. Regular-
ization helps to find a meaningful solution in the face of sakhlllenges. One of the most
popular techniques for regularizing ill-posed problemsiionov regularization [104]. In

addition to the standard least-squares minimizatiagmn, || Aw — b[|?, an additional term is

included:
min (|| Aw = b][* + || Tw|[?)

where(, > 0 is the regularization parameter managing the trade-oifiben loss functions
andI is an appropriately chosen Tikhonov matrix. Often timesitieatity matrix is used
(I" = I) which gives preference to coefficientswith a smallL, norm. The solution to the
regularized minimization problem is* = (A7 A + ﬁ,,l“Tl“)_1 ATb.

Here we consider Laplacian-based regularization. Itdai@-dependerform of regu-
larization that uses the graph Laplacian [7]. This is theesgnmaph Laplacian used to pro-
duce PVFs and diffusion wavelets. Laplacian-based regakzon has been applied with
great success to semi-supervised learning problems whemgetometric structure of unla-
beled data points can be exploited [7]. To understand hogrtigeh Laplacian provides reg-
ularization, consider again the Dirichlet sum which wasctdégd in Equation 3.1 of Sec-
tion 3.2. Given functiory, the Dirichlet sum is(f, Lf) = 3_, . W (u,v) (f(u) — f(v)).
The Dirichlet sum is large wheyi is not smooth according to the structure of the graph.
For functions that are smooth, the Dirichlet sum is smallu§;ithe Laplacian can be used
to penalize (regularize) functions that are not smooth &ting to the structure of the MDP
state space encoded in the graph.

We described Tikhonov regularization above using the matrand the loss function
|ITw]|?. Laplacian-based regularization can be described in thisner using” = L®. As

a concrete example, consider the ldast-squares algorithm.,Hd loss functionZ,, (w) is
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based on the Bellman residual and the projected Bellmaduaki We augment that loss

function with a Laplacian-based regularization (LR) tersrf@lows:

1 - T
W, 1r = argmin (gHT”(@w') - <I>w’]|2 + 5 g|\T7T(<I>u) — @w'HZ + %HL@U}’H%) ,
w’' eRK

(4.4)

wheres, € R* is a parameter controlling the influence of the regularaaterm. The loss
function || L®w’||2 penalizes non-smooth value functiofs’. Following the same steps

shown in Section 4.2.3, one can showy, ,, = A7l bu,..r Where:

Hy,LR

Apyin = (& = EyPT®)TDy(® — yP™®) + 3,97 LD, L&

by 1n = (® — EyPT®)TD,R™. (4.5)

Notice thath,,, ,» = by, andA,, ,» = Ay, + 5,97 LD,L®. Given a samplés, 7(s), r, ')
from the MDP, estimates of the matrik,, ., and vector,, , . can be formed using the

following updates:

AHQ,LR — AHZ,LR + P(S) [(925(5) - §7¢(3/))(¢<S) - 7¢(5,))T + ﬁrg(s)g(s)T}

bHQ,LR — bHQ,LR + p(s)(¢(s) - §’Y¢(S,))T‘

The termg(s) in the updates is computed as:

g(s) — L(s, s)¢(s)

g(s) «— g(s) + L(S, Supr)O(Supr)  Y{Snir

Spor = S N S ~ 5, IN grapht.

A common assumption is that MDP state space graphs are gpeos@ected. This means
that any state has at most a few neighboring stateg. in the graph. In this case, the

time to computey(s) is negligible. Of course, if the basis functiongs) are the PVFs,
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then the eigendecompositianP = ®A can be exploited to simplify the computation as
g(s) — Ad(s).

When the value functiof™ can be computed exactly, there is no need for regulariza-
tion. But when the value function is approximated using fiorcapproximation and a
finite set of samples from a stochastic MDP, regularizatian bave a positive effect on
the solution. To demonstrate this, consider a two-room §HoP with 243 states and a
reward of+1 in opposite corners of the two rooms. We set the probabilitgroaction
succeeding t0.6; failed actions move the agent in one of the other 3 direstidrhe dis-
count factor was set t9 = 0.95. The optimal value function for this problem is shown
in Figure 4.5(e). We generated 500 samples (100 episod#isgtm a random start state
and lasting 5 steps each) using an optimal policy. Not evierte sn the MDP was visited
during this exploration. The location of the sampled sta&eshown in Figure 4.5(f). We
used the smoothest 50 proto-value functions for basis fumetand the FP least-squares
algorithm with Laplacian regularization. The top four @oh Figure 4.5 show the effect
regularization has on the approximate value functions.ait lbe seen that increasing the
regularization parametet,. smooths out the approximate value function but at too large
a value “over-regularizes” the solution. An automated apph for settings, is to use
so-called L-curves. The L-curve is a plot of the originalddanction (e.g.L,,(w)) on
one axis and the penalty function (e.gL®w/||2) on the other axis for several values of
the parameteg,. The original loss function dominates whénis small and the penalty
function dominates when., is large (thus the shape of the curve is a L). It is common to

select a value fo, somewhere near the inflection point of the L-curve.

4.5 Algorithmic Details
The previous sections of this chapter described the obgeétinctions for regularized

least-squares RL algorithms. Here we provide pseudocadapforoximate policy evalu-
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(e) V= (f) Location of samples (green is
observed, red is unobserved)

Figure 4.5. The effect of Laplacian regularization on a two-room MDPhaat set of 500
samples.
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ation and approximate policy iteration. In both cases, waiae the value function (or

action-value function) is approximated using a batch of@asfrom a MDP.

4.5.1 Approximate Policy Evaluation

Given a batch of samples of the fofm, 7 (s), r, s}, least-squares methods for approxi-
mate policy evaluation use one of the objective functioris,(BP, H, or H,) to generate an
approximation of’™. We describe pseudocode here using the hybgidbjective function
because it naturally encompasses the £P-(0) and BR € = 1) methods. It is obvious
how the pseudocode can change to accommodatetiobjective function.

Assuming aK dimensional feature vectas, the algorithm builds up sample-based
statistics for the matrixl € RX*X and vectoh € R”. The approximate value function is

V = ®A-1b. Pseudocode for thesHnethod is shown in Algorithm 2.

Algorithm 2 : Hybrid Least-Squares Policy Evaluation Method (H)
Input:  {s;, 7, s}, nsamples generated using policy
¢: S — RE, Dbasis function
p: S — RT, weighting over the states
v € [0,1], discount factor
¢ €[0,1], hybrid parameter{= 0is FP,{ = 1is BR)
L, graph Laplacian defined over stafgs}! ; (graph edges denoted with)
3. € RT, Laplacian-based regularization parameter
Output: w, weight vector such that (s) = ¢(s)Tw

Initialize A — 0, b« 0

for i =1ton do

A= At p(si) [(8(si) — E70(s7)) (d(si) — v8(s))T + Br g(si)g(si)" ]
b b+ p(si) (¢(si) — Evo(s))) i
where: g(s;) < L(s;, si) ¢(s;)
9(8i) — g(si) + L(si, Snvr) O(Snir) V{Snbr|Snor 7 Si A Si ™~ Spir}
end for
w <— A’li)

4.5.2 Approximate Policy Iteration
The least-squares policy iteration (LSPI) algorithm is tadefficient control learning

algorithm proposed by Lagoudakis and Parr [56]. LSPI is arattve algorithm. At each
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iteration, a policy is evaluated resulting in an approxienattion-value functio) = dw.
The greedy policy associated with is then used in the next iteration. The algorithm
terminates when the approximatiéjwconverges or when a specified maximum number of
iterations has been reached.

The algorithm uses a batch of MDP samples of the fdema;, r;, s;},. The dis-
tribution of the samples can have a significant impact on ¢lastisquares solution. To
account for this distribution, one can weight each samppausgely using(s;, a;). The
pseudocode for LSPI with Laplacian-based regularizatirmhthe H objective function is

shown in Algorithm 3.

Algorithm 3 : Hybrid Least-Squares Policy Iteration Method (H)
Input:  {s;,a;,r;,s:}",, MDP samples
¢:SxA— RE, basis function
p:SxA—R", weighting over state-action pairs (can change each iteration)
v € [0,1], discount factor
¢ €10,1], hybrid parameter{= 0is FP,{ = 1 is BR)
wo € RX,  (optional) initial weight vector
L., |A]|graph Laplacians, each defined over states occurring with action
3. € RT, Laplacian-based regularization parameter
Output: w, weight vector such thad (s, a) = ¢(s, a)Tw

w «— wy (or initialized randomly ifw is not given)

while (not convergegido
Initialize A — 0, b« 0
for i =1ton do
a* — argmaxoe 4, ((Z)(S;, a)Tw)

A — A + p(317 Z) ( (327 az) é’)/ ¢(5;7 CL*)) (¢(Si7 ai) - 7(25(5;’ a*))T +...
) ) (Sz,az)ﬁr g(szaaz)g(siaai)T
b b+ p(si,a;) ((si,ai) — £7¢<3;7a*>) T
Where:g(5i7 ai) A Lai(si, 52’) ¢(Si’ ai)
9(8i,ai) < g(8i,ai) + La; (i Snbr) B(Snor @i)s V{Snbr|Subr 7 8i A\ 8i ~ e}
end for
W «— fl*li)
end while

Mahadevan proposed an overall framework for combining &h@e generation, (2)
representation learning using graph-based basis furs;tenmd (3) control learning. This

links together all aspects of the RL problem. The framewarlkcalled Representation
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Sample Collection Phase

1. Generate a data seD of “state-action-reward-nextstate” transitions
(8¢, as, e, S¢41) USING Some policy (e.g. a random walk).

2. Sparsification Step: Subsample a set of transitibpsfrom D by some
method (e.g. randomly or greedily).

Representation Learning Phase

3. Construct adiffusion modelfrom D, consisting of an undirected graph
G = (V, E,W) with edge sefZ and weight matrixXV. Each vertex € V
corresponds to a visited state. Given an appropriate losshitte metric
d(-,-), edges are inserted between a pair of verticeand x; using either
a k nearest neighbor or annearest neighbor algorithm. Edge weights|are
assignedV (i, 7) = «a(i) exp (—‘“’”TIJ)) whereo > 0 is a parameter and
is a specified weight function.

4. Form either:

(a) the graph Laplaciah = D — W whereD is a diagonal matrix of the
row sums ofiV.

(b) the diffusion operatdlf’ = D=%W D05,

5. Compute the{ “smoothest” eigenvalues\() and eigenvectors() of L or
compute the diffusion wavelet tree frafhand select thél most global scal
ing and wavelet functions. The basis function matri®is- [¢1, o, . . . , dk].

Control Learning Phase

6. Use a parameter estimation method such as hybrid leaatesgpolicy itera
tion or Q-learning [98] to find a (good) policy representedly action-value
function() = dw.

1317

Figure 4.6. The RPI framework for learning representation and contrdMDPs.
Policy Iteration (RPI) [64] and is described in Figure 4.@eTexperiments demonstrating

RPI1[67] used a random policy for the sample generation caerapt proto-value functions

for the representation learning component, and LSPI focthrerol learning component.
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4.6 Experiments

Reconsider the chain MDP from Figure 4.1 and the basis fonstfrom Figure 4.2.
The optimal policy for this MDP with a discount facter= 0.99 is 7* = rrrrLLL. Starting
from initial policy 7y = rrrrrr, the BR method results in an approximate value function
Vgg whose greedy policy is alse, = rrrrrr. In other words, after one round of policy
iteration, it converges on the initial policy. The FP alglonm produces an approximate
value functionV;Tg whose greedy policy is; = rrrrrR. Hybrid algorithms find solutions
between these two extremes. We ranged the valgeraim O to 1 and computeiil’;;l0 and
Vg; using the equations in Section 4.2 (the transition matrck i@uard function were not
sampled but rather were used explicitly). We also recortiechbrm of the Bellman resid-
ual, the norm of the projected Bellman residual, the angtevéen the Bellman residual
and the space spanned by the basis functigread the greedy policies associated with the
approximate value functions. The results are shown in [Eigur using a uniform distribu-
tion p; however, the results are very similar when setirtg be the invariant distribution of
P™. Note the trade-off between the Bellman residual and thgepred Bellman residual
for different values of in Figures 4.7(a) and 4.7(b). In Figure 4.7(b), the curveeaissed
with method H is beneath that of method;H This indicates algorithm fHplaces more
weight on minimizing the projected Bellman residual conggato algorithm H. Also,
note that the greedy policies in Figures 4.7(d) and 4.7(e)}me full gamut fromrrrRRR
at¢ =0torrrrrr até = 1.

We compared all methods on a>00 grid MDP. The MDP has 100 states, 4 actions
that have probability 0.9 of success (an unsuccessfulramigulted in a transition in one of
the other three directions), a 0.95 discount factor, andvame of +1 in one corner and +2
in the diagonal corner. Fifteen Laplacian eigenvector$ y62re used as basis functions.

We ran 500 trials. Each trial began with a randomly initializpolicy, then policy
iteration was run using each policy evaluation method uhgl weight vector converged

or 500 iterations were reached. The model was used duringypitération to avoid any
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Figure 4.7. Results of approximate policy evaluation using the hybemkst-squares algo-
rithms for the MDP in Figure 4.1.
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difficulty comparing the various methods due to samplinge Tésult of policy iteration is
a final policyr;. We evaluate these policies by computi¥ig@ exactly and comparing it
with V*. The results, which are broken into the trials that conveigied those that did not

converge, are shown in Figure 4.8.

150 : : : : 250
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1007 \ -
£ h £ 150-
[ >\ H
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oy e e S S, B — «—H.
0 —orr | | OBR e I
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(a) Converged trials. (b) Non-converged trials.
00 1or7 |
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(c) % of trails that converged.

Figure 4.8. Results of 500 policy iteration trials for the grid MDP. Thesults are divided
into those trials that converged (a) versus those that didaroverge (b). The median value
of ||V*—V77|| is plotted versug, wherer is the final policy attained when policy iteration
terminates. The percentage of trials that converged is shio\c).
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The BR algorithm converged almost twice as often as the F&idion (71.4% com-
pared to 37.6%). However, when the BR method converged,ppérzed after only 8.5
rounds of policy iteration on average. That strongly costsavith the fixed point method’s
average of 89.1 rounds of policy iteration until convergen8ince the BR method tends
to make small changes to the value function between roungslaly iteration, it is not
surprising that that this early convergence (starting fmandom policy) leads to very
suboptimal policies. It is interesting that the BR methoscdivered better policies when
policy iteration didnot converge. On the other hand, when the FP method converged it
found excellent policies (small values pF* — 1/ 77||).

The policies found by algorithm +Hhad a general linear trend betwegr- 0 (FP) and
¢ = 1 (BR). The policy iteration convergence rate had a similéeaf The convergence
rate was not nearly as predictable for algorithm. Hn fact, at¢ = 0.8, all 500 trials
converged. The most interesting aspect of this experingethia excellent performance of
algorithm H,. The method produced good policies regardless of conveegand across
all £ values.

We have presented hybrid least-squares algorithms foloappating value functions,
but the same idea holds for approximating action-value tians. We tested all policy
evaluation methods on the problem of learning an approxnaation-value function for
Tetris. Ten basis functions over state-action péirs:) were used. The first four are for
the current state: maximum height, number of holes, sum of absolute heigif¢dihces
between adjacent columns, and the mean height. The nexbésis functions are the
change in the value of the first four features after takingoact from s. The last two are
the change in the score and a constant 1. This feature setrajagsed by Lagoudakis et
al. [57].

Forty episodes of data(30,000 samples) were generated using an initial policydyree
with respect to weight vectow™ = [-1, -10, -1, -1, -2, -11, -2, -2, 50, 18] We ran

policy iteration starting fromo™ until the weight vector converged or 100 iterations were
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reached. Instead of generating double samples to form sedbiestimates oft andb, we
used the model to compute the expectation over next-stattactions. For Tetris, each
action results in seven equally likely next-states comesing to the seven Tetris pieces.
This method of using the model for transitions instead of m@a from the model was
described by Lagoudakis and ParrissTD Q-Model [56].

We tested the learned policies 50 times. Each time, we gemteearandom ordered
set of pieces thadll policies were forced to place to make the comparison morerate.
This is necessary because Tetris performance can be vesitigerio the exact order of
pieces. The average score over the 50 trials is shown in PaBleThe initial policyw™
scored 310 on average. Policy iteration converged in lems Thiterations for the FP and
H, methods, whereas the BR and khethods did not converge. The performance split
along this division. The final policy computed using the BRtmo&l rarely removed a line.
This was also the case for policies learned using algorithnex¢ept whert = 0.4. On
the other hand, the policies learned using the FP aniohéthods performed at least as well
as the initial policy and in some cases significantly beffére best policy was computed
using algorithm H with £ = 0.1.

Table 4.3. Results of policy iteration for Tetris. An asterisk indieatpolicy iteration
converged.

Technique| Score| Technique| Score
BR 0 FP* 630
Hi, e=0.1 15 Ho, e=0.1* | 800
Hi, e=0.2 0 Hs, ¢=0.2* 580
Hy, ¢=0.3 80 Hs, ¢=0.3* 645
Hi, ¢=0.4 295 Hs, ¢=0.4* 515
Hy, e=0.5 60 Hs, é=0.5* 455
Hq, ¢=0.6 5 Ho, ¢=0.6* 395
Hy, e=0.7 5 Hs, é=0.7* 370
Hq, ¢=0.8 0 Hs, ¢=0.8* 405
0 Hs, ¢=0.9* 330

Hq, ¢=0.9
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4.7 Conclusions

The fixed point (FP) and Bellman residual (BR) algorithms barcombined to form
a hybrid approximate policy evaluation algorithm. We pre@od two ways to implement
hybrid algorithms using least-squares methods, thus ivpgeefficiency over the original
incremental algorithm [3]. The two implementations differhow they handle the fixed
point constraint. The first implementation (Henforces the fixed point constraint and then
derives a least-squares formula whereas the second imptatiom (H) performs those
two steps in reverse. We analyzed the algorithms in termsr@egtions of the target
function and showed that hybrid algorithms have an intaigeometric interpretation.

Hybrid least-squares algorithms attempt to combine thkilgtaof the BR solution
with the improved performance of the FP solution. We presgi@in example on a chain
MDP demonstrating this effect. Policy iteration experirtsenvere conducted on a simple
grid MDP so that the quality of the learned policies could b&ednined analytically. Ex-
periments were also run on the challenging task of learnnglay Tetris where learned
policies were evaluated empirically. In both domains, tikerid algorithm H, discovered
policies that performed much better than the BR andnéthods and as well as, and in
some instances better than, the FP method. The hybrid #igok, has the same data
structures and computational complexity as the BR and FRadstwhereas the Halgo-
rithm is more complex. A surprising finding was the khethod’s robustness for a wide
range of¢ values. One would expect that foralues close to 1, the difference between the
BR and H methods would be minimal. Providing a mechanism for autaraby settingé
is an interesting area for future work.

In Section 4.4, we showed how the least-squares algoritmbeaugmented to include
Laplacian-based regularization [7]. Laplacian-basedlergzation penalizes functions that
are not smooth according to the structure of the graph. Hpie bf regularization can be
useful when the domain is stochastic and relatively few dasn@re available for learning

a policy. Since, at this point, we have used the graph Lagtefar both basis construction
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and for regularization, it is worthwhile stepping back andlerstanding the distinction.
The initial work by Mahadevan and Maggioni [67, 63] used teenbothest” Laplacian
eigenvectors and diffusion wavelets as basis functions Jét of basis functionsplicitly
constrains (regularizes) the space of approximate valoetiions that can be represented.
In this dissertation, we think of the Laplacian eigenvestomd diffusion wavelets akctio-
nariesof basis functions. We are free to use any elements, nothastrhoothest, from the
dictionary to approximate a particular value function @ttis perspective is implemented
with the basis selection algorithms in Chapter 6). Since dayents from the dictionary
can be used, this expands the space of approximate valugohusithat can be represented.
To ensure these functions retain some degree of smoothneasse the graph Laplacian
matrix to explicitly regularize the approximate value functions. Thus, our @g@ghn offers
greater flexibility in the type of value functions that can Ibarned, while retaining the

ability to regularize the solutions.
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CHAPTER 5
EFFICIENT BASIS CONSTRUCTION FOR LARGE GRAPHS

A significant challenge for any value function approximatarchitecture is scalability.
For example, a rige implementation of tile codings becomes infeasible wiitreasing
dimensionality of the state space. This is commonly retetoeas the “curse of dimension-
ality.” A natural question to ask, therefore, is how basisdiions derived from an operator
on a graph scale to large problems. This question can be gexsed into two components:
(1) the construction of the graph from samples from a Markeeision process and (2) the
generation of the basis functions from the graph.

A graph is constructed from an agent’s actual experience Magov decision pro-
cess. Therefore, the size of the graph grows over time asgbataxplores the state
space. This means that, for discrete domains, the size @frtgh is at most the number
of unique states visited. Of course, the graph’s size coaltkbs if some combination of
sampling and/or abstraction is performed. In domains wathtinuous state variables, the
graph-based framework has the nice property that the grafhdcts theintrinsic dimen-
sionality of the problem. While a problem may nominally bethgjmensional, there is
often lower dimensional structure explaining the data. &@mple, the graph framework
was originally applied to the more general problem of nagdindimensionality reduction.
In Tenenbaum et al.’s work [101], the vertices of the grapheAegh dimensional images
(faces) but in fact could be explained by just three dimemsi@p-down pose, left-right
pose, and lighting). This same type of structure exists inynmateresting control problems

such as high degree of freedom robotic systems that areraored by their dynamics.
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Therefore, the actual construction of a graph from expegen a Markov decision process
in principle seems feasible for many problems.

The more significant problem is the computational compyexitgenerating basis func-
tions from a graph with1/| vertices. It is reasonable to assume the graph is sparse-mea
ing there areD(|V|) entries as opposed to a dense graph withl/|?) entries. A dense
graph corresponds to an environment where an agent coulsitica from any state to any
other state in a small number of steps. Domains with sudk Btructure are uninterest-
ing. Therefore, in the context of Laplacian eigenfunctiadhg computational complexity
depends on the amount of time it takes to genefateigenvectors of a sparse, Hermitian
matrix. We assumé&’ is much smaller thafi/|. This is an extremely important problem in
linear algebra with many applications in science and ergging. As such, there has been
extensive research in finding faster algorithms. The ctmegthod used in Matldly is
an implicitly restarted Arnoldi method that can computea é&genvectors for sparse ma-
trices withO(10°) rows. Parallel algorithms are a current research trendhgive growing
number of multi-processor machines.

In this chapter, we present two approximation techniquesdéaling to graphs (ma-
trices) with a large number of vertices. The first technigaetdrizes the matrix into two
smaller matrices. Eigenvectors or diffusion wavelets &entcomputed on the smaller
matrices. The second technique uses a multilevel, paedderithm for computing eigen-
vectors. This algorithm benefits by performing the eigetmecomputation on submatrices
of the original matrix. Before describing both approxineatitechniques, we first discuss

how sampling can be used as a preprocessing step to improyaeutational efficiency.

5.1 Sampling
Spectral bases are amenable to sparsification methodgigates in the kernel meth-
ods literature including low-rank approximation techreguas well as the Nystm inter-

polation method [108, 30]. The Nysim method allows for extrapolating functions on
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sampled states to novel states. Subsampling the statgsaugneedy algorithm can greatly
reduce the number of samples while still capturing the stinecof the data manifold. The
greedy algorithm is simple: starting with the null set, addhples to the subset that are
not within a specified distance to any sample currently in thessibbA maximal subset
is returned when no more samples can be added. The greedgdprecwas originally
proposed in a batch setting [93] and then later devised t& woline [24, 35] where one
must decided to discard or store samples as they are receiVedised the batch greedy
procedure for the experiments in this dissertation.

As an example of batch greedy subsampling, consider sargplesrated from a ran-
dom policy in the mountain car task. Figure 5.1 shows theltesd greedy subsampling
on data from this domain. Clearly, the overall structure,rmitthe density, of the data still

remains in the subsamples.
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Figure 5.1. Greedy subsampling in the mountain car task.

It is natural to question how far the subsampling procedare go before losing too
much information. The answer is that it depends on the taskekample, in keeping with
the mountain car task, Figure 5.2 shows the 3rd-5th eigeokseof the graph Laplacian for
two graphs: one with 50 samples and one with 500 samples. [Ck&@ane information is

lost, but the overall shape of the functions is very simildrere is a trade-off being made
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here. More samples provides a higher resolution, but atdseaf increased computation.
For RL, we want to find good policies. The “right” resolutianthe subsampling problem is
the minimal number of subsamples that allows for computigg@d policy. We investigate

this trade-off empirically.
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Figure 5.2. 3rd-5th Laplacian eigenvectors of two graphs from the mawntar domain.
The top row is a graph with 50 vertices while the bottom row graph with 500 vertices.
The left column is the 3rd eigenvector, middle column is ttreelgenvector, and the right
column is the 5th eigenvector.

Sampling helps to reduce the complexity of the graph-baastlzonstruction problem,
but it does not solve all our computational problems. Sommealns naturally require many
samples to provide adequate coverage of the state spaceealavilh such large-scale
problems, the next two sections of this chapter propose ealdate algorithms for scaling

basis construction to large graphs.

5.2 Matrix Factorization
Spectral basis functions, or PVFs, are not compact singegpan the set of samples

used to construct the graph. This raises a computationatiguneof whether this approach
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scales to large MDPs. We have explored a technique for madpegtral bases compact
using matrix factorization [46]. The main idea is that thedam walk operator on the
graph @ «— D~'WW) can be factored into two smaller stochastic matriBeandC' such
that the Kronecker produd @ C' ~ A.* This procedure can be called recursively to further
shrink the size ofB and/orC. The Metropolis-Hastings algorithm is used to makand
C'reversible, which ensures their eigendecompositionsatoad| real values. The result is
the basis functions can be calculated fréhandC rather than the original matrid. This

is a gain in terms of both speed and memory.

We present the Kronecker product approximation as a waypooxpnate eigenvector
computation. However, the same ideas can also be used toappte diffusion wavelets.
In that case, diffusion wavelet construction occurs on the smaller matrice®3 andC.
The scaling and wavelet functions from the two smaller masican then be combined
using the Kronecker product. We do not pursue this idea éurtbut point out that it would
be interesting to explore different ways of combining fuoes from the two diffusion
wavelet trees.

The following sections contain a description of the Krorexgkroduct, Kronecker prod-
uct approximation, a theoretical analysis describing wkemnecker product approxima-

tion works well, and some experiments.

5.2.1 Kronecker Product
The Kronecker product ofeg x cg matrix B and arc x ¢ matrix C' is equal to a matrix
A of size(rgre) x (egee) with block A, ; = B(i, j)C. Thus, every(i, j) block of A is

equal to the matrixC’ multiplied by the scalaB (i, j). The equation is writtedl = B ® C.

IFor ease of understanding, we use the symbigl$3, andC' in Section 5.2 to represent the Kronecker
productA = B® C or A ~ B ® C. Our use of the Kronecker product involves setting the matrito
be the random walk operatd? ! associated with a graph. In previous chapters, the syrmhebs used
to representD~'W. We found usingP = B ® C to be less readable thah = B ® C. Moreover, using
P = B ® C gives the false impression that the Kronecker product omygke/with random walk operators.
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The Kronecker product can be used to streamline many connugan numerical linear
algebra, signal processing, and graph theory.

AssumeB and C' correspond to stochastic matrices associated with wedghiedi-
rected graphs&:z = (Vi, Eg, W) andGe = (Ve, Ec, W¢). The graphs can be repre-
sented as weight matricé®z and W with strictly positive edge weights. Matri® is
then formed by dividing each row d¥'z by the row sum (similarly fo"). B andC are
stochastic matrices representing random walks over thepective graphs. The eigenval-
ues and eigenvectors &f andC completely determine the eigenvalues and eigenvectors

of BC.

Theorem 1 Let B have eigenvectors; and eigenvalueg; for 1 < i < rg. LetC have
eigenvectorg; and eigenvalueg; for 1 < j < rs. Then matrixB @ C' has eigenvectors
z; ® y; and eigenvalues; 1, .

Proof: Considen B C)(x; ®y,) evaluated at vertefw, w) wherev € Vg andw € V!

(B® C)(z; ®y;)(v,w) Z Z (v, v2)C(w, wo)z;(va)y; (w2)

(v,v2)€EB (w,w2)EEC

= Z B(v,vq)x;(vg) Z C(w, wa)y;(w2)

(v,v2)EERB (w,w2)EEx

= (Nizi(v) (n3y; () = apy) (@a(v)y;(w)) .0

This theorem is adapted from a more general version [8] thas ahot place constraints
on the two matrices. Note this theorem also hold®iand C' are normalized Laplacian
matrices [20], but it does not hold for the combinatorial lzeggan. The Kronecker product
is an important tool because the eigendecomposition ef B ® C' can be accomplished
by solving the smaller problems a8 andC individually. The computational complexity

of the eigendecomposition is reduced fronrrd) to O(r3, + r).
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5.2.2 Kronecker Product Approximation

Given the computational benefits of the Kronecker facttiora it is natural to con-
sider the problem of finding matricds andC' to approximate a matrixl. Pitsianis [84]
studied this problem foarbitrary matrices. Specifically, given a matrix, the problem is

to minimize the function

fa(B,C) = [[A=B&C|r, (5.1)

where|| - || is the Frobenius norm. By reorganizing the rows and colunfng,othe

function f, can be rewritten as:

fa(B,C) = || A — ved B)vedC)7 ||, (5.2)

where the veG) operator takes a matrix and returns a vector by stacking ehexms in

order. The matrix4 is defined as:

VeC(ALl)T

ved A, 1)"

SN
I

e R(rees)x(rocc) (5.3)

ved A .,)7T

vedA,,.,)T"

TB;CB

Equation 5.2 shows the Kronecker product approximatiomlera is equivalent to a
rank-one matrix problem. The solution to a rank-one matrsbfem can be computed

from the singular value decomposition (SVD).4f= UXV7 [39]. The minimizing values

68



are ve¢B) = /oyu; and ve¢C') = /o,v; wherew, andv, are the first columns df and
V ando, is the largest singular value of. This is done in timeO(r%r2) since only the
first singular value and singular vectors of the SVD are rexylii

Pitsianis [84] extended this idea to constrained optinoraproblems where the sym-
metry, orthogonality, or stochasticity of matricsandC' are preserved. We investigated
thekpa_mar kov algorithm which findsstochastiomatricesB andC' that approximate a
stochastiomatrix A given as input. There are equality (row sums must sum to 1)and
equality (all values must be non-negative) constraintsHsr problem. Thé&kpa_nmar kov
algorithm substitutes the equality constraints into thebpem formulation and ignores the
inequality constraints. One iteration of the algorithmgweds by fixing”' and updating3
based on the derivative §fA — B @ C|| ; then matrixB is held constant an@' is updated.
Convergence is based on the change in the Frobenius norne ddgbrithm returned neg-
ative values, those entries were replaced with zeros antbie were rescaled to sum to
1. More sophisticated algorithms (e.g. active set method)dcbe used to directly account
for the inequality constraints if necessary.

The Kronecker product has simple semantics when the mataigestochastic. Matrix
A Is compacted inta g clusters, each of size.. Matrix B contains transitions between
clusters while matrix_' contains transitions within a cluster. For the block stuetof
the Kronecker product to be most effective, similar statestbe clustered. This can be
achieved by reordering matrit via X AX” whereX is a permutation matrix. A permuta-
tion matrix is a squaréd, 1) matrix that has exactly one 1 in each row and each column and
0's everywhere else. The problem of finding the optidiab minimize|| X AX” - B&C||r
is NP-hard. However, there are several options for reongematrices including graph
partitioning and approximate minimum degree ordering. \Weduthe graph partitioning
program METIS [49] to determin&’. METIS combines several heuristics for generating
partitions, optimizing the balance of a partition versus ttumber of edges going across

partitions. The algorithm first coarsens the graph, thenitpars the smaller graph, and

69



finally uncoarsens and refines the partitions. METIS is aligptimized program that
partitions graphs witD(10°) vertices in a few seconds. Figure 5.3(a) shows an adjacency
plot of a matrix A corresponding to a graph connectib®)0 sample states from the ac-
robot domain. Figure 5.3(b) is the same matrix but reordex@zbrding to METIS with
60 partitions. The reordered matrix is in a block structure eneasily represented by the
Kronecker decomposition.

The stochastic matricds andC' are not necessarily reversible. As such, their eigenval-
ues can be complex. To ensure all real values, we used thepddis-Hastings algorithm
to convertB andC' into reversible stochastic matricés; andCr. The algorithm is de-

scribed below where is a stationary probability distribution.

(

By (1, EVB0)

(i) B(, j)
Br(i,j) =4 B(i,j)+>_ Blik) if i =j

| (1 — min (1%))

This transformation was proven [13] to minimize the disencanl; metric between

the original matrixB and the space of reversible stochastic matrices with statyodis-
tribution 7. The power method [39] was used to determine the stationatgitaitions of

B andC. Note these stationary distributions were unique in ouregxpents becaus8
andC were both aperiodic and irreducible although kpa_mar kov algorithm does not
specifically maintain these properties. Figures 5.3(c) a3dd) show grayscale images
of the reversible stochastic matricés; and Cr that were computed by this algorithm to
approximate the matrix in Figure 5.3(b). As these figuregyssy the Kronecker factor-
ization is performing a type of state aggregation. The mdbi has the same structure as
XAXT, whereag’, is close to a uniform block matrix except with more weightrajahe

diagonal. The eigenvalues &i; andC; are displayed in Figures 5.3(e) and 5.3(f). The
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fact thatCy is close to a block matrix can be seen in the large gap betwesefirst and
second eigenvalues.

There is an added benefit of computing the stationary digtdhs. The eigendecom-
position of B (andC'g) is less robust because the matrix is asymmetric. Howesgiis
similar to a symmetric matrixBx . by the equatiomBr ., = D%°BrD;%® whereD, is a
diagonal matrix with elements. MatricesBr and By . have identical eigenvalues and the
eigenvectors of3p can be computed by multiplyin@%® by the eigenvectors aBp .2
Therefore, the decomposition should always be don&gn.

It is far more economical to store the eigenvector$gfandC’r than those ofd. For
example, if 90 eigenvectors are used, then the eigenvectarsatrix A in Figure 5.3(a)
consist of 162,000 values (18200). There are 3600 values (6§60) for Bz and 900
values (36 30) for C, yielding a compression ratio of 3@%%).

There is a potentially subtle point to make regarding thesgpanned by the matrices
A, Bg, andC’. Given the complete set of 1800 eigenvectorsipbne can represeany
function overA’s domain. The eigenvectors form a basis for all possiblefions. One
can also represent any function ow’s domain given all 1800 possible combinations of
the 60 eigenvectors dB; and the 30 eigenvectors 6f;. In other words, the combination
of Bg’s andC’’s eigenvectors also forms a basis. This offers a usefulpgets/e on the
Kronecker product approximation. We know, based on thecBlet sum, that matrixd’s
eigenvectors are ordered (by increasing eigenvalue) mg@f smoothness. The smoothest
eigenvectors capture the low frequency components fortimme in A’s domain. The Kro-
necker approximation method can be viewed as trying to antgilorganize the space of

functions inA’s domain under the structural constraints imposed by tlekcker product.

2In the experiments, we found it better to use the eigenvedfBy, . as basis functions rather théty'’s
eigenvectors. The eigenvectors Bf; . are orthonormal whereas the eigenvector3gf are orthonormal
with respect tar (i.e. the weighted inner produgt, -),. of two different eigenvectors aBp, is 0).
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The 1800 possible combinations of the 60 eigenvectors;pand the 30 eigenvectors
of C'r provide a basis for matriX’s domain. The experiments in this chapter genefgate
“combined” eigenvectors from this set of 1800 by selecthmase with the smallest value of
the product ofBz’s andCy’s eigenvalues (with ties broken using the sum of eigenglue
We point out that it is also possible to use the eigenvectoi:candC'r as a dictionary and
to select the best set of functions for a particular task. Wdysbasis selection algorithms

in Chapter 6.

5.2.3 Extensions

We consider two extensions to the Kronecker product frannkew®he first extension
is to expand the number of matrices used in the Kroneckeryatodecomposition from
p = 2top > 2 matrices. A decomposition inf@> 2 matrices would provide greater com-
pression. The second extension is to shift from a rank-1 &c&ar product approximation
to a rankr approximation which would increase the Kronecker produexpressiveness.

The Kronecker product approximation works by decomposing#rix A into matrices
B andC such that|A — B ® C||r is minimized. The matrice® andC are then, in effect,
used as a proxy fod. The advantage of the approximation is tliand C' are smaller
than A, thereby decreasing the computational complexity of agprahm operating on
A. To further decrease the amount of computation, the matiicandC' can themselves
be decomposed using the same Kronecker product frameworke enerally, we can

minimize the following function:

fa(B1,Bs,... ,B,) =||[A—B1®By®...Q B,

wherep > 2 terms are used.
Algorithmically, this can be accomplished by using the alipon described in the pre-
vious section recursively. There is however another isténg way to solve this problem.

Recall in Equation 5.2 we showed the functiffn(B, C') could be rewritten to have the
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form f4(B,C) = |A — ved B)vedC)”||». The reorganized matri¥l is approximated
using the outer product of vectors &) and ve¢C'). The outer product, alensor prod-
uct, of two vectors results in a matrix. Now, consider the termoduct of thep vectors:
ved B;) ovedBs) o...ovedDB,). This results in @ dimensional tensor. For example,
ap = 3 dimensional tensor can be viewed as a three dimensionanglet The shift
from vectors and matrices to tensors corresponds to thengwie from linear algebra to
multilinear algebra [72].

This insight leads to an elegant way of extending the Kroeepkoduct approxima-
tion problem. The matrix4 can be rearranged intozadimensional tensoR,(A). When
p = 2, the rearrangement operator takes the form of Equationi®3 R,(A) = A).
Given thep dimensional tensoR,(A), the so callechigher order singular value decom-
position(HOSVD) [28] can be used to find the values of (B¢),ved B,), ... ,ved B,).

It turns out the HOSVD does not quite produce thgtimal rank-1 p™" order tensor ap-
proximation of ?,(A), but it does provide good rank-1 approximation [29, 58]. This
is directly analogous to the two dimensional case where fitenal rank-1 matrix ap-
proximation is computed using the traditional SVD. To coetelthis description, we need
to specify the rearrangement operaf®y(-). AssumebB;, Bs, ... , B, are square matri-
ces of sizerp,,rp,,... ,rp,. Thus, the square matrik is of size(rp,rp,...75,). For
the purpose of definindz,(-), we sayA is made up ofr} blocks, each block of size
(rBy"Bs ---7TB,) % (BB, - .- 7TB,). The rearrangement operatl,(A) can be defined re-
cursively as vectorizing thej, blocks of matrix4 and applyingfz,_:(-) to each block.

Extending the Kronecker product approximation framewedursively results in even
smaller matrices. This greatly speeds up eigendecomepositi diffusion wavelet con-
struction, but it imposes even more block structure on tledlem. Details to the original

problem may be entirely lost by enforcing such strong stimecon an unstructured matrix.

3de Lathauwer et al. [28] provide a more complicated algatithan the truncated HOSVD for computing
an optimal rank-" order tensor approximation. For practical reasons, wemegend using the HOSVD.

74



The second extension to the Kronecker product framewor getform a rank= ap-
proximation instead of a rank-1 approximation. We showeat the Kronecker product
approximation problem of minimizingA — B ® C|| can be rearranged to have the form
| A —ved B)ved C)T|| ». The outer product vé@)veo )7 is necessarily a rank-1 matrix.
The Eckart-Young theorem [32] proves that the optimal rardpproximation of a matrix
can be found using the singular value decomposition andikgepe r largest singular
values (and zeroing out all other singular values). For thenkcker product approxima-
tion problem, ve¢B) and ve¢C') are found by computing the largest singular value and
singular vectors ofd.

It is natural to consider whether this framework can be edégeifrom a rank-1 approx-
imation to a more expressive ramkapproximation. The Kronecker product approximation
problemcanbe extended from a rank-1 to a rankproblem by altering the original problem

as follows:
Fa{BYisy, {Ci} ) = 1A= B @ Cil|s.
=1

Not surprisingly, this equation can be reordered to yield— >"7_, ved B;)ved C;)”|| .
The optimal values ofved B;)}:_, and{vedC;)},_, can be found by computing the
largest singular values and vectorsAf

Clearly the sum of Kronecker product§";_, ved B;)ved C;)” yields a better approx-
imation to A than just using a single Kronecker product. Unfortunately,cannot use this
property to help with the original eigendecomposition peo. Theorem 1 proved that
if A= B ® C, the eigenvectors and eigenvaluesfdére fully determined by the eigen-
vectors and eigenvalues &f andC. This theorem cannot be extended to the case when
A =3, B, ® C;. In other words, knowing the eigenvectors and eigenvalfi§s3g}’_,

and{C;}/_, does not uniquely determine the eigenvalues and eigengauitd.
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5.2.4 Theoretical Analysis

This analysis attempts to shed some light on wkep C' is useful for approximating
A% More specifically, we are concerned with whether the spaearsgd by the topn
eigenvectors ofB @ C' is “close” to the space spanned by the topeigenvectors ofA.
Perturbation theory can be used to address this questi@ubethe random walk operator
A'is self-adjoint (with respect to thavariant distributionof the random walk) on an inner
product space; therefore, theoretical results concerdisgspectrum apply. We assume
matricesB and(C' are computed according to the constrained Kronecker ptamroxi-
mation algorithm discussed in the previous section. Thievehg notation is used in the
theorem and proof:

e F=A—-B®C

e X is a matrix whose columns are the topeigenvectors ofd

e « is the set of topn eigenvalues ofd

e «y includes all eigenvalues of except those i

e disthe eigengap between anday, i.e.,d = miny,ca, \;eas [Ai — Aj

e Y is a matrix whose columns are the topeigenvectors oB @ C

e @ is the set of topn eigenvalues oB @ C

e a5 includes all eigenvalues @ & C except those iy

e dis the eigengap between andd

e X is the subspace spanned.ly

e ) is the subspace spanned By

e P s the orthogonal projection ontd

e () is the orthogonal projection onfg .

Theorem 2 AssumingB andC' are defined as above based on the SVB ahd if | E|| <
2ed/(m+ 2¢), then the distance between the space spanned by ®igenvectors oft and

the space spanned by the topeigenvectors o3 ® C' is at most.

4We gratefully acknowledge the help of Chang Wang with theyesigin this section.
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Proof: The Kronecker factorization uses the tepeigenvectors o3 @ C' to approxi-
mate the topn eigenvectors ofd (e.g. useY” to approximateX). The difference between
X and) is defined|Q — P|. [S/]

It can be shown that it andE’ are bounded self-adjoint operators on a separable Hilbert
space, then the spectrum 4f-E is in the closed| F||-neighborhood of the spectrum df
[54]. The authors also prove the inequalji9* P|| < =||E||/2d. [S.]

Matrix A has an isolated patrt; of the spectrum separated from its remaindeiby
gapd. To guaranteed+FE also has separated spectral components, we need to assume
|E|| < d/2. Making this assumptionS;] can be rewritter|Q* P|| < = E||/2(d — ||E||).

[S:]

Interchanging the roles af, and«,, we have the analogous inequalityQ P+|| <
T El/2(d — [ E]). [Si] Since||Q — P|| = max{[|Q=P|, |QP~|} [S:], the overall in-
equality can be writtefiQ — P|| < «||E||/2(d — || E||). [Ss]

Step Bs] implies that if | E|| < 2ed/(r + 2¢), then||Q — P|| <. [S;] O

The two important factors involved in this theorem dié|| and the eigengap of. If
|E|| is small, then the space spanned by theriopigenvectors oB @ C' approximates
the space spanned by the tapeigenvectors ofl well. Also, for a given value of E||, the

larger the eigengap the better the approximation.

5.2.5 Experiments

The experiments were conducted using the mountain car aoamai the acrobot task.
The experimental setup follows the RPI algorithm descrilbeligure 4.6. A comparison
was done using basis functions derived from the matrix remdalk operatord = DWW
versus basis functions from the factorized matriégsandC'r. Samples were generated
using a random policy. For the mountain car task, each epibedan at the bottom of the
hill but with a different initial velocity (see the Appendfrr details). Episodes lasted for

at most 50 steps or until the goal was reached. We used algligbte involved sample
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generation procedure for acrobot. Since random policiedale a very long time to reach
the goal, we only used samples from episodes that reachegotiden under 800 time
steps. We found this provided coverage of samples over tte-attion space using a
random policy while minimizing redundancy in the sample set

After generating the samples, we used the greedy subsampigthod described in
Section 5.1 to arrive at a representative set of data potataphs were then built by con-
necting each subsampled state tokitsearest neighbors and edge weights were assigned
using aweightedEuclidean distance metric. A weighted Euclidean distane&rimwas
used as opposed to an unweighted metric to make the state dpaensions have more
similar ranges. These parameters are given in the first ttows of Table 5.1. There
is one important exception for graph construction in actoldhe joint angle®;, and6,
range from O t@r; therefore, arc length is the appropriate distance meadrensure values
slightly greater than O are “close” to values slightly ldsart27. However, the fast nearest
neighbor codethat was used to generate graphs required a Euclidean cistaetric. To
approximate arc length using Euclidean distance, afigheas mapped to a tupleif(6;),
cos(0;)] for i = {1,2}. This approximation works very well if two angles are simile.g.
within 30 degrees of each other) and becomes worse as thesaaug further apart. Next,
matricesA, Bg, andCr were computed using the Kronecker factorization algoritimat
viously discussed. By fixing the size ofy, the size ofBy is automatically determined
by |Br| = %. To ensurq'c%'| Is an integer, we simply adjust the number of elements in
A. After the greedy subsampling procedure is run, extra sasgan either be added or
removed to the subset. The last four rows of Table 5.1 showittes of B andC, the
number of eigenvectors used, and the compression ratigsvachby storing the compact
basis functions. Notice we used more eigenvectors figynx Cr than we did fromA.

These number were determined empirically to work well. Resuere worse when more

SWe thank Dr. Christian Merkwirth who kindly sent us the sauaode for his fast nearest neighbor
package, ATRIA [71].

78



Mountain Car Acrobot
v 0.99 1.0
k 25 15
o 0.2 0.5
Weight [1,24] [1.0,1.0,0.7,0.7,0.3,0.12]

[z, &] [sin(@l), cos(6), sin(6s), cos(), 01, 92}

SizeA ~1000 ~3000
Eigenvectors ofA 20 25
SizeBg ~100 ~200
SizeCgr 10 15
Eigenvectors oBgr ® Cgr 50 50
Compression Factor ~9.8 x ~14.7 %

Table 5.1. Parameters for the experiments.

eigenvectors were used frorh and fewer eigenvectors were used frddp ® Cr. Also,
note that the eigenvectors were used to represent actioe-ftanctions. This was done by
using the eigenvectors separately for each discrete aatiokescribed in Section 3.2. Thus,
when 20 eigenvectors of were computed for mountain car, this means 60 basis furgtion
(20 eigenvectorsx 3 discrete actions) were used to approximate the actiamevainction.
The goal of our experiments was to compare the effectiveabse basis functions
derived from matrixA with the basis functions derived from matricBg andCr. Thirty
separate trials were run for each domain. Within each tnalyaried the number of training
episodes. Given a set of training data, we ran the greedyasuyllsng procedure, formed a
k nearest neighbor graph, and computed the matrige3;, andCg. The eigenvectors of
A form one set of basis functions while the eigenvectorsgfandC’r form another set of
basis functions. We refer to the basis functions as eitheefdkact” bases (those frorh) or
the “Kronecker” bases (those from; andC'z). The LSPI algorithm was run twice, once
with the exact bases and once with the Kronecker bases. &heeld policies from these
two runs were evaluated starting from each tasks’ typidéhbirstate,[z, ] = [—0.5, 0] for
mountain car ancﬁ&l, 0y, 0;, 92] = [0,0, 0, 0] for acrobot. We recorded the number of steps

each policy took to reach the goal. The test was terminatedddth domains if the policy
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did not reach the goal in 500 steps. The median test resudtstiog 30 runs are plotted in
Figure 5.4. The median is a more appropriate measure ofpesface than the mean since

some of the 30 runs resulted in policies that never reacheeddhl.

500—% w ‘ 350
300y
__ 400y _
g g 250¢ Kronecker
O} O}
2300 £ 200
[%2] (2]
5y Kronecker S
o & 150r
29 7 \\\___.-—
/.\0—- S
Exact - 100 Exact
100O 50 _ . 100 150 500 20 40 60 80 100
Number of Training Episodes Number of Training Episodes
(a) Mountain Car (b) Acrobot

Figure 5.4. Median performance over the 30 runs using the RPI algorithchthe param-
eters described in Table 5.1. The basis functions are aiy@red from matrixA (Exact)
or from matricesBr andC'y (Kronecker).

The results from mountain car show that policies performenilarly whether using the
exact basis functions or the Kronecker basis functions. drtte difference occurs when
the amount of training data is sma# (50 episodes). In that case, the exact basis functions
resulted in better policies.

There was a significant difference in performance for thelast task. The policies
learned using the exact basis functions performed muckrtétn those learned using the
Kronecker basis functions. With only 15 episodes of tragrdiata, the policies learned us-
ing the exact bases were able to reach the goallif0 time steps. This is relatively close
to an optimal policy which reaches the goal#¥5 time steps. We experimented with
different parameters for the Kronecker product method. #Weyed the number of eigen-
vectors of Br ® C'r and the size of the matriX'z. These changes did not result in policies
that could reach the goal in unde200 time steps (over the median of the 30 trials). We

did find that changing the distance function used to creaethph had a substantial im-
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pact on the results. For example, in previous work [46], wedua weighted Euclidean
distance metric with the dimensions scaled[ﬁa(el), cos(6y),sin(6y), cos(6s), 01, 92] =
[1,1,1,1,0.5,0.3]. This distance metric puts more emphasis on the angulacitiel® than
the distance metric used in the experiments above (see FdbleUsing this distance func-
tion, |C'r| =30, and 90 eigenvectors éfz ® Cr, the performance of exact and Kronecker
bases became more similar. Both sets of basis functionftedsn policies that reach the
goal in ~150 time steps. This is a noticeable decline in performancé¢hie exact basis
functions (an increase from 100 to 150 steps) and an imprewefor the Kronecker basis
functions (a decrease from 200 to 150 steps). These reshtwin in Figure 5.5, indicate
the Kronecker product method can depend on the particusghgand distance function

being used. This makes using the Kronecker product teckmupre challenging.
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Figure 5.5. Median performance over 30 trials using the RPI algorithnacmbot. Graphs
were constructed using a different distance function thas used for the acrobot plot in
Figure 5.4.

5.3 Multilevel Eigenvector Approximation

In this section, we present an alternative way to computeaopate eigenvectors.
The Automated Multilevel Substructuring (AMLS) algorith®] was recently introduced
as a way to scale up eigenvector computation to very largieegroblems. We describe the

algorithm and then prove it is applicable to computing eigetors of the graph Laplacian.
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The AMLS and the Kronecker product method are compared apdregrental results are

presented.

5.3.1 Automated Multilevel Substructuring

Bennighof and Lehoucq [9] developed the Automated Mulél&ubstructuring (AMLS)
algorithm to solve large, sparse symmetric eigenvaluelprob. They reported computing
thousands of eigenpairs on a matrix with millions of rowsngsa commodity computer
and doing so orders of magnitude faster than current statieeeart algorithms. AMLS is
well-suited to problems where a large number of eigenvadmeso be computed [110].

The algorithm can be viewed as a multilevel extension of tmemonent mode synthesis
(CMS) [43] technique from structural dynamics. AMLS is basedlomain decomposition
wherea larger problem is divided into smaller subproblems whodetsms are found and
then used as a subspace for approximately solving the lamgdlem.The decomposition
of a larger problem into smaller subproblems is carried eatrrsively, thus giving AMLS
its “multilevel” nature. Our description of AMLS follows ahg the algebraic version of
Bekas and Saad [4] instead of the original domain decompositewpoint [9].

We present a one-level version of the AMLS algorithm. It isyeto extend the algo-
rithm recursively to multiple levels. Since the recursiomalvesindependensubproblems,
the algorithm can easily be parallelized. We have writtetih laosequential and parallel im-
plementation of the AMLS algorithm in Matlab. The parallersion has been successfully
executed on matrices with(10°) rows using a computer cluster. However, we emphasize
that AMLS does not require expensive computing resourcdsrafact greatly reduces the
computational workload compared to the best existing #&lgmis. Bennighof and Lehoucq
[9] point out that AMLS has been used commercially by auto afiacturers to compute
twice as many eigenpairs “with commodity workstations inaxder of magnitude less

computing time than the standard [Lanczos] approach on a CRAY supercomputer.”
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Let A € R™*" be the matrix given as input to AMLS. The desired outputs ppErax-
imations of the smallesik” eigenvalues ofd and their corresponding eigenvectors. We
assume the rows and columns4have been reordered to decompose the matrix into two
independent blocks that are connected by a (ideally smilbkbseparating them. This
can be accomplished very quickly using sparse matrix pamtitg methods. We used the
nested dissectioalgorithm @nnet i s) in the METIS software package [49]. Figure 5.6
shows how nested dissection reorders a matrix associatbdawi x 50 two-dimensional
grid (n = 2500). The plot on the left shows the original matrix ordering wélue dots
correspond to nonzero matrix entries. The plot on the rigioins the same matrix after
reordering the rows and columns using nested dissectioa.rddhlines on the right-hand
plot delineate the matrix blocks (with the small separabiark ordered last). Notice the

same general structure is recursively repeated within bbthe large independent blocks.

500/ 500}

1000p 1000f

1500 15001

2000f 2000

i w, 2 T RR
25000 500 1000 1500 2000 2500 25000 500 1000 1500 2000 2500

nz = 12300 nz = 12300

Figure 5.6. Connectivity plot of a matrix for &0 x50 grid graph (left) and the same matrix
after the rows and columns have been reordered using nesteettion (right). The red
lines are just shown to emphasize the reordered matrix stensf two (large) independent
blocks followed by a small block separating them.
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Given the nested dissection ordering, the matrikas the form:

B, 0 E
B FE
A= 0 By E, = )
ET C
BT BT C

where matrixB is block diagonal. The eigenvalue problefi® = \¢ can be similarly

written:
B, 0 E PP PP
Ap=1| 0 B, E, PPz | =X | @b
EY Ef C ¢ ¢

The block Gaussian eliminator faf is the matrix

I —B'E
0 I

This meand/T AU results in a block diagonal matrix

B 0
UTAU = ,

whereS = C — ETB~'E is the Schur complementinstead of solving the eigenvalue

problemA¢ = \¢, one can solve the equivalent eigenvalue probletdU¢ = A\UTU¢

which has the form

T T_ B _
(UTAU)$ = — A
0 S || ¢ —ETB?
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whereMs = (I + ET B72E). Notice the eigenvalues are the same whether solding-
Mo or UTAU$ = NUTU¢. The eigenvectors are related by the simple transformation

¢ = U¢ or, more explicitly:

(bB ~ ] —B'E &B &B _ B—IE(;S
¢C 0 I Q;S QES

Everything until this point has been done exactly. So sghthre eigenvalue problem
UTAU¢$ = \UTU¢ results in eigenpairs that can be transformed into the eigenpairs
of A¢ = \¢. Here we introduce an approximation. Instead of soNigdU ¢ = A\UTU ¢,
we solve a slightly different eigenvalue problem in which tff-diagonal elements &f? U

are ignored. By ignoring the off-diagonal blocks, we mean:

B 0 OB . I B »B
0 9 &5 BB M &5

With the off-diagonal blocks ignored, the problem decongsosito threeseparateeigen-
value problems:B,v?1 = pPrb, BywP2 = uP20P2, andSv® = p®Mgv®. This is the
essence of AMLS; the smaller problems are solved insteadreftty tackling the larger
problem.

We compute they; eigenvectorgv”' } | associated with the smallest eigenvalues of
B, then, eigenvectors{viBZ};Z1 associated with the smallest eigenvalue$3gf and the
ng eigenvectorg vy}, associated with the smallest generalized eigenvalués,dfs).
If we are required to comput&” eigenpairs of matrix4, then (n; + ny + ng) > K.
Computing more eigenvectors (i.e. larger + ny + ng)) results in more computation

but a better approximatiohOnce the eigenvectors are computed, they are used as a basis

6Bounds on the quality of the approximation are derived irfj.[34
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for approximating the full probler” AU¢ = A\UTU¢. Specifically, a basis matrig is

formed where:

{v 1, 0 0
2= 0 e o0 |
0 0 {UzS ?:Sl

and then the full problem is projected 887 UT AU Z)z = n(ZT*UTUZ)z. Projecting
the problem down to a subspace definedbys known as the Rayleigh-Ritz method.
K eigenpairs associated with the smallest eigenvalues gbribhjected problem are then
computed. This results in a set of eigenval{ieg X, and eigenvectorz; } X |. The AMLS

algorithm outputs:
1. {n;}X, as an approximation td’s eigenvalueg \;} X ,, and
2. UZ{z}K, as an approximation td’s eigenvectorg ¢; }£ ;.

Pseudocode for the AMLS algorithm is shown in Algorithm 4.idkesfrom the matrix
A and the desired number of eigenpadifsthe other inputs to the algorithm are the number
of eigenvectors to compute for the subproblems (., andng). In our implementation,
we used a simple heuristic to automatically select thesebewusn First, we determined
how many total eigenvectors to compute. This was done byiphiftg K by a number
greater than 1 (e.g. 1.67). Then we 8gf ny, andng to sum to that number and be in
equal proportion to the size of matricés, B,, andC. As an example, say we needed
to computeK = 600 eigenvectors oA and assume matrid has dimensiorz0, 000, B,
has dimensior 0, 000, By has dimensior9600, and C' has dimensiornt00. First, for a

factor of 1.67, we determine we need to compuie x 1.67 = 1000 eigenvectors for all

three subproblems. Then we apportion those eigenvectors as(5200) x 1000 = 500,

ny = (s0005) % 1000 = 480, andng = (55955) % 1000 = 20. Lastly, we adjusted,, n,
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Algorithm 4 . AMLS for one level of subproblems
Input: A € R™*"
K, desired number of eigenpairs dfto be computed
ni,n92,ng, humber of eigenvectors to compute for the
eigendecomposition dB,, Be, and(.S, M) respectively
Output: K approximate eigenpairs of

Il All eigendecompositions below compute the smallest eigenvalues

1. If necessary, reordet using nested dissection:
B 0 E;
A[ ' 5 EQ][; ]
ET ET C
2. Compute Cholesky factorization &f:
RTR = B whereR is lower triangular
3. Compute the Schur complemesit
S=C-E"B'E (usingR)
4. Define block Gaussian eliminator.
g |1 -B7'E
0 I
. ComputeMg = I + (ETB!) (B™'E) (usingR)
6. Compute eigenvectors of subproblems:
6a. Computey; eigenvectors oB;:  {v/' ™,
6b. Computer, eigenvectors oBy:  {v72}72,
6c. Computers generalized eigenvectors 0§, Mg):  {vP}1's,
7. Define the matrixZ:

{vPrym, 0 0 ]

ol

— B2 n
Z = 0 {v,2 12 0
0 0 {Uig}?zsl
. ComputeX eigenpairs of (Z'UTAUZ) z =n (ZTUTUZ) =
. Output the eigenvalugs); } £ | and eigenvector& Z{z; } X

©

andng to not be less than a minimum threshold (e.g. 200). An altermapproach could
selectny, ny, andng based on a desired level of accuracy [34].

The computational complexity of the AMLS algorithm depermtsthe structure of
the input matrix, the number of levels in the nested diseacti.e., how many levels of
recursion), and the number of eigenpairs computed at eaeth Ié\s such, it is not as
easily characterized as the Kronecker product method. Gab ¢38] provide empirical
evidence of AMLS'’s run time for four test problems while veny the number of levels
and the number of eigenpairs. Their analysis shows thats@escéed, AMLS outperforms

a common eigensolver (using a shift-and-invert Lanczosiothtas the desired number of
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eigenpairs increases. Thus, AMLS is ideally suited for aunppse of generating as many

eigenvectors as possible from large, sparse Laplacianaesitr

5.3.2 AMLS and the Graph Laplacian

Bekas and Saad [4] describe the AMLS algorithm and some sixtes. Their descrip-
tion of AMLS requires the input matrix to be symmetric posgstdefinite (SPD). This would
seem to be a problem for the graph Laplacian because it ifygsemdefinite. However,
from our description of Algorithm 4 in the previous sectidhe only time the SPD prop-
erty is used is in the Cholesky factorization. Moreover, thel€éky factorization is only
computed on a (permuted) principal submatrix of the inputrixand never on the entire
input matrix itself. This means the graph Laplacian can leslwgith AMLS becausany
(permuted) principal submatrix of the Laplacian is SPD. phaof of this fact is shown in

the lemma below.

Lemma 3 Any principal submatrix of a graph Laplacian associated vaitiveighted, undi-
rected, and connected graph is symmetric positive defiSR).

Proof: Let L be a (normalized or combinatorial) graph Laplacian matszaziated
with a weighted, undirected, and connected grapk (V, E, W) with vertex setl’, edge
setF, and edge weight8/. By definition, L is a symmetric, positive semidefinite matrix.
Given any permutation matrixX, let Ly = XLX7 (i.e. Lx is a reordering of the rows
and columns ofl)). Ly is also symmetric positive definite since reordering thes@and

columns ofL does not change these properties. Partition the matrix as:

A B
Lx =

BT C

where the size of matrid is kxk wherel < k < |V|. Matrix A is the leading principal

submatrix ofL x. SinceL x is symmetric,A is also symmetric.
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Now, let V4 be a restriction of the vertex séf to the &k elements contained inl.
Likewise, letV be a restriction o/ to the (|V| — k) elements contained i@'. Let E4
contain all the edges in the sBtconnecting vertices in the s&}. With these definitions,

consider the quadratic form of matrix given a nonzero vectar € R*:

TAz = Z W(u,v)(z(u) — z(v)* | + Z z(u)? Z W (u,t)
(u)EEA ueVy (ut)EE,teVe
The first term in parentheses is greater than or equal to Ousecthe edge weights are
positive. The second term in parentheses is strictly greélass 0. This occurs because (1)
z is nonzero and (2) the graggh is connected; therefore, there must exist at least one edge
(which must have a positive weight) between a verteXjrand a vertex il/;. Combining
these two results yields' Az > 0, i.e., A is positive definite.

We showed that matrix is both symmetric and positive definite. This completes the
proof becausel is a principal submatrix odnyreordered version of. (since permutation
matrix X was arbitrary) ]

This lemma shows that the AMLS algorithm can be used to deosmihe graph Lapla-
cian. Although our usage of the graph Laplacian is for raicéonent learning purposes, we
emphasize the graph Laplacian is also useful more gendaallyimensionality reduction
[5] and clustering [76]. Thus, Lemma 3 shows that AMLS can geful in those contexts

as well for scaling to large problems.

5.3.3 Experiments and Analysis

We repeated the mountain car and acrobot experiments dedan Section 5.2.5 using
basis functions computed by AMLS. The results demonsthateléarned policies perform
similarly whether using “exact” eigenvectors or the AMLSapximate eigenvectors. This
is an improvement over the basis functions derived from thenkcker product approxi-

mation.
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We examine the difference between eigenvectors and eilymsvaomputed exactly,
computed using the Kronecker product method, and compsied AMLS. The compari-
son demonstrates (1) the accuracy of the AMLS algorithm ahddw imposing Kronecker
structure can alter the space spanned by the eigenvectbis.aialysis sheds some light
on why the AMLS approximate eigenvectors performed well mumtain car and acrobot.

The experiments in mountain car and acrobot from Sectiorb52re repeated using
the AMLS approximate eigenvectors as basis functions. \We tlse same parameters for
graph constructionk o, weights) as detailed in Table 5.1. Likewise, we used theesam
number of eigenvectors for the AMLS method as we did when edmg eigenvectors
exactly (20 eigenvectors for mountain car and 25 eigenvedto acrobot).

Thirty trials were run. Plots of the median performance af tharned policies are
shown in Figure 5.7. For reference, the plots also includedisults from Figure 5.4 for the
“exact” basis functions and the “Kronecker” basis functioifhe performance of policies
learned using the AMLS basis functions is nearly the samaeagpérformance of policies

learned using the exact basis functions.

500—% ‘ : 350
300r
__ 400y _
g g 250t Kronecker
o O}
2300 2 200
[%] (%]
@ Kronecker 5
b & 1501
2007 AMLS
— 100r —-—
Exact Exact
106 50 100 150 % 20 40 60 80 100
Number of Training Episodes Number of Training Episodes
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Figure 5.7. Median performance over the 30 runs using the RPI algoritfihe basis
functions are either derived from matrik (Exact), from matrice83z andC (Kronecker),
or from the AMLS algorithm.
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We examine the eigenvectors and eigenvalues computedyexesihg AMLS, and us-
ing the Kronecker method to help understand the performdifisgences. Since mountain
car is a two dimensional continuous domain, it is easy toallgwompare the eigenvectors.

Figure 5.8 shows the second through sixth eigenvectorslfdhr@e methods. The
graph, which is from one of the 30 trials in the policy itecatiexperiments, contains 1050
vertices. The exact eigenvectors and those computed uditigSAare nearly identical.
Notice there are some similarities"f25", and ") and some differences 't3and 4") for

the approximate eigenvectors computed using the Kroneukénod.

Figure 5.8. The 2'9-6™" eigenvectors computed exactly (top row), computed using_8M
(middle row), and computed using the Kronecker method @oottow) for the mountain
car domain. The approximate eigenvectors computed using\kte nearly identical to
the exact values.

The AMLS algorithm accurately computed 50 eigenvalues. &kect eigenvalues as
well as those computed using AMLS are shown in Figure 5.9.pltieon the left of Figure
5.9 show the eigenvalues in increasing order. Notice thectwees are nearly identical. To
detect small differences, the plot on the right of Figuresh®ws the difference between the
eigenvalues(\MS — \;). This plot shows there is some discrepancy between thewalue

and that the discrepancy is greater for larger eigenvallibs behavior is to be expected
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from AMLS because the projection method (i.e. using theraigetors from subproblems
as a basis for approximating the larger eigenvalue probtatyrally captures more of the

low frequency components of the Laplacian spectrum.
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Figure 5.9. The first 50 eigenvalues of the normalized graph Laplaciathi®mountain car
task computed exactly and approximated using the AMLS dlgur(left). The difference
between the approximate and exact eigenvalues (right) shiogre is some discrepancy,
but the error in the approximation is small relative to thealbte value.

Another way to compare the exact eigenvectors with the AMpSraximation is to
compute the angle between the subspaces spanned by theeeiges. Before we define
the angle between two subspaces, note it is easy to commuatie between two vectors.
Given two vectors: andy of the same length, one can compute the angle betweey
asarccos ( Ly ). Now, assume we have two subspasgsand Sy . Using the definition

=yl
of Bjorck and Golub [14], the angle betweély and Sy is defined to be the maximum

angle between any vector ) and its closest vector ify. This angle can be computed

given orthonormal matrice&” andY” spanning the subspac&s andSy respectively as:

0(Sx, Sy) = max min arccos (X;'Y;)
i

with column indices and;. Using this definition, the angle between the spaces spanned

the first 50 eigenvectors computed exactly and computedjdsihLS isd = 0.128 radians,
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or § = 7.3°. Thus, the exact eigenvectors and the AMLS approximateneegors span
similar spaces.

The bottom row of plots in Figure 5.8 shows the second throsigth approximate
eigenvectors produced using the Kronecker product metRedall these eigenvectors are
stored in a compressed form. They are formed by computind<te@ecker product of
an eigenvector associated witi @ x 105 matrix with an eigenvector of & x 10 matrix.
As described in Section 5.2.2, one can interpret the Krosepkoduct as partitioning the
1050 samples into 105 clusters, each of size 10. Practi¢hllymeans the eigenvectors
produced using the Kronecker product method are more cdétackier”) than those
produced using AMLS. This is evident in the jaggedness ofthetions.

We also computed the angle between the subspaces spanredfiogtt20 exact eigen-
vectors and the 20 eigenvectors computed using the Krones&thod. The angle was
0 = 0.751 radians, op = 43.0°. As expected, this is larger than the angle between the sub-
spaces spanned by the exact and AMLS eigenvectors. Howeyed3.0° indicates there
is still a significant degree of overlap between the exactknotiecker product eigenspaces
for mountain car. For graphs in acrobot, this angle was clas@0° (meaning there was
at least one function in the span of the true eigenvectordynedhogonal to all functions
in the span of the approximate eigenvectors computed usmétonecker method). This
does not fully explain why the Kronecker product eigenvecfmerformed poorly as basis
functions for the acrobot experiments, but it does providdence that graphs in acrobot
may be poorly approximated with the block structure of ther&cker product.

We also attempted to use the theoretical analysis develop&ection 5.2.4 to un-
derstand the behavior of the Kronecker product method. Keweve found that for
both mountain car and acrobot domains, the error in the Kakereproduct approxima-
tion (| E| = ||A — B ® C||) was greater than the eigengap of matfiXd in Theorem 2).

This violates one of the assumptions in the proof of Theorem 2
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In this section, we visually compared the eigenvectors peed by the three methods
for the mountain car task, compared the eigenvalues pradus@g the exact and AMLS
methods, and computed the angles between subspaces sigrthedeigenvectors. This
analysis indicates the AMLS algorithm allows for a bettepaximation of the Laplacian
eigendecomposition. The fact that AMLS allows for compgtihousands of eigenvectors
of sparse matrices with millions of entries makes it patady attractive for generating
proto-value functions. The analysis also shows the qualfitthe Kronecker product ap-
proximation depends more heavily on the specific graph bieicprized. The Kronecker
method’s block structure allowed for a better approximaitio the mountain car domain
than in acrobot. Whether or not the Kronecker method’s sdé@labnd compression can

be leveraged appears domain dependent.

5.4 Conclusions

In this chapter, we presented three ways to scale the grapbdbbasis construction
method to larger problems. The greedy sampling proceduseres the graph is con-
structed only using enough data points as necessary toeestaie space coverage. This
allows for removing redundant samples. Not only does thigktate graph and basis con-
struction, but it also speeds up nearest neighbor searches the features of a new state
(not in the graph) are needed.

We also proposed two approximation algorithms for scalipgytaph-based basis con-
struction: the Kronecker product method and the AutomatedtiMvel Substructuring
(AMLS) algorithm. Both methods can be used to compute apprate eigenvectors and
the Kronecker product method can also be used to computexppate diffusion wavelets.
The Kronecker method decomposes the problem into smaliéigms that are combined
via the tensor product to approximate the original probleggendecomposition or dif-
fusion wavelet tree construction occurs on the smaller lprab. This method has two

substantial benefits: (1) basis construction only occursmoaller matrices, and (2) the ap-
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proximate eigenvectors or diffusion scaling and wavelecfions of the original problem
are never explicitly formed/stored. To achieve these bexmefie method makes the strong
assumption that the original problem has, to some degredjlttk structure of the Kro-
necker product. The AMLS algorithm method does not makedbhgimption. Indeed, it
can be used on any Laplacian matrix. AMLS recursively corapeigenvectors on smaller
problems and then uses those solutions to approximatevegiems on larger problems.
Experiments in the mountain car and acrobot tasks showddhbaasis functions pro-
duced using AMLS resulted in very similar performance to Ilasis functions produced
using exact eigendecomposition methods. We showed thigluaso AMLS’s accuracy
in computing eigenvalues and eigenvectors. On the othet,liha results were mixed for
the Kronecker product method. The basis functions alloveegélicies that could reach
the goal, albeit with some loss in performance, for mountain For the acrobot domain,
the policies using Kronecker basis functions were signifigaworse. This leads to the
conclusion that the block structure of the Kronecker pradliows for compression, but
whether the compressed functions adequately representitiieal problem appears task
dependent.

The AMLS algorithm has been used on matrices with milliongafs to compute
thousands of approximate eigenvectors. For some RL prablargraph with millions of
vertices could provide adequate coverage over the donmstats space. In these situations,
we believe AMLS can be used to provide a useful set of basistifums for represent-
ing value functions. While AMLS can be used generally on atihpems, the Kronecker
product method is applicable to domains where some bloclctstre exists and can be

exploited.
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CHAPTER 6
BASIS SELECTION

RL feature construction algorithms can be categorized twtmtypes: one that itera-
tively generates basis functions based upon the currefBelerror,7" (V) — V, and the
other that generates a dictionary of basis functioiote the latter type requiresselec-
tion strategy to determine which elements from the dictionanytilize. The graph-based
methods studied in this dissertation are an example of tbgodary approach to basis
construction. We propose three arguments for preferrirggahproach. First, a dictionary
offers the flexibility of approximating value functions asgated with many different poli-
cies. The other basis construction type iteratively getesrbasis functions for fitting just
a single function based on the agent’s current policy. Secthrere is significant interest
in the machine learning community on methods for generadeig-dependent dictionar-
ies[77, 60, 22, 59, 42]. By creating algorithms that operate wechddictionaries, we can
naturally leverage future advances. Third, from a pratstandpoint, we believe agents
should construct representations that are general andlusehe pursuit of a variety of
tasks. Over the course of an agent’s lifetime, it should He &breuse representations
and knowledge from previous experience. The dictionary@ggh to basis construction is
more in line with this ideal.

The previous sections of this dissertation have used a simpthod for selecting which
proto-value functions and diffusion wavelet functions sewhen approximating a value
function. The heuristic is to always use themost global, or smoothest, basis functions.

All prior applications of PVFs and diffusion wavelets in tliterature have also used this

We focus here on techniques fexplicitly constructing features.
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heuristic [67, 63, 68, 79, 44, 95].This mechanism is independent of the policy being
evaluated, meaning that all value functions are repredenmith the same set of basis func-
tions. Using just the smoothest basis functions has thendiagas of being computationally
simple and robust to overfitting (although too much regaktion can be just as problem-
atic as too little regularization), but it does not explaiétfull power of the basis function
dictionary. In this chapter, we explore different selestrnechanisms to better utilize the
dictionary. This is an improvement over previous work folotweasons. First, it tailors
the representation to the specific function being approtechaSecond, tailoring the rep-
resentation allows for using as few dictionary elementsassible, which is important for
computational efficiency.

We evaluate four sparse basis selection algorithms: ootha@ignatching pursuit (OMP)
[82], order recursive matching pursuit (ORMP) [75], the LS [103], and least angle re-
gression (LARS) [33]. Although we tested the selection athms using graph-based basis
functions as a dictionary, the algorithms can be used artyiset of basis functions. Each
algorithm returns a subset of basis functions from the alitry and a scalar coefficient
associated with each selected basis function. The selbaggs functions and coefficients
are linearly combined to produce an approximate value fanctWe tested two different
schemes for combining approximate policy evaluation arsisbgelection. The factor dis-
tinguishing these two schemes is whether the basis seatatjorithmdirectly or indirectly
uses the Bellman equation. These two schemes differ in tefregarsity (how many ba-

sis functions are used in the approximate value functiod)amputational efficiency. To

2Mahadevan and Maggioni [66, 63] demonstrated the potelmiagfits for basis selection in a restricted
setting where (1) the exact value functigfi is known, and (2) the dictionary is orthonormal (which is ajs
the case for PVFs, but not for diffusion wavelets). In thdtisg, the bestK basis functions are selected by
finding the elements; with the largestK values of (V™, ¢;)|. This results in the best rank-approximation
of V™ representable with the given dictionary. The result dogsinti, however, when the dictionary et
orthogonal. We develop algorithms in this chapter that yalsis selection for arbitrary dictionaries and
when the exact value function is unknown.
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assess the combination of basis selection and approxinsdity gvaluation, both policy

evaluation and policy iteration experiments were condiicte

6.1 Relevant Work

We provide a brief introduction to the basis selection peabland a few of the major
algorithms. The basic formulation is that there is a signal R" to be represented with
elements from an overcomplete dictionarye RY**. Each basis functio®; € R" has
unit norm. The problem is to find a vectar such thatbw = y.2 The decomposition of
y is not unique; therefore, additional constraints are addguefer solutions with certain
gualities (e.g. sparseness, independence).

Two popular approaches to the sparse regression problermatehing pursuit and
basis pursuit. Matching pursuit is an iterative, greedyatgm whereas basis pursuit is
an optimization principle that can be solved using any appate algorithm. Therefore,
matching pursuit and basis pursuit are not mutually exetuapproaches to sparse regres-

sion.

6.1.1 Matching Pursuit

Matching pursuit (MP) [69] is a greedy algorithm that seteglements sequentially to
best capture the signal. The algorithm begins with a coefiicvectorw equal to all zeros
and a residual vectay,., equal to the signaj. The first element is selected by scanning the
dictionary and finding the largest correlation with the desil: j* < argmax; |<I>fyres|,j €
[1, K|. The coefficient for the selected basis function is adjusted « w;« + @ﬁyres.
Then the residual signal is computgd, < 9,es — (@j@yres)@j* and the process iterates.
With MP, a basis function can be selected many times. Thereter variants of MP,
two of which are orthogonal matching pursuit (OMP) [82] andey recursive matching

pursuit (ORMP) [75]. OMP differs from MP in the way the resadisignal is computed.

3The model could also include a noise tedny + ¢ = y.
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OMP makes the residual orthogonal to the selected dictyoglaments, which means OMP
will never select the same dictionary element more than avitereas MP can. ORMP
goes even further than OMP and adds the orthogonalizatsgiisto the selection process.
Moghaddam et al. [73] proposed an efficient implementatio®RMP using partitioned
matrix inverse techniques [39] and showed that sparse $epstres regression is equivalent
to a generalized eigenvalue problem.

Algorithm 5 is a side-by-side comparison of the pseudocod&iP, OMP, and ORMP.
We use the symbdl to refer to a set of indices ifi, K] that indicate the elements of the
dictionary® that are selected by the algorithm. Similatly; refers to the scalar coefficients
applied to the selected basis functions. Basis functioatsate not selected have a scalar

coefficient of 0. Thus, the signalis approximated a®(:,Z7)w(Z) = ®zwz.

Algorithm 5 : Variants of Matchi ng Pursuit
Input: &,y
Output: Z, wz such thaty — ®7wz

1—(_@, , w0, Yres < Y

while (not done)do
If (matching pursuit
J* + argmax; \(IDJTyTeS|
Wi < Wy* + (I)g;yres
If (wj« #0), T —ZU{j*}. Else T —7—{j*}
Yres <= Yres — (q)ﬁ yres)q)j*
If (orthogonal matching pursuit
J* « argmax ¢ @fyreq
T —TU{j*}
wr « (P7Pz) ' TY
Yres < Y — drwr
If (order recursive matching purspit
j* « argmin;gz ||<I>I+j(<1>£jq>1+j)flq>%ﬂy —y|*>  where:Z.; — T U {j}
T —TU{j}
wr « (97 P7) 107y
end while
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6.1.2 Basis Pursuit

Matching pursuit finds a sparse representation by greeeligcting the most promising
elements. In contrast, basis pursuit (BP) [19] achievessgipdy finding solutions to the
following optimization problem:min ||w||; such thatbw = y. Sparsity of the solution
comes from the use di; norm. The BP problem can be solved using linear programming.
Note the hard constrainkw = y is appropriate when the signal is noiseless. When the
signal is noisy, it is appropriate to requit@w — y|* to be small. The LASSO (least
absolute shrinkage and selection operator) [103] implésndns noisy version of basis
pursduit in the following optimization problemnin ||y — ®w||> subject to||w||; < k. The
LASSO can be solved using quadratic programming; howevepe efficient solution is
to use the recently introduced least angle regression (DAER§®rithm [33] with a minor
modification. LARS selects elements from the dictionary aha time, much in the same
way the matching pursuit algorithms work. The first elemesiested is the one that is
most correlated with the signgl Then LARS adjusts the weight on the first element
until another element has as much correlation with the otiresidual. At that point,
LARS includes this second element and then proceeds in atidine(i.e. changing the
weights)equiangularbetween the first two elements. This strategy is less gréedydther
algorithms that sequentially add dictionary elementsergtingly, a small modification
to the LARS algorithm produces the LASSO solution. While LABSitself only adds
basis functions at each step, this modification for LASS@gjthe algorithm the ability to
remove basis functions from the selected subset as well.

We evaluated the OMP, ORMP, LASSO, and LARS algorithms. dtisy to control the
sparsity of each of these algorithms by limiting the numbdasis functions that can be

selected.
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6.2 Combining Basis Selection and Approximate Policy Evaluation
The basis selection problem involves choosing elements &dlictionary to efficiently
represent a target signal. The approximate policy evalogtroblem is to represent the
true value functior)/™ with an accurate approximatidn. If V™ were known, then basis
selection could simply be performed with the target sigreah V™. However,VV™ only
becomes known through the Bellman equatidfi: = R™ + vP™V™ = T™(V™). Thus,
some framework is needed that effectively combines apprate policy evaluation (i.e.
finding an accurate approximatidf) and basis selection (i.e. efficiently representifly
We evaluate two schemes that achieve this combination. ifleesshce between the two is
in how they use the Bellman equatitiThe first scheme uses the Bellman equation within
the basis selection algorithm. This means that when thes Isa$ection algorithm adjusts
the weight vectorw, this not only changes the approximatidw but alsochanges the
target signal based on a function of the Bellman equation.c&liehis the direct scheme
because the selection algorithm directly encodes the Bwlleguation. The second, or
indirect, scheme doesot use the Bellman equation within the basis selection algarit
Rather, there is an iterative process that alternates leet®) setting the target signal
using the Bellman equation, and (2) representing the taigatl using the basis selection

algorithm. These two schemes are described below in a vergrgeform where:

1. f(T™(Pw') — duw') is a functionf of the Bellman residual,

2. Basi sSel ect i on is an algorithm that selects dictionary elemehend computes

weightswz to minimize either( f (7™ (dw') — dw’)) or (y — dw'), and

3. Set Wi ght s is an optional function that uses the dictionary elementsrdened

by Basi sSel ect i on, but computes its own set of weights.

“Note the distinction we draw between tHigect andindirect schemes is not new to RL. For example,
the fitted Q-iteration algorithm [36] is an example of theiredt scheme, whereas the LARS-TD algorithm
[52] is an example of the direct scheme. We are not aware ofodmgr work that makes this distinction,
so we introduced the terminology ourselves. Our analysiseperiments show that the direct and indirect
schemes can behave very differently.
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Direct Scheme
[Z, wr] < Basi sSel ecti on, (f (T™(dw') — duw'))
wr «— Set Wi ght s (f (T™(Pzw’) — Pzw')) OPTIONAL
V — (I)IUJI

Indirect Scheme

ZT—0, wr<10
while (not converged
targety <« 177 (Pzwz)
[Z, wr] < Basi sSel ecti on, (y — dw')
wr «— Set Wei ght s (f (T™(Pzw’) — Dzw')) OPTIONAL
‘7 — (I)Iw];

The direct and indirect schemes differ in their computaglozomplexity and degree
of sparsity. The computational complexity of the indirecheme has the potential to be
greater than the direct scheme because it iteratively tadlsbasis selection algorithm.
This could be wasteful when the target signal given to thesksedection algorithm does
not change significantly between iterations. On the othedhtne direct scheme, by using
the Bellman residual as the target function for the basiscsein algorithm, forces the
regression algorithm to follow a specific path. To see thigysider the beginning of the
basis selection algorithm when no basis functions have gehlselected. The Bellman
residual is equal to the immediate reward functi®h This means the first basis function
selected is attempting to fit the immediate reward. For thke & argument, assume the
first basis function exactly fits the immediate reward. Noe Bellman residual is equal
to the Bellman backup of the immediate reward(BF(R™) — R™) = vP™R™. This same
logic can be used inductively to show basis selection psee order of the elements
in the Neumann serie$, ;°,(yP™)'R™.> Attempting to fit the elements in the Neumann

series can lead to inefficient use of the basis functionss ®bcurs when there is structure

SFor a bounded operatdF, the Neumann series is defined ®%°,7%. One can showy ;> T"
(I-T)"1L. The value functio’™ can be defined using the Neumann serie¥’as= (I —~P™)~LR™
Sio(yP ) RT.
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in V™ that does not exist in the Neumann series; hence, the bdsiise algorithm is
unable to exploit the structure. Since the indirect schesmaoi confined to this path, it
has the potential to use fewer basis functions when reptiegethe eventual approximate
value functionl.

As an example of the potential inefficiency of the direct soheconsider an undis-
counted, deterministic chain MDP with an absorbing staten&t end of the chain. As-
sume the reward function is O everywhere exceptat the absorbing state. The optimal
value function is a constant function equaling 1 in eachestafit the Neumann series is
a sequence of delta functions from one end of the chain totther.oGiven a dictionary
consisting of all the delta functions and a constant fumctep basis selection algorithm
implementing the direct scheme will select all the deltactions rather than the constant
function. This may be an extreme example, but it is not uncomfor a MDP to have a
spiky reward function that would cause similar behavior.téNthis behavior can be par-
ticularly problematic for the multiscale diffusion wavelictionary where very localized
basis functions (that are not necessary for represenfifjgcan get selected before larger

scale basis functions.

6.2.1 Direct Scheme

The next three sections outline the OMB-ddgorithm (i.e. OMP for basis selection and
H, for setting the coefficients), the ORMP;HIgorithm, and the LASSO-Hand LARS-
H, algorithms. Laplacian-based regularization is used it edgorithm. The LASSO-H
and LARS-H algorithms are nearly identical, so we describe them semelbusly. Recall
the BR and FP least-squares methods are easily instantyatedting the hybrid parameter
to £ = 1 and¢ = 0 respectively.

Each algorithm takes as input a set of MDP samplgsr;, s;}7,, the discount factor
v, the hybrid parametef, the dictionary® of basis functions, the graph Laplaciaralong

with its regularization paramete., a distributionp over the states for weighting the least-
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squares problem, and a maximum allowable number of basisifuns%’ that the algorithm
can select. Each algorithm returns a set of indi¢eimto the columns ofd and scalar
coefficientsw; such that the approximate value functih= ®zw;. The sparsity of the
solution is directly controlled by limiting the basis sdiea algorithm to at mosiZ| < &’
basis functions. The parameteralso limits the basis selection algorithm’s computation
and memory usage. Since the selection algorithm builds oypabased estimates of the
least-squares data structures (eflg;m andZA)HQ‘,LR), the size of the data structures cannot
be larger thark’. This can be very important when the number of basis funstiarthe
dictionary is large. To further speed up OMB;KDRMP-H,, LASSO-H,, and LARS-H,

we take advantage of the fact that the algorithms insertrooxv@ one basis function at a
time to the active sef. The matrixflg,lZ can be incrementally formed. However, to keep
the pseudocode simple, the algorithms are not shown wighitiprovement. Appendix B
describes how the algorithms can incrementally updﬁ;@. Note that within this chapter
we only show pseudocode for the OMB-Blgorithm. The other algorithms are similarly
described in Appendix C.

The OMP-H and ORMP-H algorithms terminate when eithét basis functions have
been selected or when the change in the norm of the Bellmaduedsgoes beneath a
thresholc® The LASSO-H and LARS-H algorithms use both of those termination con-
ditions as well as one other condition (related to the patané) that we discuss in that

section.

6.2.1.1 Direct Scheme with Hybrid Method H,
Algorithm 6 (OMP-H,)) shows the direct approach for combining orthogonal match-
ing pursuit and the Hleast-squares algorithm with Laplacian-based regulaoza The

algorithm maintains a sample-based estimate of the vectiere

6Using the terminology described in the algorithm boxes,sheared norm of the Bellman residual is
written >0 p(s;) [ri — (dz(si) + Br gz(si) — fyqbz(s;))TwI]Q. The change in the norm of the Bellman
residual can easily be computed when inserting or removingyabasis function from the active s&t
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¢ = [(® = YP"®)TD, (" — (& =y P"®)u) - ,87 LD, Lou]

J

— [(® — &yP™®)"D,(R™ — (&7 — yP"®r)ws) — 5,07 LD, Ldsuwy] . (6.1)

i
Each iteration of OMP-Kiselects a new basis function to add to the active set by find-
ing j ¢ 7 that maximizegc;|. Then the weightsv; are adjusted to make the residual

orthogonal tod;.

Algorithm 6 : OVP-H, with Lapl aci an-based Regul ari zati on

Input:  {s;, 7, s;}",, samples generated using policy

¢: S — RE, Dbasis function

p: S — RT, weighting over the states

¢ €10,1], hybrid parameter{= 0is FP,{ = 1 is BR)

L, graph Laplacian defined over stafes}! ; (graph edges denoted with)

v € [0,1], discount factor

3. € RT, Laplacian-based regularization parameter

k' < K, maximum allowable number of basis functions
Output: Z, set of selected basis functions (indices injo

wz, weight vector such that (s) = ¢7(s)Twz

¢y p(si)p(si)ri

Initialize active sef « ()

while (|Z| < k") and(Bellman residual not converggdo
1. Find most correlated inactive element:
j* « argmax;gz(|c;|)
2. Adjust active set:
T —TU{j*}
3. Computed; 7 andby:
Az — Y0 p(si)l(dz(si) — Evor(sh) (bz(si) — v ()T + ...
) Brgz(si)gz(si)"]
bz — > iy p(si)(9z(si) — Evo(sy))ri
where: g(s;) < L(s;,s:) ¢(si)
9(5i) — 9(5) + L(si $u) D(5er)s Su|Suir # 5 A 5~ S00,}
4. Compute least-squares weights:
WL — AE}IBZ
5. Compute updated correlations:
¢ 2y p(s)l(0(si) — Evo(s))) (i — (dz(si) — v9z(s))) wr) — ...
Br g(si)gz(si)Twr]

end while

The next algorithm we consider is ORMR-HNe present the direct approach for com-

bining ORMP and the Hleast-squares algorithm with Laplacian-based regultozaThis
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is done to be consistent with our presentations of OMPUASSO-H,, and LARS-H,
which helps make the pseudocode more readable sincetleabi-squares data structures
are identical from one algorithm to the next. However, wd shlow that it is only valid to
combine ORMP and the BR least-squares metljod (). The pseudocode for ORMP;H
is provided in Appendix C (Algorithm 8).

The ORMP algorithm works by considering the impact eachtinabasis function has
on the least-squares problem. We use the terminalggyo indicate the inclusion of basis
functionj in the active set (i.eZ,; < Z U {j}). The first step of Algorithm 8 determines
the best inactive basis functign¢ 7 that maximizes(l?%j A7l . Bzﬂ.).

Moghaddam et al. [73] point out that it is actually faster tadfithe inactive basis
function that maximize{@%ﬂ,flgjﬂﬂfmj - B%AE}IBQ because some of the intermediate
computation cancels out. The intermediate terms cancelcdo®perties of the partitioned
matrix inverse. Note that since the extra te<r6fflg}zéz) is independent of all inactive
basis functions, it does not alter the result of the maxitraproblem. ORMP-H then
inserts the best basis function into the active set, upd&ggmndéz, and iterates.

The ORMP algorithm merits further attention. This algamitis particularly interesting
because it uses the least-squares method to determine tdusch function to include in
the active set. The best basis function is determineddvygmax; ., <b§+jAgjj7I+j bIﬂ).

In other words, ORMP considers the impact of each inactiseshbi@anction on the least-
squares problem. When the BR least-squares algorithm is tisedest basis function

is:

i (0742212
J

— argmax <(b§fj)Tw§fj)
J¢z

— arg;nax <(RW)TD,;((I>I+,- — 7P”<I>I+j)w13fj)
A '

— arggax (R™, Vzﬁlj - 7P“V£Ij_>p
J
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where(-, -) , denotes the-weighted inner product. This makes intuitive sense sihedBR
least-squares problem is fitting a functibi” that minimizes|R™ + yP™V 5" — VBRHi.
Now consider the direct scheme for combining ORMP and thesBBtisquares algorithm.
One can show the best inactive basis function for ORMP-FRuigax; 47 (R™, Vﬁpp.
This maximization does not make sense since selecting hasisons using this criteria
leads to a value function that approximates the rewélrd A simple idea to try to rescue
ORMP-FP is to change the maximization ta;gmax; .7 ((bffj)T(Aﬁj’ZH)‘1b§fj). No-
tice the use of the two different vectdrg® andbz; . This leads to selecting basis functions
according to:argmax g7 (R™, Vﬁfj — 7P”V£fj>p. Although this is seemingly more valid
than the original formulation, it is still problematic. Tlhaderlying problem is that the FP
objective function||IL,(R™ +vP™V*") — V7|12 can always be set for any set of basis
functions.

One must be careful when directly combining least-squagypevaluation algo-
rithms and basis selection algorithms. The result of thedyasis is that ORMP-FP isot
valid but ORMP-BR is valid. However, ORMP can be used withhbeP and BR in the
indirect scheme described in Section 6.2.2.

The last two direct algorithms that we consider are LASSQadd LARS-H. To
achieve sparsity, the LASSO algorithm takes the loss fondtiom Equation 4.4 and in-

cludes anl; constraint on the coefficient vector. This takes the form:

1—
Wiy 1 = argmin (gHT”(@w’) — dul|2 + TgHT“(u) —du 2+ ...

w’' eRK

Br
+ SlL@w 2 + Bl ) (6.2)
where 3, € R" is a regularization parameter that dictates the sparsitthe@fsolution.

Larger values of7, result in a coefficient vectow with more zero entries. In fact, there

exists a value ofj; for which the resulting vectow has all zero entries.
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Loth et al. [62] and Kolter and Ng [52] recently proposed gsiine LASSO algorithm
for approximate policy evaluation. Our description of thgagithm and its derivation fol-
lows along the same lines as that of Kolter and Ng [52]. Thg emteption is that we
consider Laplacian-based regularization and they did Hogrefore, our LASSO-Halgo-
rithm with ¢ = 0 and3, = 0 exactly coincides with their algorithrh.

The minimization problem in Equation 6.2 can be convertéd the following set of

optimality conditions:

_ﬁsgcjgﬁs \V/]
cj:55:>wj20
Cj:—ﬁ5:>’ZUj§O

—Bs <c¢j < Bs =>w; =0, (6.3)

where variable:; is defined according to Equation 6.1. The LASS@digorithm contin-
ually adjusts the weight vector (by adding or subtractingi®&unctions from the active
set) while satisfying the optimality conditions. The aligom is initialized withZ — () and
w « 0. The optimality conditions can be satisfied with this idiiation for somes3, > ;.
The algorithm proceeds to reduge (by inserting basis functions intb and adjustingu;)
while satisfying the optimality conditions until, = /3, or some other termination crite-
ria is triggered. The other termination criteria we usedev@maximum number of basis
functions ¢’) and a threshold on the change in the norm of the Bellmanuakid

The optimality conditions ensure thiat| = 3, for all basis functions in the active set.

This property is maintained by changing the weight vectaoading to:

"Our terminology is slightly different from that used by Keitand Ng [52]. Their LARS-TD algorithm
is the same as our LASSOsHalgorithm withé = 0 and 3, = 0. The distinction we draw between LARS
and LASSO is whether the algorithm only adds basis functiorthe active set (LARS) or both adds and
removes basis functions (LASSO).
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Awr = [(®7 — EyP 1) D, (@1 — vP 1) + 3,91 LD, L] signcr),

where sigitcz) replaces the entries i with valuest1 depending on the sign. The change

in the weight vecto\wz dictates how the vectarchanges:
Ac= ((® - &yP™®)"D,(®1 — yP™d1) + 3,87 LD,L&7) Aws.

The vectorAc allows one to compute if and when an inactive basis funcfigh Z will
have a value; that reaches the same value as those in the active set. Tthedosve basis

function that reaches this point is computed as:

+

[a*, j*] = [min

cj_Bs Cj+ﬁs)

’ argmln]j¢1’ (AC] — 17 ACJ' —|— 1

wheremin™ indicates the minimization is only over positive valuas,is the minimizing
value, andj* is the minimizing argument.

Before adding basis functiojt to the active set, the LASSOsHalgorithm must check
to see whether an element in the activejsetZ has a coefficienty; differing in sign with
c; as such an event would violate the optimality conditie first active basis function

that reaches this point is computed as:

#H — [mint 1. _ W
[a™ j7] = [min ,argmlnbg( ij>‘
If all elements in the minimization are negative, thefi is set tooco. If the step size
a* < o, then basis function* is added to the active set. If the reverse is true, then basis
function j# is removed from the active set. Pseudocode for LARSaRd LASSO-H is

given in Appendix C (Algorithm 9).

8Note this is the only difference between LASSQ-&hd LARS-H. LARS-H, is not required to ensure
w; ande; have the same sign. Therefore, LARS-ibes not remove basis functions from the active set.
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The LARS-H, and LASSO-H algorithms adjust the coefficient vectog in an equian-
gular direction. This means that the residual is never madgptetely orthogonal with the
selected basis functiors;. A common “fix” to this issue is to enforce orthogonality once
LARS-H, and LASSO-H terminate. We list this as an optional step at the end of the

algorithm.

6.2.1.2 Direct Scheme with Hybrid Method H

The previous three sections described the OMPORMP-H,, LASSO-H;, and LARS-
H, algorithms. By setting the hybrid parametetio 0 or 1, these algorithms implement the
FP and BR objective functions. We describe here how the ihgoes would change to
handle the H objective function. We do this in detail for OMP and then siynipighlight
where the (similar) changes need to be made in ORMP, LASS®I. ARS.

The memory and computation requirements are identical anetsing the FP, BR, or
H, least-squares criteria. The hybrid algorithm Rowever requires more memory and
computation time. As shown in the equations below,relquires forming two matrices
of size K x K where K is the number of basis functions in the dictionary. This can b
prohibitively large depending on the size of the dictionaNote that all basis selection
algorithms when using FP, BR, and, ldo not form matrices larger thakl x k" where
k' < K is specified by the user to be the maximum number of basis ibnxthat the
algorithm can select.

The following four lines of Algorithm 6 (OMP-kK) would need to change to accommo-

date the H objective function.

1. The first timecis initialized:
¢ — Ebpr+ (1= E(A™TC b,y
where:  bpr — S0y p(si)((s:) — vb(s)))rs

BFP — Z?:l p(8:)P(si)7;
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AP = 300 p(si) [$(si)(D(si) = v0(s7)T + Bra(si)g(si)T]
C =i plsi)d(si)d(si) -
2. ComputingAz 7 in Step 3:
Arz — ARS + (1 - O(AFS) Cr1ALS
where: AZ% — S0 p(si) [(02(si) — v0(s))(Sz(si) —v62(s))" + Braz(si)gz(si)”]
A5 — ST (i) [6x(5i)(B2(si) —v02(s))" + Braz(si)gz(si)”]
Crz = Yy plsi)dr(si)pz(si)”
3. Computing); in Step 3:
by — b5 + (1 — §)(AL5)TCppbe”
where: b2% — S p(si)(¢z(si) — voz(s)))rs
by Sy p(si)or(si)ri
AR = Sy (si) [02(s0)(82(si) = 10z(s0)" + Brgr(si)oz(s)”]
Crz Yy plsi)dr(si)or(si)”
4. Updatinge in Step 5:
¢ —E&epr+ (1= (AT C  epp
whereicpr — Y1y p(si)[((si) = v0(s))) (ri — (¢z(si) — voz(s})) wz) —
Brg(si)gz(si) wr)
crp = 2y p(si) [0(si)(ri — (9z(si) — vz (s))) wr) — Bra(si)gz(si) wr]
APP 3T p(si) [B(50)(D(si) — v (s))T + Brg(si)g(si)”]
C =iy plsi)d(si)d(si)T .

The changes to ORMP, LARS, and LASSO are very similar to trenghs made for
OMP; therefore, we just point out the lines that need to béeddiFor ORMP, four lines
would need to change: computiégH. in Step 1, computingizﬂlﬂ in Step 1, computing
AH in Step 3, and computinl@ in Step 3. For LARS and LASSO, four lines would need
to change: the first timeis initialized, computingflm in Step 1, computing\c in Step 2,

and computin@z at the final optional step of the algorithm.
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6.2.2 Indirect Scheme

The indirect scheme uses an iterative approach to sparsexapte policy evaluation.
The iterative approach alternates between (1) settingatiget function using the Bellman
backup operator, and (2) representing the the target fumcising the basis selection algo-
rithm. This potentially makes the indirect scheme more cai@jonally intensive than the
direct scheme, but it frees up the basis selection algortthohoose the best basis func-
tions for fitting the approximate value function (insteaditifng the ordered elements in
the Neumann series). We describe the iterative, indirderse in Algorithm 7. This is a
general framework which can utilize any sparse basis sefeftegression) algorithm. The
sparse basis selection algorithm is denoted as iB3&tl(y) wherey is the target function
that BSel fits using dictionaryd. For BSel, we evaluated the pure regression versions of
OMP, ORMP, LASSO, and LARS with the only exception being thaye augmented to
include Laplacian-based regularization. The pure regvasgersions of OMP and ORMP

without regularization were described in Algorithm 5.

6.3 Action-Value Function Approximation

The previous two sections described the direct and indgelaémes for approximating
the value function. The same algorithms can also be usedpi@edmate the action-value
function. The graph-based basis functions, which are defust over states, can be also
used to approximate the action-value function. This is ag@shed by using the basis
functions for each discrete action. For example, considdbd with two actionsga; and

as. The approximate action-value functighcan take the form:
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Algorithm 7 : I ndi rect Schene for Sparse Approx. Pol. Eval.
Input:  {s;, 7, s;}",, samples generated using policy
¢: S — RE, Dbasis function
p: S — RT, weighting over the states
L, graph Laplacian defined over stafes}! ; (graph edges denoted with)
v € [0,1], discount factor
B. € RT, Laplacian-based regularization parameter
maxzlter € N, maximum number of iterations
BSel(y), sparse basis selection algorithm that approximates a target fugction
using the dictionary). The termination criteria foBSelincludes:
k' < K, maximum allowable number of basis functions
a threshold on the residug) — ®w||?
any other algorithm specific parameters (gigfor LASSO)
Output: Z, set of selected basis functions (indices injo
wr, Wweight vector such that (s) = ¢7(s) wr

Initialize active sef < (), w7z < 0, idter < 0

while (iter < maxIter) and(Bellman residual not convergedo
1. Form target vectoy using the sampled Bellman backup:
yi — ri +v9z(s)) T wg Vi
2. Run the sparse basis selection (regression) algorithmgo fit
[Z, wr] < BSel(y)
3. OPTIONAL: Adjustwz using one of the least-squares methods:
W7 “— AE}I(A)I
For example, if using FP least-squares method, then:
{11,1 — iy p(si) [@z(s0) (D2 (si) — vz ()" + Brgz(si)gz(si)”]
br — 3271 p(si)dz(si)ri
4. Increment the iteration count:
iter «— iter + 1

end while

Notice the approximate action-value function can use awffit set of basis functions
for each action:Q(-, a;) uses the basis functions indexed By andQ(-, a;) uses basis
functions indexed by, .

Algorithms 6, 7, 8, and 9 can be used with this definition withchanging any steps.
However, if these algorithms are used without changes, tingoer of selected basis func-
tions per action may not be equal. For the MDP with two actiepnanda,, this means
|Z,,| will not necessarily be equal t@,,|. It may be desirable to require the number of
basis functions per action to be equal (or approximatelyagqhis constraint can easily

be added to the indirect scheme (Algorithm 7) and to the tisehemes involving OMP
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and ORMP (Algorithms 6 and 8). It does not seem possible totliddconstraint to the
direct scheme involving LASSO and LARS (Algorithm 9) becaus the way these al-
gorithms control the correlation between the basis fumstiand the target function. For
example, step 3 of Algorithm 9 relies on the fact that all b&gnctionsnotin Z (i.e. basis
functions that have not been selected) have a correléatjpn< 3,. Adding a constraint
that the number of basis functions per action should be nyuggual (which would entalil
changing step 3 to not just select the minimizing element)ld/iseem to break this logic.
Algorithms 6, 7, 8, and 9 can produce approximate actione/élinctions for a specific
policy. These algorithms can also be used within leastisgyaolicy iteration (LSPI) [56].
One LSPI iteration takes a batch of MDP sampfes a;, ;, s;}?.; and a policyr and
produces), an approximation of)™. The greedy policy implicitly defined bg) is then

used in the next iteration of LSPI.

6.4 Experiments
6.4.1 Approximate Policy Evaluation

The following components were varied in the experiments:

¢ |east-squares method (FP, BR, ang H

¢ basis selection method (OMP, ORMP, LASSO, and LARS)

e scheme for sparse approximate policy evaluation (diredtiadirect)
e amount of Laplacian-based regularizatigh)(

e dictionary (PVFs and diffusion wavelet functions).

To get a solid understanding of how each component influetheepolicy evaluation
problem, we chose the 50 state chain MDP [56]. This domaimss\evisualized. The

problem consists of 50 states (i € [1,50]) and two actions moving the agent left ¢~
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s;_1) orright (s; ~» s;.1). The reward function is defined asl in statess;, ands,; and
zero everywhere else. The discount factoy is 0.9.

We consider the task of evaluating the optimal poli¢y Rather than sampling fromi*
to generate a data set, we used the true m&deland R™ in the following experiments.
This choice was made to remove the influence of sampling savhaan adequately com-
pare and contrast performance. However, we note that usenmnodel rather than samples
eliminates the bias of the BR method.

The graph used to form the PVFs and diffusion wavelets ctmesisb0 vertices with
self-edges and edges between “adjacent” vertices. The Ri6reary, which was con-
structed using the combinatorial Laplacian, consists ofleBal basis functions. The dif-
fusion wavelet tree was constructed using the parametei0—*. The number of scaling

and wavelet functions is shown in Table 6.4.1. We evaludtezktdictionaries constructed

Tree Levelj | [v;_1] | |¢;]
1 0 | 50
2 9 41
3 13 | 28
4 7 21
5 5 | 16
6 5 11
7 3 8
8 2 6
9 2 4

10 1 3

Table 6.1.Number of wavelet and scaling functions at each tree level for the 50cttate MDP.

from this tree. The first dictionary consisted of all 235 ftiaos in the tree (47 wavelet and
188 scaling functions). The second dictionary consistati@fl 35 functions at tree level 3
or greater (38 wavelet and 97 scaling functions). The 10fadunctions in the first dictio-
nary consist of very localized basis functions as well asesostillatory functions. Note
that both the first and second dictionaries are overcomp$gteselecting elements from

these dictionaries can lead to linear dependence in the fuasitions. The third dictionary
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consisted of all 47 wavelet functions and the 3 scaling fionstat tree level 10. This third
dictionary is orthonormal whereas the first two dictionarsgge overcomplete. A further
optimization that we did not pursue would be to select thestbguch orthonormal dictio-

nary (amongst the 10 possible orthonormal dictionariesteiad of just using the dictionary
that reaches to tree level 10.

We systematically tested different combinations of ditéity, least-squares algorithm,
policy evaluation scheme, amount of Laplacian regulanratand basis selection method.
The list of these combinations is shown in Table 6.4.1. Weegméethe main findings of
these experiments along with supporting figures. For a gagunr of all the experiments
and resulting value function plots, we refer the reader totechnical report [45].

The result of each experiment is an approximate value fandti. Rather than simply
report a number (such as the Bellman residual nof¥; (V') — V||, or the true error,
|V* — V||), we found it much more illuminating to qualitatively asseke approximate
value functions. This leads to some interesting insightstime interaction among the basis
selection algorithm, least-squares method, and dictjorfdre policy iteration experiments
in the next section provide a more quantitative measure bprance.

We summarize the policy evaluation experiments with thie¥ahg findings.

e OMP-FP & the effect of Laplacian regularization

Figure 6.1 shows the results of using the OMP-FP algorithrarging number of
basis functions (4, 8, and 12), and a different amount of &aph regularization
(6, = 0 andg, = 0.1). The captions under the plots show the different dictigasar
used to produce the approximate value function. We use thitheind DWT(50) to
refer to the diffusion wavelet dictionary with 50 orthonahtases, DWT(135) to re-
fer to the diffusion wavelet dictionary with 135 functiondiee level 3 or greater, and
DWT(235) to refer to the dictionary containing all 235 scgland wavelet functions

in the tree.
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| Scheme | Algorithm \ Dictionary

Direct OMP-FP, LASSO-FP PVFs
Direct OMP-BR, ORMP-BR, LASSO-BR PVFs
Direct OMP-H, PVFs
Indirect FP & BR OMP PVFs
Indirect FP & BR ORMP PVFs
Indirect FP & BR LASSO PVFs
Direct OMP-FP, LASSO-FP, LARS-FP 235 Diffusion Wavelets
Direct OMP-FP, LASSO-FP, LARS-FP 135 Diffusion Wavelets
Direct OMP-FP, LASSO-FP 50 Orthog. Diffusion Wavelets
Direct ORMP-BR 235 Diffusion Wavelets
Direct OMP-BR, ORMP-BR, LASSO-BR 135 Diffusion Wavelets
Direct OMP-BR, ORMP-BR, LASSO-BR 50 Orthog. Diffusion Wavelets
Indirect FP OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets
Indirect FP OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets
Indirect FP OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelet$

Table 6.2. Parameters varied in the policy evaluation experimentgHer50 state chain
MDP.

The approximate value functions learned using either obtitlgogonal dictionaries
(PVFs or DWT(50)) accurately captured the shape of the exalaevfunction*
when using at least 8 basis functions. The approximatioadymed using the dif-
fusion wavelet dictionary DWT(50) were more accurate thavs¢husing the PVF
dictionary. In fact, even using just 4 basis functions frdra DWT(50) dictionary
resulted in an approximate value function that tracked tape (not magnitude) of
%

The approximate value function learned using DWT(235) becamstable when
12 basis functions were used. This occurs because the m@tﬁmecame nearly
singular. The results were slightly better when using the [{¥8%) dictionary, which
removes some of the most localized and oscillatory funstionDWT(235). This

indicates the aggressiveness of OMP-FP may be a potentialeon with a highly
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overcomplete dictionary. It is possible though to make tgerdthm more stable by

checking the condition number @i‘g}z before inserting a basis function.

Lastly, notice the influence Laplacian regularization hashe value functions pro-

duced from the PVF and DWT(50) dictionaries. The approxioretiwith regular-

ization (3, = 0.1) clearly are smoother with respect to the topology of theirtha

This had a noticeable effect on the basis selection prooessd PVF dictionary.
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Figure 6.1. Results of OMP-FP with the PVF and diffusion wavelet dictines.

¢ ORMP-BR

Figure 6.2 shows results using ORMP-BR and OMP-BR with th& Bikd diffusion

wavelet dictionaries. Interestingly, the only basis sebecalgorithm that worked in

conjunction with the BR least-squares method was ORMP.cidhe approximate

value function learned using OMP-BR is very poor (which wias #éhe case for both

LASSO-BR and LARS-BR). We show the value function from OMR-Rith 20
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basis functions, which is more than enough for an excellppt@imation ofV*.
On the other hand, ORMP-BR produced excellent approximatwhen using 8 or

12 basis functions.

ORMP-BR, B, =0 ORMP-BR, B, =0 OMP-BR, B.= 0

—Exact —Exact
4 7‘; 4 73
- —12 - —12 =
2 3 S 3 S
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g s //\ g
A~ NN AN -
0 0
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(a) PVFs (b) DWT(235) (c) PVFs

Figure 6.2. Results of ORMP-BR and OMP-BR with different dictionaries.

e OMP-H, with the PVF dictionary

Figure 6.3 shows results using OMR-&hd LASSO-H with the PVF dictionary. In-
termediate values @&f between 0 and 1 tend to produce approximate value functions

between the extremes produced by the FP and BR algorithms.

LASSO—H2 (Orth.), 12 Basis Functions
OMP—HZ, 12 Basis Functions, Ranging &, [3r =0 Ranging &, B =0
r

—Exact

—0
0.3

—0.6

Value Function
Value Function

% 10

Figure 6.3. Results of OMP-H and LASSO-H with the PVF dictionary using 12 basis
functions while varying (£ = 0 is equivalent to FP angl= 1 is equivalent to BR).
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e LASSO-FP

The LASSO-FP algorithm performed very differently depempion whether the
dictionary was orthogonal (PVFs and DWT(50)) or overconpi@WT(135) and
DWT(235)). Figure 6.4 shows the results using LASSO-FP badth and without
the optional orthogonalization step at the end of AlgorithnThe magnitude of the
approximate value function without the orthogonalizatstep was very small when
using the orthogonal dictionaries. This occurs becauseAESO algorithm, which
is conservative in its setting of the coefficients by design, moves in an equiangular
direction amongst orthogonal elemedts. When the element$; are not orthogo-
nal, as in the results with DWT(235), adjusting the coeffitMattorw; can lead to

larger steps in approximating the value function.

When the orthogonalization step in Algorithm 9 is used (whiodans the LASSO-
FP algorithm is used just for basis selection, not for sgttime coefficients), the
magnitude of the approximate value functions naturallyobees larger. The approx-
imate value functions were very accurate when 8 and 12 basidibns were used

from the dictionary DWT(235).

Note we do not show results using LARS-FP because they artynéantical, and

in some instances exactly identical, to LASSO-FP.

¢ Indirect scheme with an orthogonal dictionary

The experiments in this section were conducted using Aligari7 under three con-
ditions. First, the while loop in Algorithm 7 was executed 1@ iterations. Second,
we used a single termination criterion for the basis sedecsilgorithm. The algo-
rithm stopped when it had selected a specified number of basisions. Third, we

always used the optional third step in Algorithm 7 which is&b the weights on the

selected features using a least-squares method. We usBf thied FP least-squares
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Figure 6.4. Results of LASSO-FP using diffusion wavelet dictionaries. The valuetfons are
shown with and without the (optional) orthogonalization step in Algorithm 9.

methods. Since BR and FP produced similar results, we doepott results using

the hybrid method Kl

The indirect scheme with an orthogonal dictionary (both B\Rd DWT(50)) pro-

duced accurate approximate value functions for all bagecgsen methods (OMP,

ORMP, LASSO, LARS) and both the FP and BR least-squares methigure 6.5

shows results using the OMP and ORMP algorithms with FP aad &5S0O algo-

rithm with BR. For the OMP algorithm with FP, there is also atpf the Bellman

error norm|| 7™ (®zwz) — ®7wz||? after each iteration of Algorithm 7. We just show

the Bellman error plots for the OMP algorithm to point outttttee Bellman error is

not monotonically decreasing. The Bellman error plots f&MP and LASSO were

very similar to those for OMP.
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The resulting value functions were noticeably better tharsé produced using the
direct scheme for approximate policy evaluation. The ddfiee is easily recognized
by looking at the value functions estimated using 4 basistfans. Most of the

results using the direct scheme produced very poor appetioms with just 4 basis
functions. But the results were quite good when using th@eot scheme. This
supports our hypothesis that the direct policy evaluatareme can limit the efficacy

of the basis selection algorithm by forcing it to follow thedmann series.
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Figure 6.5. Results using the indirect policy evaluation scheme withagonal PVF and
diffusion wavelet dictionaries.

¢ Indirect scheme with an overcomplete dictionary

Figure 6.6 shows the results using the indirect policy estatun scheme with over-
complete diffusion wavelet dictionaries. Since all bagestion algorithms per-

formed similarly, we just show plots for the OMP algorithmhi3 is done for both
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the FP and BR least-squares methods. Overall, the resuitg BB were better than

those using BR (especially when fewer basis functions weeelu

The approximate value functions are less smooth than thoskiped using orthog-
onal dictionaries. The results with only 4 basis functioressagnificantly worse than

when 4 basis functions are used from an orthogonal dictionar
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Figure 6.6. Results using the indirect policy evaluation scheme with overcomplete diffusion
wavelet dictionaries.

6.4.2 Approximate Policy Iteration

The simple policy evaluation experiments in the previousiea were completed using
the MDP model and evaluating just a single policy. In thistise¢ we extend beyond
this idealized setting to the full approximate policy iteoa problem where a policy must
be learned from a fixed set of samples. Furthermore, we cardlinthree components
of the dissertation (regularized hybrid least-squaresrélygms, efficient basis construction
algorithms for graphs, and the basis selection methodsgistngle combined architecture.
We try to provide intuition as to how these different compatsenteract to produce a final
approximate value function and corresponding policy.

Experiments were conducted on the mountain car task usinglsa from 100 episodes,
each of at most 100 steps, of a random policy. The results €bapter 5 (Figure 5.7) on

this domain showed that it was possible to learn policies ¢bald reach the goal, albeit
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not optimally, without performing basis selection. Thissagone using the 20 smoothest
Laplacian eigenvectors as a basis. To make the problem sSoatemore complex, we re-
strict the algorithm to only 8 basis functions computed ggime AMLS algorithm. With
this limited representational capacity, neither the fixethpnor Bellman residual least-
squares algorithms were able to learn a policy that reliatiins the goal. Itis instructive,
however, to see what type of action-value functions thesthods do learn. Figure 6.7
shows the action-value functions and corresponding greetlgies for both the BR and
FP least-squares methotihere are four plots per method. The first three plots are the
action-value functions for the actions coast, forward, eserse. The fourth plot shows
the greedy policy attained from the action-value functifwiere the color corresponds to
the action). All of these plots are shown from a top-down v@whe two dimensional
state space. To keep the figures legible, we only show thdabess for the first of the four

plots; the remaining three plots are on the same scale.

-Q., Coast -Q,, Forward
1 A Q. Coast . Forward
I‘5 l -50 w-._‘ I 50
g 10 0o
3 8
@ P 50
I l -200 I -200
1 05 0 E
h -P. i -1 05 O
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i L 100
o [ [ 150 2
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: L V- .
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(a) Bellman Residual (b) Fixed Point

Figure 6.7. Action-value functions and policies learned using the BR BR least-squares
policy iteration algorithms and using the 8 smoothest Leipla eigenvectors (computed
using the AMLS algorithm) as a basis.

9Strictly speaking, we plot theegativeof the action-value function as is customary in the RL litera.
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There are two interesting things to point out about the aeti@lue functions in Figure
6.7. For the BR least-squares algorithm, notice that themsalue functions are very
smooth and that the values range from 0 to -15. The actiamevainctions learned using
the FP method have a much larger gradient. Further, the yalmege from 50 to 200.
That the maximum value is 200 (instead of 0) is less relevVzem the fact the spread of
values is 150 versus a spread of just 15 for the action-valoetions learned using the
BR method. This indicates the BR algorithm, via its objeefunction that minimizes the
Bellman residual norm, isonstrainingthe range of values as opposed to the basis func-
tions not being expressive enough. This leads to the hypisthieat if the FP method were
appropriately regularized, then it could compute an adeuaation-value function using
these same 8 basis functions. To test this hypothesis, weat®d two ideas. First, we
added Laplacian-based regularizatigh & 0.1) to the FP method. Second, we used the
hybrid least-squares algorithm with an intermediate wengh(¢ = 0.5) to enforce some
penalty for having a large Bellman residual norm. Both idessilted in better action-value
functions and better policies. Starting from the typicaltstate at the bottom of the hill,
the goal is reached in 160 steps (on average) for the policy the FP method with Lapla-
cian regularization and 219 steps for the policy from therld/inethod (the results were
even better - 130 steps to goal - when the hybrid method waswigle Laplacian regular-
ization). The action-value functions and greedy plots &\ in Figure 6.8. Notice the
range of values for the action-value functions is more ie kvith the optimal action-value
function’s range.

This is an interesting result that captures the idea belmadhybrid least-squares algo-
rithm. By placing some weight on minimizing the Bellman cegl norm, hybrid methods
in effect regularize the solutions produced by the fixed poiathods. One can argue this
is a more natural form of regularization for MDPs than usimgpip-based regularization

(since it stems from the Bellman equation), but on this tastk llorms of regularization
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Figure 6.8. Action-value functions and policies learned using appraate policy iteration
with the FP method including Laplacian-based regulame{, = 0.1) and the hybrid H
method £ = 0.5).

have a similar effect. We found the results were more serditi the Laplacian regulariza-
tion parametep, than to the hybrid parametér

These results show that even with this limited set of bagistfans, it is possible to
learn a policy that can reach the goal. However, notice thierawalue functions in Figure
6.8 do not accurately capture the optimal action-value tionc The only portion of the
state space that should have a value close to 0 (which comdspo dark blue in the plots)
is the region in the upper right-hand corner near the goak flbts show the dark blue
values encircle the outside of the state space, which islgliegorrect. It is interesting to
consider whether basis selection algorithms can chooséter seibset of basis functions.
We still limit the algorithms to 8 basis functions per actibnt they are free to select from
a dictionary. For this data set, we used a graph containirflyv&dtices and computed
100 approximate Laplacian eigenvectors using the AMLSrélgn. The 100 approximate
eigenvectors constitute the dictionary.

We limit our presentation of the results to a few interesimages. First, for the indi-
rect scheme including the optional orthogonalization steplgorithm 7, the action-value

functions were unstable when using the FP least-squaresithlp and any of the basis
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selection methods. When using the Bellman residual leasireq algorithm, the action-
value functions were too smooth. The hybrid least-squaigsithm, however, resulted
in both good policies and accurate action-value functiofigure 6.9 shows the action-
value functions and policies learned using the hybrid lsgsiares method with OMP and
LASSO for basis selection. In particular, notice how thekdalue region of the action-
value function plots is confined to just the region near thal gtate. This improvement
in the representation of the action-value function camerasait of the basis selection al-
gorithms picking elements useful for representing thepst in the mountain car value
function. Figure 6.10 shows two such basis functions thatallgorithms selected. These

are the 19 and 14" smoothest Laplacian eigenvectors in the dictionary.
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Figure 6.9. Action-value functions and policies learned using the rech policy itera-
tion scheme with the hybrid least-squares method and the Q&ffp and LASSO (right)
algorithms.

We also used the indirect scheme without the orthogon@izatep. Note that, without
orthogonalization, the indirect scheme in Algorithm 7 isueglent to Ernst’s fitted Q-
iteration algorithm [36] with the exception being that thelue function in Algorithm 7
is linear in the features. Figure 6.11 shows the actionevéilunction and policy learned
using this scheme with LASSO. The approximate action-valuaetion is not close to the

optimal action-value function, but its greedy policy isesffive (reaching the goal in 131
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Figure 6.10.The 12" (left) and 14" (right) elements from the Laplacian eigenvector dictio-
nary. The basis selection algorithms chose these elemehish are useful for capturing
the steep cliff in the mountain car value function (near thalgegion).

steps). Interestingly, although it had the ability to dotbis technique did not change the

basis functions from the original 8 smoothest elementseardibtionary.
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Figure 6.11. The action-value function and greedy policy when using LAS6 the indi-
rect scheme without orthogonalization.
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In general, we found the direct schemes for combining apprate policy evaluation
and basis selection to be less stable. LASS(OAND LARS-H, produced the best results.
This is due to their conservative updates to the basis fonatoefficients. On the other
hand, when OMP-kland ORMP-H select a new feature, the coefficients are set by making
the residual completely orthogonal to the selected basistiions. This method is overly

aggressive and lead to instability in the action-value fiomcrepresentation. We believe it
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is possible to dampen this aggressive behavior by consttaihe weights (using Laplacian
regularization or a simplé, penalty||w||2).

We draw two conclusions from the experiments in this sectfrst, the hybrid least-
squares method provides regularization to the approximalige function. This occurs
because the hybrid method’s objective function includesBaliman residual norm, which
constrains a state to have a similar value to its precedidgaoceeding states. We demon-
strated the usefulness of the hybrid algorithm, in spitet®kingle sample bias, both in
this section and in Chapter 4. Second, we found that basiste#ielgorithms can find a
better set of basis functionsovidedthe policy evaluation algorithm is stable. When the
policy evaluation algorithm is unstable, the basis sebectilgorithms can select a poor set
of elements and further exacerbate the problem. Thus, wevieetegularization is very
important. We selected regularization parameters by hatitis section. In the future, we

plan to automate this process.

6.5 Conclusions

Proto-value functions and diffusion wavelets are grapsebabasis functions that cap-
ture topological structure of the MDP state space. The Hasistions are independent
of any policy and therefore can be used to approximate angy®lvalue function. A
mechanism is required though to select a subset of the hasiidns for approximating a
value function. The previous approach to using PVFs andslh wavelets used the fol-
lowing basis selection heuristic: the most global funcéiorere selected regardless of the
policy being evaluated. This heuristic is simple and leadsmooth approximations, but it
does not fully utilize the graph-based dictionaries. To enb&tter use of the dictionaries,
a sparse basis selection algorithm must be combined witloajppate policy evaluation.
We evaluated a scheme that directly combines basis saieatio policy evaluation and a
scheme that indirectly combines them via an iterative ppec@&oth schemes are general

and can be used with any set of basis functions. The hybred-Esguares method was used
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for approximate policy evaluation. Specifically, we used taplacian-based regularized
form of the hybrid algorithm developed in Section 4.4. Far thasis selection algorithm,
we implemented orthogonal matching pursuit (OMP), ordeursive matching pursuit
(ORMP), and LASSO and LARS. A systematic study was conducted simple chain
MDP to determine the most promising way(s) of combining ¢hearious components.

From these experiments, we summarize with the following fowdings.

1. We showed that the direct scheme for sparse approximéity gvaluation, when
combined with the fixed point least-squares method, canstthe order in which a
basis selection algorithm selects elements from a dictyoride order is dictated by
the elements in the Neumann seri®s;”,(vP™)"R™. This can lead to the selection
of basis functions that fit some of the early terms in the seteit are in fact not
useful for representing the underlying value function. Ofise, an algorithm like
LASSO that can prune basis functions has the possibilitgwfaving basis functions
that become useless. The indirect scheme for sparse apm@texpolicy evaluation
sidesteps this issue by separating the Bellman equatiantfie basis selection algo-
rithm. This adds computational complexity, but frees upldasis selection algorithm

to represent the value function in the order it sees fit.

2. The graph Laplacian, which is used in constructing PVFs diffusion wavelets,
can also be used to provide regularization. Laplaciandasgularization can help
smooth out the approximate value function. It also proviaésas toward smoother
basis functions in the dictionary. This bias can be helpfokew using the direct
scheme for sparse approximate policy evaluation. We spetihat in an online
setting, it may be beneficial to adjust the amount of regeddion over time as more

samples are seen.

3. For direct sparse approximate policy evaluation:

The OMP-FP algorithm produced accurate approximationgwiséng an orthonor-
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mal dictionary, but became unstable when using an overcatmplictionary due to
matrix Ag}z becoming nearly singular. The algorithm could be made mobeist
by checking the condition number of the matrix before inahgda new basis func-
tion. The more conservative nature of LASSO-FP and LARS€d? Ito accurate
approximate value functions; however, when using an odhmoal dictionary, these
algorithms generated approximate value functions withllsmagnitude (without the
orthogonalization step at the end of Algorithm 9). The ortyoaithm that worked
using the Bellman residual least-squares method was ORRIPTRis was an in-
teresting result that shows one must be careful when comipioasis selection and

approximate policy evaluation algorithms.

4. Forindirect sparse approximate policy evaluation:

OMP, ORMP, and LASSO all produced accurate approximatesvainctions while
using both the fixed point and Bellman residual least-scuarethods. When using a
small number of basis functions, the algorithms performeittido with an orthogonal
dictionary as opposed to an overcomplete dictionary. Qlvehee results were no-
ticeably better than using an orthonormal dictionary wité dlirect scheme for sparse
approximate policy evaluation. This provides some eviédoc the hypothesis that
the indirect scheme can select a more efficient set of basatituns than the direct

scheme.

In the approximate policy iteration experiments, policvesre learned from a set of
samples. The results attained with and without basis sefeatdicate the importance
of regularization. In particular, when changing the basisctions, the Bellman residual
should be controlled for basis selection to remain staberd are multiple ways to ensure
stability: graph-based regularization, use of the hybemkt-squares algorithm, and/or use
of a conservative basis selection algorithm like LARS/LAS&ach of these methods helps

protect against large Bellman residuals.
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The policy evaluation experiments partially demonstrate éxpressiveness and flexi-
bility of the diffusion wavelet dictionary. However, we Imle the true value of diffusion
wavelets will be evident on more challenging value funcsianth discontinuities and dif-
ferent degrees of smoothness. For future work, it would betwdhile further decompos-
ing the diffusion wavelet tree using diffusion wavelet paisk{18]. This increases the size
of the dictionary and provides even more flexibility for fuion approximation.

The benefit of maintaining a basis function dictionary is flegibility to approximate
many different functions. This benefit comes at the costarirgg a potentially large num-
ber of elements in the dictionary; therefore, efficient at@ schemes are very important.
As an example, recall the Kronecker product method from Grdpstores the dictionary
in a compressed format. Parametric methods for repreggtiim dictionary could also

prove useful.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Summary

In this dissertation, we proposed automatic basis cortsbrualgorithms and an accom-
panying approximate policy evaluation method for Markoeidien processes. The ability
to automatically learn useful representations is an ingedrand fundamental challenge for
an autonomous agent. RL agents must be able to meet thispalto both deal with the
complexity of real world environments and to go beyond tivétral representations given
by human designers.

Our work builds upon a recently introduced graph-based @pgr to generating rep-
resentations [67, 63]. In this application, graphs reflaetgeometric structure of a MDP
state space. An important attribute of the graph-basedoagfris that it circumvents the
dimensionality of the state space. While a MDP state spacenoaynally be very high
dimensional, if the reachable state space in fact lies omvarldimensional surface, then
the graph-based approach can leverage this informationdio #he “curse of dimension-
ality.” Basis functions generated from these state spaaehgrare well-suited to represent
certain classes of value functions.

The goal of this dissertation was twofold: (1) to scale thap@rbased approach to
handle larger amounts of data, and (2) to effectively anaiefitly use the basis func-
tions to perform approximate policy evaluation. To scale ¢inaph-based approach, we
proposed one matrix factorization algorithm and anotheltisaale algorithm. Both algo-
rithms produce basis functions that approximate the oaigiases proposed by Mahadevan

and Maggioni [67, 63]. Once constructed, the basis funstext as a dictionary. Repre-

133



senting a particular policy’s value function using a lin@gproximation is accomplished

by selecting elements from the dictionary and assigningy eeement a scalar weight. We
evaluated several basis selection algorithms and intexiachybrid least-squares method
for setting the weights. Although we mostly explore using Hasis selection algorithms

and the hybrid least-squares method with the graph-basasl foactions, these algorithms
can be applied to other types of basis functions as well. Eheimder of this summary

covers our contributions in greater detail.

In Chapter 4, we presented hybrid least-squares algoritbnagpproximate policy eval-
uation. The term “hybrid” is used to emphasize the fact thatdlgorithm parametrically
combines (and generalizes) two common RL least-squardsoaiet At one extreme, the
hybrid algorithm defaults to minimizing the norm of the Be#n residual (BR). At the
other extreme, the norm of the projected Bellman residualirsmized (we refer to this as
the fixed point (FP) method).

By using a linear combination of the BR and FP objective fiomst, hybrid algorithms
allow for finding solutions in between those computed by tReeBd FP methods. This can
be useful when the hybrid least-squares algorithm is usédma policy iteration loop. We
do not have a theoretical explanation of this result; ratl@pirical results show the hybrid
method appears to temper large changes to the value furibibthe FP method can make
between rounds of policy iteration. Experiments in a disegrid MDP, the challenging
problem of Tetris, and mountain car demonstrated that theithyalgorithm can, in some
cases, find better policies. We also proposeégalarizedhybrid least-squares algorithm
which uses the graph Laplacian [20]. The Laplacian pensifiziections that are not smooth
according to the structure of the graph. This type of regedaion is useful for MDPs when
the domain is stochastic and relatively few samples ardabtaifor learning a policy.

Two recently introduced approaches to automatically getimeg basis functions from
a MDP state space graph are to form graph Laplacian eigeargggtroto-value functions

[67]) and diffusion wavelets [63]. Computing eigenvectard diffusion wavelet trees from
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large, sparse matrices can be computationally intensigescé@le these basis construction
methods to larger graphs and thus larger MDP state spacéstraduced two algorithms in
Chapter 5. The first algorithm is based on matrix factorizatising the Kronecker product.
The Kronecker product is particularly relevant becauseaserves the spectral structure
of matrices. In this approach, smaller matrices are autimadt computed and combined
together via the Kronecker product to approximate the @grgriginal matrix. Laplacian
eigenvectors or diffusion wavelet trees can then be geegfadm these smaller matrices.
We showed how the Kronecker product method significantlgséoth time and memory.
Experiments using the basis functions produced by the Kikareproduct method were
mixed. We attribute this result to the Kronecker productéchk structure not allowing for
sufficient representation of arbitrary matrices. To ovemecathis limitation, we proposed
using a second algorithm called Automated Multilevel Suuttiring (AMLS). AMLS
recursively decomposes a matrix into smaller submatricesyputes eigenvectors for the
submatrices, and uses those solutions to approximateveigtans of the original matrix.
We proved the algorithm is applicable to graph Laplacianrives. The recursive nature of
AMLS allows for a very fast parallel implementation. The @ighm can handle graphs up
to one hundred times larger than standard eigensolvers aaage (given equal computing
resources). Aside from its scalability, we also demonsttdhe basis functions computed
by AMLS performed just as well in policy iteration experimieras those computed using
exact eigensolvers.

In Chapter 6, we evaluated four well-established basis setealgorithms: orthogonal
matching pursuit [82], order recursive matching pursu][Zhe LASSO [103], and least
angle regression [33]. Basis selection algorithms chos$evaelements as possible from a
dictionary in order to represent a value function. In tangrthe representation to a partic-
ular value function, selection algorithms provide flextyiland computational efficiency.

We employed these algorithms using graph-based basisiduscas a dictionary. Other
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types of basis functions could also be used with the selealigorithms. Our work [45] is
the first time Laplacian eigenvectors and diffusion waveklgtve been used in this manner.
Along with choosing elements from the dictionary, basiesgbn algorithms must also
assign weights to the basis functions. This was accomglisiseng the regularized hy-
brid least-squares method developed in Section 4.4. Weiaeal two different ways of
combining the policy evaluation method and the basis seleetigorithm. The distinction
between the two ways is whether the policy evaluation meithdatectly encoded in the ba-
sis selection algorithm. We showed this distinction caretesignificant effect on how the
dictionary is utilized. Interestingly, our experimentsled that the basis selection algo-
rithms perform differently depending on whether the diotioy consists of an orthonormal
or overcomplete set of basis functions. When the dictionargviercomplete (as is the
case with the complete diffusion wavelet tree), the coregem nature of the LASSO and
least angle regression algorithms proved more useful thamggressive matching pursuit

methods.

7.2 Future Work

There are a number of interesting directions for future work

e Learning algorithms

The hybrid least-squares algorithm presented in Chapteqdines setting a scalar
parameter to a value between 0 and 1. For Baird’s incremgatalon of the hybrid
algorithm [3], he proposed setting this parameter to guaeoonvergence. Since en-
suring convergence is unnecessary for the least-squargswewe have more flexi-
bility. In the experiments, we selected a particular valné keld it fixed throughout
the policy iteration loop. In future work, we would like toguide a framework
for automatically setting the parameter’s value. This $thdne done separately for
each round of policy iteration. One of the factors determgrthe parameter’s value

should be the impact of the Bellman residual method’s bias sidéwed that the bias
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is linearly impacted by the parameter (i.e. setting the taybrethod’s parameter to

0 causes the solution to be unbiased).

We used least-squares algorithms for approximate poliajuetion because of their
data efficiency and because they do not require setting assteparameter. How-
ever, it is interesting to consider other methods and how thight impact the basis
construction and selection problems. We suggest one plitysibat focuses more
on policies than on value functions. To motivate this chainge value functions
to policies, we mention an interesting example from thei§etomain. Using 22
hand-coded basis functions defined in [12], Szita addricz [100] showed that the
cross-entropy method (which searched directly for a seRot@fficients resulting
in good policies) can learn policies that scd@0 times bettethan policies learned

using the same 22 basis functions and a temporal differdgoeitam.

The least-squares algorithms minimize different fundiof the Bellman residual.
The rationale for doing so is based on the fact that the egdeBéllman residual is
0 for the exact value function. An alternative to this appiog to try to represent
the greedy policy associated with the exact value functaghar than representing
the exact value function itself. This idea was explored irea tlifferent contexts
[105, 10, 107], but the main theme uniting this work is to h#we algorithm learn
the relative value of a state (which is what determines tHieyjoas opposed to the
absolute value of a state. This type of algorithm may maké#sés construction and
selection problems easier since representing a policy raajrbpler than represent-
ing a value function. In effect, the algorithm can make lamgeors in the Bellman
residual as long as it orders the states correctly. We keeti@g is an interesting area

for future work.
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e Basis selection and diffusion wavelets

The basis selection framework presented in Chapter 6 in oohipn with an ex-
pressive, overcomplete dictionary like the diffusion wavelictionary provides a
powerful tool for value function approximation. There aneete immediate ways to
extend this work. First, the main component, and thus bwatlk, in constructing a
diffusion wavelet tree is the sparse QR decomposition dlgor The QR decom-
position algorithm is used to compute both the scaling fionst and the wavelet
functions. A faster implementation of the algorithm is ne@dAlso, to scale up, it
may be beneficial to approximate the QR decomposition. Thighiresult in the
loss of orthogonality between the scaling and wavelet fonstat each level of the
tree, but that might not be a crucial factor when approxintaé value function. The
second extension is to exploit the structure of the diffnsi@velet tree when per-
forming basis selection. Our current implementation syrtpkes each element in
the tree, which is stored in a compressed format, and urtfel€lement back to an
uncompressed format before using the basis selectionitigorThis is inefficient.
A faster implementation here can significantly affect thetime since basis selec-
tion occurs each time a new policy is evaluated. The thirdmresibn is to explore the
use of diffusion wavelet packets [18]. Diffusion waveletkets allow for splitting
the wavelet spaces into an orthogonal sum of smaller subspaabis creates a larger
number of elements in the diffusion wavelet tree which areemocalized and thus

offer greater flexibility in terms of function approximatio

e Graph construction

An advantage of the graph-based approach to basis congtruotMarkov deci-
sion processes is its flexibility. As we we have demonstratetthis dissertation,
the approach is amenable to both discrete and continuotessgtaces. The graphs

we constructed from MDP samples were simply based on a peeffied distance
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function. One obvious extension is to automatically lemndistance function based
on actual transitions. In fact, it is possible to learn saldistance functions where
each one is responsible for a different portion of the stpges. Bowling et al. [15]

proposed a simple method accomplishing this.

While the user has the ability to specify the distance fumctiwat creates the graph
from samples, this is typically done just based on the dynarof the domain. An
interesting extension would be to form the graph not solelgda on structural sim-
ilarity but also based on the type of value functions therdewmy algorithm is likely
to encounter. For example, if two states that are topoldigictéose but in fact have
different values for many policies, then the edge weighivieen these two states in
the graph can be decreased. Decreasing the edge weighhialters the shape of
the basis functions generated from the graph. We proposexatldroc method for
adjusting edge weights based on the Bellman residual [4Tis @arlier work was a
proof of concept, but in the future we hope to determine a mareipled approach

that is also scalable.

Instance-based representations

In order to use the graph-based approach to basis constidcti MDPs, the sam-
ples/states forming the vertices of the graph must be stdnemther words, the graph
and its associated features are an instance-based rejatesenT his should be con-
trasted with representations using a fixed number of paensiegtuch as neural net-
works with a prescribed connectivity. While we have proposesdhods for dealing
with large graphs, scalability is a concern for any algenthsing an instance-based
representation. This issue is not unique to reinforcemearing. Indeed, this is an
issue with any kernel method (note the graph Laplacian ieslaareproducing kernel
Hilbert space [92] and can be considered a kernel method)etdtanding the practi-

cal limitations of instance-based representations anadfreow these limitations can
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be circumvented is an ongoing area of research in machineihga One interesting
possibility is to see if instance-based features can bedtoore compactly using a

parametric representation.

7.3 Final Remarks

A hallmark of human-level intelligence is the ability to sessfully perform many tasks
across a wide range of environments. In order for autonoragaests to approach this level
of flexibility, they must be able to adapt their internal regentations of the environments
in which they reside. The graph-based methods [67, 63] weidered in this dissertation
provide one way to generate flexible representations thatiuca structural information
about an environment. In the reinforcement learning pgragan autonomous agent forms
such representations and then uses them to learn how to agtaddfessed these two

interrelated aspects in the context of value function axpration:

1. Given a set of samples from an environment, can we gengraph-based features

associated with the samples in a manner that scales well?

2. Given a set of samples from an environment and the grapeeb&eatures, how

should the features be used to compute a (good) policy?

The set of features dictates the space of approximate valusibns that can be repre-
sented. The algorithm utilizing the features determines hgolicy will be found. We
believe a thorough understanding of the confluence of theseateas, automatic feature
construction and feature utilization, is an interesting &arorthwhile topic for continued

RL research.

140



APPENDIX A

DOMAINS

A.1 Chain MDP

We used the 50 state chain MDP described by Lagoudakis amd38&r Figure A.1
shows a depiction of the problem and the optimal value fonctiThere are 50 discrete
states{s,; }3°, and two actions moving the agent lef (~ Smax(i—1,1y) and right ¢; ~
Smin(i+1,50))- 1€ actions succeed with probability 0.9; failed actiormve the agent in the
opposite direction. The discount factornis= 0.9. The agent receives a reward-pt when

in statess;, ands,;. All other states have a reward of 0.

Figure A.1. The chain MDP and the optimal value function.

A.2 Grid MDP
Grid MDPs are simply two dimensional versions of the aforetiomed chain MDP. A

simple square grid and a two-room grid with one state adpginihe two rooms are shown
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in Figure A.2. There are four canonical actions that moveatent up, down, left, or right.
The actions succeed with probability 0.9. Unsuccessfubastresult in a transition in one
of the other three directions (with equal probability). &gies begin in a random state
in the MDP. The discount factor is assumed toybe: 0.95 unless otherwise stated. The
reward function is 0 except for a few goal states (which aezd@d on an individual basis

for each grid MDP used throughout this dissertation) thaehapositive reward.

Figure A.2. A 10 x 10 grid MDP and a two-room version with a single “hallway” state

A.3 Inverted Pendulum

The inverted pendulum problem requires balancing a pemdddy applying force to
the cart to which the pendulum is attached. We used the ingoléation described by
Lagoudakis and Parr [56]. The state space is defined by twablas:d, the vertical angle
of the pendulum, and, the angular velocity of the pendulum. The three discret®as
are applying a force of -50, 0, or 50 Newtons. Uniform noigerir-10 and 10 is added to

the chosen action. State transitions are described by Hog/fog nonlinear equation

i gsin(6) — amlf?sin(26) /2 — o cos(6)a
B 41/3 — aml cos?(0) ’

whereaq is the noisy control signal = 9.8m/s* is gravity,m = 2.0 kg is the mass of the
pendulum,M = 8.0 kg is the mass of the cart,= 0.5 m is the length of the pendulum,

anda = 1/(m + M). The simulation time step is set to 0.1 seconds. The ageités @
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reward of O as long as the absolute value of the angle of theéybem does not exceed/ 2,
otherwise the episode ends with a reward of -1. The discagtbf was set toy = 0.9.

Episodes begin with both state variables at value O.

A.4 Mountain Car

The task in the mountain car domain is to drive an underpaiveehicle, situated in
a valley, to the top of the mountain on the right [98]. Figur&Ahows a depiction of the
problem. There are two state variables: the positionafd velocity {) of the car. There
are three actions corresponding to a positive=(1), negative ¢ = —1), and zero¢ = 0)

force. The equations of motion are:

i1 = boundi; 4+ 0.001a; — 0.0025 cos(3z;)]

Tir1 = bOUﬂdxt + it—l—l]

where the bound operation ensure$.2 < z;,,; < 0.5 and—-0.07 < 7,1 < 0.07. The
velocity ,,, is reset to 0 when the positiary.; becomes less thar1.2. When the
position exceeds.5, the car has reached the top of the hill on the right and theoelgi is
terminated. The reward for reaching the goal is O; every ategre the goal is not achieved
results in a reward of-1. The discount factor is = 0.99. Episodes begin in a state with
x; = —0.5 and#; randomly selected from the set0.07, —0.06,...,0.06,0.07]. The

distribution overz; allows for easy exploration of the state space.

A.5 Acrobot

The acrobot [98] is an underactuated double pendulum. $las interesting and well-
studied problem due to the nonlinearity of the dynamics.ohsists of two links where
torque can only be applied at the second joint (Figure A.4)e $ystem is described by

four continuous variables: the two joint anglés,and ., and the angular velocities,
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Goal

Figure A.3. The mountain car domain.

andd,. There are three actions corresponding to positive-(1), negative ¢ = —1), and
zero @ = 0) torque. We use the same equation of motions and problenmeteas as
described in Chapter 11.3 of [98]. The time step was set to &@5actions were selected
after every fourth update to the state variables accordinge equations of motion [97].
The goal for this domain is to raise the tip of the second libk\wee a certain height in
minimum time (we used a height of 1, where both links have gtlewnf 1). The reward
function is therefore-1 for each time step until the goal is achieved and the disciawatr
isy = 0.99. Episodes begin with the all state variables at value 0 wbazhesponds to the

two links hanging straight down and motionless.

Goal: Raise tip above line

Figure A.4. The acrobot domain.

144



A.6 Tetris

The game of Tetris was designed by Alexey Pajitnov in 198%oitsists of a board
with 20 rows and 10 columns as shown in Figure A.5. Puzzlegsieeach containing four
blocks in different positions, fall vertically down the krda The player’'s objective is to
orient the piece as it is falling to create a horizontal rovibloicks with no gaps. When this
is accomplished, the completed row disappears and any blao&ve the row fall down.
The game ends when a block is placed in the top row, not allpfirther game pieces to

enter the board.

Figure A.5. The Tetris domain.
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APPENDIX B

PARTITIONED MATRIX INVERSE

The OMP-H, ORMP-H,, LASSO-H,, and LARS-H algorithms in Section 6.2.1 formed
the matrix Az 7 and vectom;. Each algorithm then inverts the matrik ;. This is very
wasteful when the active sé&tonly changes by one element at a time. To take advantage
of the single element insertion and remO\LeiII’,}I can be incrementally formed using the
following partitioned matrix inverse property. Considerguare matrixA’ partitioned as

follows:

A=

where matrixA is squarep andc are vectors, and is a scalar. Then the inverse df can

be computed from the inverse dfas:

! (e AL+ A7 hcTATY) —AN
=e
—cTA™? 1

wheree = (d — ¢’ A='b)~'. ComputingA’~" in this manner has quadratic complexity
instead of cubic. OMP-§ ORMP-H,, LASSO-H,, and LARS-H can exploit this property
by maintaining the matrixﬁig}z. When inserting a new elemeyit into Z, the update is as

follows:

146



T—Tui{j}

i-1 i-1 A i i-1 i-1 4
At (AI,I+uj*AI,IAIJ*Aj*7IAI,I) _Uj*AI,IAI,j*
7.7 R .
JAIAT T J*
R br
bI — N )
b«

where:

A S R
Uje — (Ajrjr — Aje 7A7 7 AT j)

Ajejr — Z p(5:) (5= (8:) (D= (5i) — v (5)) + Brgj=(5:)gj+(8i)]
Az — Z p(8i) [Dz(8:) (D¢ (5:) — Y+ (57)) + Brgz(si)gs+(8i)]

Ajez =Y p(s:) [95(s)(D2(si) = 192(s))" + Brgs-(si)92(5:)"]

i=1

bjr — > plsi)ye(si)rs.
=1

Similarly, when LASSO-FP removes an elemgtitfrom Z, the matrixflg}z can be shrunk

with the following update:

T—7T-{%}
X j# . .
to isolate the influence of*

Partition the currentd; ) —
' T
yj# Zj#

A1—1 T
AZ,I «— U — x]#y]#/zj#
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APPENDIX C
BASIS SELECTION PSEUDOCODE

The ORMP-H algorithm was described in Section 6.2.1.1. Pseudocod®@RWMP-H,

is shown below in Algorithm 8.

Algorithm 8 : ORMP-H, with Lapl aci an- based Regul ari zati on

Input:  {s;,7,s,}" ,, samples generated using policy

¢: S — RE, basis function

p: S — RT, weighting over the states

¢ €[0,1], hybrid parameter{= 0is FP,{ = 1is BR)

L, graph Laplacian defined over stafes}!" ; (graph edges denoted with)

v € [0,1], discount factor

B- € RT, Laplacian-based regularization parameter

k' < K, maximum allowable number of basis functions
Output: Z, setof selected basis functions (indices injo

wz, weight vector such that (s) = ¢7(s) wz

Initialize active sefl «— ()
while (|Z| < k") and(Bellman residual not converggdo
1. Find best inactive element:
J* < argmax;gr i’%ﬂ- Aﬁjlﬂ Bf+j)
where: 7 ; —Z U{j}
) Ezﬂ- — > iy p(si) (b1, (si) — Evor,, (s7))rs
Az 1 — S plso)l(ozy, (si) — &z, (s)) (o1, (si) — voz., (si) T + ...

ﬁTgI_'.j (S’L')gl-_;'_]' (SZ)T]
where: g(s;) <« L(si, s;) ¢(s:)
g(sl) — g(sz) + L(Sia San) ¢(Snbr)l V{Snb'r|$nl7'r ?é S /\ s~ San}
2. Adjust active set:
T —Tu{j}

3. Computedz 7 andbz:
Az = 3L p(s)l(9z(si) — €10z(s7))(¢z(si) —102(s))T + Brgz(si)gz(si)T]
bz Dy p(si)(9z(si) — §voz(si))mi
4, ComputeAIeaAst—squares weights:
Wz < Aia—bz
end while
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The LASSO-H and LARS-H algorithm were described in Section 6.2.1.1. Algorithm
9 shows the pseudocode implementing LASS©OaHd LARS-H.

Algorithm 9 : LARS- H,/ LASSO- H, with Lap. -based Regul ari zati on
Input:  {s;, 7, s,}",, samples generated using policy
¢: S — RE, basis function
p: S — RT, weighting over the states
v € [0,1], discount factor
¢ €[0,1], hybrid parameter{= 0is FP,§ = 1is BR)
L, graph Laplacian defined over stafes}! ; (graph edges denoted with)
B- € RT, Laplacian-based regularization parameter
Bs € RT, L; regularization parameter
k' < K, maximum allowable number of basis functions
Output: Z, set of selected basis functions (indices injo
wr, Wweight vector such that (s) = ¢z(s) wz

¢ 2 p(si)(D(si) — e (sy))ri
s, 3*] « [max, argmax]; (|c;|)
Initialize active se «— {j*}, w0

while (s > 3) and(|Z| < k') and(Bellman residual not converggdo
1. Compute weigpt update directid¥wz:
Awr — A7 sign(cr)

where: Azz — S0 p(si)[(¢z(si) — Evdz(s)))(dz(s:) — vdz(sp)T + ...
Brgz(si)gz(si)"]
9(si) < L(si, si) o(si)
9(8:) < g(5i) + L(5i, Supr) P(Sner) V{Supr|Snpr 7 8 N 8~ 50}
2. Compute correlation update directigye:
Ac = 3 p(si)[(@(si) — Ev0(s))) ($2(si) — vez(s)) Awr + ...
By g(si)gz (si)" Awg]
3. Find step size to add element to active set:
‘ ¢i—Bs  ¢j+Bs )
j¢T \Ac;—1° Ac;+1
4. Find step size to remove element from active set:
If (using LARS-FB, o « oo
Else [o#, j#] — [minﬂargmin]j.eI <_Aw—1f)]>
5. Updates,, wr, c:
a « min(a*, o, Bs — Bs)
Bs — Bs —a, wg— wr+alAwz, c—c—alc
6. Adjust active set:
If (a* <o), T« ZU{j*}
Else Z — 7 — {j#}

[a*, j*] < [min™, argmin]

end while o A
OPTIONAL: wy — A7 7br where: bz «— "7 p(si)(oz(si) — Evor(sh))r
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