
BASIS CONSTRUCTION AND UTILIZATION FOR MARKOV
DECISION PROCESSES USING GRAPHS

A Dissertation Presented

by

JEFFREY T. JOHNS

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2010

Department of Computer Science



c© Copyright by Jeffrey T. Johns 2009

All Rights Reserved



BASIS CONSTRUCTION AND UTILIZATION FOR MARKOV
DECISION PROCESSES USING GRAPHS

A Dissertation Presented

by

JEFFREY T. JOHNS

Approved as to style and content by:

Sridhar Mahadevan, Chair

Andrew G. Barto, Member

Shlomo Zilberstein, Member

John Staudenmayer, Member

Andrew G. Barto, Department Chair
Department of Computer Science



To Emerson and Marlene Johns for caring as much as they do.



ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Sridhar Mahadevan. Sridhar has cultivated a

working environment in which I have felt free to explore manydifferent ideas and research

topics. I enjoyed this sense of academic freedom and am grateful for Sridhar’s experience

in knowing when to focus my efforts in a particular area. I am also very appreciative of the

feedback and support offered by my thesis committee, AndrewBarto, Shlomo Zilberstein,

and John Staudenmayer.

I am fortunate to have worked on an education project with Beverly Woolf and Ivon

Arroyo. It was a pleasure (and a challenge) thinking of ways to help high school students

improve their math skills.

I am grateful for the wonderful people in the Autonomous Learning Laboratory. I

especially thank Sarah Osentoski. Our camaraderie, both personally and professionally, has

helped make the journey through graduate school fun. I have enjoyed and benefited from

many interesting research discussions with George Konidaris and Marek Petrik. George’s

enthusiasm and intellectual curiosity are infectious. I thank Anders Jonsson for writing

a letter of recommendation that helped me, without a computer science degree, get into

graduate school. I would also like to recognize Ashvin Shah,Andrew Stout, G̈uray Alsaç,
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ABSTRACT

BASIS CONSTRUCTION AND UTILIZATION FOR MARKOV
DECISION PROCESSES USING GRAPHS

FEBRUARY 2010

JEFFREY T. JOHNS

B.Sc., UNIVERSITY OF VIRGINIA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

The ease or difficulty in solving a problem strongly depends on the way it is represented.

For example, consider the task of multiplying the numbers 12and 24. Now imagine mul-

tiplying XII and XXIV. Both tasks can be solved, but it is clearly more difficult to use

the Roman numeral representations of twelve and twenty-four. Humans excel at finding

appropriate representations for solving complex problems. This is not true for artificial

systems, which have largely relied on humans to provide appropriate representations. The

ability to autonomouslyconstruct useful representations and to efficiently exploit them is

an important challenge for artificial intelligence.

This dissertation builds on a recently introduced graph-based approach to learning rep-

resentations for sequential decision-making problems modeled as Markov decision pro-

cesses (MDPs). Representations, or basis functions, for MDPs are abstractions of the prob-

lem’s state space and are used to approximate value functions, which quantify the expected

vii



long-term utility obtained by following a policy. The graph-based approach generates ba-

sis functions capturing the structure of the environment. Handling large environments re-

quires efficientlyconstructingandutilizing these functions. We address two issues with

this approach: (1) scaling basis construction and value function approximation to large

graphs/data sets, and (2) tailoring the approximation to a specific policy’s value function.

We introduce two algorithms for computing basis functions from large graphs. Both

algorithms work by decomposing the basis construction problem into smaller, more man-

ageable subproblems. One method determines the subproblems by enforcing block struc-

ture, or groupings of states. The other method uses recursion to solve subproblems which

are then used for approximating the original problem. Both algorithms result in a set of ba-

sis functions from which we employ basis selection algorithms. The selection algorithms

represent the value function with as few basis functions as possible, thereby reducing the

computational complexity of value function approximationand preventing overfitting.

The use of basis selection algorithms not only addresses thescaling problem but also

allows for tailoring the approximation to a specific policy.This results in a more accurate

representation than obtained when using the same subset of basis functions irrespective of

the policy being evaluated. To make effective use of the data, we develop a hybrid least-

squares algorithm for setting basis function coefficients.This algorithm is a parametric

combination of two common least-squares methods used for MDPs. We provide a geomet-

ric and analytical interpretation of these methods and demonstrate the hybrid algorithm’s

ability to discover improved policies. We also show how the algorithm can include graph-

based regularization to help with sparse samples from stochastic environments.

This work investigates all aspects of linear value functionapproximation: constructing

a dictionary of basis functions, selecting a subset of basisfunctions from the dictionary,

and setting the coefficients on the selected basis functions. We empirically evaluate each

of these contributions in isolation and in one combined architecture.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Herbert Simon [90] wrote, “solving a problem simply means representing it so as to

make the solution transparent.” This statement underscores the importance ofrepresenta-

tions and, in particular, how the right representation can make problems simple. This is

particularly true for artificial intelligence agents that must effectively operate in complex,

stochastic environments. Although some knowledge can be handcrafted by those designing

the agents, truly autonomous agents must be able to construct their own representations to

deal with unique and unforeseen problems they invariably will encounter. But how can an

agent construct its own representations?

We consider the problem of representation discovery in the context of sequential deci-

sion making. Stochastic sequential decision making problems are most often studied using

the mathematical formalism of Markov decision processes (MDPs) [85]. In this frame-

work, an agent chooses which action to perform thereby causing the agent to transition

(stochastically) from one state of the environment to another state. The agent receives a

numerical reward for each transition. The agent’s goal is tolearn which action to perform

in each state (i.e. a policy) so as to maximize expectedcumulativereward. To help make

these decisions, an agent can estimate the value of states inthe environment. The agent’s

representationof the value of a state strongly influences its behavior.

To ground this problem in a concrete example, consider the well-known game of Tetris.

A standard Tetris board consists of 200 cells (20 columns, 10rows) that are either occupied

or vacant; therefore, there areO(2200) possible states of the game. It is clearly infeasible
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trying to learn a value for each unique state. Instead, by trial-and-error, humans have

devised features that encode concepts like “column height”and “number of holes” [12].

The value of a Tetris state is then a weighted sum of the features (i.e.,w1 × (column

height) + w2 × (number of holes) + . . . , wherewi ∈ R, i = 1, 2, . . . ) where the agent is

free to set the weights appropriately. This is known as linear value function approximation

and the features are referred to as basis functions. Effective Tetris policies can be learned

with these features [100], but the difficult task of abstracting the raw Tetris state space

has been solved by humans rather than the agent. A flow diagramdepicting this typical

approach to solving complex MDPs is shown in Figure 1.1. It would be beneficial to

remove the designer from this loop entirely and leave the agent with the challenging task

of constructing useful features.

Problem Space Feature Space Optimization

Designer Learning AgentEnvironment

Figure 1.1. The typical framework for solving complex sequential decision making prob-
lems.

The importance of forming abstractions and generalizing experience in one setting to a

different, but similar, setting is well known in the field of artificial intelligence (AI). Indeed,

one of the earliest AI demonstrations dating back to 1959 wasArthur Samuel’s famous

checkers player [87]. Samuel used a polynomial function approximator to represent the

value of a checkers board. Other common function approximators include radial basis

functions, tile codings, and neural networks [98]. These are generic basis functions that do

not (automatically) account for regularities that may exist in the agent’s environment.
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1.2 Overview

In this dissertation, we build on a recently introduced graph-based approach to auto-

matically constructing representations for MDPs [67, 63].Vertices in the graph correspond

to states of the environment and edges connect similar states. Mahadevan and Maggioni

proposed taking samples from a MDP, forming a graph from the samples, and computing

either graph Laplacian eigenvectors [67] or diffusion wavelets [63] which are then used as

basis functions. Laplacian eigenvectors, which have global support (i.e. every vertex in

the graph has a value), are thesmoothesteigenvectors of the Laplace operator (e.g. those

with the smallest corresponding eigenvalue). Diffusion wavelets are localized functions at

multiple scales. These basis functions capture the structure of the environment as modeled

by the graph. Similar states in the graph have similar basis function values. Two strengths

of the graph-based approach to basis construction are that it (1) creates basis functions that

can be used for representing many functions over the state space, and (2) allows for model-

ing theintrinsic dimensionality of the environment. While an environment maynominally

be very high dimensional, often times lower dimensional structure exists in the problem’s

dynamics. The graph-based approach leverages such structure and can thus circumvent the

“curse of dimensionality.” Figure 1.2 shows a chain graph aswell as a few graph Laplacian

eigenvectors and diffusion wavelets.
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(c) Diffusion wavelet scaling func-
tions

Figure 1.2. (a) 50 vertex chain graph, (b) first four graph Laplacian eigenvectors, and (c)
four diffusion wavelet scaling functions at different scales.
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This dissertation focuses on both basis construction and value function approximation.

Our goal is to efficiently use a set of MDP samples to generate graph-based features and

utilize those features to learn good policies. This requires (1) scaling basis construction and

value function approximation to large graphs/data sets, and (2) tailoring the representation

to fit specific value functions.

For the graph-based approach to basis construction to scaleto large problems, we must

address the computational efficiency of the algorithms. In the worst case, the graph-based

methods have cubic complexity in the number of vertices in the graph. This calls into ques-

tion the scalability of the methods to large graphs (and thuslarge state spaces). We propose

two algorithms for generating basis functions that approximate those computed using exact

methods defined in previous work [67, 63]. Both algorithms work by decomposing the ba-

sis construction problem into smaller, more manageable subproblems. The first algorithm

we present uses the Kronecker product to automatically formbasis construction subprob-

lems. The Kronecker product is useful because it preserves certain properties associated

with the original basis construction problem. We demonstrate how this method can sig-

nificantly improve computational efficiency and memory usage. The second algorithm we

present uses a multiscale recursive approach to basis construction. The state space graph is

automatically decomposed into smaller subgraphs. This decomposition occurs recursively

until the subgraphs are of a manageable size. Basis construction occurs on the subgraphs.

The recursion then unwinds and the basis functions from the subgraphs are used to ap-

proximate the basis construction problem on the larger graphs. We compare these two

algorithms empirically.

Given a set of MDP samples and the graph-based basis functions, we use least-squares

algorithms for learning the basis function weights. Least-squares techniques are used to fit

data to a model by minimizing an objective function. These techniques are important in

the context of MDPs due to their sample efficiency. There are two common least-squares

methods used for MDPs which behave very differently in practice. We develop a hybrid
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least-squares algorithm that is a parametric combination of the two common methods’ ob-

jective functions. A geometric interpretation of the hybrid least-squares algorithm along

with empirical evidence suggests the hybrid algorithm can ultimately lead to the agent

discovering better policies. We also extend the hybrid least-squares algorithm to include

graph-based regularization. This form of regularization,which is used to prevent overfit-

ting, helps to ensure the approximate value functions vary smoothly according to the graph

structure.

We propose algorithms that tailor the graph-based basis functions to fit specific value

functions. Prior work with graph-based features used a simple heuristic to determine which

features to use when approximating a value function [67, 63,68, 79, 44, 95]. The heuris-

tic is to always use the smoothest basis functions accordingto the graph’s structure. This

mechanism is independent of the particular value function being estimated, meaning all

value functions are estimated with the same set of features.This is a computationally sim-

ple technique and is robust to overfitting (although too muchregularization is problematic),

but it does not exploit the full power of the graph-based features. We treat the features as

a dictionary from which a subset can be used to approximate any particular value function.

This is important for two reasons. First, it allows for a moreaccurate representation of

the value of a state. Second, by selecting a subset of features, we can use as few as pos-

sible which improves the computational efficiency of the hybrid least-squares algorithm.

We evaluate four different basis selection algorithms. Comparing the performance of the

different selection algorithms allows for an understanding of the challenges involved in

combining value function approximation and basis selection.

To summarize, we make the following three contributions in this dissertation:

1. We derive a regularized hybrid least-squares algorithm for approximate policy eval-

uation. This is a sample efficient algorithm that combines two common least-squares

methods used for MDPs. Experimental results demonstrate the hybrid algorithm’s

ability to discover improved policies.
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2. We propose and evaluate two algorithms for scaling up graph-based basis construc-

tion to large problems. Both algorithms decompose the basisconstruction problem

into smaller, more manageable basis construction subproblems. This improves the

computational efficiency over previous methods.

3. Using the graph-based basis functions as a dictionary, weemploy basis selection

algorithms that tailor the representation to the specific policy being evaluated. We

demonstrate this can lead to a more accurate representationof the value function

provided the policy evaluation procedure remains stable.

When combined, these three contributions form a policy iteration framework that takes as

input a set of samples from a MDP and ultimately outputs an approximate value function

used to determine an agent’s policy.

1.3 Outline

We provide the necessary background on Markov decision processes and reinforcement

learning in Chapter 2. Value function approximation and different types of basis functions

are also presented. Chapter 2 contains much of the notation used throughout this disserta-

tion.

In Chapter 3, we describe how samples from a MDP can be used to form a state space

graph. A detailed description of Laplacian eigenvectors and diffusion wavelets, two types

of graph-based basis functions, is provided with illustrative examples.

We introduce hybrid least-squares algorithms for approximate policy evaluation in Chap-

ter 4. Given a set of basis functions and samples from a MDP, these algorithms produce an

approximate value function. Policy iteration experimentsdemonstrate the efficacy of hy-

brid methods. We also describe how the least-squares algorithm can employ graph-based

regularization.
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Chapter 5 proposes two techniques for scaling basis construction to large graphs. The

utility of basis functions generated using these two techniques is determined empirically.

In Chapter 6, we use the graph-based basis functions as a dictionary and evaluate several

basis selection algorithms. Basis selection algorithms, which choose a subset of basis func-

tions from the dictionary, tailor the representation to a particular value function. Chapter 7

summarizes the work presented in this dissertation. Conclusions and ideas for future work

are discussed.
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CHAPTER 2

BACKGROUND

This chapter introduces Markov decision processes and reinforcement learning, which

provide the mathematical structure for studying sequential decision making. We also cover

function approximation and least-squares methods as they apply to reinforcement learning.

2.1 Markov Decision Processes

A Markov decision process (MDP) is a mathematical model of sequential decision mak-

ing under uncertainty [85]. A finite MDP is defined by a four-tuple M = (S,A, P,R)

whereS is a set of states,A is a set of actions,P is a probability function withP a
ss′ being

the probability of transitioning from states to states′ upon executing actiona, andR is

the reward function withRa
ss′ being the expected immediate reward obtained as a result of

taking actiona in states and transitioning to states′. We use the notationAs to refer to the

set of admissible actions in states. The Markov property dictates that future states of the

MDP are conditionally independent of past states given the current state.

A policy π is a mapping from states to a probability distribution over actions. The

value functionV π associated with policyπ defines the expected long-term discounted sum

of rewards. This is defined mathematically as

V π(s) = Eπ{
∞

∑

k=0

γkrt+k+1|st = s}

= Eπ{rt+1 + γV π(st+1)|st = s}

=
∑

a∈As

π(s, a)
∑

s′∈S

P a
ss′(R

a
ss′ + γV π(s′)),

8



whereEπ{·} denotes the expected value by following policyπ, rt is the immediate reward

received at timet, andγ ∈ [0, 1) is a discount factor controlling the trade-off between

immediate and long-term rewards. An optimal policyπ∗, associated with the optimal value

functionV ∗, has the property thatV ∗(s) ≥ V π′

(s) for every states ∈ S and any other

policy π′. The optimal value functionV ∗ is defined as follows:

V ∗(s) = max
π

V π(s)

= max
a∈As

∑

s′∈S

P a
ss′(R

a
ss′ + γV ∗(s′)).

A policy can be determined from a value function by performing one step of lookahead

using the transition and reward modelsP andR and selecting the action with the highest

expected value. Alternatively, a policy can be determined without relying on lookahead by

defining an action-value functionQπ explicitly over state-action pairs. The action-value

functionQπ(s, a) is defined as the expected return when starting in states, taking actiona,

and following policyπ thereafter:

Qπ(s, a) = Eπ{
∞

∑

k=0

γkrt+k+1|st = s, at = a}

= Eπ{rt+1 + γQπ(st+1, π(st+1))|st = s, at = a}

=
∑

s′∈S

P a
ss′(R

a
ss′ + γ

∑

a′∈As′

π(s′, a′)Qπ(s′, a′)).

Similarly, the optimal action-value functionQ∗ is defined as

Q∗(s, a) = max
π

Qπ(s, a)

=
∑

s′∈S

P a
ss′(R

a
ss′ + γ max

a′∈As′

Q∗(s′, a′)).

A policy can be determined easily from an action-value function without use of a model

simply by selecting an action that has the largestQ value.
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Broadly speaking, there are two approaches to learning a policy. The first approach es-

timates the value function (or the action-value function) and then derives a policy, whereas

the second approach searches directly in the space of policies. There are many learning al-

gorithms within each approach. In this dissertation, we focus on the value-based technique.

It is convenient to abbreviate the equations in this sectionusing matrix notation. The

value function can be represented as a vectorV π ∈ R
|S| where we assume an ordering of

states such that:

V π =
[

V π(s1), . . . , V
π(s|S|)

]T
.

The value function solves the Bellman equation:

V π = Rπ + γP πV π := T π(V π),

whereT π : R
|S| → R

|S| is the Bellman operator. In this format,P π is a matrix of size

|S| × |S| with elementsP π
ij =

∑

a∈Asi
π(si, a)P

a
sisj

andRπ is a vector of dimensionality

|S| with elementsRπ
i =

∑

a∈Asi
π(si, a)

∑

s′∈S P
a
sis′
Ra

sis′
. All vectors are assumed to be

column vectors. The action-value function can be expressedin a similar way withQπ ∈

R
|S||A| where the actions are ordered such that:

Qπ =
[

Qπ(s1, a1), . . . , Q
π(s|S|, a1), Q

π(s1, a2), . . . , Q
π(s|S|, a|A|)

]T
.

We reuse notation and write the Bellman equation as:

Qπ = Rπ + γP πQπ := T π(Qπ).

Note that in this case, the vectorRπ and matrixP π have dimension|S||A|, but are defined

analogously as above. The dimensionality ofRπ andP π will be obvious from the context

depending on whether value functions or action-value functions are being used.
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2.2 Reinforcement Learning

The reinforcement learning (RL) [98] framework involves anagent interacting in an

environment attempting to maximize a reward signal. The generality of this framework

allows its application to a wide array of problems. For Markovian environments, RL prob-

lems can be modeled as MDPs. In the RL framework, the agent usually does not have

access to the MDP model, but it receives samples from the model by interacting with the

environment.

Many of the algorithms for solving RL problems are instancesof temporal difference

(TD) learning [96]. TD learning combines dynamic programming and Monte Carlo meth-

ods. The TD(0) algorithm estimatesV π using the following update upon transitioning from

states to s′ given actionπ(s) with rewardr:

V (s)← V (s) + α [r + γV (s′)− V (s)]

whereα ∈ (0, 1] is a step-size parameter. The estimated valueV (s) is updated based on

the estimated valueV (s′), i.e., TD(0) bootstraps. Under appropriate conditions, the TD(0)

algorithm converges to the true value functionV π.

RL algorithms can also compute the optimal value function. The Q-learning algorithm

[106] estimates the action-value function using the following update rule:

Q(s, a)← Q(s, a) + α

[

r + γ max
a′∈As′

Q(s′, a′)−Q(s, a)

]

upon a taking actiona, transitioning from states to s′, and receiving rewardr. The Q-

learning algorithm converges toQ∗ under appropriate conditions.

2.3 Linear Value Function Approximation

An exact representation of the value function (action-value function) stores one value

for every state (state-action pair). This representation is impractical for problems with
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large, discrete state spaces or continuous state spaces. Anintelligent agent must be able to

use its experience to generalize to states it has never seen.Generalization can be accom-

plished using function approximation. Function approximation has been used extensively

in reinforcement learning dating back to Arthur Samuel’s famous checkers player [87]

which used a polynomial approximator to represent the valueof a checkers position.

A simple yet very useful architecture for approximating functions is to use alinear com-

bination of basis functions.1 For example, in the context of value function approximation,

a linear approximation has the form

V̂ (s;w) =
K

∑

j=1

φj(s)wj = φ(s)Tw

whereφ(s) is a lengthK state feature vector andw is a parameter vector of lengthK. The

features of a state allow for generalization. For example, it is common for states that are

similar to have similar feature vectors. Usually the number of featuresK ≪ |S| to ensure

the representation is compact. The parametersw are adjusted during the course of learning

to fit the value function using some error metric, such as mean-squared error (MSE). In

matrix notation, the approximate value function is writtenV̂ = [φ1, φ2, . . . , φk]w = Φw

whereΦ ∈ R
|S|×K is a basis function matrix.

There are other techniques for approximating functions using nonlinear architectures.

One example is a neural network which maps inputs to outputs using nonlinear functions,

such as the sigmoid or hyperbolic tangent functions. The advantages of the linear archi-

tecture are simplicity in terms of updating the weightsw (which also facilitates theoretical

analysis) and, when using MSE, there is only one setting ofw that achieves the global min-

imum MSE (barring degenerate cases). This dissertation focuses exclusively on the linear

function approximation architecture.

1Throughout this dissertation, we use the wordsbasis function, feature, andrepresentationinterchange-
ably.
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2.4 Basis Functions

The linear function approximation architecture maps states from the MDP to feature

vectorsφ(s) ∈ R
K . Each of theK components represents a feature or basis function.

Given the basis functions, reinforcement learning algorithms change the weightsw in order

to learn an approximate value function̂V = Φw. The featuresΦ dictate what type of value

functions an agent can represent. The choice ofΦ strongly influences the agent’s ability to

compute a useful policy.

The majority of successful, large-scale RL applications involving function approxima-

tion required humans to design features. Manually constructing features is often a tedious

trial-and-error process. Moreover, many hand-engineeredfeatures are tied to a specific do-

main and are therefore not useful for solving other problems. An agent must generate its

own representations for it to be truly autonomous. There hasbeen some recent research

on algorithms for automatically generating features. In the rest of this section, we discuss

features used in RL that are manually devised and those that are automatically generated.

2.4.1 Hand-coded Basis Functions

• Domain specific features

There are many examples in the literature of researchers crafting hand-engineered

features that are domain specific. These features are usually selected by the de-

signer’s intuition, an expert’s knowledge of the domain, orsimple trial-and-error.

Three examples are:

1. Tesauro’s backgammon player, TD-Gammon [102]. After achieving moder-

ate performance using just a raw state encoding, several expert features (e.g.

strength of a blockade, probability of pieces being hit) were added to the state

representation. These extra features boosted performanceand ultimately re-

sulted in a backgammon player that achieved world class play.
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2. Crites and Barto’s elevator dispatcher [23]. Forty-sevenfeatures were created

for this domain that dealt with the status of the buttons in the elevator, the

locations of the elevators relative to each other and to waiting passengers, et

cetera.

3. Bertsekas and Tsitsiklis’ Tetris player [12]. Twenty-two features were designed

including information about the height of columns, the difference in adjacent

column heights, and the number of holes. These features resulted in mediocre

performance using a temporal difference learning learningalgorithm [12]; how-

ever, the same 22 features were recently used in conjunctionwith the cross-

entropy method (which is a type of Monte Carlo algorithm) improving perfor-

mance by two orders of magnitude [100].

These examples are obviously domain specific and thus cannotbe used for general

MDPs.

• Polynomial functions

In the context of Markov decision processes, polynomial function approximators take

the formφ(s) = [1, s, s2, . . . , sK ]T whereK ≪ |S|. Polynomials areglobal basis

functions. Although these functions are computationally simple to generate, they do

not efficiently represent smooth functions. These functions can also be numerically

ill-conditioned depending on the values ofs andK.

• Tile coding

Tile coding is a type of local function approximator over partitions of the state space.

A tiling is a partition of the state space. Each tiling contains many tiles (features)

with the property that only one tile (within a tiling) is active for any given state.

Since tiles are either active or inactive, the features are boolean-valued. The total

number of active features is equal to the number of tilings. For example, consider a

two dimensional state space(x, y) covering the square region[0, 1]2. A tiling could
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cover the region[0, 1]2 and contain tiles with a rectangular shape (e.g. a tile could

have 0.1 length in thex direction and 0.2 length in they direction).

There are several considerations that can make tile coding design intensive: how

many tilings to use, what are the shape of the tiles within a tiling, and how to choose

the dimensions for the tiling in high dimensional problems.Another challenge is

efficiently representing these functions, which is usuallydone using hashing.

• Radial basis functions

Radial basis functions (RBFs) are real-valued features where the value depends on

the distance to the RBF center. The feature value becomes larger as the distance to

the center decreases. RBFs have the nice property that they vary smoothly and are

differentiable. The simplest type of RBF takes the formφ(s) = exp(−‖s−c‖2

2σ2 ) where

c is the center of the RBF andσ2 is its variance. The variance dictates the support of

the RBF (i.e. how far from the centerc beforeφ(s) becomes negligible). There are

also more complicated forms for RBFs where the distance metric can differ from the

Euclidean metric and/or the support can be determined by a covariance matrix rather

than a scalar varianceσ2.

The RBF parameters are the number of basis functions, the location of the centers,

the distance function, and the covariance matrix. Depending on the MDP, there can

be significant engineering of the parameters to ensure the basis functions allow for

appropriate generalization. That said, there has been recent work on automatically

adapting RBF parameters using the cross-entropy method [70]. More information on

RBFs and tile coding can be found in Sutton and Barto’s textbook [98].

• Fourier basis functions

Konidaris and Osentoski [53] evaluated the use of Fourier basis functions for rein-

forcement learning tasks with continuous state spaces. TheFourier basis consists of

sines and cosines defined over the range of the state space variables. For example, in
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one dimension, aK th order Fourier basis function takes the formφi(s) = cos(πis)

for i = 0, . . . , K. This formulation is easily extended to multiple dimensions. For

example, if the state space is three dimensional, thenφi(s) = cos(πcTi s) where

ci = [ci,1, ci,2, ci,3] with ci,1, ci,2, andci,3 ∈ [0, 1, . . . , K]. There are(K+1)3 possible

coefficient vectorsci when the state space is three dimensional. Since the number of

potential basis functions grows exponentially with the state space dimensionality, a

method for selecting appropriate functions from this exponential set is required.

2.4.2 Automatically Learned Basis Functions

There have been several attempts to automatically learn basis functions for MDPs. Here

we briefly review the relevant literature with an emphasis onthe main ideas underlying

these methods.

• Successor representations

Dayan [27] proposedsuccessor representationsto approximate value functions. The

main idea behind this work, as well as the majority of function approximators dis-

cussed in this section, is that representations should respect the MDP dynamics. The

rationale is that, since a state is linked to its successor states by the Bellman equa-

tion, these states are similar and should allow for generalization. The successor rep-

resentation essentially predicts future state occupancy by keeping track of observed

transitions. This technique was designed for MDPs with discrete state spaces.

• Temporal neighborhoods

Kretchmar and Anderson [55] proposed creating basis functions based on temporal

neighborhoods. This work can be seen as an extension of successor representations

to problems with continuous state. To do so, they use tilingsover the state space and

then monitor the transitions between tiles. This can work well on problems with low

state space dimensionality, but encounters difficulty in scaling to higher dimensions.
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• Spatial neighborhoods

Drummond [31] considered the problem of transfer learning:how should information

about several tasks in one domain be used to accelerate learning in a new task. He

used techniques from computer vision to detect nonlinearities in the state space. The

nonlinearities allow for partitioning the state space, resulting in a set of features that

can be reused for solving new tasks.

• Multiple value function decomposition

In the same vein as Drummond’s work, Foster and Dayan [37] also studied how to

efficiently reuse information when solving multiple tasks in a single domain. The

goal of their work was to find common structure amongst a set ofvalue functions.

They used a probabilistic generative model of a value function using a mixture of

Gaussians. The learned models allowed for decomposition ofthe state space.

• Manifold representations

Smart proposed using manifolds to model the state space topology [91]. His rationale

followed the same logic of Dayan [27] and Kretchmar and Anderson [55] that func-

tion approximation in MDPs must respect this topology. Specifically, the state space

is partitioned into charts, where each chart has an embedding function that provides

a basis for representing a value function. There are many questions left unaddressed

in this work: how to allocate charts, the size of charts, the type of embedding func-

tions to use, et cetera. However, the idea of using manifoldsallows for a rigorous

framework that previous approaches lacked.

• Bellman error basis functions

The Bellman error, which is the difference between the current estimate of the value

function and the “backed up” value function, can be used to automatically construct

basis functions. This is useful because the Bellman error points in the direction of
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the target value function. Recently, Keller et al. [50] proposed iteratively adding

basis functions that are tuned to estimates of the Bellman error. Specifically, the

Bellman error was mapped to a low dimensional space (with theconstraint that states

with similar Bellman errors should be mapped close together), and then states were

aggregated in the low dimensional space to form new basis functions. Their work

builds on ideas proposed by Bertsekas and Castañon [11], who were interested in

accelerating the value iteration algorithm by exploiting information in the Bellman

error.

Parr et al. [81] considered Bellman error basis functions theoretically without the

complications of approximations and sampling. They provedthat iteratively adding

basis functions tuned to the exact Bellman error improves the bound on the distance

from the optimal value function provided the MDP model parameters are known. If

the model parameters are unknown, they described necessaryconditions where the

basis functions derived from samples would still improve the bound.

Petrik [83] used the MDP parametersP π andRπ to generate basis functions using

Krylov methods. This technique generates bases by multiplying the reward func-

tion by powers of the transition matrix:[Rπ, P πRπ, (P π)2Rπ, (P π)3Rπ, . . . ]. This

method results in basis functions that span the same subspace as the Bellman error

basis functions considered by Parr et al. [81].

• Graph-based basis functions

The following three methods generate basis functions from graphs. Each method

models the state space topology using a graph. An undirectedgraphG = (V,E,W )

is formed whereV is the set of vertices (representing MDP states),E is the set of

edges that capture a local neighborhood relationship, andW is a matrix of edge

weights. Please note that we useW to represent a graph’s weight matrix andw to

represent weights in the value function approximationV̂ = Φw.
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We provide a brief sketch here of proto-value functions, diffusion wavelets, and

geodesic Gaussian kernels. A more detailed description of the first two techniques is

provided in Chapter 3.

1. Proto-value functions

In a similar fashion to the manifold representation [91] described above, Ma-

hadevan [64] proposed modeling the state space topology using a graph (instead

of charts). Basis functions are automatically generated bycomputing eigen-

functions of a Laplace operator on the graph. For example, the combinatorial

graph Laplacian [20] is defined asL = D−W whereD is a diagonal matrix of

the row sums of weight matrixW (i.e. D(i, i) =
∑

j W (i, j)). Spectral anal-

ysis of the Laplacian operator finds the matrix’s eigenvectors and eigenvalues:

Lφi = λiφi. These eigenvectors, or proto-value functions (PVFs), have global

support on the graph and are ordered by their smoothness in the same spirit as

the smooth trigonometric functions in Fourier analysis.

2. Diffusion wavelets

Diffusion wavelets [22, 63] are a generalization of wavelets [25] to graphs.

They are multiscale basis functions derived from a graph operator, such as the

stochastic matrixD−1W . The multiple scales come from representing different

powers of the diffusion operator; smaller powers produce functions with more

localized support on the graph while larger powers produce functions with more

global support.

A well known issue with global basis functions like PVFs is that they can have

difficulty representing functions with discontinuities and/or different degrees

of smoothness. The multiscale nature of diffusion waveletsallows for a more

efficient representation of functions with discontinuities.
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3. Geodesic Gaussian kernels

Sugiyama et al. [94] also used a graph defined over the MDP state space. They

proposed placing radial basis functions on the graph. TheseRBFs were termed

geodesic Gaussian kernels (GGKs). The distance between thecenter of a GGK

and another vertex in the graph is computed using Dijkstra’sshortest path al-

gorithm. It is important to point out that the shortest pathscomputed using Di-

jkstra’s algorithm can produce unexpected results if thereexistshortcutedges,

whereas just using local distances (as used by PVFs and diffusion wavelets)

tends to be more robust to shortcut edges.

2.5 Least-Squares Learning Algorithms

Reinforcement learning algorithms can differ in how samples from an environment are

used to learn a value function. Online RL algorithms use eachsample to directly update

an estimated value function and then discard the sample. In contrast, least-squares RL al-

gorithms [17, 16, 56] store statistics that capture information about the MDP. Each domain

sample is used to update the statistics. When the value function or action-value function

is needed, the statistics are used to generate an estimate. Least-squares algorithms make

more efficient use of MDP samples and eliminate the need to tune the step-size parameter

α (α was described in the TD(0) and Q-learning update equations in Section 2.2). The

experiments in this dissertation are conducted using least-squares algorithms because of

these benefits.

There are two common least-squares algorithms for RL: the fixed point (FP) method

[17, 16] and the Bellman residual (BR) minimization method.These algorithms differ in

the objective function that the least-squares method minimizes. The objective functions for

both BR and FP involve functions of the Bellman residual(T π(V̂ )− V̂ ). We explain these

algorithms and their differences in further detail in Chapter 4.
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CHAPTER 3

GRAPH-BASED BASIS FUNCTIONS

In Section 2.4, we briefly introduced techniques that generate basis functions from

graphs which represent a MDP state space. Here we provide a detailed description of

two of these basis construction algorithms: proto-value functions and diffusion wavelets.

3.1 From MDPs to Graphs

The first step to generating graph-based basis functions is to form a graph from MDP

samples. We focus here on weighted, undirected1 graphsG = (V,E,W ) whereV is a set of

vertices,E is a set of edges, andW is a|V |×|V |weight matrix withW (u, v) > 0 if (u, v) ∈

E. If (u, v) /∈ E, thenW (u, v) = 0. The main idea is that the graph represents the topology

of the state space. The vertices in the graph correspond to states in the MDP.2 Edges

are inserted between a pair of vertices depending on a user specified distance function

(although the distance function itself can be learned from the MDP dynamics). A valuable

aspect of the graph-based framework is that it works equallywell in both discrete and

continuous state spaces. For example, with a discrete statespace, an edge can be placed

between two vertices/states if one state can transition to the other. More general distance

functions can also be used with discrete states. For continuous state spaces, there are two

common approaches to building a graph from a set of sampled MDP states. Given an

1It is also possible to defineddirectedgraphs from MDPs. We discuss the use of directed graphs at the
end of Section 3.2.

2Osentoski [79, 78] has explored graphs representing the MDPstate-action space topology. Basis func-
tions from such graphs can be directly used to approximate action-value functions.
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appropriate distance function comparing two states (e.g. Euclidean distance), each sampled

state can be connected to itsk nearest neighboring states or it can be connected to every

sampled state within a specified minimum distance. Edge weights can either be set to a

default value (e.g. 1) or can be set based on the distance metric. For a Euclidean distance

metricd(si, sj) = ‖si − sj‖2, it is common to set the weight asW (i, j) = exp(
−d(si,sj)

σ
)

for someσ > 0.

As a running example throughout this chapter, we use a grid MDP with 446 discrete

states and the mountain car task which is continuous and two dimensional. All of the do-

mains used in this dissertation are described in Appendix A.The graph for the discrete

MDP simply contains edges between states adjacent via any ofthe four canonical actions.

We use ak nearest neighbor graph for the mountain car MDP based on a weighted Eu-

clidean distance metric. Figure 3.1 shows the structure of the discrete MDP and the graph

used for the mountain car domain. For the mountain car plot, the black circles are the

graph’s vertices (sampled states) and the blue lines are theedges.
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Figure 3.1. The discrete grid MDP (left) and graph constructed from the mountain car
MDP (right) are running examples throughout Chapter 3.
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3.2 Graph Laplacian

We make the simplifying assumption that the graphG = (V,E,W ) formed from the

MDP samples is undirected, weighted, and connected. These are not restrictive assump-

tions. If the graph is disconnected, then each component canbe considered individually.

Directed graphs can also be used which we describe at the end of this section. The com-

binatorial graph Laplacian [20] is defined asL = D −W whereD is a diagonal matrix

of the row sums ofW (i.e. D(i, i) =
∑

j W (i, j)). The graph Laplacian has proven ex-

tremely useful in machine learning. The structure of the data encoded in the graph has

been exploited for nonlinear dimensionality reduction [86, 101, 5], clustering [76], and

semi-supervised learning [7]. The theoretical underpinning of the graph Laplacian is based

on its convergence to the Laplace-Beltrami operator on the underlying manifold from which

the data samples (graph vertices) are drawn [41, 6].

The combinatorial LaplacianL is symmetric and positive semidefinite; therefore,L has

all real and non-negative eigenvalues. The Laplacian acts as an operator for functions on the

graph. Given a functionf ∈ R
|V | which has a value at each graph vertex, the multiplication

Lf outputs a new function. The ith value of the vectorLf , which we abbreviate as(Lf)i,

is equal to
∑

j∼iW (i, j)(f(i) − f(j)) wherej ∼ i indicates an edge between verticesi

andj. Thus, the Laplacian acts as a difference operator. This is useful in determining how

smooth a function is according to the graph topology. The Dirichlet sum is defined as:

〈f, Lf〉 = fTLf =
∑

i∼j

W (i, j) (f(i)− f(j))2 . (3.1)

Notice the squared differences(f(i) − f(j))2 are weighted by the strength of the connec-

tion. If the Dirichlet sum is small, then we know the functionf is relatively smooth on

the graph (i.e. neighboring vertices have similar values inthe functionf ). We show in

Chapter 4 how the ability to measure the smoothness of a function can be put to use as a

regularization tool.
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The normalized Laplacian [20] is defined asL = D− 1
2LD− 1

2 . The normalized Lapla-

cian, which is also a difference operator, accounts for the degree of each vertex individually.

This can be seen by considering(Lf)i = 1√
D(i,i)

∑

j∼iW (i, j)

(

f(i)√
D(i,i)

− f(j)√
D(j,j)

)

. The

normalized Laplacian is a symmetric matrix. It is related tothe (possibly nonsymmetric)

stochastic matrixP = D−1W , which can be though of as a random walk matrix, by the

equationP = D− 1
2 (I−L)D

1
2 .3 This ensures thatL andP have similar spectral properties.

If P has an eigenvalueλ with associated eigenvectorφ, thenL has an eigenvalue(1 − λ)

with associated eigenvectorD− 1
2φ.

Mahadevan defined the term proto-value functions [64, 67] tobe the eigenvectors of the

graph Laplacian. The eigendecomposition of the combinatorial Laplacian is writtenLφi =

λiφi for i = 1, . . . , |V | or, in matrix format,LΦ = ΦΛ. The matrixΦ =
[

φ1, φ2, . . . , φ|V |

]

contains (orthogonal) eigenvectors andΛ is a diagonal matrix withΛ(i, i) = λi. Note that

all of the eigenvectors and eigenvalues are real-valued. The matrixΦ is a complete basis

in that it can be used to represent any function on the graph. Let the numbering of the

eigenvectors and eigenvalues be in terms of increasing eigenvalue. Given the properties

of the Laplacian, we know0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λ|V |. Furthermore,φ1 is a

constant vector. The increasing order of eigenvalues leadsto an ordering of the eigenvectors

by “smoothness.” We can see this by considering the Dirichlet sum of an eigenvector

φi: φT
i Lφi = φT

i λiφi = λi. To visualize the idea of smooth eigenvectors, Figure 3.2

shows the second through fourth eigenvectors of the combinatorial graph Laplacian for

the discrete grid MDP and the mountain car task (the first eigenvector is omitted since it

is just a constant function). Mahadevan and Maggioni proposed using the smoothestK

eigenvectors as a basis for representing value functions and action-value functions [67]. If

value functions are smooth with respect to the graph topology, then this basis will be useful

3To clarify, we use the notationP to refer to a MDP transition function,Pπ to refer to a probability
transition matrix associated with policyπ, andP = D−1W to refer to a random walk matrix on a graph.
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for approximation. The construction of the basis functionswas one step in an overall

approximate policy iteration algorithm which we describe in Section 4.5.2.
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Figure 3.2. Second to fourth Laplacian eigenvectors for the discrete grid MDP (top row)
and the mountain car MDP (bottom row).

Note that the graph Laplacian was defined using sampled states of the MDP. There-

fore, the Laplacian eigenvectors are featuresφ(s) defined over the MDP state space. It is

straightforward to use these features for approximating value functions:V̂ (s) = φ(s)Tw.

For MDPs with discrete actions, the same set of basis functions can also be used to ap-

proximate the action-value function̂Q(s, a) = φ(s, a)Tw. The idea is to use the same set

of features for each action separately by padding the features with zeros. For example,

consider a MDP with two actions,a1 anda2. The approximate action-value function can

take the form:

Q̂ =







Q̂(·, a1)

Q̂(·, a2)






=







Φ 0

0 Φ













wa1

wa2






.

If Φ hasK columns, then the feature vectorφ(s, a) hasK·|A| values of which onlyK are

(potentially) nonzero.
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To be complete, we point out two generalizations of the undirected graph Laplacian.

The Laplacian is well-defined for directed graphs [21]. Given a weight matrixWd and di-

agonal row sum matrixDd associated with a directed graph,P = D−1
d Wd is a stochastic

matrix. We denote the dominant left eigenvector ofP asψ (i.e. ψTP = ψT ), which is

also known as the Perron vector. If the directed graph is strongly connected and aperiodic

(properties which can be guaranteed using a technique knownas the teleporting random

walk [80]), then the Perron-Frobenius theorem ensuresψ is unique and contains only posi-

tive real values. The vectorψ is the invariant distribution upon convergence of the random

walk. The combinatorial and normalized Laplacians are defined respectively as:

Ld = Ψ− ΨP + PT Ψ

2

Ld = I − Ψ1/2PΨ−1/2 + Ψ−1/2PT Ψ1/2

2
,

whereΨ is a diagonal matrix withΨ(i, i) = ψ(i). In previous work [44], we compared

using directed and undirected Laplacian eigenvectors as basis functions for RL tasks. Both

directed Laplacians, though starting from a nonsymmetric matrix P, are in fact symmetric

matrices. Essentially, the matrices are made symmetric by the Perron vector. There is also

a notion of nonsymmetric Laplacian matrices [1]. These are matrices with (1) non-positive

off-diagonal elements, and (2) zero row sums. There is a direct connection between these

matrices and MDPs [65]. Lastly, we note there is a connectionbetween the graph Laplacian

and reproducing kernels [92, 65]. Specifically, the pseudoinverse of the Laplacian is a

reproducing kernel. The field of spectral graph theory studies other properties associated

with the Laplacian and its spectra [20].

3.3 Diffusion Wavelets

Diffusion wavelets [22, 63] are a generalization of classical wavelets [25] to graphs and

manifolds. They are a representation of powers of a diffusion process on a graph. At small
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powers, the diffusion process has local effects while at larger powers the diffusion has more

global effects. By representing multiple powers of a diffusion process, diffusion wavelets

allow for a multiscale analysis of graphs.

An intuitive way to understand diffusion wavelets is to compare and contrast them

with graph Laplacian eigenvectors. The similarity of Laplacian eigenvectors and diffusion

wavelets is that they are both basis functions generated from a graph. Both sets of basis

functions are adapted to the topology of the graph (MDP statespace) and can be used

as a basis for approximating functions on the graph. Laplacian eigenvectors have global

support on the graph. In other words, each eigenvector takeson a value at every vertex

in the graph. Diffusion wavelets, on the other hand, are multiscale basis functions. By

multiscale, we mean they have varying degrees of support on the graph. The functions

range from having very localized support (i.e. only a few vertices on the graph take on a

value) all the way up to global support. There are|V | Laplacian eigenvectors which provide

a complete basis for functions on the graph. There are more than |V | diffusion wavelet

basis functions which means they provide an overcomplete basis. The extra flexibility of

an overcomplete, multiscale basis means diffusion wavelets can represent certain functions

more efficiently than Laplacian eigenvectors. It is well known from Fourier analysis that

global functions like the Laplacian eigenvectors can have difficulty representing functions

with discontinuities and/or varying degrees of smoothnessin different regions. This issue

in fact prompted the construction of wavelets.

Before describing the diffusion wavelet construction, we present a few examples for the

discrete grid MDP and the mountain car MDP. Figure 3.3 shows three diffusion wavelet

scaling functions for the two domains. The three functions for both domains consist of one

function with local support, one function with an intermediate level of support, and one

function with global support. Notice in particular that thefunctions with global support

look very similar to the eigenvectors shown in Figure 3.2.

27



1
15

30

1

15

30

0

0.2

0.4

1
15

30

1

15

30
−0.1

0

0.1

1
15

30

1

15

30
0.02

0.03

0.04

0.05

0.06

Figure 3.3. Functions (from local to global) in the diffusion wavelet tree for the discrete
grid MDP (top row) and the mountain car MDP (bottom row).

Figure 3.4 gives a high level description of the diffusion wavelet algorithm. The QR

decomposition of a matrix is needed in the construction. Given a matrixA, its QR decom-

position is writtenA = QR whereQ is an orthogonal matrix andR is an upper triangular

matrix.

Figure 3.4. High level description of the diffusion wavelet tree construction. The square
and rectangular boxes represent matrices. The shading of matricesR andR′ indicate the
location of nonzero values.
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The diffusion wavelet construction begins with the definition of the diffusion operator

asT = (I−L) with powersT t, t > 0. To make the diffusion aspect more obvious, this can

be rewrittenT = D−0.5WD−0.5 = D0.5PD−0.5 whereP = D−1W is a stochastic matrix

representing a random walk (diffusion process) on the graph. Note thatP is conjugate

along with its powers toT ; thus, studyingT andP are equivalent in terms of spectral

properties. It is computationally easier to deal withT since it is symmetric. Small powers of

T t correspond to short-term behavior in the diffusion processand large powers correspond

to long-term behavior. Diffusion wavelets are naturally multiscale basis functions because

they account for increasing powers ofT t (in particular, the dyadic powerst = 2j). We give

a brief sketch of the diffusion wavelet algorithm; a more thorough description can be found

in the original paper [22]. Aside from matrixT , the other inputs to the algorithm areJ , the

maximum number of levels to compute,ǫ, a precision parameter, andSpQR(A, ǫ), a sparse

QR algorithm that outputs (sparse) matricesQ andR such thatA =ǫ QR (i.e. the columns

of Q ǫ-span the columns ofA). The outputs of the algorithm are a set of scaling functions

{φj} and wavelet functions{ψj} at different levels/scales. As the levelj gets larger, the

number of scaling and wavelet functions gets smaller because the diffusion process spreads

out and becomes more compressible. Algorithm 1 shows the details of the construction

and uses the following notation:[T ]φb

φa
is a matrix representingT with respect to the basis

φa in the domain andφb in the range (nb × na matrix) and[φb]φa
is a set of functionsφb

represented on the basisφa (na× nb matrix). Typically the initial basis for the algorithm is

φ0 is assumed to be the delta functions, but this is not strictlynecessary.

The diffusion wavelet construction proceeds by computing the sparse QR decomposi-

tion (up to a precision ofǫ) of [T ]φ0

φ0
. This provides (1) a new basis[φ1]φ0

which is defined

in the range of the old basisφ0, and (2) a representation of the diffusion operator[T ]φ0

φ1
de-

fined in the range of the new basisφ1. The second power of the diffusion operator (defined

completely in the new basisφ1) is computed as[T 2]φ1

φ1
= [T ]φ0

φ1
([T ]φ0

φ1
)∗ where the symbol∗

indicates the conjugate transpose. Notice that the size of matrix T 2 may be smaller than the
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Algorithm 1 : Diffusion Wavelet Tree

Input: [T ]φ0

φ0
, diffusion operator in the basisφ0

φ0, initial basis forT (usually unit basis vectors)
J , maximum number of levels in tree
SpQR, a sparse QR algorithm with two inputs: a matrix and parameterǫ

ǫ > 0, determines precision level of QR decomposition
Output: {φj}Jj=1, scaling functions by level

{ψj}J−1
j=0 , wavelet functions by level

for j = 0 to (J − 1) do
[φj+1]φj

, [T 2j
]
φj+1

φj
← SpQR([T 2j

]
φj

φj
, ǫ)

[T 2j+1

]
φj+1

φj+1
← [T 2j

]
φj+1

φj
([T 2j

]
φj+1

φj
)∗

[ψj ]φj
← SpQR(I〈φj〉 − [φj+1]φj

([φj+1]φj
)∗, ǫ)

end for

size ofT . The last step is to compute the wavelet functions[ψ0]φ0
. This is accomplished by

using the sparse QR algorithm on the matrix
(

I − [φ1]φ0
[φ1]

∗
φ0

)

. Notice that the span of the

scaling functions[ψ0]φ0
is the orthogonal complement of the span of[φ0] into [φ1]. In other

words, the wavelet functions at levelj = 0 capture the detail lost in going from basis[φ0]

to the new basis[φ1] (i.e. the wavelet functions act as a high-pass filter). It is also possible

to further decompose the wavelet functions into wavelet packets [18]. This procedure then

proceeds iteratively until the maximum levelJ is reached or until the number of scaling

functions goes beneath a minimum threshold. Note that the scaling functions[φj]φj−1
pro-

vide a mapping from levelj − 1 to level j. In order to view the functions in the original

basisφ0 (which is usually assumed to be the unit basis), the mapping is unrolled to give

[φj]φ0
= [φj]φj−1

[φj−1]φj−2
. . . [φ1]φ0

[φ0]φ0
.

Maggioni and Mahadevan [63] proposed using diffusion wavelets for value function

approximation. They used a heuristic for selecting a set of functions from the diffusion

wavelet tree. Given a desired number of basis functionsK, they selected the scaling func-

tions at levelJ , then the wavelet functions at levelJ−1, then the wavelet functions at level

J − 2, etc. untilK functions are selected. This heuristic generates an orthogonal basis

consisting of the most global functions in the diffusion process. This is very similar in

spirit to selecting theK “smoothest” Laplacian eigenvectors as a basis. Both these proce-
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dures are independent of the value function being estimated. This can be an inefficient use

of the diffusion wavelet and Laplacian eigenvector dictionaries. In Chapter 6, we explore

algorithms for selecting basis functions from both dictionaries based on a specific policy’s

value function.
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CHAPTER 4

HYBRID LEAST-SQUARES METHODS AND GRAPH-BASED
REGULARIZATION

In this chapter, we develop hybrid least-squares algorithms for approximate policy eval-

uation [48]. Least-squares methods are important because they are sample efficient and do

not require tuning a step-size parameter. The hybrid algorithms are a parametric com-

bination of two common least-squares RL methods. When used within policy iteration,

we show the use of hybrid algorithms can, in some instances, lead to better policies. We

also describe how the graph Laplacian can be used to provide regularization and prevent

overfitting from noisy samples.

4.1 Previous Work

Least-squares reinforcement learning algorithms [17, 16,56] store statistics from MDP

samples. The Bellman residual (BR) minimization method andthe fixed point (FP) method

both store a matrixA ∈ R
K×K and a vectorb ∈ R

K whereK is the number of basis func-

tions. Informally, the matrixA captures information about state transitions and the vector

b stores information about the reward function. When the approximate value function is

needed, the least-squares problemsAw = b is solved to givêV = Φw.

Below we describe the BR and FP methods as well as two other approximate policy

evaluation techniques.1

1The first three techniques were similarly described by Munos[74].
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4.1.1 Optimal Approximate Method

If the target value functionV π were known, then it is easy to find an approximation

V̂ simply by projectingV π onto the space spanned by the basis functions. This directly

minimizes the loss functionLOPT (w) = ‖V̂ − V π‖ρ, where the errors for each state are

weighted according to distributionρ. Thus, the solution iŝV = Φw = ΠρV
π whereΠρ =

Φ(ΦTDρΦ)−1ΦTDρ is a projection matrix andDρ is a diagonal matrixDρ(i, i) = ρ(i). The

difficulty of this method is in computingV π, which can in principle be done using Monte

Carlo methods.

4.1.2 Fixed Point Method

This technique, originally proposed by Bradtke and Barto [17] and later generalized by

Boyan [16], computes a solution by forcinĝV to be a fixed point of the Bellman opera-

tor. Since the Bellman operator can back up values out of the space spanned by the basis

functions, it must be followed by a projection onto the column space ofΦ (written [Φ]) to

ensureV̂ is a fixed point. Thus, the solution is to minimize the loss functionLFP (w):

min
w

LFP (w) = min
w
‖ΠρT

π(V̂ )− V̂ ‖2ρ

= min
w
‖Πρ(T

π(V̂ )− V̂ )‖2ρ

= min
w
‖Πρ(R

π + γP πΦw − Φw)‖2ρ. (4.1)

In the third line above, note that̂V = ΠρV̂ . The least-squares solution to this problem is to

findw such thatAFPw = bFP where:

AFP = ΦTDρ(I − γP π)Φ

bFP = ΦTDρR
π.

We refer to this technique as the FP solution to be consistentwith previous work [56], but

it has also been referred to as least-squares temporal difference (LSTD) learning [17, 16]
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and as the temporal difference method [88, 74]. Unbiased estimates of the matrixAFP and

vectorbFP can be obtained from a single sample〈s, π(s), r′, s′〉 by the following updates:

ÂFP = ÂFP + ρ(s)φ(s)(φ(s)− γφ(s′))T

b̂FP = b̂FP + ρ(s)φ(s)r′.

4.1.3 Bellman Residual Minimization

This technique computes a solution by minimizing the magnitude of the Bellman resid-

ual where the errors for each state are weighted according todistribution ρ. Thus, the

solution is to minimize the loss functionLBR(w):

min
w

LBR(w) = min
w
‖T π(V̂ )− V̂ ‖2ρ

= min
w
‖Rπ + γP πΦw − Φw‖2ρ. (4.2)

The least-squares solution is to minimize‖ABRw − bBR‖2ρ where:

ABR = ΦT (I − γP π)TDρ(I − γP π)Φ

bBR = ΦT (I − γP π)TDρR
π.

This technique, proposed by Schweitzer and Seidmann [89], has also been referred to as the

residual-gradient method [3, 88], the quadratic residual method [74], and as the Bellman

residual method [56, 2]. To achieve anunbiasedestimate ofABR andbBR, two samples

from each state are required (see Chapter 8.5 [98]). The feasibility of getting two samples

depends on the application. Given double samples〈s, π(s), r′, s′〉 and〈s, π(s), r′′, s′′〉, the

updates are

ÂBR = ÂBR + ρ(s)(φ(s)− γφ(s′))(φ(s)− γφ(s′′))T

b̂BR = b̂BR + ρ(s)(φ(s)− γφ(s′))r′.
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If only a single sample is available, then replacingφ(s′′) with φ(s′) in the equation above for

ÂBR results in a biased estimate ofABR. This occurs because the termγ2ΦT (P π)TDρP
πΦ

in ABR cannot be estimated from just a single transition. Two common heuristics for deal-

ing with this issue are to hypothesize a second sample using anearest neighbor ofs′ and

to not updateÂBR until a states has been visited at least twice. Recently, Antos et al. [2]

proposed a technique for avoiding double samples by adding an auxiliary function which

itself must be optimized.

4.1.4 Residual Algorithms

The BR solution minimizes the Bellman residual (Equation 4.2) and the FP solution

minimizes the projected Bellman residual (Equation 4.1). Baird [3] proposedresidual al-

gorithmsas a way to combine these techniques. The term “residual” algorithm was used

to emphasize that it was different from a “residual-gradient” algorithm (his terminology

for BR). To avoid any confusion, we refer to residual algorithms ashybrid algorithms.

This name also emphasizes the fact that it is a combination ofBR and FP. Baird’s original

version was an incremental algorithm. An update to the weight vector was computed by

linearly combining the updates due to the BR and FP:∆wH = ξ∆wBR+(1−ξ)∆wFP where

ξ ∈ [0, 1]. In the next section, we introduce two ways to formulate the hybrid technique

using least-squares methods.

4.2 Hybrid Least-Squares Algorithms

The hybrid approach accounts for both the Bellman residual (which is minimized by

the BR in Equation 4.2)andthe projection of the Bellman residual onto[Φ] (which is mini-

mized by the FP in Equation 4.1). In this section, we examine two ways of combining these

objectives to derive hybrid least-squares algorithms H1 and H2. The difference between the

H1 and H2 derivations is when the fixed point constraint (i.e.V̂ = ΠT π(V̂ )) is enforced.2

2We thank Marek Petrik for help with the H1 algorithm.
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Both methods when used with an exact representation producethe target value function

V π. When using an approximate representation, they produce different results and have

different storage and computational requirements. The majority of this section, Section

4.3, and the experiments in Section 4.6 appeared in our previous work [48].

4.2.1 Motivation

There are three factors that motivate hybrid algorithms. First, as pointed out by Baird

[3], hybrid algorithms are a general class of algorithms that include the BR and FP algo-

rithms as special cases at opposite ends of a spectrum. Fullyunderstanding this spectrum

is worthwhile in its own right. Also, as least-squares techniques have been applied to the

BR and FP algorithms [17, 16, 56] to make them more data efficient than their incremental

counterparts, it makes sense to design a least-squares version of hybrid algorithms. These

least-squares algorithms have an intuitive geometric perspective. The BR and FP methods

minimize the length of different sides of a triangle defined by the Bellman equation [56].

Hybrid algorithms naturally complete this perspective.

The second factor motivating hybrid least-squares algorithms is the empirical behavior

of approximate policy iteration. The FP algorithm tends to produce better policies than the

BR algorithm [56]. However, this increase in performance comes at the expense of stability

[3, 74]. Li [61] analyzed incremental versions of the FP and BR methods under a particular

learning model and concluded that the BR method can achieve smaller residuals while the

FP method can make more accurate predictions. It is also worth noting that the Bellman

residual is used to provide theoretical performance bounds[109, 74]. In other words, hav-

ing a small magnitude of the Bellman residual (which the BR method focuses on) translates

into guarantees on the quality of the approximate value functions. It is more difficult to pro-

vide such guarantees using the FP method [74]. Table 4.1 lists some properties associated

with the BR and FP methods.

36



BR FP

• Minimizes the norm of the Bellman resid-
ual which is directly related to performance
bounds

•Minimizes the norm of the projected Bellman
residual

• Least-squares solution isbiasedwhen only
single-samples from MDP are available

• Least-squares solution isunbiased when
single-samples from MDP are available

• Performs backward-bootstrapping (i.e. the
value of a state is influenced by its predeces-
sors as well as its successors)

• Does not perform backward-bootstrapping

• Empirically performs worse than FP when
used in policy iteration

• When used in policy iteration, often finds
much better policies than BR provided policy
iteration converges

Table 4.1.Properties and behavior of two common RL least-squares algorithms: the Bell-
man residual (BR) minimization method and the fixed point (FP) method.

Hybrid algorithms have the potential to achieve both stability and improved perfor-

mance. To illustrate this on a concrete example, consider the six state MDP shown in Fig-

ure 4.1 with discount factorγ = 0.99. The optimal policy is to move right in the first three

states and left in the last three states (π∗ = RRRLLL). Let the initial policy beπ0 = LLLLLL

and assume there are three basis functions corresponding tothe first three eigenvectors of

the graph Laplacian [64]. These basis functions are symmetric and expressive enough to

represent an approximate value function whose corresponding greedy policy isπ∗. The

basis functions are shown in Figure 4.2. The distributionρ can be set to either the invariant

distribution ofP π0 or the uniform distribution (which is appropriate when performing pol-

icy iteration [51]); the results hold for both distributions. The approximate value functions

V̂ π0
BR

andV̂ π0
FP

were computed according to the least-squares solutions described in Section

4.1. Then the model was used to determine a policyπ1 that is greedy with respect tôV .

The BR method produces a policyπ1 = LLLLLL while the FP method produces a policy

π1 = RRRRRR. Thus, after one round of policy iteration, the BR method converges on the

initial policy and the FP method completely flips the policy.Moreover, since the model

and basis functions are symmetric, the FP method oscillatesforever betweenLLLLLL and

RRRRRR. This example demonstrates the stability of the BR method and the FP method’s
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potential instability. We will revisit this example later to show that hybrid least-squares

algorithms find solutions between these two extremes.
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Figure 4.1.Reward and transition functions for a six state MDP with two possible actions.
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Figure 4.2. First three Laplacian eigenvectors associated with the MDPin Figure 4.1.

The third motivating factor is the bias associated withÂBR when only a single sample

is available from each state. Denote the sampled Bellman update for a fixed policyπ as

T̂ . Note this is a random variable which depends on the samples.The expected value is

E[T̂ ] = T π. Antos et al. [2] showed that the expected value of the estimated Bellman

residual when using single samples is equal to the true Bellman residual plus the variance

of the sampled Bellman update. This takes the form:

E
[

‖T̂ (V̂ )− V̂ ‖2ρ
]

= ‖T π(V̂ )− V̂ ‖2ρ + ρTV ar
[

T̂ (V̂ )
]

,

where the varianceV ar[·] is point-wise andρ is a distribution vector. Practically, this means

that in minimizing the estimated Bellman residual, function approximation resources are

spent minimizing the variance of̂T (V̂ ). Clearly, this is undesirable. On the other hand,ÂFP
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is unbiased when only a single sample is available from each state. Hybrid algorithms, by

naturally combining the BR and FP methods, offer control over the impact of the bias.

4.2.2 Algorithm H1

We combine the BR minimization problem (Equation 4.2) and the FP minimization

problem (Equation 4.1) with a parameterξ ∈ [0, 1]. The loss function isLH1
(w) =

ξLBR(w)+(1−ξ)LFP (w). Simply combining these two problems results in a minimization

over two separate norms; however, these can be combined intoa single norm as we prove

below:

min
w

[ξLBR(w) + (1− ξ)LFP (w)]

= min
w

[

ξ‖T π(V̂ )− V̂ ‖2ρ + (1− ξ)‖Πρ(T
π(V̂ )− V̂ )‖2ρ

]

= min
w

[

ξ‖(I − Πρ + Πρ)(T
π(V̂ )− V̂ )‖2ρ + (1− ξ)‖Πρ(T

π(V̂ )− V̂ )‖2ρ
]

= min
w

[

ξ‖(I − Πρ)(T
π(V̂ )− V̂ )‖2ρ + ‖Πρ(T

π(V̂ )− V̂ )‖2ρ
]

= min
w
‖
√

ξ(I − Πρ)(T
π(V̂ )− V̂ ) + Πρ(T

π(V̂ )− V̂ )‖2ρ

= min
w
‖(

√

ξI + (1−
√

ξ)Πρ)(T
π(V̂ )− V̂ )‖2ρ

= min
w
‖(

√

ξI + (1−
√

ξ)Πρ)(R
π + γP πΦw − Φw)‖2ρ. (4.3)

The chain of steps relies on the Pythagorean theorem (used inboth the fourth and fifth lines)

and the fact that[I − Πρ] and[Πρ] are orthogonal subspaces. A least-squares equation of

the form‖AH1
w − bH1

‖2ρ can be derived3 from the minimization problem in Equation 4.3:

AH1
= ΦT (I − γP π)TDρ(ξI + (1− ξ)Πρ)(I − γP π)Φ

bH1
= ΦT (I − γP π)TDρ(ξI + (1− ξ)Πρ)R

π.

3In expanding Equation 4.3 to formAH1
and bH1

, we use the following simplification:
(√
ξI + (1−√ξ)Πρ

)T
Dρ

(√
ξI + (1−√ξ)Πρ

)

= Dρ (ξI + (1− ξ)Πρ) .
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To estimateAH1
andbH1

from samples, it is necessary to store threeK ×K matrices and

two lengthK vectors. This can be seen by rewriting the equations:

AH1
= ξABR + (1− ξ)AT

FP
C−1AFP

bH1
= ξbBR + (1− ξ)AT

FP
C−1bFP ,

whereC = ΦTDρΦ. Thus,AH1
can be estimated by incrementally updatingÂBR, ÂFP ,

b̂BR, b̂FP , as well as the matrix̂C via Ĉ = Ĉ+ρ(s)φ(s)φ(s)T given sample〈s, π(s), r′, s′〉.

If only a single sample is available from each state, thenÂH1
will be a biased estimate of

AH1
because of the bias in̂ABR. However, as mentioned in Section 4.2.1, hybrid algorithms

can reduce the impact of the bias. This is achieved simply by settingξ to a value less than

one, thereby reducing the bias of the termE
[

ξ‖T̂ (V̂ )− V̂ ‖2ρ
]

.

Both the BR and FP least-squares problems only need to store oneK × K matrix

and one lengthK vector, whereas the H1 method requires three matrices and two vectors.

Moreover, the matrixC must be inverted when computingAH1
. These issues motivated our

second implementation.

4.2.3 Algorithm H2

The algorithm H1 was derived by linearly combining the loss functionsLBR(w) and

LFP (w). The loss functionLFP (w), by virtue of using the projection matrixΠρ, directly

enforces the fixed point constraint. An alternative option is to enforce the fixed point con-

straintafterfinding a solution to the minimization problem. More specifically, consider the

following combined loss function:

LH2
(w) =

[

ξ

2
LBR(w) +

1− ξ
2

LFP (u,w)

]

,

whereLFP (u,w) = ‖T π(Φu) − Φw‖2ρ. We first find the coefficient vectorw that mini-

mizesLH2
(w) for an arbitrary vectoru and then enforce the fixed point constraintu = w.
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This technique was recently described by Kolter and Ng [52].DifferentiatingLH2
(w) with

respect tow, we obtain:

∂LH2
(w)

∂w
= ξ

[

∂
∂w

(T π(Φw)− Φw)
]T
Dρ (T π(Φw)− Φw) +

(1− ξ)
[

∂
∂w

(T π(Φu)− Φw)
]T
Dρ (T π(Φu)− Φw)

= ξ (γP πΦ− Φ)T Dρ (T π(Φw)− Φw) + (1− ξ) (−Φ)T Dρ (T π(Φu)− Φw)

= ξ (Φ− γP πΦ)T Dρ (Φw − γP πΦw −Rπ) + (1− ξ)ΦTDρ (Φw − γP πΦu−Rπ),

whereDρ is a diagonal matrix with elementsρ. To find an extrema, we set
∂LH2

(w)

∂w
to 0 and

solve forw:

[

ξ (Φ− γP πΦ)T Dρ (Φ− γP πΦ) + (1− ξ)ΦTDρΦ
]

w =

[

ξ (Φ− γP πΦ)T Dρ + (1− ξ)ΦTDρ

]

Rπ + (1− ξ)ΦTDρ(γP
πΦ)u.

By first adding and subtracting(1− ξ)ΦTDρ(γP
πΦ)w from the left-hand side of the equa-

tion and then simplifying both sides of the equation usingξ (Φ− γP πΦ) + (1 − ξ)Φ =

(Φ− ξγP πΦ), we get:

[

(Φ− ξγP πΦ)T Dρ (Φ− γP πΦ) + (1− ξ)ΦTDρ (γP πΦ)
]

w =

(Φ− ξγP πΦ)T DρR
π + (1− ξ)ΦTDρ(γP

πΦ)u.

Finally, we enforce the fixed point constraintu = w to get the final result:

(Φ− ξγP πΦ)T Dρ (Φ− γP πΦ)w = (Φ− ξγP πΦ)T DρR
π.

This is a least-squares problem with the formAH2
w = bH2

where:
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AH2
= ΦT (I − ξγP π)TDρ(I − γP π)Φ

= ξABR + (1− ξ)AFP

bH2
= ΦT (I − ξγP π)TDρR

π

= ξbBR + (1− ξ)bFP .

By definition, this technique returns the BR solution whenξ = 1 and the FP solution when

ξ = 0. Importantly, only oneK × K matrix and one lengthK vector are required. The

incremental update given double samples〈s, π(s), r′, s′〉 and〈s, π(s), r′′, s′′〉 has the form:

ÂH2
= ÂH2

+ ρ(s)(φ(s)− ξγφ(s′))(φ(s)− γφ(s′′))T

b̂H2
= b̂H2

+ ρ(s)(φ(s)− ξγφ(s′))r′.

It is worthwhile noting that these updates are nearly identical to those forÂBR and b̂BR

except for the extra parameterξ.

4.2.4 Difference Between H1 and H2 Methods

It is useful to elucidate the differences between the hybridalgorithms. The most im-

mediate difference is that the H1 method requires three matrices and two vectors whereas

the H2 method only uses one matrix and one vector. We show later in Chapter 6 that when

a subset of basis functions fromΦ is used (i.e. usingk′ ≤ K columns fromΦ), the H1

method still requires formingK×K matrices whereas the H2, BR, and FP algorithms only

needk′ × k′ storage. This can severely limit the use of algorithm H1 as it will not scale up

to large numbers of basis functions.

To make the comparison of the hybrid methods more obvious, the least-squares equa-

tions can be rewritten as follows:
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AFP = ABR − γ2ΦT (P π)TDρP
πΦ + γ ΦT (P π)TDρΦ

AH1
= ABR − (1− ξ)γ2ΦT (P π)TDρP

πΦ + (1− ξ)γ2ΦT (P π)TDρΠρP
πΦ

AH2
= ABR − (1− ξ)γ2ΦT (P π)TDρP

πΦ + (1− ξ)γ ΦT (P π)TDρΦ.

MatricesABR andAH1
are symmetric by definition whereasAFP andAH2

(except when

ξ = 1) are not symmetric. Consider the extreme values ofξ. Both AH1
andAH2

are

clearly the same asABR whenξ = 1. Whenξ = 0, it is obvious thatAH2
andAFP are

identical. It is less obvious that algorithm H1 produces the same solutionw to the least-

squares minimization as algorithms H2 and FP whenξ = 0, but this can in fact be shown.

The interesting case occurs when0 < ξ < 1 because the hybrid solutions differ. Notice the

only difference betweenAH1
andAH2

is in the final term shown above. The final term in

AH2
is γΦT (P π)TDρΦ, whileAH1

includes the same term times its transpose. This occurs

during the least-squares derivation ofAH1
.

As shown in Equation 4.3, the H1 method can be written as a minimization over the

sum of two loss functions: the norm of the Bellman residual and the norm of the projected

Bellman residual. Algorithm H2 uses a slightly different way of enforcing the fixed point

loss function. The fixed point constraint is applied only after the optimization problem is

solved.

4.2.5 Other Possible Algorithms

The two proposed hybrid algorithmsimplicitly constrain the Bellman residual by the

choice of the parameterξ. This constraint could be made explicit. The problem would

be to minimize the projection of the Bellman residual subject to an inequality constraint

on the Bellman residual (either on its magnitude or component-wise). This constrained

optimization would take the form:
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min
w
‖AFPw−bFP‖ρ

subject to:‖ABRw − bBR‖ρ ≤ δ

or: ± (ABRw − bBR) ≤ ∆.

The parametersδ ∈ R
+ and∆ ∈ R

K+ must be set appropriately based on the minimal

value of the Bellman residual magnitude attained using the BR method. We point out the

possibility of explicitly controlling the Bellman residual to be thorough. However, since

this increases the computational complexity, we limit our discussion to the two simple

least-squares algorithms H1 and H2.

4.3 Analysis

4.3.1 Projection of the Target Function

The first three approximate policy evaluation techniques were shown to be images of

the target functionV π under different projection operations [88]. More specifically, each

methodX = {OPT,BR, FP} produces an approximate value function with the following

form: V̂ = Φw = ΦA−1
X bX = Φ(ΦTDXΦ)−1ΦTDXV

π. The matrixDX controls the

weighting of the projection and takes on the following values [88]:

DOPT = Dρ

DBR = (I − γP π)TDρ(I − γP π)

DFP = Dρ(I − γP π).

The hybrid methods have a similar characterization:

DH1
= (I − γP π)TDρ(ξI + (1− ξ)Πρ)(I − γP π)

DH2
= (I − ξγP π)TDρ(I − γP π).
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4.3.2 Geometry of the Bellman Equation

Each approximate policy evaluation algorithm uses the Bellman equation in different

ways to compute a value function. There is an intuitive geometric perspective to the algo-

rithms when using linear function approximation. We expandon the original presentation

of this perspective [56].

The Bellman equation with linear function approximation has three components:̂V ,

T π(V̂ ), andΠρT
π(V̂ ). These components geometrically form a triangle whereV̂ and

ΠρT
π(V̂ ) reside in the space spanned byΦ while T π(V̂ ) is, in general, outside this space.

This is illustrated in the leftmost triangle of Figure 4.3. The three-dimensional space in the

figure is the space of exact value functions while the two-dimensional plane represents the

space of approximate value functions in[Φ]. The angle between subspace[Φ] and the vector

T π(V̂ ) − V̂ is denotedθ. The BR and FP solutions minimize the length of different sides

of the triangle. The second triangle in Figure 4.3 shows the BR solution, which minimizes

the length ofT π(V̂ ) − V̂ . The third (degenerative) triangle shows the FP solution, which

minimizes the length ofΠρT
π(V̂ ) − V̂ . This length is0 which meansθFP = 90◦. The

fourth triangle shows the H solution, which minimizes a combination of the lengths of

the two sides. In general,θH lies betweenθBR and90◦. The hybrid solution allows for

controlling the shape of this triangle. We purposefully drew the triangles in Figure 4.3

suggestively to not only accentuate their angles, but also to emphasize that the length of the

Bellman residual (T π(V̂ )− V̂ ) can become large at times for the FP method. By including

the norm of the Bellman residual in their objective functions, hybrid algorithms can protect

against such large residual vectors. They also have the flexibility of finding solutions that

are almost fixed points but have more desirable properties (smaller Bellman residuals).

4.3.3 “Backward Bootstrapping”

In RL, bootstrapping refers to the process of updating estimated values based on sub-

sequent estimated values. (i.e. making the value of a state look like its successor states). It
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θFPθBR
Π T πV̂

θ

T πV̂

V̂ = Φw

θH

Φ

Figure 4.3. The triangle on the left shows the general form of the Bellmanequation. The
other three triangles correspond to the different approximate policy evaluation algorithms
where the bold lines indicate what is being optimized.

has been pointed out by Dayan [26] and again recently by Sutton et al. [99] that algorithms

using theLBR(w) loss function perform “backward bootstrapping,” i.e., they also make a

state look like its preceding states. To visualize this effect, we consider the simple example

shown in Figure 4.4. This is the sample problem used by Dayan [26] and Sutton et al. [99].

There are four states, an equal likelihood of starting in state A1 or A2, and deterministic

transitions to terminal states ending with a reward of 1 or 0.There are three basis functions:

one distinguishing state B, one distinguishing state C, and one representing both states A1

and A2. Thus, states A1 and A2 are indistinguishable based onthe features.

A1

A2

A

B 1

C 0

Figure 4.4. Small example from [26, 99] to illustrate backward bootstrapping. States A1
and A2 have the same feature representation.

Since state A1 (which should have value 1) and state A2 (whichshould have value 0)

are indistinguishable given the features and since they occur with equal likelihood, they are

assigned a value of1
2

by the FP, BR, and hybrid algorithms. The least-squares algorithms
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State V π V̂FP V̂H2
(ξ = 1

3) V̂H2
(ξ = 2

3) V̂BR

A1 1 1
2

1
2

1
2

1
2

A2 0 1
2

1
2

1
2

1
2

B 1 1 7
8

4
5

3
4

C 0 0 1
8

1
5

1
4

Table 4.2.Value functions associated with the example in Fig. 4.4.

differ though in the values they assign to states B and C. The FPalgorithm avoids backward

bootstrapping and assigns the appropriate values of 1 to state B and 0 to state C. The BR

algorithm assigns values of3
4

and 1
4
. This is because having a Bellman residual of±1

4
at

all four states is cheaper according to loss functionLBR(w) than having a Bellman residual

of ±1
2

at just the two states A1 and A2. The hybrid algorithms find solutions between the

FP and BR extremes. The exact value function and approximatevalue functions using the

various least-squares methods are shown in Table 4.2.

Sutton et al. [99] argue that backward bootstrapping is to beavoided. We are not aware

of any theoretical argument for avoiding Bellman residual algorithms. As mentioned in

Section 4.2.1, the argument for using the Bellman residual loss function has to do with

BR’s stability [74] and that associated performance boundsare described in terms of the

Bellman residual [109] (smaller Bellman residuals result in tightening of the bounds).

4.4 Laplacian Regularization

This chapter describes four least-squares algorithms for approximate policy evaluation.

The algorithms compute approximate value functions that minimize a loss function associ-

ated with the Bellman residual. Here, we include an additional loss function thatregularizes

the solution. Regularization entails using an additional loss function to either help solve

an ill-posed problem or prevent overfitting. The concept of well-posedness of a problem

dates back to Hadamard [40]. He deemed problems well-posed if (1) a solution exists, (2)

the solution is unique, and (3) the solution depends continuously on the data. If a problem
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is not well-posed, then it is ill-posed. There is also a similar notion of a problem being

ill-conditioned. For example, in least-squares problemsAw = b, if the solutionw changes

drastically for minor changes to the matrixA, then the problem is ill-conditioned. Regular-

ization helps to find a meaningful solution in the face of suchchallenges. One of the most

popular techniques for regularizing ill-posed problems isTikhonov regularization [104]. In

addition to the standard least-squares minimizationminw ‖Aw− b‖2, an additional term is

included:

min
w

(

‖Aw − b‖2 + βr‖Γw‖2
)

,

whereβr ≥ 0 is the regularization parameter managing the trade-off between loss functions

andΓ is an appropriately chosen Tikhonov matrix. Often times theidentity matrix is used

(Γ = I) which gives preference to coefficientsw with a smallL2 norm. The solution to the

regularized minimization problem isw∗ =
(

ATA+ βrΓ
T Γ

)−1
AT b.

Here we consider Laplacian-based regularization. It is adata-dependentform of regu-

larization that uses the graph Laplacian [7]. This is the same graph Laplacian used to pro-

duce PVFs and diffusion wavelets. Laplacian-based regularization has been applied with

great success to semi-supervised learning problems where the geometric structure of unla-

beled data points can be exploited [7]. To understand how thegraph Laplacian provides reg-

ularization, consider again the Dirichlet sum which was described in Equation 3.1 of Sec-

tion 3.2. Given functionf , the Dirichlet sum is〈f, Lf〉 =
∑

u∼v W (u, v) (f(u)− f(v))2.

The Dirichlet sum is large whenf is not smooth according to the structure of the graph.

For functions that are smooth, the Dirichlet sum is small. Thus, the Laplacian can be used

to penalize (regularize) functions that are not smooth according to the structure of the MDP

state space encoded in the graph.

We described Tikhonov regularization above using the matrix Γ and the loss function

‖Γw‖2. Laplacian-based regularization can be described in this manner usingΓ = LΦ. As

a concrete example, consider the H2 least-squares algorithm. H2’s loss functionLH2
(w) is
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based on the Bellman residual and the projected Bellman residual. We augment that loss

function with a Laplacian-based regularization (LR) term as follows:

wH2,LR = argmin
w′∈RK

(

ξ

2
‖T π(Φw′)− Φw′‖2ρ +

1− ξ
2
‖T π(Φu)− Φw′‖2ρ +

βr

2
‖LΦw′‖2ρ

)

,

(4.4)

whereβr ∈ R
+ is a parameter controlling the influence of the regularization term. The loss

function ‖LΦw′‖2ρ penalizes non-smooth value functionsΦw′. Following the same steps

shown in Section 4.2.3, one can showwH2,LR = A−1
H2,LR

bH2,LR where:

AH2,LR = (Φ− ξγP πΦ)TDρ(Φ− γP πΦ) + βrΦ
TLDρLΦ

bH2,LR = (Φ− ξγP πΦ)TDρR
π. (4.5)

Notice thatbH2,LR = bH2
andAH2,LR = AH2

+βrΦ
TLDρLΦ. Given a sample〈s, π(s), r, s′〉

from the MDP, estimates of the matrixAH2,LR and vectorbH2,LR can be formed using the

following updates:

ÂH2,LR ← ÂH2,LR + ρ(s)
[

(φ(s)− ξγφ(s′))(φ(s)− γφ(s′))T + βrg(s)g(s)
T
]

b̂H2,LR ← b̂H2,LR + ρ(s)(φ(s)− ξγφ(s′))r.

The termg(s) in the updates is computed as:

g(s)← L(s, s)φ(s)

g(s)← g(s) + L(s, snbr)φ(snbr) ∀{snbr|snbr 6= s ∧ s ∼ snbr in graph}.

A common assumption is that MDP state space graphs are sparsely connected. This means

that any states has at most a few neighboring statessnbr in the graph. In this case, the

time to computeg(s) is negligible. Of course, if the basis functionsφ(s) are the PVFs,
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then the eigendecompositionLΦ = ΦΛ can be exploited to simplify the computation as

g(s)← Λφ(s).

When the value functionV π can be computed exactly, there is no need for regulariza-

tion. But when the value function is approximated using function approximation and a

finite set of samples from a stochastic MDP, regularization can have a positive effect on

the solution. To demonstrate this, consider a two-room gridMDP with 243 states and a

reward of+1 in opposite corners of the two rooms. We set the probability of an action

succeeding to0.6; failed actions move the agent in one of the other 3 directions. The dis-

count factor was set toγ = 0.95. The optimal value function for this problem is shown

in Figure 4.5(e). We generated 500 samples (100 episodes starting in a random start state

and lasting 5 steps each) using an optimal policy. Not every state in the MDP was visited

during this exploration. The location of the sampled statesis shown in Figure 4.5(f). We

used the smoothest 50 proto-value functions for basis functions and the FP least-squares

algorithm with Laplacian regularization. The top four plots in Figure 4.5 show the effect

regularization has on the approximate value functions. It can be seen that increasing the

regularization parameterβr smooths out the approximate value function but at too large

a value “over-regularizes” the solution. An automated approach for settingβr is to use

so-called L-curves. The L-curve is a plot of the original loss function (e.g.LH2
(w)) on

one axis and the penalty function (e.g.‖LΦw‖2ρ) on the other axis for several values of

the parameterβr. The original loss function dominates whenβr is small and the penalty

function dominates whenβr is large (thus the shape of the curve is a L). It is common to

select a value forβr somewhere near the inflection point of the L-curve.

4.5 Algorithmic Details

The previous sections of this chapter described the objective functions for regularized

least-squares RL algorithms. Here we provide pseudocode for approximate policy evalu-
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Figure 4.5. The effect of Laplacian regularization on a two-room MDP with a set of 500
samples.
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ation and approximate policy iteration. In both cases, we assume the value function (or

action-value function) is approximated using a batch of samples from a MDP.

4.5.1 Approximate Policy Evaluation

Given a batch of samples of the form{s, π(s), r, s′}, least-squares methods for approxi-

mate policy evaluation use one of the objective functions (BR, FP, H1, or H2) to generate an

approximation ofV π. We describe pseudocode here using the hybrid H2 objective function

because it naturally encompasses the FP (ξ = 0) and BR (ξ = 1) methods. It is obvious

how the pseudocode can change to accommodate the H1 objective function.

Assuming aK dimensional feature vectorφ, the algorithm builds up sample-based

statistics for the matrix̂A ∈ R
K×K and vector̂b ∈ R

K . The approximate value function is

V̂ = ΦÂ−1b̂. Pseudocode for the H2 method is shown in Algorithm 2.

Algorithm 2 : Hybrid Least-Squares Policy Evaluation Method (H2)
Input: {si, ri, s

′
i}ni=1, n samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

γ ∈ [0, 1], discount factor
ξ ∈ [0, 1], hybrid parameter (ξ = 0 is FP,ξ = 1 is BR)
L, graph Laplacian defined over states{si}ni=1 (graph edges denoted with∼)
βr ∈ R

+, Laplacian-based regularization parameter
Output: w, weight vector such that̂V (s) = φ(s)Tw

Initialize Â← 0, b̂← 0

for i = 1 to n do
Â← Â+ ρ(si)

[

(φ(si)− ξγφ(s′i)) (φ(si)− γφ(s′i))
T + βr g(si)g(si)

T
]

b̂← b̂+ ρ(si) (φ(si)− ξγφ(s′i)) ri

where: g(si)← L(si, si)φ(si)
g(si)← g(si) + L(si, snbr)φ(snbr) ∀{snbr|snbr 6= si ∧ si ∼ snbr}

end for
w ← Â−1b̂

4.5.2 Approximate Policy Iteration

The least-squares policy iteration (LSPI) algorithm is a data efficient control learning

algorithm proposed by Lagoudakis and Parr [56]. LSPI is an iterative algorithm. At each
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iteration, a policy is evaluated resulting in an approximate action-value function̂Q = Φw.

The greedy policy associated witĥQ is then used in the next iteration. The algorithm

terminates when the approximation̂Q converges or when a specified maximum number of

iterations has been reached.

The algorithm uses a batch of MDP samples of the form{si, ai, ri, s
′
i}ni=1. The dis-

tribution of the samples can have a significant impact on the least-squares solution. To

account for this distribution, one can weight each sample separately usingρ(si, ai). The

pseudocode for LSPI with Laplacian-based regularization and the H2 objective function is

shown in Algorithm 3.

Algorithm 3 : Hybrid Least-Squares Policy Iteration Method (H2)
Input: {si, ai, ri, s

′
i}ni=1, MDP samples

φ : S ×A→ R
K , basis function

ρ : S ×A→ R
+, weighting over state-action pairs (can change each iteration)

γ ∈ [0, 1], discount factor
ξ ∈ [0, 1], hybrid parameter (ξ = 0 is FP,ξ = 1 is BR)
w0 ∈ R

K , (optional) initial weight vector
La, |A| graph Laplacians, each defined over states occurring with actiona

βr ∈ R
+, Laplacian-based regularization parameter

Output: w, weight vector such that̂Q(s, a) = φ(s, a)Tw

w ← w0 (or initialized randomly ifw0 is not given)

while (not converged) do
Initialize Â← 0, b̂← 0

for i = 1 to n do
a∗ ← argmaxa∈As′

i

(

φ(s′i, a)
Tw

)

Â← Â+ ρ(si, ai) (φ(si, ai)− ξ γ φ(s′i, a
∗)) (φ(si, ai)− γ φ(s′i, a

∗))T + . . .

ρ(si, ai)βr g(si, ai)g(si, ai)
T

b̂← b̂+ ρ(si, ai) (φ(si, ai)− ξ γ φ(s′i, a
∗)) ri

where:g(si, ai)← Lai
(si, si)φ(si, ai)

g(si, ai)← g(si, ai) + Lai
(si, snbr)φ(snbr, ai), ∀{snbr|snbr 6= si ∧ si ∼ snbr}

end for
w ← Â−1b̂

end while

Mahadevan proposed an overall framework for combining (1) sample generation, (2)

representation learning using graph-based basis functions, and (3) control learning. This

links together all aspects of the RL problem. The framework is called Representation
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Sample Collection Phase

1. Generate a data setD of “state-action-reward-nextstate” transitions
(st, at, rt, st+1) using some policy (e.g. a random walk).

2. Sparsification Step: Subsample a set of transitionsDs from D by some
method (e.g. randomly or greedily).

Representation Learning Phase

3. Construct adiffusion modelfrom Ds consisting of an undirected graph
G = (V,E,W ) with edge setE and weight matrixW . Each vertexv ∈ V
corresponds to a visited state. Given an appropriate local distance metric
d(·, ·), edges are inserted between a pair of verticesxi andxj using either
a k nearest neighbor or anǫ nearest neighbor algorithm. Edge weights are

assignedW (i, j) = α(i) exp
(

−d(xi,xj)

σ

)

whereσ > 0 is a parameter andα

is a specified weight function.

4. Form either:

(a) the graph LaplacianL = D −W whereD is a diagonal matrix of the
row sums ofW .

(b) the diffusion operatorT = D−0.5WD−0.5.

5. Compute theK “smoothest” eigenvalues (λi) and eigenvectors (φi) of L or
compute the diffusion wavelet tree fromT and select theK most global scal-
ing and wavelet functions. The basis function matrix isΦ = [φ1, φ2, . . . , φK ].

Control Learning Phase

6. Use a parameter estimation method such as hybrid least-squares policy itera-
tion or Q-learning [98] to find a (good) policy represented bythe action-value
functionQ̂ = Φw.

Figure 4.6. The RPI framework for learning representation and control in MDPs.

Policy Iteration (RPI) [64] and is described in Figure 4.6. The experiments demonstrating

RPI [67] used a random policy for the sample generation component, proto-value functions

for the representation learning component, and LSPI for thecontrol learning component.
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4.6 Experiments

Reconsider the chain MDP from Figure 4.1 and the basis functions from Figure 4.2.

The optimal policy for this MDP with a discount factorγ = 0.99 is π∗ = RRRLLL. Starting

from initial policy π0 = LLLLLL, the BR method results in an approximate value function

V̂ π0
BR

whose greedy policy is alsoπ1 = LLLLLL. In other words, after one round of policy

iteration, it converges on the initial policy. The FP algorithm produces an approximate

value functionV̂ π0
FP

whose greedy policy isπ1 = RRRRRR. Hybrid algorithms find solutions

between these two extremes. We ranged the value ofξ from 0 to 1 and computed̂V π0
H1

and

V̂ π0
H2

using the equations in Section 4.2 (the transition matrix and reward function were not

sampled but rather were used explicitly). We also recorded the norm of the Bellman resid-

ual, the norm of the projected Bellman residual, the angle between the Bellman residual

and the space spanned by the basis functionsΦ, and the greedy policies associated with the

approximate value functions. The results are shown in Figure 4.7 using a uniform distribu-

tion ρ; however, the results are very similar when settingρ to be the invariant distribution of

P π0 . Note the trade-off between the Bellman residual and the projected Bellman residual

for different values ofξ in Figures 4.7(a) and 4.7(b). In Figure 4.7(b), the curve associated

with method H2 is beneath that of method H1. This indicates algorithm H2 places more

weight on minimizing the projected Bellman residual compared to algorithm H1. Also,

note that the greedy policies in Figures 4.7(d) and 4.7(e) run the full gamut fromRRRRRR

at ξ = 0 to LLLLLL at ξ = 1.

We compared all methods on a 10×10 grid MDP. The MDP has 100 states, 4 actions

that have probability 0.9 of success (an unsuccessful action resulted in a transition in one of

the other three directions), a 0.95 discount factor, and a reward of +1 in one corner and +2

in the diagonal corner. Fifteen Laplacian eigenvectors [64] were used as basis functions.

We ran 500 trials. Each trial began with a randomly initialized policy, then policy

iteration was run using each policy evaluation method untilthe weight vector converged

or 500 iterations were reached. The model was used during policy iteration to avoid any
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Figure 4.7. Results of approximate policy evaluation using the hybrid least-squares algo-
rithms for the MDP in Figure 4.1.
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difficulty comparing the various methods due to sampling. The result of policy iteration is

a final policyπf . We evaluate these policies by computingV πf exactly and comparing it

with V ∗. The results, which are broken into the trials that converged and those that did not

converge, are shown in Figure 4.8.
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Figure 4.8. Results of 500 policy iteration trials for the grid MDP. The results are divided
into those trials that converged (a) versus those that did not converge (b). The median value
of ‖V ∗−V πf‖ is plotted versusξ, whereπf is the final policy attained when policy iteration
terminates. The percentage of trials that converged is shown in (c).
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The BR algorithm converged almost twice as often as the FP algorithm (71.4% com-

pared to 37.6%). However, when the BR method converged, it happened after only 8.5

rounds of policy iteration on average. That strongly contrasts with the fixed point method’s

average of 89.1 rounds of policy iteration until convergence. Since the BR method tends

to make small changes to the value function between rounds ofpolicy iteration, it is not

surprising that that this early convergence (starting froma random policy) leads to very

suboptimal policies. It is interesting that the BR method discovered better policies when

policy iteration didnot converge. On the other hand, when the FP method converged it

found excellent policies (small values of‖V ∗ − V πf‖).

The policies found by algorithm H1 had a general linear trend betweenξ = 0 (FP) and

ξ = 1 (BR). The policy iteration convergence rate had a similar effect. The convergence

rate was not nearly as predictable for algorithm H2. In fact, atξ = 0.8, all 500 trials

converged. The most interesting aspect of this experiment is the excellent performance of

algorithm H2. The method produced good policies regardless of convergence and across

all ξ values.

We have presented hybrid least-squares algorithms for approximating value functions,

but the same idea holds for approximating action-value functions. We tested all policy

evaluation methods on the problem of learning an approximate action-value function for

Tetris. Ten basis functions over state-action pairs(s, a) were used. The first four are for

the current states: maximum height, number of holes, sum of absolute height differences

between adjacent columns, and the mean height. The next fourbasis functions are the

change in the value of the first four features after taking action a from s. The last two are

the change in the score and a constant 1. This feature set was proposed by Lagoudakis et

al. [57].

Forty episodes of data (∼30,000 samples) were generated using an initial policy greedy

with respect to weight vectorwπ0 = [-1, -10, -1, -1, -2, -11, -2, -2, 50, 10]T . We ran

policy iteration starting fromwπ0 until the weight vector converged or 100 iterations were
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reached. Instead of generating double samples to form unbiased estimates ofA andb, we

used the model to compute the expectation over next-states and actions. For Tetris, each

action results in seven equally likely next-states corresponding to the seven Tetris pieces.

This method of using the model for transitions instead of a sample from the model was

described by Lagoudakis and Parr asLSTDQ-Model [56].

We tested the learned policies 50 times. Each time, we generated a random ordered

set of pieces thatall policies were forced to place to make the comparison more accurate.

This is necessary because Tetris performance can be very sensitive to the exact order of

pieces. The average score over the 50 trials is shown in Table4.3. The initial policywπ0

scored 310 on average. Policy iteration converged in less than 7 iterations for the FP and

H2 methods, whereas the BR and H1 methods did not converge. The performance split

along this division. The final policy computed using the BR method rarely removed a line.

This was also the case for policies learned using algorithm H1 except whenξ = 0.4. On

the other hand, the policies learned using the FP and H2 methods performed at least as well

as the initial policy and in some cases significantly better.The best policy was computed

using algorithm H2 with ξ = 0.1.

Table 4.3. Results of policy iteration for Tetris. An asterisk indicates policy iteration
converged.

Technique Score Technique Score

BR 0 FP* 630

H1, ξ=0.1 15 H2, ξ=0.1* 800

H1, ξ=0.2 0 H2, ξ=0.2* 580

H1, ξ=0.3 80 H2, ξ=0.3* 645

H1, ξ=0.4 295 H2, ξ=0.4* 515

H1, ξ=0.5 60 H2, ξ=0.5* 455

H1, ξ=0.6 5 H2, ξ=0.6* 395

H1, ξ=0.7 5 H2, ξ=0.7* 370

H1, ξ=0.8 0 H2, ξ=0.8* 405

H1, ξ=0.9 0 H2, ξ=0.9* 330
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4.7 Conclusions

The fixed point (FP) and Bellman residual (BR) algorithms canbe combined to form

a hybrid approximate policy evaluation algorithm. We proposed two ways to implement

hybrid algorithms using least-squares methods, thus improving efficiency over the original

incremental algorithm [3]. The two implementations differin how they handle the fixed

point constraint. The first implementation (H1) enforces the fixed point constraint and then

derives a least-squares formula whereas the second implementation (H2) performs those

two steps in reverse. We analyzed the algorithms in terms of projections of the target

function and showed that hybrid algorithms have an intuitive geometric interpretation.

Hybrid least-squares algorithms attempt to combine the stability of the BR solution

with the improved performance of the FP solution. We presented an example on a chain

MDP demonstrating this effect. Policy iteration experiments were conducted on a simple

grid MDP so that the quality of the learned policies could be determined analytically. Ex-

periments were also run on the challenging task of learning to play Tetris where learned

policies were evaluated empirically. In both domains, the hybrid algorithm H2 discovered

policies that performed much better than the BR and H1 methods and as well as, and in

some instances better than, the FP method. The hybrid algorithm H2 has the same data

structures and computational complexity as the BR and FP methods whereas the H1 algo-

rithm is more complex. A surprising finding was the H2 method’s robustness for a wide

range ofξ values. One would expect that forξ values close to 1, the difference between the

BR and H2 methods would be minimal. Providing a mechanism for automatically settingξ

is an interesting area for future work.

In Section 4.4, we showed how the least-squares algorithm can be augmented to include

Laplacian-based regularization [7]. Laplacian-based regularization penalizes functions that

are not smooth according to the structure of the graph. This type of regularization can be

useful when the domain is stochastic and relatively few samples are available for learning

a policy. Since, at this point, we have used the graph Laplacian for both basis construction
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and for regularization, it is worthwhile stepping back and understanding the distinction.

The initial work by Mahadevan and Maggioni [67, 63] used the “smoothest” Laplacian

eigenvectors and diffusion wavelets as basis functions. This set of basis functionsimplicitly

constrains (regularizes) the space of approximate value functions that can be represented.

In this dissertation, we think of the Laplacian eigenvectors and diffusion wavelets asdictio-

nariesof basis functions. We are free to use any elements, not just the smoothest, from the

dictionary to approximate a particular value function (note this perspective is implemented

with the basis selection algorithms in Chapter 6). Since any elements from the dictionary

can be used, this expands the space of approximate value functions that can be represented.

To ensure these functions retain some degree of smoothness,we use the graph Laplacian

matrix toexplicitly regularize the approximate value functions. Thus, our approach offers

greater flexibility in the type of value functions that can belearned, while retaining the

ability to regularize the solutions.
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CHAPTER 5

EFFICIENT BASIS CONSTRUCTION FOR LARGE GRAPHS

A significant challenge for any value function approximation architecture is scalability.

For example, a naı̈ve implementation of tile codings becomes infeasible withincreasing

dimensionality of the state space. This is commonly referred to as the “curse of dimension-

ality.” A natural question to ask, therefore, is how basis functions derived from an operator

on a graph scale to large problems. This question can be decomposed into two components:

(1) the construction of the graph from samples from a Markov decision process and (2) the

generation of the basis functions from the graph.

A graph is constructed from an agent’s actual experience in aMarkov decision pro-

cess. Therefore, the size of the graph grows over time as the agent explores the state

space. This means that, for discrete domains, the size of thegraph is at most the number

of unique states visited. Of course, the graph’s size could be less if some combination of

sampling and/or abstraction is performed. In domains with continuous state variables, the

graph-based framework has the nice property that the graph reflects theintrinsic dimen-

sionality of the problem. While a problem may nominally be high dimensional, there is

often lower dimensional structure explaining the data. Forexample, the graph framework

was originally applied to the more general problem of nonlinear dimensionality reduction.

In Tenenbaum et al.’s work [101], the vertices of the graph were high dimensional images

(faces) but in fact could be explained by just three dimensions (up-down pose, left-right

pose, and lighting). This same type of structure exists in many interesting control problems

such as high degree of freedom robotic systems that are constrained by their dynamics.
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Therefore, the actual construction of a graph from experience in a Markov decision process

in principle seems feasible for many problems.

The more significant problem is the computational complexity of generating basis func-

tions from a graph with|V | vertices. It is reasonable to assume the graph is sparse, mean-

ing there areO(|V |) entries as opposed to a dense graph withO(|V |2) entries. A dense

graph corresponds to an environment where an agent could transition from any state to any

other state in a small number of steps. Domains with such little structure are uninterest-

ing. Therefore, in the context of Laplacian eigenfunctions, the computational complexity

depends on the amount of time it takes to generateK eigenvectors of a sparse, Hermitian

matrix. We assumeK is much smaller than|V |. This is an extremely important problem in

linear algebra with many applications in science and engineering. As such, there has been

extensive research in finding faster algorithms. The current method used in MatlabTM is

an implicitly restarted Arnoldi method that can compute a few eigenvectors for sparse ma-

trices withO(105) rows. Parallel algorithms are a current research trend given the growing

number of multi-processor machines.

In this chapter, we present two approximation techniques for scaling to graphs (ma-

trices) with a large number of vertices. The first technique factorizes the matrix into two

smaller matrices. Eigenvectors or diffusion wavelets are then computed on the smaller

matrices. The second technique uses a multilevel, parallelalgorithm for computing eigen-

vectors. This algorithm benefits by performing the eigenvector computation on submatrices

of the original matrix. Before describing both approximation techniques, we first discuss

how sampling can be used as a preprocessing step to improve computational efficiency.

5.1 Sampling

Spectral bases are amenable to sparsification methods investigated in the kernel meth-

ods literature including low-rank approximation techniques as well as the Nyström inter-

polation method [108, 30]. The Nyström method allows for extrapolating functions on
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sampled states to novel states. Subsampling the states using a greedy algorithm can greatly

reduce the number of samples while still capturing the structure of the data manifold. The

greedy algorithm is simple: starting with the null set, add samples to the subset that are

not within a specified distance to any sample currently in the subset. A maximal subset

is returned when no more samples can be added. The greedy procedure was originally

proposed in a batch setting [93] and then later devised to work online [24, 35] where one

must decided to discard or store samples as they are received. We used the batch greedy

procedure for the experiments in this dissertation.

As an example of batch greedy subsampling, consider samplesgenerated from a ran-

dom policy in the mountain car task. Figure 5.1 shows the results of greedy subsampling

on data from this domain. Clearly, the overall structure, butnot the density, of the data still

remains in the subsamples.
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(b) 846 subsamples

Figure 5.1. Greedy subsampling in the mountain car task.

It is natural to question how far the subsampling procedure can go before losing too

much information. The answer is that it depends on the task. For example, in keeping with

the mountain car task, Figure 5.2 shows the 3rd-5th eigenvectors of the graph Laplacian for

two graphs: one with 50 samples and one with 500 samples. Clearly some information is

lost, but the overall shape of the functions is very similar.There is a trade-off being made
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here. More samples provides a higher resolution, but at the cost of increased computation.

For RL, we want to find good policies. The “right” resolution to the subsampling problem is

the minimal number of subsamples that allows for computing agood policy. We investigate

this trade-off empirically.

Figure 5.2. 3rd-5th Laplacian eigenvectors of two graphs from the mountain car domain.
The top row is a graph with 50 vertices while the bottom row is agraph with 500 vertices.
The left column is the 3rd eigenvector, middle column is the 4th eigenvector, and the right
column is the 5th eigenvector.

Sampling helps to reduce the complexity of the graph-based basis construction problem,

but it does not solve all our computational problems. Some domains naturally require many

samples to provide adequate coverage of the state space. To deal with such large-scale

problems, the next two sections of this chapter propose and evaluate algorithms for scaling

basis construction to large graphs.

5.2 Matrix Factorization

Spectral basis functions, or PVFs, are not compact since they span the set of samples

used to construct the graph. This raises a computational question of whether this approach
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scales to large MDPs. We have explored a technique for makingspectral bases compact

using matrix factorization [46]. The main idea is that the random walk operator on the

graph (A ← D−1W ) can be factored into two smaller stochastic matricesB andC such

that the Kronecker productB⊗C ≈ A.1 This procedure can be called recursively to further

shrink the size ofB and/orC. The Metropolis-Hastings algorithm is used to makeB and

C reversible, which ensures their eigendecompositions contain all real values. The result is

the basis functions can be calculated fromB andC rather than the original matrixA. This

is a gain in terms of both speed and memory.

We present the Kronecker product approximation as a way to approximate eigenvector

computation. However, the same ideas can also be used to approximate diffusion wavelets.

In that case, diffusion wavelet construction occurs on the two smaller matricesB andC.

The scaling and wavelet functions from the two smaller matrices can then be combined

using the Kronecker product. We do not pursue this idea further, but point out that it would

be interesting to explore different ways of combining functions from the two diffusion

wavelet trees.

The following sections contain a description of the Kronecker product, Kronecker prod-

uct approximation, a theoretical analysis describing whenKronecker product approxima-

tion works well, and some experiments.

5.2.1 Kronecker Product

The Kronecker product of arB×cB matrixB and arC×cC matrixC is equal to a matrix

A of size(rBrC) × (cBcC) with blockAi,j = B(i, j)C. Thus, every(i, j) block ofA is

equal to the matrixC multiplied by the scalarB(i, j). The equation is writtenA = B⊗C.

1For ease of understanding, we use the symbolsA, B, andC in Section 5.2 to represent the Kronecker
productA = B ⊗ C or A ≈ B ⊗ C. Our use of the Kronecker product involves setting the matrix A to
be the random walk operatorD−1W associated with a graph. In previous chapters, the symbolP was used
to representD−1W . We found usingP = B ⊗ C to be less readable thanA = B ⊗ C. Moreover, using
P = B ⊗ C gives the false impression that the Kronecker product only works with random walk operators.
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The Kronecker product can be used to streamline many computations in numerical linear

algebra, signal processing, and graph theory.

AssumeB andC correspond to stochastic matrices associated with weighted, undi-

rected graphsGB = (VB, EB,WB) andGC = (VC , EC ,WC). The graphs can be repre-

sented as weight matricesWB andWC with strictly positive edge weights. MatrixB is

then formed by dividing each row ofWB by the row sum (similarly forC). B andC are

stochastic matrices representing random walks over their respective graphs. The eigenval-

ues and eigenvectors ofB andC completely determine the eigenvalues and eigenvectors

of B ⊗ C.

Theorem 1 LetB have eigenvectorsxi and eigenvaluesλi for 1 ≤ i ≤ rB. LetC have

eigenvectorsyj and eigenvaluesµj for 1 ≤ j ≤ rC . Then matrixB ⊗ C has eigenvectors

xi ⊗ yj and eigenvaluesλiµj.

Proof: Consider(B⊗C)(xi⊗yj) evaluated at vertex(v, w) wherev ∈ VB andw ∈ VC :

(B ⊗ C)(xi ⊗ yj)(v, w) =
∑

(v,v2)∈EB

∑

(w,w2)∈EC

B(v, v2)C(w,w2)xi(v2)yj(w2)

=
∑

(v,v2)∈EB

B(v, v2)xi(v2)
∑

(w,w2)∈EC

C(w,w2)yj(w2)

= (λixi(v)) (µjyj(w)) = (λiµj) (xi(v)yj(w)) .�

This theorem is adapted from a more general version [8] that does not place constraints

on the two matrices. Note this theorem also holds ifB andC are normalized Laplacian

matrices [20], but it does not hold for the combinatorial Laplacian. The Kronecker product

is an important tool because the eigendecomposition ofA = B ⊗ C can be accomplished

by solving the smaller problems onB andC individually. The computational complexity

of the eigendecomposition is reduced fromO(r3
Br

3
C) toO(r3

B + r3
C).
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5.2.2 Kronecker Product Approximation

Given the computational benefits of the Kronecker factorization, it is natural to con-

sider the problem of finding matricesB andC to approximate a matrixA. Pitsianis [84]

studied this problem forarbitrary matrices. Specifically, given a matrixA, the problem is

to minimize the function

fA(B,C) = ‖A−B ⊗ C‖F , (5.1)

where‖ · ‖F is the Frobenius norm. By reorganizing the rows and columns of A, the

functionfA can be rewritten as:

fA(B,C) = ‖Ã− vec(B)vec(C)T‖F , (5.2)

where the vec(·) operator takes a matrix and returns a vector by stacking the columns in

order. The matrixÃ is defined as:

Ã =

















































vec(A1,1)
T

...

vec(ArB ,1)
T

...

vec(A1,cB
)T

...

vec(ArB ,cB
)T

















































∈ R
(rBcB)×(rCcC). (5.3)

Equation 5.2 shows the Kronecker product approximation problem is equivalent to a

rank-one matrix problem. The solution to a rank-one matrix problem can be computed

from the singular value decomposition (SVD) ofÃ = UΣV T [39]. The minimizing values
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are vec(B) =
√
σ1u1 and vec(C) =

√
σ1v1 whereu1 andv1 are the first columns ofU and

V andσ1 is the largest singular value of̃A. This is done in timeO(r2
Br

2
C) since only the

first singular value and singular vectors of the SVD are required.

Pitsianis [84] extended this idea to constrained optimization problems where the sym-

metry, orthogonality, or stochasticity of matricesB andC are preserved. We investigated

thekpa markov algorithm which findsstochasticmatricesB andC that approximate a

stochasticmatrixA given as input. There are equality (row sums must sum to 1) andin-

equality (all values must be non-negative) constraints forthis problem. Thekpa markov

algorithm substitutes the equality constraints into the problem formulation and ignores the

inequality constraints. One iteration of the algorithm proceeds by fixingC and updatingB

based on the derivative of‖A−B⊗C‖F ; then matrixB is held constant andC is updated.

Convergence is based on the change in the Frobenius norm. If the algorithm returned neg-

ative values, those entries were replaced with zeros and therows were rescaled to sum to

1. More sophisticated algorithms (e.g. active set method) could be used to directly account

for the inequality constraints if necessary.

The Kronecker product has simple semantics when the matrices are stochastic. Matrix

A is compacted intorB clusters, each of sizerC . Matrix B contains transitions between

clusters while matrixC contains transitions within a cluster. For the block structure of

the Kronecker product to be most effective, similar states must be clustered. This can be

achieved by reordering matrixA viaXAXT whereX is a permutation matrix. A permuta-

tion matrix is a square(0, 1) matrix that has exactly one 1 in each row and each column and

0’s everywhere else. The problem of finding the optimalX to minimize‖XAXT−B⊗C‖F
is NP-hard. However, there are several options for reordering matrices including graph

partitioning and approximate minimum degree ordering. We used the graph partitioning

program METIS [49] to determineX. METIS combines several heuristics for generating

partitions, optimizing the balance of a partition versus the number of edges going across

partitions. The algorithm first coarsens the graph, then partitions the smaller graph, and
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finally uncoarsens and refines the partitions. METIS is a highly optimized program that

partitions graphs withO(106) vertices in a few seconds. Figure 5.3(a) shows an adjacency

plot of a matrixA corresponding to a graph connecting1800 sample states from the ac-

robot domain. Figure 5.3(b) is the same matrix but reorderedaccording to METIS with

60 partitions. The reordered matrix is in a block structure more easily represented by the

Kronecker decomposition.

The stochastic matricesB andC are not necessarily reversible. As such, their eigenval-

ues can be complex. To ensure all real values, we used the Metropolis-Hastings algorithm

to convertB andC into reversible stochastic matricesBR andCR. The algorithm is de-

scribed below whereπ is a stationary probability distribution.

BR(i, j) =







































B(i, j) min

(

1,
π(j)B(j, i)

π(i)B(i, j)

)

if i 6= j

B(i, j) +
∑

k

B(i, k) if i = j

×
(

1−min

(

1,
π(k)B(k, i)

π(i)B(i, k)

))

This transformation was proven [13] to minimize the distance in anL1 metric between

the original matrixB and the space of reversible stochastic matrices with stationary dis-

tribution π. The power method [39] was used to determine the stationary distributions of

B andC. Note these stationary distributions were unique in our experiments becauseB

andC were both aperiodic and irreducible although thekpa markov algorithm does not

specifically maintain these properties. Figures 5.3(c) and5.3(d) show grayscale images

of the reversible stochastic matricesBR andCR that were computed by this algorithm to

approximate the matrix in Figure 5.3(b). As these figures suggest, the Kronecker factor-

ization is performing a type of state aggregation. The matrix BR has the same structure as

XAXT , whereasCR is close to a uniform block matrix except with more weight along the

diagonal. The eigenvalues ofBR andCR are displayed in Figures 5.3(e) and 5.3(f). The
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Figure 5.3. (a) Adjacency plot of an1800 × 1800 matrix from the acrobot domain, (b)
Matrix reordered using METIS, (c)60×60 matrixBR, (d)30×30 matrixCR, (e) Spectrum
of BR, and (f) Spectrum ofCR.
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fact thatCR is close to a block matrix can be seen in the large gap between the first and

second eigenvalues.

There is an added benefit of computing the stationary distributions. The eigendecom-

position ofBR (andCR) is less robust because the matrix is asymmetric. However,BR is

similar to a symmetric matrixBR,π by the equationBR,π = D0.5
π BRD

−0.5
π whereDπ is a

diagonal matrix with elementsπ. MatricesBR andBR,π have identical eigenvalues and the

eigenvectors ofBR can be computed by multiplyingD−0.5
π by the eigenvectors ofBR,π.2

Therefore, the decomposition should always be done onBR,π.

It is far more economical to store the eigenvectors ofBR andCR than those ofA. For

example, if 90 eigenvectors are used, then the eigenvectorsof matrix A in Figure 5.3(a)

consist of 162,000 values (1800×90). There are 3600 values (60×60) for BR and 900

values (30×30) forCR, yielding a compression ratio of 36 (162,000
3600+900

).

There is a potentially subtle point to make regarding the space spanned by the matrices

A, BR, andCR. Given the complete set of 1800 eigenvectors ofA, one can representany

function overA’s domain. The eigenvectors form a basis for all possible functions. One

can also represent any function overA’s domain given all 1800 possible combinations of

the 60 eigenvectors ofBR and the 30 eigenvectors ofCR. In other words, the combination

of BR’s andCR’s eigenvectors also forms a basis. This offers a useful perspective on the

Kronecker product approximation. We know, based on the Dirichlet sum, that matrixA’s

eigenvectors are ordered (by increasing eigenvalue) in terms of smoothness. The smoothest

eigenvectors capture the low frequency components for functions inA’s domain. The Kro-

necker approximation method can be viewed as trying to similarly organize the space of

functions inA’s domain under the structural constraints imposed by the Kronecker product.

2In the experiments, we found it better to use the eigenvectors ofBR,π as basis functions rather thanBR’s
eigenvectors. The eigenvectors ofBR,π are orthonormal whereas the eigenvectors ofBR are orthonormal
with respect toπ (i.e. the weighted inner product〈·, ·〉π of two different eigenvectors ofBR is 0).
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The 1800 possible combinations of the 60 eigenvectors ofBR and the 30 eigenvectors

of CR provide a basis for matrixA’s domain. The experiments in this chapter generateK

“combined” eigenvectors from this set of 1800 by selecting those with the smallest value of

the product ofBR’s andCR’s eigenvalues (with ties broken using the sum of eigenvalues).

We point out that it is also possible to use the eigenvectors of BR andCR as a dictionary and

to select the best set of functions for a particular task. We study basis selection algorithms

in Chapter 6.

5.2.3 Extensions

We consider two extensions to the Kronecker product framework. The first extension

is to expand the number of matrices used in the Kronecker product decomposition from

p = 2 to p ≥ 2 matrices. A decomposition intop ≥ 2 matrices would provide greater com-

pression. The second extension is to shift from a rank-1 Kronecker product approximation

to a rank-r approximation which would increase the Kronecker product’s expressiveness.

The Kronecker product approximation works by decomposing amatrixA into matrices

B andC such that‖A−B ⊗C‖F is minimized. The matricesB andC are then, in effect,

used as a proxy forA. The advantage of the approximation is thatB andC are smaller

thanA, thereby decreasing the computational complexity of any algorithm operating on

A. To further decrease the amount of computation, the matricesB andC can themselves

be decomposed using the same Kronecker product framework. More generally, we can

minimize the following function:

fA(B1, B2, . . . , Bp) = ‖A−B1 ⊗B2 ⊗ . . .⊗Bp‖F

wherep ≥ 2 terms are used.

Algorithmically, this can be accomplished by using the algorithm described in the pre-

vious section recursively. There is however another interesting way to solve this problem.

Recall in Equation 5.2 we showed the functionfA(B,C) could be rewritten to have the
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form fA(B,C) = ‖Ã − vec(B)vec(C)T‖F . The reorganized matrix̃A is approximated

using the outer product of vectors vec(B) and vec(C). The outer product, ortensor prod-

uct, of two vectors results in a matrix. Now, consider the tensorproduct of thep vectors:

vec(B1) ◦ vec(B2) ◦ . . . ◦ vec(Bp). This results in ap dimensional tensor. For example,

a p = 3 dimensional tensor can be viewed as a three dimensional rectangle. The shift

from vectors and matrices to tensors corresponds to the extension from linear algebra to

multilinear algebra [72].

This insight leads to an elegant way of extending the Kronecker product approxima-

tion problem. The matrixA can be rearranged into ap dimensional tensorRp(A). When

p = 2, the rearrangement operator takes the form of Equation 5.3 (i.e. R2(A) = Ã).

Given thep dimensional tensorRp(A), the so calledhigher order singular value decom-

position(HOSVD) [28] can be used to find the values of vec(B1), vec(B2), . . . , vec(Bp).

It turns out the HOSVD does not quite produce theoptimal rank-1 pth order tensor ap-

proximation ofRp(A), but it does provide agood rank-1 approximation [29, 58].3 This

is directly analogous to the two dimensional case where the optimal rank-1 matrix ap-

proximation is computed using the traditional SVD. To complete this description, we need

to specify the rearrangement operatorRp(·). AssumeB1, B2, . . . , Bp are square matri-

ces of sizerB1
, rB2

, . . . , rBp
. Thus, the square matrixA is of size(rB1

rB2
. . . rBp

). For

the purpose of definingRp(·), we sayA is made up ofr2
B1

blocks, each block of size

(rB2
rB3

. . . rBp
)×(rB2

rB3
. . . rBp

). The rearrangement operatorRp(A) can be defined re-

cursively as vectorizing ther2
B1

blocks of matrixA and applyingRp−1(·) to each block.

Extending the Kronecker product approximation framework recursively results in even

smaller matrices. This greatly speeds up eigendecomposition or diffusion wavelet con-

struction, but it imposes even more block structure on the problem. Details to the original

problem may be entirely lost by enforcing such strong structure on an unstructured matrix.

3de Lathauwer et al. [28] provide a more complicated algorithm than the truncated HOSVD for computing
an optimal rank-1pth order tensor approximation. For practical reasons, we recommend using the HOSVD.
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The second extension to the Kronecker product framework is to perform a rank-r ap-

proximation instead of a rank-1 approximation. We showed that the Kronecker product

approximation problem of minimizing‖A− B ⊗ C‖F can be rearranged to have the form

‖Ã−vec(B)vec(C)T‖F . The outer product vec(B)vec(C)T is necessarily a rank-1 matrix.

The Eckart-Young theorem [32] proves that the optimal rank-r approximation of a matrix

can be found using the singular value decomposition and keeping the r largest singular

values (and zeroing out all other singular values). For the Kronecker product approxima-

tion problem, vec(B) and vec(C) are found by computing the largest singular value and

singular vectors of̃A.

It is natural to consider whether this framework can be extended from a rank-1 approx-

imation to a more expressive rank-r approximation. The Kronecker product approximation

problemcanbe extended from a rank-1 to a rank-r problem by altering the original problem

as follows:

fA( {Bi}ri=1, {Ci}ri=1 ) = ‖A−
r

∑

i=1

Bi ⊗ Ci‖F .

Not surprisingly, this equation can be reordered to yield‖Ã −∑r
i=1 vec(Bi)vec(Ci)

T‖F .

The optimal values of{vec(Bi)}ri=1 and{vec(Ci)}ri=1 can be found by computing ther

largest singular values and vectors ofÃ.

Clearly the sum ofr Kronecker products
∑r

i=1 vec(Bi)vec(Ci)
T yields a better approx-

imation toÃ than just using a single Kronecker product. Unfortunately,we cannot use this

property to help with the original eigendecomposition problem. Theorem 1 proved that

if A = B ⊗ C, the eigenvectors and eigenvalues ofA are fully determined by the eigen-

vectors and eigenvalues ofB andC. This theorem cannot be extended to the case when

A =
∑r

i=1Bi ⊗ Ci. In other words, knowing the eigenvectors and eigenvalues of {Bi}ri=1

and{Ci}ri=1 does not uniquely determine the eigenvalues and eigenvectors ofA.
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5.2.4 Theoretical Analysis

This analysis attempts to shed some light on whenB ⊗ C is useful for approximating

A.4 More specifically, we are concerned with whether the space spanned by the topm

eigenvectors ofB ⊗ C is “close” to the space spanned by the topm eigenvectors ofA.

Perturbation theory can be used to address this question because the random walk operator

A is self-adjoint (with respect to theinvariant distributionof the random walk) on an inner

product space; therefore, theoretical results concerningA’s spectrum apply. We assume

matricesB andC are computed according to the constrained Kronecker product approxi-

mation algorithm discussed in the previous section. The following notation is used in the

theorem and proof:

• E = A−B ⊗ C

• X is a matrix whose columns are the topm eigenvectors ofA

• α1 is the set of topm eigenvalues ofA

• α2 includes all eigenvalues ofA except those inα1

• d is the eigengap betweenα1 andα2, i.e.,d = minλi∈α1,λj∈α2
|λi − λj |

• Y is a matrix whose columns are the topm eigenvectors ofB ⊗ C

• α̃1 is the set of topm eigenvalues ofB ⊗ C

• α̃2 includes all eigenvalues ofB ⊗ C except those iñα1

• d̃ is the eigengap betweenα1 andα̃2

• X is the subspace spanned byX

• Y is the subspace spanned byY

• P is the orthogonal projection ontoX

• Q is the orthogonal projection ontoY .

Theorem 2 AssumingB andC are defined as above based on the SVD ofÃ and if‖E‖ ≤

2εd/(π+2ε), then the distance between the space spanned by topm eigenvectors ofA and

the space spanned by the topm eigenvectors ofB ⊗ C is at mostε.

4We gratefully acknowledge the help of Chang Wang with the analysis in this section.
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Proof: The Kronecker factorization uses the topm eigenvectors ofB ⊗ C to approxi-

mate the topm eigenvectors ofA (e.g. useY to approximateX). The difference between

X andY is defined‖Q− P‖. [S1]

It can be shown that ifA andE are bounded self-adjoint operators on a separable Hilbert

space, then the spectrum ofA+E is in the closed‖E‖-neighborhood of the spectrum ofA

[54]. The authors also prove the inequality‖Q⊥P‖ ≤ π‖E‖/2d̃. [S2]

Matrix A has an isolated partα1 of the spectrum separated from its remainderα2 by

gapd. To guaranteeA+E also has separated spectral components, we need to assume

‖E‖ < d/2. Making this assumption, [S2] can be rewritten‖Q⊥P‖ ≤ π‖E‖/2(d− ‖E‖).

[S3]

Interchanging the roles ofα1 andα2, we have the analogous inequality:‖QP⊥‖ ≤

π‖E‖/2(d − ‖E‖). [S4] Since‖Q − P‖ = max{‖Q⊥P‖, ‖QP⊥‖} [S5], the overall in-

equality can be written‖Q− P‖ ≤ π‖E‖/2(d− ‖E‖). [S6]

Step [S6] implies that if‖E‖ ≤ 2εd/(π + 2ε), then‖Q− P‖ ≤ ε. [S7] �

The two important factors involved in this theorem are‖E‖ and the eigengap ofA. If

‖E‖ is small, then the space spanned by the topm eigenvectors ofB ⊗ C approximates

the space spanned by the topm eigenvectors ofA well. Also, for a given value of‖E‖, the

larger the eigengap the better the approximation.

5.2.5 Experiments

The experiments were conducted using the mountain car domain and the acrobot task.

The experimental setup follows the RPI algorithm describedin Figure 4.6. A comparison

was done using basis functions derived from the matrix random walk operatorA = D−1W

versus basis functions from the factorized matricesBR andCR. Samples were generated

using a random policy. For the mountain car task, each episode began at the bottom of the

hill but with a different initial velocity (see the Appendixfor details). Episodes lasted for

at most 50 steps or until the goal was reached. We used a slightly more involved sample
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generation procedure for acrobot. Since random policies can take a very long time to reach

the goal, we only used samples from episodes that reached thegoal in under 800 time

steps. We found this provided coverage of samples over the state-action space using a

random policy while minimizing redundancy in the sample set.

After generating the samples, we used the greedy subsampling method described in

Section 5.1 to arrive at a representative set of data points.Graphs were then built by con-

necting each subsampled state to itsk nearest neighbors and edge weights were assigned

using aweightedEuclidean distance metric. A weighted Euclidean distance metric was

used as opposed to an unweighted metric to make the state space dimensions have more

similar ranges. These parameters are given in the first threerows of Table 5.1. There

is one important exception for graph construction in acrobot. The joint anglesθ1 andθ2

range from 0 to2π; therefore, arc length is the appropriate distance metric to ensure values

slightly greater than 0 are “close” to values slightly less than2π. However, the fast nearest

neighbor code5 that was used to generate graphs required a Euclidean distance metric. To

approximate arc length using Euclidean distance, angleθi was mapped to a tuple [sin(θi),

cos(θi)] for i = {1, 2}. This approximation works very well if two angles are similar (e.g.

within 30 degrees of each other) and becomes worse as the angles are further apart. Next,

matricesA, BR, andCR were computed using the Kronecker factorization algorithmpre-

viously discussed. By fixing the size ofCR, the size ofBR is automatically determined

by |BR| = |A|
|CR|

. To ensure |A|
|CR|

is an integer, we simply adjust the number of elements in

A. After the greedy subsampling procedure is run, extra samples can either be added or

removed to the subset. The last four rows of Table 5.1 show thesizes ofBR andCR, the

number of eigenvectors used, and the compression ratios achieved by storing the compact

basis functions. Notice we used more eigenvectors fromBR ⊗ CR than we did fromA.

These number were determined empirically to work well. Results were worse when more

5We thank Dr. Christian Merkwirth who kindly sent us the source code for his fast nearest neighbor
package, ATRIA [71].
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Mountain Car Acrobot
γ 0.99 1.0
k 25 15
σ 0.2 0.5
Weight [1, 24] [1.0, 1.0, 0.7, 0.7, 0.3, 0.12]

[x, ẋ]
[

sin(θ1), cos(θ1), sin(θ2), cos(θ2), θ̇1, θ̇2

]

SizeA ∼1000 ∼3000
Eigenvectors ofA 20 25
SizeBR ∼100 ∼200
SizeCR 10 15
Eigenvectors ofBR ⊗ CR 50 50
Compression Factor ∼9.8× ∼14.7×

Table 5.1.Parameters for the experiments.

eigenvectors were used fromA and fewer eigenvectors were used fromBR ⊗ CR. Also,

note that the eigenvectors were used to represent action-value functions. This was done by

using the eigenvectors separately for each discrete actionas described in Section 3.2. Thus,

when 20 eigenvectors ofA were computed for mountain car, this means 60 basis functions

(20 eigenvectors× 3 discrete actions) were used to approximate the action-value function.

The goal of our experiments was to compare the effectivenessof the basis functions

derived from matrixA with the basis functions derived from matricesBR andCR. Thirty

separate trials were run for each domain. Within each trial,we varied the number of training

episodes. Given a set of training data, we ran the greedy subsampling procedure, formed a

k nearest neighbor graph, and computed the matricesA, BR, andCR. The eigenvectors of

A form one set of basis functions while the eigenvectors ofBR andCR form another set of

basis functions. We refer to the basis functions as either the “exact” bases (those fromA) or

the “Kronecker” bases (those fromBR andCR). The LSPI algorithm was run twice, once

with the exact bases and once with the Kronecker bases. The learned policies from these

two runs were evaluated starting from each tasks’ typical initial state,[x, ẋ] = [−0.5, 0] for

mountain car and
[

θ1, θ2, θ̇1, θ̇2

]

= [0, 0, 0, 0] for acrobot. We recorded the number of steps

each policy took to reach the goal. The test was terminated for both domains if the policy
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did not reach the goal in 500 steps. The median test results over the 30 runs are plotted in

Figure 5.4. The median is a more appropriate measure of performance than the mean since

some of the 30 runs resulted in policies that never reached the goal.
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Figure 5.4. Median performance over the 30 runs using the RPI algorithm and the param-
eters described in Table 5.1. The basis functions are eitherderived from matrixA (Exact)
or from matricesBR andCR (Kronecker).

The results from mountain car show that policies performed similarly whether using the

exact basis functions or the Kronecker basis functions. Theonly difference occurs when

the amount of training data is small (< 50 episodes). In that case, the exact basis functions

resulted in better policies.

There was a significant difference in performance for the acrobot task. The policies

learned using the exact basis functions performed much better than those learned using the

Kronecker basis functions. With only 15 episodes of training data, the policies learned us-

ing the exact bases were able to reach the goal in∼100 time steps. This is relatively close

to an optimal policy which reaches the goal in∼75 time steps. We experimented with

different parameters for the Kronecker product method. We ranged the number of eigen-

vectors ofBR ⊗CR and the size of the matrixCR. These changes did not result in policies

that could reach the goal in under∼200 time steps (over the median of the 30 trials). We

did find that changing the distance function used to create the graph had a substantial im-
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pact on the results. For example, in previous work [46], we used a weighted Euclidean

distance metric with the dimensions scaled as
[

sin(θ1), cos(θ1), sin(θ2), cos(θ2), θ̇1, θ̇2

]

=

[1, 1, 1, 1, 0.5, 0.3]. This distance metric puts more emphasis on the angular velocities than

the distance metric used in the experiments above (see Table5.1). Using this distance func-

tion, |CR| =30, and 90 eigenvectors ofBR ⊗ CR, the performance of exact and Kronecker

bases became more similar. Both sets of basis functions resulted in policies that reach the

goal in∼150 time steps. This is a noticeable decline in performance for the exact basis

functions (an increase from 100 to 150 steps) and an improvement for the Kronecker basis

functions (a decrease from 200 to 150 steps). These results,shown in Figure 5.5, indicate

the Kronecker product method can depend on the particular graph and distance function

being used. This makes using the Kronecker product technique more challenging.
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Figure 5.5.Median performance over 30 trials using the RPI algorithm onacrobot. Graphs
were constructed using a different distance function than was used for the acrobot plot in
Figure 5.4.

5.3 Multilevel Eigenvector Approximation

In this section, we present an alternative way to compute approximate eigenvectors.

The Automated Multilevel Substructuring (AMLS) algorithm[9] was recently introduced

as a way to scale up eigenvector computation to very large-scale problems. We describe the

algorithm and then prove it is applicable to computing eigenvectors of the graph Laplacian.
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The AMLS and the Kronecker product method are compared and experimental results are

presented.

5.3.1 Automated Multilevel Substructuring

Bennighof and Lehoucq [9] developed the Automated Multilevel Substructuring (AMLS)

algorithm to solve large, sparse symmetric eigenvalue problems. They reported computing

thousands of eigenpairs on a matrix with millions of rows using a commodity computer

and doing so orders of magnitude faster than current state-of-the-art algorithms. AMLS is

well-suited to problems where a large number of eigenvaluesare to be computed [110].

The algorithm can be viewed as a multilevel extension of the component mode synthesis

(CMS) [43] technique from structural dynamics. AMLS is basedon domain decomposition

wherea larger problem is divided into smaller subproblems whose solutions are found and

then used as a subspace for approximately solving the largerproblem.The decomposition

of a larger problem into smaller subproblems is carried out recursively, thus giving AMLS

its “multilevel” nature. Our description of AMLS follows along the algebraic version of

Bekas and Saad [4] instead of the original domain decomposition viewpoint [9].

We present a one-level version of the AMLS algorithm. It is easy to extend the algo-

rithm recursively to multiple levels. Since the recursion involvesindependentsubproblems,

the algorithm can easily be parallelized. We have written both a sequential and parallel im-

plementation of the AMLS algorithm in Matlab. The parallel version has been successfully

executed on matrices withO(106) rows using a computer cluster. However, we emphasize

that AMLS does not require expensive computing resources and in fact greatly reduces the

computational workload compared to the best existing algorithms. Bennighof and Lehoucq

[9] point out that AMLS has been used commercially by auto manufacturers to compute

twice as many eigenpairs “with commodity workstations in anorder of magnitude less

computing time than the standard [Lanczos] approach on a CRAYSV1 supercomputer.”
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LetA ∈ R
n×n be the matrix given as input to AMLS. The desired outputs are approx-

imations of the smallestK eigenvalues ofA and their corresponding eigenvectors. We

assume the rows and columns ofA have been reordered to decompose the matrix into two

independent blocks that are connected by a (ideally small) block separating them. This

can be accomplished very quickly using sparse matrix partitioning methods. We used the

nested dissectionalgorithm (onmetis) in the METIS software package [49]. Figure 5.6

shows how nested dissection reorders a matrix associated with a50×50 two-dimensional

grid (n = 2500). The plot on the left shows the original matrix ordering where blue dots

correspond to nonzero matrix entries. The plot on the right shows the same matrix after

reordering the rows and columns using nested dissection. The red lines on the right-hand

plot delineate the matrix blocks (with the small separatingblock ordered last). Notice the

same general structure is recursively repeated within bothof the large independent blocks.
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Figure 5.6.Connectivity plot of a matrix for a50×50 grid graph (left) and the same matrix
after the rows and columns have been reordered using nested dissection (right). The red
lines are just shown to emphasize the reordered matrix consists of two (large) independent
blocks followed by a small block separating them.
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Given the nested dissection ordering, the matrixA has the form:

A =













B1 0 E1

0 B2 E2

ET
1 ET

2 C













=







B E

ET C






,

where matrixB is block diagonal. The eigenvalue problemAφ = λφ can be similarly

written:

Aφ =













B1 0 E1

0 B2 E2

ET
1 ET

2 C

























φB1

φB2

φC













= λ













φB1

φB2

φC













= λ







φB

φC






= λφ.

The block Gaussian eliminator forA is the matrix

U =







I −B−1E

0 I






.

This meansUTAU results in a block diagonal matrix

UTAU =







B 0

0 S






,

whereS = C − ETB−1E is theSchur complement. Instead of solving the eigenvalue

problemAφ = λφ, one can solve the equivalent eigenvalue problemUTAUφ̃ = λUTUφ̃

which has the form

(UTAU)φ̃ =







B 0

0 S













φ̃B

φ̃S






= λ







I −B−1E

−ETB−1 MS













φ̃B

φ̃S






, (5.4)
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whereMS = (I + ETB−2E). Notice the eigenvalues are the same whether solvingAφ =

λφ or UTAUφ̃ = λUTUφ̃. The eigenvectors are related by the simple transformation

φ = Uφ̃ or, more explicitly:

φ =







φB

φC






= Uφ̃ =







I −B−1E

0 I













φ̃B

φ̃S






=







φ̃B −B−1Eφ̃S

φ̃S






.

Everything until this point has been done exactly. So solving the eigenvalue problem

UTAUφ̃ = λUTUφ̃ results in eigenpairs that can be transformed into the exacteigenpairs

of Aφ = λφ. Here we introduce an approximation. Instead of solvingUTAUφ̃ = λUTUφ̃,

we solve a slightly different eigenvalue problem in which the off-diagonal elements ofUTU

are ignored. By ignoring the off-diagonal blocks, we mean:







B 0

0 S













φ̃B

φ̃S






= λ







I �
�

�
��: 0−B−1E

�
�

�
�

��:
0

−ETB−1 MS













φ̃B

φ̃S






.

With the off-diagonal blocks ignored, the problem decomposes into threeseparateeigen-

value problems:B1v
B1 = µB1vB1, B2v

B2 = µB2vB2, andSvS = µSMSv
S. This is the

essence of AMLS; the smaller problems are solved instead of directly tackling the larger

problem.

We compute then1 eigenvectors{vB1

i }n1

i=1 associated with the smallest eigenvalues of

B1, then2 eigenvectors{vB2

i }n2

i=1 associated with the smallest eigenvalues ofB2, and the

nS eigenvectors{vS
i }nS

i=1 associated with the smallest generalized eigenvalues of(S,MS).

If we are required to computeK eigenpairs of matrixA, then (n1 + n2 + nS) ≥ K.

Computing more eigenvectors (i.e. larger(n1 + n2 + nS)) results in more computation

but a better approximation.6 Once the eigenvectors are computed, they are used as a basis

6Bounds on the quality of the approximation are derived in [34].

85



for approximating the full problemUTAUφ̃ = λUTUφ̃. Specifically, a basis matrixZ is

formed where:

Z =













{vB1

i }n1

i=1 0 0

0 {vB2

i }n2

i=1 0

0 0 {vS
i }nS

i=1













,

and then the full problem is projected as(ZTUTAUZ)z = η(ZTUTUZ)z. Projecting

the problem down to a subspace defined byZ is known as the Rayleigh-Ritz method.

K eigenpairs associated with the smallest eigenvalues of theprojected problem are then

computed. This results in a set of eigenvalues{ηi}Ki=1 and eigenvectors{zi}Ki=1. The AMLS

algorithm outputs:

1. {ηi}Ki=1 as an approximation toA’s eigenvalues{λi}Ki=1, and

2. UZ{zi}Ki=1 as an approximation toA’s eigenvectors{φi}Ki=1.

Pseudocode for the AMLS algorithm is shown in Algorithm 4. Aside from the matrix

A and the desired number of eigenpairsK, the other inputs to the algorithm are the number

of eigenvectors to compute for the subproblems (n1, n2, andnS). In our implementation,

we used a simple heuristic to automatically select these numbers. First, we determined

how many total eigenvectors to compute. This was done by multiplying K by a number

greater than 1 (e.g. 1.67). Then we setn1, n2, andnS to sum to that number and be in

equal proportion to the size of matricesB1, B2, andC. As an example, say we needed

to computeK = 600 eigenvectors ofA and assume matrixA has dimension20, 000, B1

has dimension10, 000, B2 has dimension9600, andC has dimension400. First, for a

factor of 1.67, we determine we need to computeK × 1.67 = 1000 eigenvectors for all

three subproblems. Then we apportion those eigenvectors asn1 = (10,000
20,000

)× 1000 = 500,

n2 = ( 9600
20,000

) × 1000 = 480, andnS = ( 400
20,000

) × 1000 = 20. Lastly, we adjustedn1, n2,
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Algorithm 4 : AMLS for one level of subproblems
Input: A ∈ R

n×n

K, desired number of eigenpairs ofA to be computed
n1, n2, nS , number of eigenvectors to compute for the

eigendecomposition ofB1,B2, and(S,MS) respectively
Output: K approximate eigenpairs ofA

// All eigendecompositions below compute the smallest eigenvalues

1. If necessary, reorderA using nested dissection:

A =





B1 0 E1

0 B2 E2

ET
1 ET

2 C



 =

[

B E

ET C

]

2. Compute Cholesky factorization ofB:
RTR = B whereR is lower triangular

3. Compute the Schur complementS:
S = C − ETB−1E (usingR)

4. Define block Gaussian eliminatorU :

U =

[

I −B−1E

0 I

]

5. ComputeMS = I +
(

ETB−1
) (

B−1E
)

(usingR)
6. Compute eigenvectors of subproblems:

6a. Computen1 eigenvectors ofB1: {vB1

i }n1

i=1

6b. Computen2 eigenvectors ofB2: {vB2

i }n2

i=1

6c. ComputenS generalized eigenvectors of(S,MS): {vS
i }nS

i=1

7. Define the matrixZ:

Z =





{vB1

i }n1

i=1 0 0

0 {vB2

i }n2

i=1 0
0 0 {vS

i }nS

i=1





8. ComputeK eigenpairs of
(

ZTUTAUZ
)

z = η
(

ZTUTUZ
)

z

9. Output the eigenvalues{ηi}Ki=1 and eigenvectorsUZ{zi}Ki=1

andnS to not be less than a minimum threshold (e.g. 200). An alternative approach could

selectn1, n2, andnS based on a desired level of accuracy [34].

The computational complexity of the AMLS algorithm dependson the structure of

the input matrix, the number of levels in the nested dissection (i.e., how many levels of

recursion), and the number of eigenpairs computed at each level. As such, it is not as

easily characterized as the Kronecker product method. Gao et al. [38] provide empirical

evidence of AMLS’s run time for four test problems while varying the number of levels

and the number of eigenpairs. Their analysis shows that, as expected, AMLS outperforms

a common eigensolver (using a shift-and-invert Lanczos method) as the desired number of
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eigenpairs increases. Thus, AMLS is ideally suited for our purpose of generating as many

eigenvectors as possible from large, sparse Laplacian matrices.

5.3.2 AMLS and the Graph Laplacian

Bekas and Saad [4] describe the AMLS algorithm and some extensions. Their descrip-

tion of AMLS requires the input matrix to be symmetric positive definite (SPD). This would

seem to be a problem for the graph Laplacian because it is positive semidefinite. However,

from our description of Algorithm 4 in the previous section,the only time the SPD prop-

erty is used is in the Cholesky factorization. Moreover, the Cholesky factorization is only

computed on a (permuted) principal submatrix of the input matrix and never on the entire

input matrix itself. This means the graph Laplacian can be used with AMLS becauseany

(permuted) principal submatrix of the Laplacian is SPD. Theproof of this fact is shown in

the lemma below.

Lemma 3 Any principal submatrix of a graph Laplacian associated witha weighted, undi-

rected, and connected graph is symmetric positive definite (SPD).

Proof: Let L be a (normalized or combinatorial) graph Laplacian matrix associated

with a weighted, undirected, and connected graphG = (V,E,W ) with vertex setV , edge

setE, and edge weightsW . By definition,L is a symmetric, positive semidefinite matrix.

Given any permutation matrixX, let LX = XLXT (i.e. LX is a reordering of the rows

and columns ofL). LX is also symmetric positive definite since reordering the rows and

columns ofL does not change these properties. Partition the matrix as:

LX =







A B

BT C







where the size of matrixA is k×k where1 ≤ k < |V |. Matrix A is the leading principal

submatrix ofLX . SinceLX is symmetric,A is also symmetric.
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Now, let VA be a restriction of the vertex setV to the k elements contained inA.

Likewise, letVC be a restriction ofV to the(|V | − k) elements contained inC. Let EA

contain all the edges in the setE connecting vertices in the setVA. With these definitions,

consider the quadratic form of matrixA given a nonzero vectorz ∈ R
k:

zTAz =





∑

(u,v)∈EA

W (u, v)(z(u)− z(v))2



 +





∑

u∈VA

z(u)2
∑

(u,t)∈E,t∈VC

W (u, t)



 .

The first term in parentheses is greater than or equal to 0 because the edge weights are

positive. The second term in parentheses is strictly greater than 0. This occurs because (1)

z is nonzero and (2) the graphG is connected; therefore, there must exist at least one edge

(which must have a positive weight) between a vertex inVA and a vertex inVC . Combining

these two results yieldszTAz > 0, i.e.,A is positive definite.

We showed that matrixA is both symmetric and positive definite. This completes the

proof becauseA is a principal submatrix ofanyreordered version ofL (since permutation

matrixX was arbitrary).�

This lemma shows that the AMLS algorithm can be used to decompose the graph Lapla-

cian. Although our usage of the graph Laplacian is for reinforcement learning purposes, we

emphasize the graph Laplacian is also useful more generallyfor dimensionality reduction

[5] and clustering [76]. Thus, Lemma 3 shows that AMLS can be useful in those contexts

as well for scaling to large problems.

5.3.3 Experiments and Analysis

We repeated the mountain car and acrobot experiments described in Section 5.2.5 using

basis functions computed by AMLS. The results demonstrate that learned policies perform

similarly whether using “exact” eigenvectors or the AMLS approximate eigenvectors. This

is an improvement over the basis functions derived from the Kronecker product approxi-

mation.
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We examine the difference between eigenvectors and eigenvalues computed exactly,

computed using the Kronecker product method, and computed using AMLS. The compari-

son demonstrates (1) the accuracy of the AMLS algorithm and (2) how imposing Kronecker

structure can alter the space spanned by the eigenvectors. This analysis sheds some light

on why the AMLS approximate eigenvectors performed well in mountain car and acrobot.

The experiments in mountain car and acrobot from Section 5.2.5 were repeated using

the AMLS approximate eigenvectors as basis functions. We used the same parameters for

graph construction (k, σ, weights) as detailed in Table 5.1. Likewise, we used the same

number of eigenvectors for the AMLS method as we did when computing eigenvectors

exactly (20 eigenvectors for mountain car and 25 eigenvectors for acrobot).

Thirty trials were run. Plots of the median performance of the learned policies are

shown in Figure 5.7. For reference, the plots also include the results from Figure 5.4 for the

“exact” basis functions and the “Kronecker” basis functions. The performance of policies

learned using the AMLS basis functions is nearly the same as the performance of policies

learned using the exact basis functions.

0 50 100 150
100

200

300

400

500

Number of Training Episodes

S
te

ps
 to

 G
oa

l

Kronecker

AMLS

Exact

(a) Mountain Car

0 20 40 60 80 100
50

100

150

200

250

300

350

Number of Training Episodes

S
te

ps
 to

 G
oa

l

Kronecker

Exact

AMLS

(b) Acrobot

Figure 5.7. Median performance over the 30 runs using the RPI algorithm.The basis
functions are either derived from matrixA (Exact), from matricesBR andCR (Kronecker),
or from the AMLS algorithm.
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We examine the eigenvectors and eigenvalues computed exactly, using AMLS, and us-

ing the Kronecker method to help understand the performancedifferences. Since mountain

car is a two dimensional continuous domain, it is easy to visually compare the eigenvectors.

Figure 5.8 shows the second through sixth eigenvectors for all three methods. The

graph, which is from one of the 30 trials in the policy iteration experiments, contains 1050

vertices. The exact eigenvectors and those computed using AMLS are nearly identical.

Notice there are some similarities (2nd, 5th, and 6th) and some differences (3rd and 4th) for

the approximate eigenvectors computed using the Kroneckermethod.

Figure 5.8. The 2nd-6th eigenvectors computed exactly (top row), computed using AMLS
(middle row), and computed using the Kronecker method (bottom row) for the mountain
car domain. The approximate eigenvectors computed using AMLS are nearly identical to
the exact values.

The AMLS algorithm accurately computed 50 eigenvalues. Theexact eigenvalues as

well as those computed using AMLS are shown in Figure 5.9. Theplot on the left of Figure

5.9 show the eigenvalues in increasing order. Notice the twocurves are nearly identical. To

detect small differences, the plot on the right of Figure 5.9shows the difference between the

eigenvalues,(λAMLS
i − λi). This plot shows there is some discrepancy between the values

and that the discrepancy is greater for larger eigenvalues.This behavior is to be expected
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from AMLS because the projection method (i.e. using the eigenvectors from subproblems

as a basis for approximating the larger eigenvalue problem)naturally captures more of the

low frequency components of the Laplacian spectrum.
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Figure 5.9.The first 50 eigenvalues of the normalized graph Laplacian for the mountain car
task computed exactly and approximated using the AMLS algorithm (left). The difference
between the approximate and exact eigenvalues (right) shows there is some discrepancy,
but the error in the approximation is small relative to the absolute value.

Another way to compare the exact eigenvectors with the AMLS approximation is to

compute the angle between the subspaces spanned by the eigenvectors. Before we define

the angle between two subspaces, note it is easy to compute the angle between two vectors.

Given two vectorsx andy of the same length, one can compute the angle betweenx andy

asarccos ( xT y
‖x‖‖y‖

). Now, assume we have two subspacesSX andSY . Using the definition

of Bjorck and Golub [14], the angle betweenSX andSY is defined to be the maximum

angle between any vector inSX and its closest vector inSY . This angle can be computed

given orthonormal matricesX andY spanning the subspacesSX andSY respectively as:

θ(SX , SY ) = max
i

min
j

arccos (XT
i Yj)

with column indicesi andj. Using this definition, the angle between the spaces spannedby

the first 50 eigenvectors computed exactly and computed using AMLS isθ = 0.128 radians,
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or θ = 7.3◦. Thus, the exact eigenvectors and the AMLS approximate eigenvectors span

similar spaces.

The bottom row of plots in Figure 5.8 shows the second throughsixth approximate

eigenvectors produced using the Kronecker product method.Recall these eigenvectors are

stored in a compressed form. They are formed by computing theKronecker product of

an eigenvector associated with a105×105 matrix with an eigenvector of a10×10 matrix.

As described in Section 5.2.2, one can interpret the Kronecker product as partitioning the

1050 samples into 105 clusters, each of size 10. Practically, this means the eigenvectors

produced using the Kronecker product method are more coarse(“blockier”) than those

produced using AMLS. This is evident in the jaggedness of thefunctions.

We also computed the angle between the subspaces spanned by the first 20 exact eigen-

vectors and the 20 eigenvectors computed using the Kronecker method. The angle was

θ = 0.751 radians, orθ = 43.0◦. As expected, this is larger than the angle between the sub-

spaces spanned by the exact and AMLS eigenvectors. However,θ = 43.0◦ indicates there

is still a significant degree of overlap between the exact andKronecker product eigenspaces

for mountain car. For graphs in acrobot, this angle was closer to 90◦ (meaning there was

at least one function in the span of the true eigenvectors nearly orthogonal to all functions

in the span of the approximate eigenvectors computed using the Kronecker method). This

does not fully explain why the Kronecker product eigenvectors performed poorly as basis

functions for the acrobot experiments, but it does provide evidence that graphs in acrobot

may be poorly approximated with the block structure of the Kronecker product.

We also attempted to use the theoretical analysis developedin Section 5.2.4 to un-

derstand the behavior of the Kronecker product method. However, we found that for

both mountain car and acrobot domains, the error in the Kronecker product approxima-

tion (‖E‖ = ‖A − B ⊗ C‖) was greater than the eigengap of matrixA (d in Theorem 2).

This violates one of the assumptions in the proof of Theorem 2.

93



In this section, we visually compared the eigenvectors produced by the three methods

for the mountain car task, compared the eigenvalues produced using the exact and AMLS

methods, and computed the angles between subspaces spannedby the eigenvectors. This

analysis indicates the AMLS algorithm allows for a better approximation of the Laplacian

eigendecomposition. The fact that AMLS allows for computing thousands of eigenvectors

of sparse matrices with millions of entries makes it particularly attractive for generating

proto-value functions. The analysis also shows the qualityof the Kronecker product ap-

proximation depends more heavily on the specific graph beingfactorized. The Kronecker

method’s block structure allowed for a better approximation in the mountain car domain

than in acrobot. Whether or not the Kronecker method’s scalability and compression can

be leveraged appears domain dependent.

5.4 Conclusions

In this chapter, we presented three ways to scale the graph-based basis construction

method to larger problems. The greedy sampling procedure ensures the graph is con-

structed only using enough data points as necessary to ensure state space coverage. This

allows for removing redundant samples. Not only does this accelerate graph and basis con-

struction, but it also speeds up nearest neighbor searches when the features of a new state

(not in the graph) are needed.

We also proposed two approximation algorithms for scaling up graph-based basis con-

struction: the Kronecker product method and the Automated Multilevel Substructuring

(AMLS) algorithm. Both methods can be used to compute approximate eigenvectors and

the Kronecker product method can also be used to compute approximate diffusion wavelets.

The Kronecker method decomposes the problem into smaller problems that are combined

via the tensor product to approximate the original problem.Eigendecomposition or dif-

fusion wavelet tree construction occurs on the smaller problems. This method has two

substantial benefits: (1) basis construction only occurs onsmaller matrices, and (2) the ap-
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proximate eigenvectors or diffusion scaling and wavelet functions of the original problem

are never explicitly formed/stored. To achieve these benefits, the method makes the strong

assumption that the original problem has, to some degree, the block structure of the Kro-

necker product. The AMLS algorithm method does not make thisassumption. Indeed, it

can be used on any Laplacian matrix. AMLS recursively computes eigenvectors on smaller

problems and then uses those solutions to approximate eigenvectors on larger problems.

Experiments in the mountain car and acrobot tasks showed that the basis functions pro-

duced using AMLS resulted in very similar performance to thebasis functions produced

using exact eigendecomposition methods. We showed this wasdue to AMLS’s accuracy

in computing eigenvalues and eigenvectors. On the other hand, the results were mixed for

the Kronecker product method. The basis functions allowed for policies that could reach

the goal, albeit with some loss in performance, for mountaincar. For the acrobot domain,

the policies using Kronecker basis functions were significantly worse. This leads to the

conclusion that the block structure of the Kronecker product allows for compression, but

whether the compressed functions adequately represent theoriginal problem appears task

dependent.

The AMLS algorithm has been used on matrices with millions ofrows to compute

thousands of approximate eigenvectors. For some RL problems, a graph with millions of

vertices could provide adequate coverage over the domain’sstate space. In these situations,

we believe AMLS can be used to provide a useful set of basis functions for represent-

ing value functions. While AMLS can be used generally on all problems, the Kronecker

product method is applicable to domains where some block structure exists and can be

exploited.
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CHAPTER 6

BASIS SELECTION

RL feature construction algorithms can be categorized intotwo types: one that itera-

tively generates basis functions based upon the current Bellman error,T π(V̂ )− V̂ , and the

other that generates a dictionary of basis functions.1 Note the latter type requires aselec-

tion strategy to determine which elements from the dictionary toutilize. The graph-based

methods studied in this dissertation are an example of the dictionary approach to basis

construction. We propose three arguments for preferring this approach. First, a dictionary

offers the flexibility of approximating value functions associated with many different poli-

cies. The other basis construction type iteratively generates basis functions for fitting just

a single function based on the agent’s current policy. Second, there is significant interest

in the machine learning community on methods for generatingdata-dependent dictionar-

ies [77, 60, 22, 59, 42]. By creating algorithms that operate on such dictionaries, we can

naturally leverage future advances. Third, from a practical standpoint, we believe agents

should construct representations that are general and useful in the pursuit of a variety of

tasks. Over the course of an agent’s lifetime, it should be able to reuse representations

and knowledge from previous experience. The dictionary approach to basis construction is

more in line with this ideal.

The previous sections of this dissertation have used a simple method for selecting which

proto-value functions and diffusion wavelet functions to use when approximating a value

function. The heuristic is to always use theK most global, or smoothest, basis functions.

All prior applications of PVFs and diffusion wavelets in theliterature have also used this

1We focus here on techniques forexplicitlyconstructing features.

96



heuristic [67, 63, 68, 79, 44, 95].2 This mechanism is independent of the policy being

evaluated, meaning that all value functions are represented with the same set of basis func-

tions. Using just the smoothest basis functions has the advantages of being computationally

simple and robust to overfitting (although too much regularization can be just as problem-

atic as too little regularization), but it does not exploit the full power of the basis function

dictionary. In this chapter, we explore different selection mechanisms to better utilize the

dictionary. This is an improvement over previous work for two reasons. First, it tailors

the representation to the specific function being approximated. Second, tailoring the rep-

resentation allows for using as few dictionary elements as possible, which is important for

computational efficiency.

We evaluate four sparse basis selection algorithms: orthogonal matching pursuit (OMP)

[82], order recursive matching pursuit (ORMP) [75], the LASSO [103], and least angle re-

gression (LARS) [33]. Although we tested the selection algorithms using graph-based basis

functions as a dictionary, the algorithms can be used withanyset of basis functions. Each

algorithm returns a subset of basis functions from the dictionary and a scalar coefficient

associated with each selected basis function. The selectedbasis functions and coefficients

are linearly combined to produce an approximate value function. We tested two different

schemes for combining approximate policy evaluation and basis selection. The factor dis-

tinguishing these two schemes is whether the basis selection algorithmdirectlyor indirectly

uses the Bellman equation. These two schemes differ in termsof sparsity (how many ba-

sis functions are used in the approximate value function) and computational efficiency. To

2Mahadevan and Maggioni [66, 63] demonstrated the potentialbenefits for basis selection in a restricted
setting where (1) the exact value functionV π is known, and (2) the dictionary is orthonormal (which is always
the case for PVFs, but not for diffusion wavelets). In that setting, the bestK basis functions are selected by
finding the elementsφi with the largestK values of|〈V π, φi〉|. This results in the best rank-K approximation
of V π representable with the given dictionary. The result does not hold, however, when the dictionary isnot
orthogonal. We develop algorithms in this chapter that apply basis selection for arbitrary dictionaries and
when the exact value function is unknown.
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assess the combination of basis selection and approximate policy evaluation, both policy

evaluation and policy iteration experiments were conducted.

6.1 Relevant Work

We provide a brief introduction to the basis selection problem and a few of the major

algorithms. The basic formulation is that there is a signaly ∈ R
N to be represented with

elements from an overcomplete dictionaryΦ ∈ R
N×K . Each basis functionΦj ∈ R

N has

unit norm. The problem is to find a vectorw such thatΦw = y.3 The decomposition of

y is not unique; therefore, additional constraints are addedto prefer solutions with certain

qualities (e.g. sparseness, independence).

Two popular approaches to the sparse regression problem arematching pursuit and

basis pursuit. Matching pursuit is an iterative, greedy algorithm whereas basis pursuit is

an optimization principle that can be solved using any appropriate algorithm. Therefore,

matching pursuit and basis pursuit are not mutually exclusive approaches to sparse regres-

sion.

6.1.1 Matching Pursuit

Matching pursuit (MP) [69] is a greedy algorithm that selects elements sequentially to

best capture the signal. The algorithm begins with a coefficient vectorw equal to all zeros

and a residual vectoryres equal to the signaly. The first element is selected by scanning the

dictionary and finding the largest correlation with the residual:j∗ ← argmaxj |ΦT
j yres|, j ∈

[1, K]. The coefficient for the selected basis function is adjusted: wj∗ ← wj∗ + ΦT
j∗yres.

Then the residual signal is computedyres ← yres − (ΦT
j∗yres)Φj∗ and the process iterates.

With MP, a basis function can be selected many times. There are other variants of MP,

two of which are orthogonal matching pursuit (OMP) [82] and order recursive matching

pursuit (ORMP) [75]. OMP differs from MP in the way the residual signal is computed.

3The model could also include a noise term,Φw + e = y.
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OMP makes the residual orthogonal to the selected dictionary elements, which means OMP

will never select the same dictionary element more than oncewhereas MP can. ORMP

goes even further than OMP and adds the orthogonalization step into the selection process.

Moghaddam et al. [73] proposed an efficient implementation of ORMP using partitioned

matrix inverse techniques [39] and showed that sparse least-squares regression is equivalent

to a generalized eigenvalue problem.

Algorithm 5 is a side-by-side comparison of the pseudocode for MP, OMP, and ORMP.

We use the symbolI to refer to a set of indices in[1, K] that indicate the elements of the

dictionaryΦ that are selected by the algorithm. Similarly,wI refers to the scalar coefficients

applied to the selected basis functions. Basis functions that are not selected have a scalar

coefficient of 0. Thus, the signaly is approximated asΦ(:, I)w(I) = ΦIwI .

Algorithm 5 : Variants of Matching Pursuit
Input: Φ, y
Output: I, wI such that̂y ← ΦIwI

I ← ∅, ,w ← 0, yres ← y

while (not done)do
If (matching pursuit)

j∗ ← argmaxj |ΦT
j yres|

wj∗ ← wj∗ + ΦT
j∗yres

If (wj∗ 6= 0), I ← I ∪ {j∗}. Else, I ← I − {j∗}
yres ← yres − (ΦT

j∗yres)Φj∗

If (orthogonal matching pursuit)
j∗ ← argmaxj /∈I |ΦT

j yres|
I ← I ∪ {j∗}
wI ← (ΦT

I ΦI)−1ΦT
I y

yres ← y − ΦIwI

If (order recursive matching pursuit)
j∗ ← argminj /∈I ‖ΦI+j

(ΦT
I+j

ΦI+j
)−1ΦT

I+j
y − y‖2 where: I+j ← I ∪ {j}

I ← I ∪ {j∗}
wI ← (ΦT

I ΦI)−1ΦT
I y

end while
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6.1.2 Basis Pursuit

Matching pursuit finds a sparse representation by greedily selecting the most promising

elements. In contrast, basis pursuit (BP) [19] achieves sparsity by finding solutions to the

following optimization problem:min ‖w‖1 such thatΦw = y. Sparsity of the solution

comes from the use ofL1 norm. The BP problem can be solved using linear programming.

Note the hard constraintΦw = y is appropriate when the signal is noiseless. When the

signal is noisy, it is appropriate to require‖Φw − y‖2 to be small. The LASSO (least

absolute shrinkage and selection operator) [103] implements this noisy version of basis

pursuit in the following optimization problem:min ‖y − Φw‖2 subject to‖w‖1 ≤ k. The

LASSO can be solved using quadratic programming; however, amore efficient solution is

to use the recently introduced least angle regression (LARS) algorithm [33] with a minor

modification. LARS selects elements from the dictionary oneat a time, much in the same

way the matching pursuit algorithms work. The first element selected is the one that is

most correlated with the signaly. Then LARS adjusts the weight on the first element

until another element has as much correlation with the current residual. At that point,

LARS includes this second element and then proceeds in a direction (i.e. changing the

weights)equiangularbetween the first two elements. This strategy is less greedy than other

algorithms that sequentially add dictionary elements. Interestingly, a small modification

to the LARS algorithm produces the LASSO solution. While LARSby itself only adds

basis functions at each step, this modification for LASSO gives the algorithm the ability to

remove basis functions from the selected subset as well.

We evaluated the OMP, ORMP, LASSO, and LARS algorithms. It iseasy to control the

sparsity of each of these algorithms by limiting the number of basis functions that can be

selected.
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6.2 Combining Basis Selection and Approximate Policy Evaluation

The basis selection problem involves choosing elements from a dictionary to efficiently

represent a target signal. The approximate policy evaluation problem is to represent the

true value functionV π with an accurate approximation̂V . If V π were known, then basis

selection could simply be performed with the target signal beingV π. However,V π only

becomes known through the Bellman equation:V π = Rπ + γP πV π = T π(V π). Thus,

some framework is needed that effectively combines approximate policy evaluation (i.e.

finding an accurate approximation̂V ) and basis selection (i.e. efficiently representingV̂ ).

We evaluate two schemes that achieve this combination. The difference between the two is

in how they use the Bellman equation.4 The first scheme uses the Bellman equation within

the basis selection algorithm. This means that when the basis selection algorithm adjusts

the weight vectorw, this not only changes the approximationΦw but alsochanges the

target signal based on a function of the Bellman equation. Wecall this the direct scheme

because the selection algorithm directly encodes the Bellman equation. The second, or

indirect, scheme doesnot use the Bellman equation within the basis selection algorithm.

Rather, there is an iterative process that alternates between (1) setting the target signal

using the Bellman equation, and (2) representing the targetsignal using the basis selection

algorithm. These two schemes are described below in a very general form where:

1. f (T π(Φw′)− Φw′) is a functionf of the Bellman residual,

2. BasisSelection is an algorithm that selects dictionary elementsI and computes

weightswI to minimize either(f (T π(Φw′)− Φw′)) or (y − Φw′), and

3. SetWeights is an optional function that uses the dictionary elements determined

by BasisSelection, but computes its own set of weightswI .

4Note the distinction we draw between thedirect and indirect schemes is not new to RL. For example,
the fitted Q-iteration algorithm [36] is an example of the indirect scheme, whereas the LARS-TD algorithm
[52] is an example of the direct scheme. We are not aware of anyother work that makes this distinction,
so we introduced the terminology ourselves. Our analysis and experiments show that the direct and indirect
schemes can behave very differently.
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Direct Scheme
[I, wI ]← BasisSelectionw′ (f (T π(Φw′)− Φw′))

wI ← SetWeightsw′ (f (T π(ΦIw
′)− ΦIw

′)) OPTIONAL

V̂ ← ΦIwI

Indirect Scheme
I ← ∅, wI ← ∅
while (not converged)

targety ← T π(ΦIwI)
[I, wI ]← BasisSelectionw′ (y − Φw′)

wI ← SetWeightsw′ (f (T π(ΦIw
′)− ΦIw

′)) OPTIONAL

V̂ ← ΦIwI

The direct and indirect schemes differ in their computational complexity and degree

of sparsity. The computational complexity of the indirect scheme has the potential to be

greater than the direct scheme because it iteratively callsthe basis selection algorithm.

This could be wasteful when the target signal given to the basis selection algorithm does

not change significantly between iterations. On the other hand, the direct scheme, by using

the Bellman residual as the target function for the basis selection algorithm, forces the

regression algorithm to follow a specific path. To see this, consider the beginning of the

basis selection algorithm when no basis functions have yet been selected. The Bellman

residual is equal to the immediate reward functionRπ. This means the first basis function

selected is attempting to fit the immediate reward. For the sake of argument, assume the

first basis function exactly fits the immediate reward. Now the Bellman residual is equal

to the Bellman backup of the immediate reward, or(T π(Rπ)− Rπ) = γP πRπ. This same

logic can be used inductively to show basis selection proceeds in order of the elements

in the Neumann series,
∑∞

i=0(γP
π)iRπ.5 Attempting to fit the elements in the Neumann

series can lead to inefficient use of the basis functions. This occurs when there is structure

5For a bounded operatorT , the Neumann series is defined as
∑

∞

i=0
T i. One can show

∑

∞

i=0
T i =

(I − T )−1. The value functionV π can be defined using the Neumann series asV π = (I − γPπ)−1Rπ =
∑

∞

i=0
(γPπ)iRπ.
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in V π that does not exist in the Neumann series; hence, the basis selection algorithm is

unable to exploit the structure. Since the indirect scheme is not confined to this path, it

has the potential to use fewer basis functions when representing the eventual approximate

value functionV̂ .

As an example of the potential inefficiency of the direct scheme, consider an undis-

counted, deterministic chain MDP with an absorbing state atone end of the chain. As-

sume the reward function is 0 everywhere except+1 at the absorbing state. The optimal

value function is a constant function equaling 1 in each state, but the Neumann series is

a sequence of delta functions from one end of the chain to the other. Given a dictionary

consisting of all the delta functions and a constant function, a basis selection algorithm

implementing the direct scheme will select all the delta functions rather than the constant

function. This may be an extreme example, but it is not uncommon for a MDP to have a

spiky reward function that would cause similar behavior. Note this behavior can be par-

ticularly problematic for the multiscale diffusion wavelet dictionary where very localized

basis functions (that are not necessary for representingV π) can get selected before larger

scale basis functions.

6.2.1 Direct Scheme

The next three sections outline the OMP-H2 algorithm (i.e. OMP for basis selection and

H2 for setting the coefficients), the ORMP-H2 algorithm, and the LASSO-H2 and LARS-

H2 algorithms. Laplacian-based regularization is used in each algorithm. The LASSO-H2

and LARS-H2 algorithms are nearly identical, so we describe them simultaneously. Recall

the BR and FP least-squares methods are easily instantiatedby setting the hybrid parameter

to ξ = 1 andξ = 0 respectively.

Each algorithm takes as input a set of MDP samples{si, ri, s
′
i}ni=1, the discount factor

γ, the hybrid parameterξ, the dictionaryΦ of basis functions, the graph LaplacianL along

with its regularization parameterβr, a distributionρ over the states for weighting the least-
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squares problem, and a maximum allowable number of basis functionsk′ that the algorithm

can select. Each algorithm returns a set of indicesI into the columns ofΦ and scalar

coefficientswI such that the approximate value functionV̂ = ΦIwI . The sparsity of the

solution is directly controlled by limiting the basis selection algorithm to at most|I| ≤ k′

basis functions. The parameterk′ also limits the basis selection algorithm’s computation

and memory usage. Since the selection algorithm builds up sample-based estimates of the

least-squares data structures (e.g.Â−1
H2,LR

andb̂H2,LR), the size of the data structures cannot

be larger thank′. This can be very important when the number of basis functions in the

dictionary is large. To further speed up OMP-H2, ORMP-H2, LASSO-H2, and LARS-H2,

we take advantage of the fact that the algorithms insert or remove one basis function at a

time to the active setI. The matrixÂ−1
I,I can be incrementally formed. However, to keep

the pseudocode simple, the algorithms are not shown with this improvement. Appendix B

describes how the algorithms can incrementally updateÂ−1
I,I . Note that within this chapter

we only show pseudocode for the OMP-H2 algorithm. The other algorithms are similarly

described in Appendix C.

The OMP-H2 and ORMP-H2 algorithms terminate when eitherk′ basis functions have

been selected or when the change in the norm of the Bellman residual goes beneath a

threshold.6 The LASSO-H2 and LARS-H2 algorithms use both of those termination con-

ditions as well as one other condition (related to the parameter k′) that we discuss in that

section.

6.2.1.1 Direct Scheme with Hybrid Method H2

Algorithm 6 (OMP-H2) shows the direct approach for combining orthogonal match-

ing pursuit and the H2 least-squares algorithm with Laplacian-based regularization. The

algorithm maintains a sample-based estimate of the vectorc where

6Using the terminology described in the algorithm boxes, thesquared norm of the Bellman residual is
written

∑n
i=1

ρ(si)
[

ri − (φI(si) + βr gI(si)− γφI(s′i))
TwI

]2
. The change in the norm of the Bellman

residual can easily be computed when inserting or removing anew basis function from the active setI.
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cj =
[

(Φ− ξγP πΦ)TDρ(R
π − (Φ− γP πΦ)w)− βrΦ

TLDρLΦw
]

j

=
[

(Φ− ξγP πΦ)TDρ(R
π − (ΦI − γP πΦI)wI)− βrΦ

TLDρLΦIwI

]

j
. (6.1)

Each iteration of OMP-H2 selects a new basis function to add to the active set by find-

ing j /∈ I that maximizes|cj|. Then the weightswI are adjusted to make the residual

orthogonal toΦI .

Algorithm 6 : OMP-H2 with Laplacian-based Regularization
Input: {si, ri, s

′
i}ni=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

ξ ∈ [0, 1], hybrid parameter (ξ = 0 is FP,ξ = 1 is BR)
L, graph Laplacian defined over states{si}ni=1 (graph edges denoted with∼)
γ ∈ [0, 1], discount factor
βr ∈ R

+, Laplacian-based regularization parameter
k′ ≤ K, maximum allowable number of basis functions

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

c←∑n
i=1 ρ(si)φ(si)ri

Initialize active setI ← ∅
while (|I| < k′) and(Bellman residual not converged) do

1. Find most correlated inactive element:
j∗ ← argmaxj /∈I(|cj |)

2. Adjust active set:
I ← I ∪ {j∗}

3. ComputeÂI,I andb̂I :
ÂI,I ←

∑n
i=1 ρ(si)[(φI(si)− ξγφI(s′i))(φI(si)− γφI(s′i))

T + . . .

βrgI(si)gI(si)
T ]

b̂I ←
∑n

i=1 ρ(si)(φI(si)− ξγφ(s′i))ri

where: g(si)← L(si, si)φ(si)
g(si)← g(si) + L(si, snbr)φ(snbr), ∀{snbr|snbr 6= s ∧ s ∼ snbr}

4. Compute least-squares weights:
wI ← Â−1

I,I b̂I
5. Compute updated correlations:

c←∑n
i=1 ρ(si)[(φ(si)− ξγφ(s′i))

(

ri − (φI(si)− γφI(s′i))
TwI

)

− . . .
βr g(si)gI(si)

TwI ]
end while

The next algorithm we consider is ORMP-H2. We present the direct approach for com-

bining ORMP and the H2 least-squares algorithm with Laplacian-based regularization. This
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is done to be consistent with our presentations of OMP-H2, LASSO-H2, and LARS-H2,

which helps make the pseudocode more readable since the H2 least-squares data structures

are identical from one algorithm to the next. However, we will show that it is only valid to

combine ORMP and the BR least-squares method (ξ = 1). The pseudocode for ORMP-H2

is provided in Appendix C (Algorithm 8).

The ORMP algorithm works by considering the impact each inactive basis function has

on the least-squares problem. We use the terminologyI+j to indicate the inclusion of basis

functionj in the active set (i.e.I+j ← I ∪ {j}). The first step of Algorithm 8 determines

the best inactive basis functionj /∈ I that maximizes
(

b̂TI+j
Â−1

I+j ,I+j
b̂I+j

)

.

Moghaddam et al. [73] point out that it is actually faster to find the inactive basis

function that maximizes
(

b̂TI+j
Â−1

I+j ,I+j
b̂I+j
− b̂TI Â

−1
I,I b̂I

)

because some of the intermediate

computation cancels out. The intermediate terms cancel dueto properties of the partitioned

matrix inverse. Note that since the extra term
(

b̂TI Â
−1
I,I b̂I

)

is independent of all inactive

basis functions, it does not alter the result of the maximization problem. ORMP-H2 then

inserts the best basis function into the active set, updatesÂ−1
I,I andb̂I , and iterates.

The ORMP algorithm merits further attention. This algorithm is particularly interesting

because it uses the least-squares method to determine whichbasis function to include in

the active set. The best basis function is determined by:argmaxj /∈I

(

bTI+j
A−1

I+j ,I+j
bI+j

)

.

In other words, ORMP considers the impact of each inactive basis function on the least-

squares problem. When the BR least-squares algorithm is used, the best basis function

is:

j∗ ← argmax
j /∈I

(

(bBR

I+j
)T (ABR

I+j ,I+j
)−1bBR

I+j

)

← argmax
j /∈I

(

(bBR

I+j
)TwBR

I+j

)

← argmax
j /∈I

(

(Rπ)TDρ(ΦI+j
− γP πΦI+j

)wBR

I+j

)

← argmax
j /∈I

〈Rπ, V̂ BR

I+j
− γP πV̂ BR

I+j
〉ρ

106



where〈·, ·〉ρ denotes theρ-weighted inner product. This makes intuitive sense since the BR

least-squares problem is fitting a functionV̂ BR that minimizes‖Rπ + γP πV̂ BR − V̂ BR‖2ρ.

Now consider the direct scheme for combining ORMP and the FP least-squares algorithm.

One can show the best inactive basis function for ORMP-FP is:argmaxj /∈I 〈Rπ, V̂ FP

I+j
〉ρ.

This maximization does not make sense since selecting basisfunctions using this criteria

leads to a value function that approximates the rewardRπ. A simple idea to try to rescue

ORMP-FP is to change the maximization to:argmaxj /∈I

(

(bBR

I+j
)T (AFP

I+j ,I+j
)−1bFP

I+j

)

. No-

tice the use of the two different vectorsbBR

I+j
andbFP

I+j
. This leads to selecting basis functions

according to:argmaxj /∈I 〈Rπ, V̂ FP

I+j
− γP πV̂ FP

I+j
〉ρ. Although this is seemingly more valid

than the original formulation, it is still problematic. Theunderlying problem is that the FP

objective function‖Πρ(R
π + γP πV̂ FP )− V̂ FP‖2ρ can always be set to0 for any set of basis

functions.

One must be careful when directly combining least-squares policy evaluation algo-

rithms and basis selection algorithms. The result of this analysis is that ORMP-FP isnot

valid but ORMP-BR is valid. However, ORMP can be used with both FP and BR in the

indirect scheme described in Section 6.2.2.

The last two direct algorithms that we consider are LASSO-H2 and LARS-H2. To

achieve sparsity, the LASSO algorithm takes the loss function from Equation 4.4 and in-

cludes anL1 constraint on the coefficient vector. This takes the form:

wH2,LR = argmin
w′∈RK

( ξ

2
‖T π(Φw′)− Φw′‖2ρ +

1− ξ
2
‖T π(u)− Φw′‖2ρ + . . .

+
βr

2
‖LΦw′‖2ρ + βs‖w′‖1

)

(6.2)

whereβs ∈ R
+ is a regularization parameter that dictates the sparsity ofthe solution.

Larger values ofβs result in a coefficient vectorw with more zero entries. In fact, there

exists a value ofβs for which the resulting vectorw has all zero entries.
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Loth et al. [62] and Kolter and Ng [52] recently proposed using the LASSO algorithm

for approximate policy evaluation. Our description of the algorithm and its derivation fol-

lows along the same lines as that of Kolter and Ng [52]. The only exception is that we

consider Laplacian-based regularization and they did not.Therefore, our LASSO-H2 algo-

rithm with ξ = 0 andβr = 0 exactly coincides with their algorithm.7

The minimization problem in Equation 6.2 can be converted into the following set of

optimality conditions:

−βs ≤ cj ≤ βs ∀j

cj = βs ⇒ wj ≥ 0

cj = −βs ⇒ wj ≤ 0

−βs < cj < βs ⇒ wj = 0, (6.3)

where variablecj is defined according to Equation 6.1. The LASSO-H2 algorithm contin-

ually adjusts the weight vector (by adding or subtracting basis functions from the active

set) while satisfying the optimality conditions. The algorithm is initialized withI ← ∅ and

w ← 0. The optimality conditions can be satisfied with this initialization for somēβs > βs.

The algorithm proceeds to reduceβ̄s (by inserting basis functions intoI and adjustingwI)

while satisfying the optimality conditions until̄βs = βs or some other termination crite-

ria is triggered. The other termination criteria we used were a maximum number of basis

functions (k′) and a threshold on the change in the norm of the Bellman residual.

The optimality conditions ensure that|cI | = β̄s for all basis functions in the active set.

This property is maintained by changing the weight vector according to:

7Our terminology is slightly different from that used by Kolter and Ng [52]. Their LARS-TD algorithm
is the same as our LASSO-H2 algorithm withξ = 0 andβr = 0. The distinction we draw between LARS
and LASSO is whether the algorithm only adds basis functionsto the active set (LARS) or both adds and
removes basis functions (LASSO).
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∆wI =
[

(ΦI − ξγP πΦI)
TDρ(ΦI − γP πΦI) + βrΦ

T
ILDρLΦI

]−1
sign(cI),

where sign(cI) replaces the entries incI with values±1 depending on the sign. The change

in the weight vector∆wI dictates how the vectorc changes:

∆c =
(

(Φ− ξγP πΦ)TDρ(ΦI − γP πΦI) + βrΦ
TLDρLΦI

)

∆wI .

The vector∆c allows one to compute if and when an inactive basis functionj /∈ I will

have a valuecj that reaches the same value as those in the active set. The first inactive basis

function that reaches this point is computed as:

[α∗, j∗] = [min+, argmin]j /∈I

(

cj − β̄s

∆cj − 1
,
cj + β̄s

∆cj + 1

)

,

wheremin+ indicates the minimization is only over positive values,α∗ is the minimizing

value, andj∗ is the minimizing argument.

Before adding basis functionj∗ to the active set, the LASSO-H2 algorithm must check

to see whether an element in the active setj ∈ I has a coefficientwj differing in sign with

cj as such an event would violate the optimality conditions.8 The first active basis function

that reaches this point is computed as:

[α#, j#] = [min+, argmin]j∈I

(

− wj

∆wj

)

.

If all elements in the minimization are negative, thenα# is set to∞. If the step size

α∗ < α#, then basis functionj∗ is added to the active set. If the reverse is true, then basis

function j# is removed from the active set. Pseudocode for LARS-H2 and LASSO-H2 is

given in Appendix C (Algorithm 9).

8Note this is the only difference between LASSO-H2 and LARS-H2. LARS-H2 is not required to ensure
wj andcj have the same sign. Therefore, LARS-H2 does not remove basis functions from the active set.
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The LARS-H2 and LASSO-H2 algorithms adjust the coefficient vectorwI in an equian-

gular direction. This means that the residual is never made completely orthogonal with the

selected basis functionsΦI . A common “fix” to this issue is to enforce orthogonality once

LARS-H2 and LASSO-H2 terminate. We list this as an optional step at the end of the

algorithm.

6.2.1.2 Direct Scheme with Hybrid Method H1

The previous three sections described the OMP-H2, ORMP-H2, LASSO-H2, and LARS-

H2 algorithms. By setting the hybrid parameterξ to 0 or 1, these algorithms implement the

FP and BR objective functions. We describe here how the algorithms would change to

handle the H1 objective function. We do this in detail for OMP and then simply highlight

where the (similar) changes need to be made in ORMP, LASSO, and LARS.

The memory and computation requirements are identical whether using the FP, BR, or

H2 least-squares criteria. The hybrid algorithm H1 however requires more memory and

computation time. As shown in the equations below, H1 requires forming two matrices

of sizeK × K whereK is the number of basis functions in the dictionary. This can be

prohibitively large depending on the size of the dictionary. Note that all basis selection

algorithms when using FP, BR, and H2 do not form matrices larger thank′ × k′ where

k′ ≤ K is specified by the user to be the maximum number of basis functions that the

algorithm can select.

The following four lines of Algorithm 6 (OMP-H2) would need to change to accommo-

date the H1 objective function.

1. The first timec is initialized:

c← ξb̂BR + (1− ξ)(ÂFP )T Ĉ−1b̂FP

where: b̂BR ←
∑n

i=1 ρ(si)(φ(si)− γφ(s′i))ri

b̂FP ←
∑n

i=1 ρ(si)φ(si)ri
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ÂFP ←∑n
i=1 ρ(si)

[

φ(si)(φ(si)− γφ(s′i))
T + βrg(si)g(si)

T
]

Ĉ ←∑n
i=1 ρ(si)φ(si)φ(si)

T .

2. ComputingÂI,I in Step 3:

ÂI,I ← ξÂBR

I,I + (1− ξ)(ÂFP

I,I)T Ĉ−1
I,IÂ

FP

I,I

where: ÂBR

I,I ←
∑n

i=1 ρ(si)
[

(φI(si)− γφI(s′i))(φI(si)− γφI(s′i))
T + βrgI(si)gI(si)

T
]

ÂFP

I,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βrgI(si)gI(si)

T
]

ĈI,I ←
∑n

i=1 ρ(si)φI(si)φI(si)
T .

3. ComputinĝbI in Step 3:

b̂I ← ξb̂BR

I + (1− ξ)(ÂFP

I,I)T Ĉ−1
I,I b̂

FP

I

where: b̂BR

I ←∑n
i=1 ρ(si)(φI(si)− γφI(s′i))ri

b̂FP

I ←∑n
i=1 ρ(si)φI(si)ri

ÂFP

I,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βrgI(si)gI(si)

T
]

ĈI,I ←
∑n

i=1 ρ(si)φI(si)φI(si)
T .

4. Updatingc in Step 5:

c← ξcBR + (1− ξ)(ÂFP )T Ĉ−1cFP

where:cBR ←
∑n

i=1 ρ(si)[(φ(si)− γφ(s′i))(ri − (φI(si)− γφI(s′i))
TwI)− . . .

βrg(si)gI(si)
TwI ]

cFP ←
∑n

i=1 ρ(si)
[

φ(si)(ri − (φI(si)− γφI(s′i))
TwI)− βrg(si)gI(si)

TwI

]

ÂFP ←∑n
i=1 ρ(si)

[

φ(si)(φ(si)− γφ(s′i))
T + βrg(si)g(si)

T
]

Ĉ ←∑n
i=1 ρ(si)φ(si)φ(si)

T .

The changes to ORMP, LARS, and LASSO are very similar to the changes made for

OMP; therefore, we just point out the lines that need to be edited. For ORMP, four lines

would need to change: computingb̂I+j
in Step 1, computinĝAI+j ,I+j

in Step 1, computing

ÂI,I in Step 3, and computinĝbI in Step 3. For LARS and LASSO, four lines would need

to change: the first timec is initialized, computingÂI,I in Step 1, computing∆c in Step 2,

and computinĝbI at the final optional step of the algorithm.
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6.2.2 Indirect Scheme

The indirect scheme uses an iterative approach to sparse approximate policy evaluation.

The iterative approach alternates between (1) setting the target function using the Bellman

backup operator, and (2) representing the the target function using the basis selection algo-

rithm. This potentially makes the indirect scheme more computationally intensive than the

direct scheme, but it frees up the basis selection algorithmto choose the best basis func-

tions for fitting the approximate value function (instead offitting the ordered elements in

the Neumann series). We describe the iterative, indirect scheme in Algorithm 7. This is a

general framework which can utilize any sparse basis selection (regression) algorithm. The

sparse basis selection algorithm is denoted as inputBSel(y) wherey is the target function

thatBSel fits using dictionaryΦ. For BSel, we evaluated the pure regression versions of

OMP, ORMP, LASSO, and LARS with the only exception being theywere augmented to

include Laplacian-based regularization. The pure regression versions of OMP and ORMP

without regularization were described in Algorithm 5.

6.3 Action-Value Function Approximation

The previous two sections described the direct and indirectschemes for approximating

the value function. The same algorithms can also be used to approximate the action-value

function. The graph-based basis functions, which are defined just over states, can be also

used to approximate the action-value function. This is accomplished by using the basis

functions for each discrete action. For example, consider aMDP with two actions,a1 and

a2. The approximate action-value function̂Q can take the form:

Q̂ =







Q̂(·, a1)

Q̂(·, a2)






=







ΦIa1
0

0 ΦIa2













wIa1

wIa2






= ΦI wI .
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Algorithm 7 : Indirect Scheme for Sparse Approx. Pol. Eval.
Input: {si, ri, s

′
i}ni=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

L, graph Laplacian defined over states{si}ni=1 (graph edges denoted with∼)
γ ∈ [0, 1], discount factor
βr ∈ R

+, Laplacian-based regularization parameter
maxIter ∈ N, maximum number of iterations
BSel(y), sparse basis selection algorithm that approximates a target functiony

using the dictionaryφ. The termination criteria forBSel includes:
k′ ≤ K, maximum allowable number of basis functions
a threshold on the residual‖y − Φw‖2ρ
any other algorithm specific parameters (e.g.βs for LASSO)

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

Initialize active setI ← ∅, ŵI ← ∅, iter ← 0

while (iter < maxIter) and(Bellman residual not converged) do
1. Form target vectory using the sampled Bellman backup:

yi ← ri + γφI(s′i)
TwI ∀i

2. Run the sparse basis selection (regression) algorithm to fity:
[I, wI ]← BSel(y)

3. OPTIONAL: AdjustwI using one of the least-squares methods:
wI ← Â−1

I,I b̂I
For example, if using FP least-squares method, then:

ÂI,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βrgI(si)gI(si)

T
]

b̂I ←
∑n

i=1 ρ(si)φI(si)ri
4. Increment the iteration count:

iter ← iter + 1
end while

Notice the approximate action-value function can use a different set of basis functions

for each action:Q̂(·, a1) uses the basis functions indexed byIa1
andQ̂(·, a2) uses basis

functions indexed byIa2
.

Algorithms 6, 7, 8, and 9 can be used with this definition without changing any steps.

However, if these algorithms are used without changes, the number of selected basis func-

tions per action may not be equal. For the MDP with two actionsa1 anda2, this means

|Ia1
| will not necessarily be equal to|Ia2

|. It may be desirable to require the number of

basis functions per action to be equal (or approximately equal). This constraint can easily

be added to the indirect scheme (Algorithm 7) and to the direct schemes involving OMP

113



and ORMP (Algorithms 6 and 8). It does not seem possible to addthis constraint to the

direct scheme involving LASSO and LARS (Algorithm 9) because of the way these al-

gorithms control the correlation between the basis functions and the target function. For

example, step 3 of Algorithm 9 relies on the fact that all basis functionsnot in I (i.e. basis

functions that have not been selected) have a correlation|cj| < β̄s. Adding a constraint

that the number of basis functions per action should be roughly equal (which would entail

changing step 3 to not just select the minimizing element) would seem to break this logic.

Algorithms 6, 7, 8, and 9 can produce approximate action-value functions for a specific

policy. These algorithms can also be used within least-squares policy iteration (LSPI) [56].

One LSPI iteration takes a batch of MDP samples{si, ai, ri, s
′
i}ni=1 and a policyπ and

producesQ̂, an approximation ofQπ. The greedy policy implicitly defined bŷQ is then

used in the next iteration of LSPI.

6.4 Experiments

6.4.1 Approximate Policy Evaluation

The following components were varied in the experiments:

• least-squares method (FP, BR, and H2)

• basis selection method (OMP, ORMP, LASSO, and LARS)

• scheme for sparse approximate policy evaluation (direct and indirect)

• amount of Laplacian-based regularization (βr)

• dictionary (PVFs and diffusion wavelet functions).

To get a solid understanding of how each component influencesthe policy evaluation

problem, we chose the 50 state chain MDP [56]. This domain is easily visualized. The

problem consists of 50 states (si, i ∈ [1, 50]) and two actions moving the agent left (si  
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si−1) or right (si  si+1). The reward function is defined as+1 in statess10 ands41 and

zero everywhere else. The discount factor isγ = 0.9.

We consider the task of evaluating the optimal policyπ∗. Rather than sampling fromπ∗

to generate a data set, we used the true modelP π∗

andRπ∗

in the following experiments.

This choice was made to remove the influence of sampling so that we can adequately com-

pare and contrast performance. However, we note that using the model rather than samples

eliminates the bias of the BR method.

The graph used to form the PVFs and diffusion wavelets consists of 50 vertices with

self-edges and edges between “adjacent” vertices. The PVF dictionary, which was con-

structed using the combinatorial Laplacian, consists of 50global basis functions. The dif-

fusion wavelet tree was constructed using the parameterǫ = 10−4. The number of scaling

and wavelet functions is shown in Table 6.4.1. We evaluated three dictionaries constructed

Tree Levelj |ψj−1| |φj |
1 0 50
2 9 41
3 13 28
4 7 21
5 5 16
6 5 11
7 3 8
8 2 6
9 2 4
10 1 3

Table 6.1.Number of wavelet and scaling functions at each tree level for the 50 statechain MDP.

from this tree. The first dictionary consisted of all 235 functions in the tree (47 wavelet and

188 scaling functions). The second dictionary consisted ofthe 135 functions at tree level 3

or greater (38 wavelet and 97 scaling functions). The 100 extra functions in the first dictio-

nary consist of very localized basis functions as well as some oscillatory functions. Note

that both the first and second dictionaries are overcomplete, so selecting elements from

these dictionaries can lead to linear dependence in the basis functions. The third dictionary
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consisted of all 47 wavelet functions and the 3 scaling functions at tree level 10. This third

dictionary is orthonormal whereas the first two dictionaries are overcomplete. A further

optimization that we did not pursue would be to select the “best” such orthonormal dictio-

nary (amongst the 10 possible orthonormal dictionaries) instead of just using the dictionary

that reaches to tree level 10.

We systematically tested different combinations of dictionary, least-squares algorithm,

policy evaluation scheme, amount of Laplacian regularization, and basis selection method.

The list of these combinations is shown in Table 6.4.1. We present the main findings of

these experiments along with supporting figures. For a description of all the experiments

and resulting value function plots, we refer the reader to our technical report [45].

The result of each experiment is an approximate value function V̂ . Rather than simply

report a number (such as the Bellman residual norm,‖T π(V̂ ) − V̂ ‖, or the true error,

‖V ∗ − V̂ ‖), we found it much more illuminating to qualitatively assess the approximate

value functions. This leads to some interesting insights into the interaction among the basis

selection algorithm, least-squares method, and dictionary. The policy iteration experiments

in the next section provide a more quantitative measure of performance.

We summarize the policy evaluation experiments with the following findings.

• OMP-FP & the effect of Laplacian regularization

Figure 6.1 shows the results of using the OMP-FP algorithm, avarying number of

basis functions (4, 8, and 12), and a different amount of Laplacian regularization

(βr = 0 andβr = 0.1). The captions under the plots show the different dictionaries

used to produce the approximate value function. We use the shorthand DWT(50) to

refer to the diffusion wavelet dictionary with 50 orthonormal bases, DWT(135) to re-

fer to the diffusion wavelet dictionary with 135 functions at tree level 3 or greater, and

DWT(235) to refer to the dictionary containing all 235 scaling and wavelet functions

in the tree.
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Scheme Algorithm Dictionary

Direct OMP-FP, LASSO-FP PVFs
Direct OMP-BR, ORMP-BR, LASSO-BR PVFs
Direct OMP-H2 PVFs

Indirect FP & BR OMP PVFs
Indirect FP & BR ORMP PVFs
Indirect FP & BR LASSO PVFs

Direct OMP-FP, LASSO-FP, LARS-FP 235 Diffusion Wavelets
Direct OMP-FP, LASSO-FP, LARS-FP 135 Diffusion Wavelets
Direct OMP-FP, LASSO-FP 50 Orthog. Diffusion Wavelets
Direct ORMP-BR 235 Diffusion Wavelets
Direct OMP-BR, ORMP-BR, LASSO-BR 135 Diffusion Wavelets
Direct OMP-BR, ORMP-BR, LASSO-BR 50 Orthog. Diffusion Wavelets

Indirect FP OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets
Indirect FP OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets
Indirect FP OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets
Indirect BR OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelets

Table 6.2. Parameters varied in the policy evaluation experiments forthe 50 state chain
MDP.

The approximate value functions learned using either of theorthogonal dictionaries

(PVFs or DWT(50)) accurately captured the shape of the exact value functionV ∗

when using at least 8 basis functions. The approximations produced using the dif-

fusion wavelet dictionary DWT(50) were more accurate than those using the PVF

dictionary. In fact, even using just 4 basis functions from the DWT(50) dictionary

resulted in an approximate value function that tracked the shape (not magnitude) of

V ∗.

The approximate value function learned using DWT(235) became unstable when

12 basis functions were used. This occurs because the matrixÂ−1
I,I became nearly

singular. The results were slightly better when using the DWT(135) dictionary, which

removes some of the most localized and oscillatory functions in DWT(235). This

indicates the aggressiveness of OMP-FP may be a potential problem with a highly
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overcomplete dictionary. It is possible though to make the algorithm more stable by

checking the condition number of̂A−1
I,I before inserting a basis function.

Lastly, notice the influence Laplacian regularization has on the value functions pro-

duced from the PVF and DWT(50) dictionaries. The approximations with regular-

ization (βr = 0.1) clearly are smoother with respect to the topology of the chain.

This had a noticeable effect on the basis selection process for the PVF dictionary.
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Figure 6.1. Results of OMP-FP with the PVF and diffusion wavelet dictionaries.

• ORMP-BR

Figure 6.2 shows results using ORMP-BR and OMP-BR with the PVF and diffusion

wavelet dictionaries. Interestingly, the only basis selection algorithm that worked in

conjunction with the BR least-squares method was ORMP. Notice the approximate

value function learned using OMP-BR is very poor (which was also the case for both

LASSO-BR and LARS-BR). We show the value function from OMP-BR with 20
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basis functions, which is more than enough for an excellent approximation ofV ∗.

On the other hand, ORMP-BR produced excellent approximations when using 8 or

12 basis functions.
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Figure 6.2. Results of ORMP-BR and OMP-BR with different dictionaries.

• OMP-H2 with the PVF dictionary

Figure 6.3 shows results using OMP-H2 and LASSO-H2 with the PVF dictionary. In-

termediate values ofξ between 0 and 1 tend to produce approximate value functions

between the extremes produced by the FP and BR algorithms.
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Figure 6.3. Results of OMP-H2 and LASSO-H2 with the PVF dictionary using 12 basis
functions while varyingξ (ξ = 0 is equivalent to FP andξ = 1 is equivalent to BR).
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• LASSO-FP

The LASSO-FP algorithm performed very differently depending on whether the

dictionary was orthogonal (PVFs and DWT(50)) or overcomplete (DWT(135) and

DWT(235)). Figure 6.4 shows the results using LASSO-FP both with and without

the optional orthogonalization step at the end of Algorithm9. The magnitude of the

approximate value function without the orthogonalizationstep was very small when

using the orthogonal dictionaries. This occurs because theLASSO algorithm, which

is conservative in its setting of the coefficientswI by design, moves in an equiangular

direction amongst orthogonal elementsΦI . When the elementsΦI are not orthogo-

nal, as in the results with DWT(235), adjusting the coefficient vectorwI can lead to

larger steps in approximating the value function.

When the orthogonalization step in Algorithm 9 is used (whichmeans the LASSO-

FP algorithm is used just for basis selection, not for setting the coefficients), the

magnitude of the approximate value functions naturally becomes larger. The approx-

imate value functions were very accurate when 8 and 12 basis functions were used

from the dictionary DWT(235).

Note we do not show results using LARS-FP because they are nearly identical, and

in some instances exactly identical, to LASSO-FP.

• Indirect scheme with an orthogonal dictionary

The experiments in this section were conducted using Algorithm 7 under three con-

ditions. First, the while loop in Algorithm 7 was executed for 10 iterations. Second,

we used a single termination criterion for the basis selection algorithm. The algo-

rithm stopped when it had selected a specified number of basisfunctions. Third, we

always used the optional third step in Algorithm 7 which is toset the weights on the

selected features using a least-squares method. We used theBR and FP least-squares
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Figure 6.4. Results of LASSO-FP using diffusion wavelet dictionaries. The value functions are
shown with and without the (optional) orthogonalization step in Algorithm 9.

methods. Since BR and FP produced similar results, we do not report results using

the hybrid method H2.

The indirect scheme with an orthogonal dictionary (both PVFs and DWT(50)) pro-

duced accurate approximate value functions for all basis selection methods (OMP,

ORMP, LASSO, LARS) and both the FP and BR least-squares methods. Figure 6.5

shows results using the OMP and ORMP algorithms with FP and the LASSO algo-

rithm with BR. For the OMP algorithm with FP, there is also a plot of the Bellman

error norm‖T π(ΦIwI)−ΦIwI‖2 after each iteration of Algorithm 7. We just show

the Bellman error plots for the OMP algorithm to point out that the Bellman error is

not monotonically decreasing. The Bellman error plots for ORMP and LASSO were

very similar to those for OMP.
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The resulting value functions were noticeably better than those produced using the

direct scheme for approximate policy evaluation. The difference is easily recognized

by looking at the value functions estimated using 4 basis functions. Most of the

results using the direct scheme produced very poor approximations with just 4 basis

functions. But the results were quite good when using the indirect scheme. This

supports our hypothesis that the direct policy evaluation scheme can limit the efficacy

of the basis selection algorithm by forcing it to follow the Neumann series.
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Figure 6.5. Results using the indirect policy evaluation scheme with orthogonal PVF and
diffusion wavelet dictionaries.

• Indirect scheme with an overcomplete dictionary

Figure 6.6 shows the results using the indirect policy evaluation scheme with over-

complete diffusion wavelet dictionaries. Since all basis selection algorithms per-

formed similarly, we just show plots for the OMP algorithm. This is done for both
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the FP and BR least-squares methods. Overall, the results using FP were better than

those using BR (especially when fewer basis functions were used).

The approximate value functions are less smooth than those produced using orthog-

onal dictionaries. The results with only 4 basis functions are significantly worse than

when 4 basis functions are used from an orthogonal dictionary.

0 10 20 30 40 50
−2

0

2

4

6

8

OMP Indirect (FP), β
r
 = 0

State

V
al

ue
 F

un
ct

io
n

 

 

Exact
4
8
12

(a) DWT(235)

0 10 20 30 40 50
−1

0

1

2

3

4

5

OMP Indirect (BR), β
r
 = 0

State

V
al

ue
 F

un
ct

io
n

 

 

Exact
4
8
12

(b) DWT(235)

0 10 20 30 40 50
−1

0

1

2

3

4

5

OMP Indirect (BR), β
r
 = 0

State

V
al

ue
 F

un
ct

io
n

 

 

Exact
4
8
12

(c) DWT(135)

Figure 6.6. Results using the indirect policy evaluation scheme with overcomplete diffusion
wavelet dictionaries.

6.4.2 Approximate Policy Iteration

The simple policy evaluation experiments in the previous section were completed using

the MDP model and evaluating just a single policy. In this section, we extend beyond

this idealized setting to the full approximate policy iteration problem where a policy must

be learned from a fixed set of samples. Furthermore, we combine all three components

of the dissertation (regularized hybrid least-squares algorithms, efficient basis construction

algorithms for graphs, and the basis selection methods) into a single combined architecture.

We try to provide intuition as to how these different components interact to produce a final

approximate value function and corresponding policy.

Experiments were conducted on the mountain car task using samples from 100 episodes,

each of at most 100 steps, of a random policy. The results fromChapter 5 (Figure 5.7) on

this domain showed that it was possible to learn policies that could reach the goal, albeit

123



not optimally, without performing basis selection. This was done using the 20 smoothest

Laplacian eigenvectors as a basis. To make the problem somewhat more complex, we re-

strict the algorithm to only 8 basis functions computed using the AMLS algorithm. With

this limited representational capacity, neither the fixed point nor Bellman residual least-

squares algorithms were able to learn a policy that reliablyattains the goal. It is instructive,

however, to see what type of action-value functions these methods do learn. Figure 6.7

shows the action-value functions and corresponding greedypolicies for both the BR and

FP least-squares methods.9 There are four plots per method. The first three plots are the

action-value functions for the actions coast, forward, andreverse. The fourth plot shows

the greedy policy attained from the action-value functions(where the color corresponds to

the action). All of these plots are shown from a top-down viewof the two dimensional

state space. To keep the figures legible, we only show the axislabels for the first of the four

plots; the remaining three plots are on the same scale.

(a) Bellman Residual (b) Fixed Point

Figure 6.7.Action-value functions and policies learned using the BR and FP least-squares
policy iteration algorithms and using the 8 smoothest Laplacian eigenvectors (computed
using the AMLS algorithm) as a basis.

9Strictly speaking, we plot thenegativeof the action-value function as is customary in the RL literature.
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There are two interesting things to point out about the action-value functions in Figure

6.7. For the BR least-squares algorithm, notice that the action-value functions are very

smooth and that the values range from 0 to -15. The action-value functions learned using

the FP method have a much larger gradient. Further, the values range from 50 to 200.

That the maximum value is 200 (instead of 0) is less relevant than the fact the spread of

values is 150 versus a spread of just 15 for the action-value functions learned using the

BR method. This indicates the BR algorithm, via its objective function that minimizes the

Bellman residual norm, isconstrainingthe range of values as opposed to the basis func-

tions not being expressive enough. This leads to the hypothesis that if the FP method were

appropriately regularized, then it could compute an accurate action-value function using

these same 8 basis functions. To test this hypothesis, we evaluated two ideas. First, we

added Laplacian-based regularization (βr = 0.1) to the FP method. Second, we used the

hybrid least-squares algorithm with an intermediate weighting (ξ = 0.5) to enforce some

penalty for having a large Bellman residual norm. Both ideasresulted in better action-value

functions and better policies. Starting from the typical start state at the bottom of the hill,

the goal is reached in 160 steps (on average) for the policy from the FP method with Lapla-

cian regularization and 219 steps for the policy from the hybrid method (the results were

even better - 130 steps to goal - when the hybrid method was used with Laplacian regular-

ization). The action-value functions and greedy plots are shown in Figure 6.8. Notice the

range of values for the action-value functions is more in line with the optimal action-value

function’s range.

This is an interesting result that captures the idea behind the hybrid least-squares algo-

rithm. By placing some weight on minimizing the Bellman residual norm, hybrid methods

in effect regularize the solutions produced by the fixed point methods. One can argue this

is a more natural form of regularization for MDPs than using graph-based regularization

(since it stems from the Bellman equation), but on this task both forms of regularization
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(a) Fixed Point, Laplacian Regularization (b) Hybrid H2

Figure 6.8.Action-value functions and policies learned using approximate policy iteration
with the FP method including Laplacian-based regularization (βr = 0.1) and the hybrid H2
method (ξ = 0.5).

have a similar effect. We found the results were more sensitive to the Laplacian regulariza-

tion parameterβr than to the hybrid parameterξ.

These results show that even with this limited set of basis functions, it is possible to

learn a policy that can reach the goal. However, notice the action-value functions in Figure

6.8 do not accurately capture the optimal action-value function. The only portion of the

state space that should have a value close to 0 (which corresponds to dark blue in the plots)

is the region in the upper right-hand corner near the goal. The plots show the dark blue

values encircle the outside of the state space, which is clearly incorrect. It is interesting to

consider whether basis selection algorithms can choose a better subset of basis functions.

We still limit the algorithms to 8 basis functions per action, but they are free to select from

a dictionary. For this data set, we used a graph containing 700 vertices and computed

100 approximate Laplacian eigenvectors using the AMLS algorithm. The 100 approximate

eigenvectors constitute the dictionary.

We limit our presentation of the results to a few interestingcases. First, for the indi-

rect scheme including the optional orthogonalization stepin Algorithm 7, the action-value

functions were unstable when using the FP least-squares algorithm and any of the basis
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selection methods. When using the Bellman residual least-squares algorithm, the action-

value functions were too smooth. The hybrid least-squares algorithm, however, resulted

in both good policies and accurate action-value functions.Figure 6.9 shows the action-

value functions and policies learned using the hybrid least-squares method with OMP and

LASSO for basis selection. In particular, notice how the dark blue region of the action-

value function plots is confined to just the region near the goal state. This improvement

in the representation of the action-value function came as aresult of the basis selection al-

gorithms picking elements useful for representing the steep cliff in the mountain car value

function. Figure 6.10 shows two such basis functions that the algorithms selected. These

are the 12th and 14th smoothest Laplacian eigenvectors in the dictionary.

(a) OMP with H2 (b) LASSO with H2

Figure 6.9. Action-value functions and policies learned using the indirect policy itera-
tion scheme with the hybrid least-squares method and the OMP(left) and LASSO (right)
algorithms.

We also used the indirect scheme without the orthogonalization step. Note that, without

orthogonalization, the indirect scheme in Algorithm 7 is equivalent to Ernst’s fitted Q-

iteration algorithm [36] with the exception being that the value function in Algorithm 7

is linear in the features. Figure 6.11 shows the action-value function and policy learned

using this scheme with LASSO. The approximate action-valuefunction is not close to the

optimal action-value function, but its greedy policy is effective (reaching the goal in 131
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Figure 6.10.The 12th (left) and 14th (right) elements from the Laplacian eigenvector dictio-
nary. The basis selection algorithms chose these elements,which are useful for capturing
the steep cliff in the mountain car value function (near the goal region).

steps). Interestingly, although it had the ability to do so,this technique did not change the

basis functions from the original 8 smoothest elements in the dictionary.

Figure 6.11.The action-value function and greedy policy when using LASSO in the indi-
rect scheme without orthogonalization.

In general, we found the direct schemes for combining approximate policy evaluation

and basis selection to be less stable. LASSO-H2 AND LARS-H2 produced the best results.

This is due to their conservative updates to the basis function coefficients. On the other

hand, when OMP-H2 and ORMP-H2 select a new feature, the coefficients are set by making

the residual completely orthogonal to the selected basis functions. This method is overly

aggressive and lead to instability in the action-value function representation. We believe it
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is possible to dampen this aggressive behavior by constraining the weights (using Laplacian

regularization or a simpleL2 penalty‖w‖2).

We draw two conclusions from the experiments in this section. First, the hybrid least-

squares method provides regularization to the approximatevalue function. This occurs

because the hybrid method’s objective function includes the Bellman residual norm, which

constrains a state to have a similar value to its preceding and succeeding states. We demon-

strated the usefulness of the hybrid algorithm, in spite of its single sample bias, both in

this section and in Chapter 4. Second, we found that basis selection algorithms can find a

better set of basis functionsprovidedthe policy evaluation algorithm is stable. When the

policy evaluation algorithm is unstable, the basis selection algorithms can select a poor set

of elements and further exacerbate the problem. Thus, we believe regularization is very

important. We selected regularization parameters by hand in this section. In the future, we

plan to automate this process.

6.5 Conclusions

Proto-value functions and diffusion wavelets are graph-based basis functions that cap-

ture topological structure of the MDP state space. The basisfunctions are independent

of any policy and therefore can be used to approximate any policy’s value function. A

mechanism is required though to select a subset of the basis functions for approximating a

value function. The previous approach to using PVFs and diffusion wavelets used the fol-

lowing basis selection heuristic: the most global functions were selected regardless of the

policy being evaluated. This heuristic is simple and leads to smooth approximations, but it

does not fully utilize the graph-based dictionaries. To make better use of the dictionaries,

a sparse basis selection algorithm must be combined with approximate policy evaluation.

We evaluated a scheme that directly combines basis selection and policy evaluation and a

scheme that indirectly combines them via an iterative process. Both schemes are general

and can be used with any set of basis functions. The hybrid least-squares method was used
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for approximate policy evaluation. Specifically, we used the Laplacian-based regularized

form of the hybrid algorithm developed in Section 4.4. For the basis selection algorithm,

we implemented orthogonal matching pursuit (OMP), order recursive matching pursuit

(ORMP), and LASSO and LARS. A systematic study was conductedon a simple chain

MDP to determine the most promising way(s) of combining these various components.

From these experiments, we summarize with the following four findings.

1. We showed that the direct scheme for sparse approximate policy evaluation, when

combined with the fixed point least-squares method, constrains the order in which a

basis selection algorithm selects elements from a dictionary. The order is dictated by

the elements in the Neumann series,
∑∞

i=0(γP
π)iRπ. This can lead to the selection

of basis functions that fit some of the early terms in the series, but are in fact not

useful for representing the underlying value function. Of course, an algorithm like

LASSO that can prune basis functions has the possibility of removing basis functions

that become useless. The indirect scheme for sparse approximate policy evaluation

sidesteps this issue by separating the Bellman equation from the basis selection algo-

rithm. This adds computational complexity, but frees up thebasis selection algorithm

to represent the value function in the order it sees fit.

2. The graph Laplacian, which is used in constructing PVFs and diffusion wavelets,

can also be used to provide regularization. Laplacian-based regularization can help

smooth out the approximate value function. It also providesa bias toward smoother

basis functions in the dictionary. This bias can be helpful when using the direct

scheme for sparse approximate policy evaluation. We speculate that in an online

setting, it may be beneficial to adjust the amount of regularization over time as more

samples are seen.

3. For direct sparse approximate policy evaluation:

The OMP-FP algorithm produced accurate approximations when using an orthonor-
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mal dictionary, but became unstable when using an overcomplete dictionary due to

matrix Â−1
I,I becoming nearly singular. The algorithm could be made more robust

by checking the condition number of the matrix before including a new basis func-

tion. The more conservative nature of LASSO-FP and LARS-FP lead to accurate

approximate value functions; however, when using an orthonormal dictionary, these

algorithms generated approximate value functions with small magnitude (without the

orthogonalization step at the end of Algorithm 9). The only algorithm that worked

using the Bellman residual least-squares method was ORMP-BR. This was an in-

teresting result that shows one must be careful when combining basis selection and

approximate policy evaluation algorithms.

4. For indirect sparse approximate policy evaluation:

OMP, ORMP, and LASSO all produced accurate approximate value functions while

using both the fixed point and Bellman residual least-squares methods. When using a

small number of basis functions, the algorithms performed better with an orthogonal

dictionary as opposed to an overcomplete dictionary. Overall, the results were no-

ticeably better than using an orthonormal dictionary with the direct scheme for sparse

approximate policy evaluation. This provides some evidence for the hypothesis that

the indirect scheme can select a more efficient set of basis functions than the direct

scheme.

In the approximate policy iteration experiments, policieswere learned from a set of

samples. The results attained with and without basis selection indicate the importance

of regularization. In particular, when changing the basis functions, the Bellman residual

should be controlled for basis selection to remain stable. There are multiple ways to ensure

stability: graph-based regularization, use of the hybrid least-squares algorithm, and/or use

of a conservative basis selection algorithm like LARS/LASSO. Each of these methods helps

protect against large Bellman residuals.
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The policy evaluation experiments partially demonstrate the expressiveness and flexi-

bility of the diffusion wavelet dictionary. However, we believe the true value of diffusion

wavelets will be evident on more challenging value functions with discontinuities and dif-

ferent degrees of smoothness. For future work, it would be worthwhile further decompos-

ing the diffusion wavelet tree using diffusion wavelet packets [18]. This increases the size

of the dictionary and provides even more flexibility for function approximation.

The benefit of maintaining a basis function dictionary is theflexibility to approximate

many different functions. This benefit comes at the cost of storing a potentially large num-

ber of elements in the dictionary; therefore, efficient storage schemes are very important.

As an example, recall the Kronecker product method from Chapter 5 stores the dictionary

in a compressed format. Parametric methods for representing the dictionary could also

prove useful.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary

In this dissertation, we proposed automatic basis construction algorithms and an accom-

panying approximate policy evaluation method for Markov decision processes. The ability

to automatically learn useful representations is an important and fundamental challenge for

an autonomous agent. RL agents must be able to meet this challenge to both deal with the

complexity of real world environments and to go beyond theirinitial representations given

by human designers.

Our work builds upon a recently introduced graph-based approach to generating rep-

resentations [67, 63]. In this application, graphs reflect the geometric structure of a MDP

state space. An important attribute of the graph-based approach is that it circumvents the

dimensionality of the state space. While a MDP state space maynominally be very high

dimensional, if the reachable state space in fact lies on a lower dimensional surface, then

the graph-based approach can leverage this information to avoid the “curse of dimension-

ality.” Basis functions generated from these state space graphs are well-suited to represent

certain classes of value functions.

The goal of this dissertation was twofold: (1) to scale the graph-based approach to

handle larger amounts of data, and (2) to effectively and efficiently use the basis func-

tions to perform approximate policy evaluation. To scale the graph-based approach, we

proposed one matrix factorization algorithm and another multiscale algorithm. Both algo-

rithms produce basis functions that approximate the original bases proposed by Mahadevan

and Maggioni [67, 63]. Once constructed, the basis functions act as a dictionary. Repre-
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senting a particular policy’s value function using a linearapproximation is accomplished

by selecting elements from the dictionary and assigning each element a scalar weight. We

evaluated several basis selection algorithms and introduced a hybrid least-squares method

for setting the weights. Although we mostly explore using the basis selection algorithms

and the hybrid least-squares method with the graph-based basis functions, these algorithms

can be applied to other types of basis functions as well. The remainder of this summary

covers our contributions in greater detail.

In Chapter 4, we presented hybrid least-squares algorithms for approximate policy eval-

uation. The term “hybrid” is used to emphasize the fact that the algorithm parametrically

combines (and generalizes) two common RL least-squares methods. At one extreme, the

hybrid algorithm defaults to minimizing the norm of the Bellman residual (BR). At the

other extreme, the norm of the projected Bellman residual isminimized (we refer to this as

the fixed point (FP) method).

By using a linear combination of the BR and FP objective functions, hybrid algorithms

allow for finding solutions in between those computed by the BR and FP methods. This can

be useful when the hybrid least-squares algorithm is used within a policy iteration loop. We

do not have a theoretical explanation of this result; rather, empirical results show the hybrid

method appears to temper large changes to the value functionthat the FP method can make

between rounds of policy iteration. Experiments in a discrete grid MDP, the challenging

problem of Tetris, and mountain car demonstrated that the hybrid algorithm can, in some

cases, find better policies. We also proposed aregularizedhybrid least-squares algorithm

which uses the graph Laplacian [20]. The Laplacian penalizes functions that are not smooth

according to the structure of the graph. This type of regularization is useful for MDPs when

the domain is stochastic and relatively few samples are available for learning a policy.

Two recently introduced approaches to automatically generating basis functions from

a MDP state space graph are to form graph Laplacian eigenvectors (proto-value functions

[67]) and diffusion wavelets [63]. Computing eigenvectors and diffusion wavelet trees from
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large, sparse matrices can be computationally intensive. To scale these basis construction

methods to larger graphs and thus larger MDP state spaces, weintroduced two algorithms in

Chapter 5. The first algorithm is based on matrix factorization using the Kronecker product.

The Kronecker product is particularly relevant because it preserves the spectral structure

of matrices. In this approach, smaller matrices are automatically computed and combined

together via the Kronecker product to approximate the (larger) original matrix. Laplacian

eigenvectors or diffusion wavelet trees can then be generated from these smaller matrices.

We showed how the Kronecker product method significantly saves both time and memory.

Experiments using the basis functions produced by the Kronecker product method were

mixed. We attribute this result to the Kronecker product’s block structure not allowing for

sufficient representation of arbitrary matrices. To overcome this limitation, we proposed

using a second algorithm called Automated Multilevel Substructuring (AMLS). AMLS

recursively decomposes a matrix into smaller submatrices,computes eigenvectors for the

submatrices, and uses those solutions to approximate eigenvectors of the original matrix.

We proved the algorithm is applicable to graph Laplacian matrices. The recursive nature of

AMLS allows for a very fast parallel implementation. The algorithm can handle graphs up

to one hundred times larger than standard eigensolvers can manage (given equal computing

resources). Aside from its scalability, we also demonstrated the basis functions computed

by AMLS performed just as well in policy iteration experiments as those computed using

exact eigensolvers.

In Chapter 6, we evaluated four well-established basis selection algorithms: orthogonal

matching pursuit [82], order recursive matching pursuit [75], the LASSO [103], and least

angle regression [33]. Basis selection algorithms choose as few elements as possible from a

dictionary in order to represent a value function. In tailoring the representation to a partic-

ular value function, selection algorithms provide flexibility and computational efficiency.

We employed these algorithms using graph-based basis functions as a dictionary. Other
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types of basis functions could also be used with the selection algorithms. Our work [45] is

the first time Laplacian eigenvectors and diffusion wavelets have been used in this manner.

Along with choosing elements from the dictionary, basis selection algorithms must also

assign weights to the basis functions. This was accomplished using the regularized hy-

brid least-squares method developed in Section 4.4. We evaluated two different ways of

combining the policy evaluation method and the basis selection algorithm. The distinction

between the two ways is whether the policy evaluation methodis directly encoded in the ba-

sis selection algorithm. We showed this distinction can have a significant effect on how the

dictionary is utilized. Interestingly, our experiments showed that the basis selection algo-

rithms perform differently depending on whether the dictionary consists of an orthonormal

or overcomplete set of basis functions. When the dictionary is overcomplete (as is the

case with the complete diffusion wavelet tree), the conservative nature of the LASSO and

least angle regression algorithms proved more useful than the aggressive matching pursuit

methods.

7.2 Future Work

There are a number of interesting directions for future work.

• Learning algorithms

The hybrid least-squares algorithm presented in Chapter 4 requires setting a scalar

parameter to a value between 0 and 1. For Baird’s incrementalversion of the hybrid

algorithm [3], he proposed setting this parameter to guarantee convergence. Since en-

suring convergence is unnecessary for the least-squares version, we have more flexi-

bility. In the experiments, we selected a particular value and held it fixed throughout

the policy iteration loop. In future work, we would like to provide a framework

for automatically setting the parameter’s value. This should be done separately for

each round of policy iteration. One of the factors determining the parameter’s value

should be the impact of the Bellman residual method’s bias. We showed that the bias
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is linearly impacted by the parameter (i.e. setting the hybrid method’s parameter to

0 causes the solution to be unbiased).

We used least-squares algorithms for approximate policy evaluation because of their

data efficiency and because they do not require setting a step-size parameter. How-

ever, it is interesting to consider other methods and how they might impact the basis

construction and selection problems. We suggest one possibility that focuses more

on policies than on value functions. To motivate this changefrom value functions

to policies, we mention an interesting example from the Tetris domain. Using 22

hand-coded basis functions defined in [12], Szita and Lörincz [100] showed that the

cross-entropy method (which searched directly for a set of 22 coefficients resulting

in good policies) can learn policies that score100 times betterthan policies learned

using the same 22 basis functions and a temporal difference algorithm.

The least-squares algorithms minimize different functions of the Bellman residual.

The rationale for doing so is based on the fact that the expected Bellman residual is

0 for the exact value function. An alternative to this approach is to try to represent

the greedy policy associated with the exact value function rather than representing

the exact value function itself. This idea was explored in a few different contexts

[105, 10, 107], but the main theme uniting this work is to havethe algorithm learn

the relative value of a state (which is what determines the policy) as opposed to the

absolute value of a state. This type of algorithm may make thebasis construction and

selection problems easier since representing a policy may be simpler than represent-

ing a value function. In effect, the algorithm can make larger errors in the Bellman

residual as long as it orders the states correctly. We believe this is an interesting area

for future work.
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• Basis selection and diffusion wavelets

The basis selection framework presented in Chapter 6 in conjunction with an ex-

pressive, overcomplete dictionary like the diffusion wavelet dictionary provides a

powerful tool for value function approximation. There are three immediate ways to

extend this work. First, the main component, and thus bottleneck, in constructing a

diffusion wavelet tree is the sparse QR decomposition algorithm. The QR decom-

position algorithm is used to compute both the scaling functions and the wavelet

functions. A faster implementation of the algorithm is needed. Also, to scale up, it

may be beneficial to approximate the QR decomposition. This might result in the

loss of orthogonality between the scaling and wavelet functions at each level of the

tree, but that might not be a crucial factor when approximating a value function. The

second extension is to exploit the structure of the diffusion wavelet tree when per-

forming basis selection. Our current implementation simply takes each element in

the tree, which is stored in a compressed format, and unrollsthe element back to an

uncompressed format before using the basis selection algorithm. This is inefficient.

A faster implementation here can significantly affect the runtime since basis selec-

tion occurs each time a new policy is evaluated. The third extension is to explore the

use of diffusion wavelet packets [18]. Diffusion wavelet packets allow for splitting

the wavelet spaces into an orthogonal sum of smaller subspaces. This creates a larger

number of elements in the diffusion wavelet tree which are more localized and thus

offer greater flexibility in terms of function approximation.

• Graph construction

An advantage of the graph-based approach to basis construction in Markov deci-

sion processes is its flexibility. As we we have demonstratedin this dissertation,

the approach is amenable to both discrete and continuous state spaces. The graphs

we constructed from MDP samples were simply based on a user-specified distance
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function. One obvious extension is to automatically learn the distance function based

on actual transitions. In fact, it is possible to learn several distance functions where

each one is responsible for a different portion of the state space. Bowling et al. [15]

proposed a simple method accomplishing this.

While the user has the ability to specify the distance function that creates the graph

from samples, this is typically done just based on the dynamics of the domain. An

interesting extension would be to form the graph not solely based on structural sim-

ilarity but also based on the type of value functions the learning algorithm is likely

to encounter. For example, if two states that are topologically close but in fact have

different values for many policies, then the edge weight between these two states in

the graph can be decreased. Decreasing the edge weight in turn alters the shape of

the basis functions generated from the graph. We proposed anad-hoc method for

adjusting edge weights based on the Bellman residual [47]. This earlier work was a

proof of concept, but in the future we hope to determine a moreprincipled approach

that is also scalable.

• Instance-based representations

In order to use the graph-based approach to basis construction for MDPs, the sam-

ples/states forming the vertices of the graph must be stored. In other words, the graph

and its associated features are an instance-based representation. This should be con-

trasted with representations using a fixed number of parameters, such as neural net-

works with a prescribed connectivity. While we have proposedmethods for dealing

with large graphs, scalability is a concern for any algorithm using an instance-based

representation. This issue is not unique to reinforcement learning. Indeed, this is an

issue with any kernel method (note the graph Laplacian induces a reproducing kernel

Hilbert space [92] and can be considered a kernel method). Understanding the practi-

cal limitations of instance-based representations and if and how these limitations can
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be circumvented is an ongoing area of research in machine learning. One interesting

possibility is to see if instance-based features can be stored more compactly using a

parametric representation.

7.3 Final Remarks

A hallmark of human-level intelligence is the ability to successfully perform many tasks

across a wide range of environments. In order for autonomousagents to approach this level

of flexibility, they must be able to adapt their internal representations of the environments

in which they reside. The graph-based methods [67, 63] we considered in this dissertation

provide one way to generate flexible representations that capture structural information

about an environment. In the reinforcement learning paradigm, an autonomous agent forms

such representations and then uses them to learn how to act. We addressed these two

interrelated aspects in the context of value function approximation:

1. Given a set of samples from an environment, can we generategraph-based features

associated with the samples in a manner that scales well?

2. Given a set of samples from an environment and the graph-based features, how

should the features be used to compute a (good) policy?

The set of features dictates the space of approximate value functions that can be repre-

sented. The algorithm utilizing the features determines how a policy will be found. We

believe a thorough understanding of the confluence of these two areas, automatic feature

construction and feature utilization, is an interesting and worthwhile topic for continued

RL research.
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APPENDIX A

DOMAINS

A.1 Chain MDP

We used the 50 state chain MDP described by Lagoudakis and Parr [56]. Figure A.1

shows a depiction of the problem and the optimal value function. There are 50 discrete

states{si}50i=1 and two actions moving the agent left (si  smax(i−1,1)) and right (si  

smin(i+1,50)). The actions succeed with probability 0.9; failed actionsmove the agent in the

opposite direction. The discount factor isγ = 0.9. The agent receives a reward of+1 when

in statess10 ands41. All other states have a reward of 0.

... 4948321 50 0 10 20 30 40 50
0

1

2

3

4

5

State

V
∗

Figure A.1. The chain MDP and the optimal value function.

A.2 Grid MDP

Grid MDPs are simply two dimensional versions of the aforementioned chain MDP. A

simple square grid and a two-room grid with one state adjoining the two rooms are shown
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in Figure A.2. There are four canonical actions that move theagent up, down, left, or right.

The actions succeed with probability 0.9. Unsuccessful actions result in a transition in one

of the other three directions (with equal probability). Episodes begin in a random state

in the MDP. The discount factor is assumed to beγ = 0.95 unless otherwise stated. The

reward function is 0 except for a few goal states (which are specified on an individual basis

for each grid MDP used throughout this dissertation) that have a positive reward.

Figure A.2. A 10× 10 grid MDP and a two-room version with a single “hallway” state.

A.3 Inverted Pendulum

The inverted pendulum problem requires balancing a pendulum by applying force to

the cart to which the pendulum is attached. We used the implementation described by

Lagoudakis and Parr [56]. The state space is defined by two variables:θ, the vertical angle

of the pendulum, anḋθ, the angular velocity of the pendulum. The three discrete actions

are applying a force of -50, 0, or 50 Newtons. Uniform noise from -10 and 10 is added to

the chosen action. State transitions are described by the following nonlinear equation

θ̈ =
g sin(θ)− αmlθ̇2 sin(2θ)/2− α cos(θ)a

4l/3− αml cos2(θ)
,

wherea is the noisy control signal,g = 9.8m/s2 is gravity,m = 2.0 kg is the mass of the

pendulum,M = 8.0 kg is the mass of the cart,l = 0.5 m is the length of the pendulum,

andα = 1/(m +M). The simulation time step is set to 0.1 seconds. The agent is given a
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reward of 0 as long as the absolute value of the angle of the pendulum does not exceedπ/2,

otherwise the episode ends with a reward of -1. The discount factor was set toγ = 0.9.

Episodes begin with both state variables at value 0.

A.4 Mountain Car

The task in the mountain car domain is to drive an underpowered vehicle, situated in

a valley, to the top of the mountain on the right [98]. Figure A.3 shows a depiction of the

problem. There are two state variables: the position (x) and velocity (̇x) of the car. There

are three actions corresponding to a positive (a = 1), negative (a = −1), and zero (a = 0)

force. The equations of motion are:

ẋt+1 = bound[ẋt + 0.001at − 0.0025 cos(3xt)]

xt+1 = bound[xt + ẋt+1]

where the bound operation ensures−1.2 ≤ xt+1 ≤ 0.5 and−0.07 ≤ ẋt+1 ≤ 0.07. The

velocity ẋt+1 is reset to 0 when the positionxt+1 becomes less than−1.2. When the

position exceeds0.5, the car has reached the top of the hill on the right and the episode is

terminated. The reward for reaching the goal is 0; every stepwhere the goal is not achieved

results in a reward of−1. The discount factor isγ = 0.99. Episodes begin in a state with

x1 = −0.5 and ẋ1 randomly selected from the set[−0.07,−0.06, . . . , 0.06, 0.07]. The

distribution overẋ1 allows for easy exploration of the state space.

A.5 Acrobot

The acrobot [98] is an underactuated double pendulum. This is an interesting and well-

studied problem due to the nonlinearity of the dynamics. It consists of two links where

torque can only be applied at the second joint (Figure A.4). The system is described by

four continuous variables: the two joint angles,θ1 andθ2, and the angular velocities,θ̇1
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Goal

Figure A.3. The mountain car domain.

andθ̇2. There are three actions corresponding to positive (a = 1), negative (a = −1), and

zero (a = 0) torque. We use the same equation of motions and problem parameters as

described in Chapter 11.3 of [98]. The time step was set to 0.05and actions were selected

after every fourth update to the state variables according to the equations of motion [97].

The goal for this domain is to raise the tip of the second link above a certain height in

minimum time (we used a height of 1, where both links have a length of 1). The reward

function is therefore−1 for each time step until the goal is achieved and the discountfactor

is γ = 0.99. Episodes begin with the all state variables at value 0 whichcorresponds to the

two links hanging straight down and motionless.

Figure A.4. The acrobot domain.
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A.6 Tetris

The game of Tetris was designed by Alexey Pajitnov in 1985. Itconsists of a board

with 20 rows and 10 columns as shown in Figure A.5. Puzzle pieces, each containing four

blocks in different positions, fall vertically down the board. The player’s objective is to

orient the piece as it is falling to create a horizontal row ofblocks with no gaps. When this

is accomplished, the completed row disappears and any blocks above the row fall down.

The game ends when a block is placed in the top row, not allowing further game pieces to

enter the board.

Figure A.5. The Tetris domain.
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APPENDIX B

PARTITIONED MATRIX INVERSE

The OMP-H2, ORMP-H2, LASSO-H2, and LARS-H2 algorithms in Section 6.2.1 formed

the matrixÂI,I and vector̂bI . Each algorithm then inverts the matrix̂AI,I . This is very

wasteful when the active setI only changes by one element at a time. To take advantage

of the single element insertion and removal,Â−1
I,I can be incrementally formed using the

following partitioned matrix inverse property. Consider a square matrixA′ partitioned as

follows:

A′ =







A b

cT d







where matrixA is square,b andc are vectors, andd is a scalar. Then the inverse ofA′ can

be computed from the inverse ofA as:

A′−1
= e







(e−1A−1 + A−1bcTA−1) −A−1b

−cTA−1 1







wheree = (d − cTA−1b)−1. ComputingA′−1 in this manner has quadratic complexity

instead of cubic. OMP-H2, ORMP-H2, LASSO-H2, and LARS-H2 can exploit this property

by maintaining the matrix̂A−1
I,I . When inserting a new elementj∗ into I, the update is as

follows:
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I ← I ∪ {j∗}

Â−1
I,I ←







(Â−1
I,I + uj∗Â

−1
I,IÂI,j∗Âj∗,IÂ

−1
I,I) −uj∗Â

−1
I,IÂI,j∗

−uj∗Âj∗,IÂ
−1
I,I uj∗







b̂I ←







b̂I

b̂j∗






,

where:

uj∗ ← (Âj∗,j∗ − Âj∗,IÂ
−1
I,IÂI,j∗)

−1

Âj∗,j∗ ←
n

∑

i=1

ρ(si) [φj∗(si)(φj∗(si)− γφj∗(s
′
i)) + βrgj∗(si)gj∗(si)]

ÂI,j∗ ←
n

∑

i=1

ρ(si) [φI(si)(φj∗(si)− γφj∗(s
′
i)) + βrgI(si)gj∗(si)]

Âj∗,I ←
n

∑

i=1

ρ(si)
[

φj∗(si)(φI(si)− γφI(s
′
i))

T + βrgj∗(si)gI(si)
T
]

b̂j∗ ←
n

∑

i=1

ρ(si)φj∗(si)ri.

Similarly, when LASSO-FP removes an elementj# from I, the matrixÂ−1
I,I can be shrunk

with the following update:

I ← I − {j#}

Partition the currentÂ−1
I,I ←







U xj#

yT
j# zj#






to isolate the influence ofj#

Â−1
I,I ← U − xj#yT

j#/zj# .
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APPENDIX C

BASIS SELECTION PSEUDOCODE

The ORMP-H2 algorithm was described in Section 6.2.1.1. Pseudocode forORMP-H2

is shown below in Algorithm 8.

Algorithm 8 : ORMP-H2 with Laplacian-based Regularization
Input: {si, ri, s

′
i}ni=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

ξ ∈ [0, 1], hybrid parameter (ξ = 0 is FP,ξ = 1 is BR)
L, graph Laplacian defined over states{si}ni=1 (graph edges denoted with∼)
γ ∈ [0, 1], discount factor
βr ∈ R

+, Laplacian-based regularization parameter
k′ ≤ K, maximum allowable number of basis functions

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

Initialize active setI ← ∅
while (|I| < k′) and(Bellman residual not converged) do

1. Find best inactive element:
j∗ ← argmaxj /∈I

(

b̂TI+j
Â−1

I+j ,I+j
b̂I+j

)

where: I+j ← I ∪ {j}
b̂I+j

←∑n
i=1 ρ(si)(φI+j

(si)− ξγφI+j
(s′i))ri

ÂI+j ,I+j
←∑n

i=1 ρ(si)[(φI+j
(si)− ξγφI+j

(s′i))(φI+j
(si)− γφI+j

(s′i))
T + . . .

βrgI+j
(si)gI+j

(si)
T ]

where: g(si)← L(si, si)φ(si)
g(si)← g(si) + L(si, snbr)φ(snbr), ∀{snbr|snbr 6= s ∧ s ∼ snbr}

2. Adjust active set:
I ← I ∪ {j∗}

3. ComputeÂI,I andb̂I :
ÂI,I ←

∑n
i=1 ρ(si)[(φI(si)− ξγφI(s′i))(φI(si)− γφI(s′i))

T + βrgI(si)gI(si)
T ]

b̂I ←
∑n

i=1 ρ(si)(φI(si)− ξγφI(s′i))ri
4. Compute least-squares weights:

wI ← Â−1
I,I b̂I

end while
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The LASSO-H2 and LARS-H2 algorithm were described in Section 6.2.1.1. Algorithm

9 shows the pseudocode implementing LASSO-H2 and LARS-H2.

Algorithm 9 : LARS-H2/LASSO-H2 with Lap.-based Regularization
Input: {si, ri, s

′
i}ni=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

γ ∈ [0, 1], discount factor
ξ ∈ [0, 1], hybrid parameter (ξ = 0 is FP,ξ = 1 is BR)
L, graph Laplacian defined over states{si}ni=1 (graph edges denoted with∼)
βr ∈ R

+, Laplacian-based regularization parameter
βs ∈ R

+, L1 regularization parameter
k′ ≤ K, maximum allowable number of basis functions

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

c←∑n
i=1 ρ(si)(φ(si)− ξγφ(s′i))ri

[

β̄s, j
∗
]

← [max, argmax]j (|cj |)
Initialize active setI ← {j∗}, w ← 0

while (β̄s > βs) and(|I| ≤ k′) and(Bellman residual not converged) do
1. Compute weight update direction∆wI :

∆wI ← Â−1
I,I sign(cI)

where: ÂI,I ←
∑n

i=1 ρ(si)[(φI(si)− ξγφI(s′i))(φI(si)− γφI(s′i))
T + . . .

βrgI(si)gI(si)
T ]

g(si)← L(si, si)φ(si)
g(si)← g(si) + L(si, snbr)φ(snbr) ∀{snbr|snbr 6= s ∧ s ∼ snbr}

2. Compute correlation update direction∆c:
∆c←∑n

i=1 ρ(si)[(φ(si)− ξγφ(s′i)) (φI(si)− γφI(s′i))
T ∆wI + . . .

βr g(si)gI (si)
T ∆wI ]

3. Find step size to add element to active set:

[α∗, j∗]←
[

min+, argmin
]

j /∈I

(

cj−β̄s

∆cj−1 ,
cj+β̄s

∆cj+1

)

4. Find step size to remove element from active set:
If (using LARS-FP), α# ←∞
Else,

[

α#, j#
]

←
[

min+, argmin
]

j∈I

(

− wj

∆wj

)

5. Updateβ̄s, wI , c:
α← min(α∗, α#, β̄s − βs)
β̄s ← β̄s − α, wI ← wI + α∆wI , c← c− α∆c

6. Adjust active set:
If (α∗ < α#), I ← I ∪ {j∗}
Else, I ← I − {j#}

end while
OPTIONAL: wI ← Â−1

I,I b̂I where: b̂I ←
∑n

i=1 ρ(si)(φI(si)− ξγφI(s′i))ri
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[40] Hadamard, J. Sur les problèmes aux d́erivées partielles et leur signification physique.
Princeton University Bulletin(1902), 49–52.

[41] Hein, M., Audibert, J., and von Luxburg, U. From graphs to manifolds - weak
and strong pointwise consistency of graph Laplacians. InProceedings of the 18th
Conference on Learning Theory(2005), pp. 470–485.

152



[42] Hinton, G., Osindero, S., and Teh, Y. A fast learning algorithm for deep belief nets.
Neural Computation 18(2006), 1527–1554.

[43] Hurty, W. Dynamic analysis of structural systems usingcomponent modes.Ameri-
can Institute of Aeronautics and Astronautics Journal 3, 4 (1965), 678–685.

[44] Johns, J., and Mahadevan, S. Constructing basis functions from directed graphs for
value function approximation. InProceedings of the 24th International Conference
on Machine Learning(New York, NY, 2007), ACM Press, pp. 385–392.

[45] Johns, J., and Mahadevan, S. Sparse approximate policyevaluation using graph-
based basis functions. Tech. Rep. UM-CS-2009-041, University of Massachusetts
Amherst, 2009.

[46] Johns, J., Mahadevan, S., and Wang, C. Compact spectral bases for value function
approximation using Kronecker factorization. InProceedings of the 22nd National
Conference on Artificial Intelligence(2007), pp. 559–564.

[47] Johns, J., Osentoski, S., and Mahadevan, S. Representation discovery in planning
using harmonic analysis. InProceedings of the AAAI Fall Symposium on Compu-
tational Approaches to Representation Change During Learning and Development
(2007), pp. 24–31.

[48] Johns, J., Petrik, M., and Mahadevan, S. Hybrid least-squares algorithms for ap-
proximate policy evaluation.Machine Learning 76, 2 (2009), 243–256.

[49] Karypis, G., and Kumar, V. A fast and high quality multilevel scheme for partitioning
irregular graphs.SIAM Journal on Scientific Computing 20, 1 (1999), 359–392.

[50] Keller, P., Mannor, S., and Precup, D. Automatic basis function construction for
approximate dynamic programming and reinforcement learning. InProceedings of
the 23rd International Conf. on Machine Learning(2006), pp. 449–456.

[51] Koller, D., and Parr, R. Policy iteration for factored MDPs. InProceedings of the
16th Conference on Uncertainty in Artificial Intelligence(2000), Morgan Kaufmann,
pp. 326–334.

[52] Kolter, J., and Ng, A. Regularization and feature selection in least-squares temporal
difference learning. InProceedings of the 26th International Conference on Machine
Learning(2009), pp. 521–528.

[53] Konidaris, G., and Osentoski, S. Value function approximation in reinforcement
learning using the Fourier basis. Tech. Rep. TR-2008-19, University of Mas-
sachusetts, Department of Computer Science, 2008.

[54] Kostrykin, V., Makarov, K. A., and Motovilov, A. K. On a subspace perturbation
problem. InProc. of the American Mathematical Society(2003), vol. 131, pp. 1038–
1044.

153



[55] Kretchmar, R., and Anderson, C. Using temporal neighborhoods to adapt function
approximators in reinforcement learning. InInterational Work Conference on Arti-
ficial and Natural Neural Networks(1999), pp. 488–496.

[56] Lagoudakis, M., and Parr, R. Least-squares policy iteration. Journal of Machine
Learning Research 4(2003), 1107–1149.

[57] Lagoudakis, M., Parr, R., and Littman, M. Least-squares methods in reinforcement
learning for control. InProceedings of the Second Hellenic Conference on Artificial
Intelligence(2002), pp. 249–260.

[58] Langville, Amy N., and Stewart, William J. A Kronecker product approximate pre-
conditioner for SANs.Numerical Linear Algebra with Applications 11, 8 (2004),
723–752.

[59] Lee, H., Battle, A., Raina, R., and Ng, A. Efficient sparse coding algorithms. In
Advances in Neural Information Processing Systems(2007), vol. 19, pp. 801–808.

[60] Lewicki, M., and Sejnowski, T. Learning overcomplete representations.Neural
Computation 12, 2 (2000), 337–365.

[61] Li, L. A worst-case comparison between temporal difference and residual gradi-
ent with linear function approximation. InProceedings of the 25th International
Conference on Machine Learning(2008), pp. 560–567.

[62] Loth, M., Davy, M., and Preux, P. Sparse temporal difference learning using LASSO.
In IEEE International Symposium on Approximate Dynamic Programming and Re-
inforcement Learning(2007), pp. 352–359.

[63] Maggioni, M., and Mahadevan, S. A multiscale frameworkfor Markov decision
processes using diffusion wavelets. Tech. Rep. TR-2006-36, University of Mas-
sachusetts, Department of Computer Science, 2006.

[64] Mahadevan, S. Representation policy iteration. InProceedings of the 21st Confer-
ence on Uncertainty in Artificial Intelligence(2005), pp. 372–379.

[65] Mahadevan, S. Learning representation and control in Markov decision processes:
New frontiers.Foundations and Trends in Machine Learning 1, 4 (2009), 403–565.

[66] Mahadevan, S., and Maggioni, M. Proto-value functions: A Laplacian framework
for learning representation and control in Markov decisionprocesses. Tech. Rep.
TR-2006-35, University of Massachusetts, 2006.

[67] Mahadevan, S., and Maggioni, M. Proto-value functions: A Laplacian framework
for learning representation and control in Markov decisionprocesses.Journal of
Machine Learning Research 8(2007), 2169–2231.

[68] Mahadevan, S., Maggioni, M., Ferguson, K., and Osentoski, S. Learning represen-
tation and control in continuous Markov decision processes. In Proceedings of the
21st National Conference on Artificial Intelligence(2006).

154



[69] Mallat, S., and Zhang, Z. Matching pursuits with time-frequency dictionaries.IEEE
Transactions on Signal Processing 41, 12 (1993), 3397–3415.

[70] Menache, I., Mannor, S., and Shimkin, N. Basis functionadaptation in temporal
difference reinforcement learning.Annals of Operation Research 134, 1 (2005),
215–238.

[71] Merkwirth, C., Parlitz, U., and Lauterborn, W. Fast nearest neighbor searching for
nonlinear signal processing.Physical Review E 62, 2 (2000), 2089–2097.

[72] Merris, R. Multilinear Algebra. CRC Press, 1997.

[73] Moghaddam, B., Gruber, A., Weiss, Y., and Avidan, S. Sparse regression as a sparse
eigenvalue problem. InInformation Theory and Applications Workshop(2008),
pp. 121–127.

[74] Munos, R. Error bounds for approximate policy iteration. InProceedings of the 20th
International Conference on Machine Learning(2003), pp. 560–567.

[75] Natarajan, B. Sparse approximate solutions to linear systems. SIAM Journal on
Computing 24, 2 (1995), 227–234.

[76] Ng, A., Jordan, M., and Weiss, Y. On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems 14(2002), pp. 849–856.

[77] Olshausen, B., and Field, D. Emergence of simple-cell receptive fields by learning
a sparse code for natural images.Nature 381, 6583 (1996), 607–609.

[78] Osentoski, S. Action-Based Representation Discovery in Markov DecisionPro-
cesses. PhD thesis, University of Massachusetts Amherst, 2009.

[79] Osentoski, S., and Mahadevan, S. Learning state-action basis functions for hier-
archical MDPs. InProceedings of the 24th International Conference on Machine
Learning(New York, NY, 2007), ACM Press, pp. 705–712.

[80] Page, L., Brin, S., Motwani, R., and Winograd, T. The PageRank citation ranking:
Bringing order to the web. Tech. rep., Stanford Digital Library Technologies Project,
1998.

[81] Parr, R., Painter-Wakefield, C., Li, L., and Littman, M. Analyzing feature gener-
ation for value-function approximation. InProceedings of the 24th International
Conference on Machine Learning(New York, NY, 2007), ACM Press.

[82] Pati, Y., Rezaiifar, R., and Krishnaprasad, P. Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition. InProceedings
of the 27th Annual Asilomar Conference on Signals, Systems, and Computers(1993),
pp. 40–44.

155



[83] Petrik, M. An analysis of Laplacian methods for value function approximation in
MDPs. InProceedings of the 20th International Joint Conference on Artificial In-
telligence(2007), pp. 2574–2579.

[84] Pitsianis, N.The Kronecker Product in Approximation and Fast Transform Genera-
tion. PhD thesis, Department of Computer Science, Cornell University, Ithaca, NY,
1997.

[85] Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st ed. John Wiley and Sons, New York, NY, 1994.

[86] Roweis, S., and Saul, L. Nonlinear dimensionality reduction by local linear embed-
ding. Science 290(2000), 2323–2326.

[87] Samuel, A. Some studies in machine learning using the game of checkers.IBM
Journal of Research and Development 3(1959), 210–229.

[88] Schoknecht, R. Optimality of reinforcement learning algorithms with linear function
approximation. InAdvances in Neural Information Processing Systems 15(2003),
pp. 1555–1562.

[89] Schweitzer, P., and Seidmann, A. Generalized polynomial approximations in Marko-
vian decision processes.Journal of Mathematical Analysis and Applications 110
(1985), 568–582.

[90] Simon, H.The Sciences of the Artificial, 3rd ed. MIT Press, Cambridge, MA, USA,
1996.

[91] Smart, W. Explicit manifold representations for value-function approximation in
reinforcement learning. InProceedings of the 8th International Symposium on AI
and Mathematics(2004).

[92] Smola, A., and Kondor, R. Kernels and regularization ongraphs. InProceedings of
the 16th Annual Conference on Learning Theory(2003).
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