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ABSTRACT

A GEOMETRIC FRAMEWORK FOR TRANSFER
LEARNING USING MANIFOLD ALIGNMENT

SEPTEMBER 2010

CHANG WANG

B.Sc., NANKAI UNIVERSITY

M.E., NANKAI UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

Many machine learning problems involve dealing with a large amount of high-

dimensional data across diverse domains. In addition, annotating or labeling the data

is expensive as it involves significant human effort. This dissertation explores a joint

solution to both these problems by exploiting the property that high-dimensional data

in real-world application domains often lies on a lower-dimensional structure, whose

geometry can be modeled as a graph or manifold. In particular, we propose a set of

novel manifold-alignment based approaches for transfer learning. The proposed ap-

proaches transfer knowledge across different domains by finding low-dimensional em-

beddings of the datasets to a common latent space, which simultaneously match cor-

responding instances while preserving local or global geometry of each input dataset.

We develop a novel two-step transfer learning method called Procrustes align-

ment. Procrustes alignment first maps the datasets to low-dimensional latent spaces

vi



reflecting their intrinsic geometries and then removes the translational, rotational and

scaling components from one set so that the optimal alignment between the two sets

can be achieved. This approach can preserve either global geometry or local geometry

depending on the dimensionality reduction approach used in the first step.

We propose a general one-step manifold alignment framework called manifold

projections that can find alignments, both across instances as well as across features,

while preserving local domain geometry. We develop and mathematically analyze

several extensions of this framework to more challenging situations, including (1)

when no correspondences across domains are given; (2) when the global geometry

of each input domain needs to be respected; (3) when label information rather than

correspondence information is available.

A final contribution of this thesis is the study of multiscale methods for mani-

fold alignment. Multiscale alignment automatically generates alignment results at

different levels by discovering the shared intrinsic multilevel structures of the given

datasets, providing a common representation across all input datasets.
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CHAPTER 1

MOTIVATION

1.1 Background

Many machine learning approaches rely on the availability of a large amount of

labeled data to train a model. However, labeled data is often expensive to obtain.

To save labeling and training effort, in many situations we want to transfer labeled

information or existing models from one domain to another. This problem arises in

a variety of applications in information retrieval, e-commerce, computer vision, and

many other fields. To address this problem, the area of transfer learning in general,

and domain adaptation in particular, has recently seen a surge of activity [10, 25,

28, 48, 52, 64]. This area draws inspiration from the observation that people can

often apply knowledge learned previously to new problems. If done successfully,

knowledge transfer can significantly speed up computation by reducing the number of

training instances that need to be specified or reusing existing models. A geometric

view of transfer learning is illustrated in Figure 1.1. The general idea is to find a

common latent space shared across all input domains such that useful knowledge can

be transferred across domains via this space.

1.2 Challenges

Most existing approaches in this area assume that the source and target domains

share some features, and the difference between domains primarily arises due to the
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Figure 1.1. This figure illustrates a geometric framework for transfer learning investigated
in this thesis. We have three input datasets (lying on low-dimensional manifolds) together
with some training corresponding pairs. The goal is to construct three mapping functions
(represented as black arrows) to project instances from their original feature spaces to a
new latent space, where the instances from different feature spaces are comparable.

difference between data distributions. This assumption is not valid in many scenarios

such as cross-lingual information retrieval [27] and multimodal datasets involving

words and images [3], where transfer of knowledge across domains defined by different

features is required. In a general setting of the problem, we are given c related input

datasets: X1, · · · , Xc, where c can be larger than 2 and the c input datasets do

not have to share any common features or instances. The transfer learning problem

in this scenario is extremely difficult, especially when we consider the fact that the

datasets often have very limited labeled information. This setting is quite popular

in many real-world applications, and one example is as follows: assume we have

three collections of documents in English, Italian, and Arabic respectively. In these

collections, there are sufficient labeled English and Italian documents, but few labeled

Arabic documents. The task is to label the unlabeled Arabic documents, leveraging

the labels from English and Italian collections. Most existing domain adaptation

and transfer learning techniques [10, 25, 28, 48] cannot be directly applied to this

2



setting, since the input domains are defined in different feature spaces. Approaches

that heavily depend on labeled information (like [23]) may not work either, since they

may result in overfitting when the labeled information is inadequate.

A key step in addressing such transfer learning problems is to construct a common

underlying latent space shared by all input high-dimensional datasets. However, quite

a few challenges have to be addressed in this construction process. Firstly, we often

have multiple input domains to process but most existing transfer learning techniques

can only handle two input domains. Secondly, the given training correspondence in-

formation is often insufficient. So if we construct our model based solely on the given

correspondences, the performance may be poor due to overfitting. Thirdly, the given

correspondence information is not guaranteed to be perfect. Some instance in one

domain might have more than one matches in another domain; some instance has

exactly one match, but the true match is only known to be among a small set of can-

didates and no further information is available. In some situations, correspondence

information across domains is not available at all, instead we have some label infor-

mation that might be useful to compute the latent space. In some extreme cases,

even the label information is not available either. To handle the challenges men-

tioned above, we need the proposed approach to be able to handle multiple domains,

make use of unlabeled data, and process many to many correspondences. My thesis

proposes a set of such approaches that can address these challenges under different

situations. These approaches convert transfer learning problems to single domain

learning problems, and can also be combined with other existing transfer learning

techniques as a pre-processing step to project instances from different feature spaces

to the same space.

To address real-world challenges, using transfer learning techniques alone is not

sufficient. Even when we assume that the given correspondence information is accu-

rate and sufficient, it is still possible that the features to represent the input data are

3



redundant and some of them provide nothing but misleading information to the learn-

ing tasks. The transfer learning part is designed to learn feature-feature correlations

across domains using the given features, so its performance will not be satisfying

when the input features are of low quality. To solve real-world problems, we also

need representation learning techniques to re-represent the input datasets in a more

efficient way.

1.3 Contributions and Outline of The Thesis

Two lines of work presented in this thesis are illustrated in Figure 1.2. An outline

of the thesis is given in Figure 1.3.

X1

X3

X2

Latent 

space

Transfer 

Learning

Representation 

Learning

Figure 1.2. Transfer Learning and Representation Learning. X1, X2 and X3 are three
input domains.

1.3.1 Transfer Learning (TL)

Figure 1.2 illustrates the two main components of my thesis: transfer learning

and representation learning. Inside the triangle, a set of manifold alignment methods

are used to learn a common underlying latent space shared by all input datasets.

In machine learning, most datasets of interest can be assumed to lie on embedded

4



Figure 1.3. Outline of the Thesis.
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non-linear manifolds within the higher-dimensional space [55, 63, 4]. A manifold is a

mathematical space that on a small enough scale resembles the Euclidean space, but

the global structure of a manifold may be more complicated. Manifold alignment is

used to map different datasets (manifolds) to the same space, simultaneously matching

the corresponding instances and preserving topology of each input dataset. The

assumption of manifold alignment is the data lies on a manifold, which is embedded

in Euclidean space, and the given data is sampled from the underlying manifold in

terms of the features of the embedding space. Manifold alignment makes use of both

unlabeled and labeled data. The ability to exploit unlabeled data is particularly useful

for transfer learning and domain adaptation, where the number of labeled instances

in the target domain is usually limited.

Existing manifold alignment approaches can be categorized into two types: two-

step alignment and one-step alignment. In two-step alignment (illustrated in

Figure 1.4(A)), the data instances in each dataset are first mapped to lower dimen-

sional spaces reflecting their intrinsic geometries using a standard (linear like LPP [33]

or nonlinear like Laplacian eigenmaps [4]) dimensionality reduction approach. If the

input manifolds are similar, then their underlying structures should be related. Align-
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Figure 1.4. Two types of manifold alignment. The red regions represent the subsets
that are in correspondence. Z is the new space. (A) Two-step manifold alignment: Xa
and Xb are two manifolds. f and g are mapping functions to compute lower dimensional
embeddings. (B) One-step manifold alignment: c is the number of manifolds to be aligned.

ment of two manifolds can be achieved by removing some components (like rotational

and scaling components) from one manifold leaving another untouched. Existing

two-step alignment approaches can only handle pair-wise alignment problems. Given

some arbitrary manifolds, there is no guarantee that their intrinsic structures will

be similar. So in two-step alignment, there should be conditions under which two

manifolds cannot be aligned well. One-step alignment, which can handle multiple

alignment problems (c ≥ 3), is achieved by simultaneously matching the correspond-

ing instances and preserving the topology of each given manifold. One-step alignment

is illustrated in Figure 1.4(B).

Manifold alignment can be done at two levels: instance-level and feature-

level. In text mining, examples of instances can be documents in English, Arabic,

etc; examples of features can be English words/topics, Arabic words/topics, etc.

Instance-level alignment computes nonlinear embeddings for alignment, but such an

alignment result is defined only on known instances, and difficult to generalize to new

instances. Feature-level alignment builds mappings between features, and is more

suited for knowledge transfer applications than instance-level alignment. Feature-

level alignment only computes “linear” mappings for alignment, but the mappings
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can be easily generalized to new instances and provide a “dictionary” representing

direct mappings between features in different spaces.

The first contribution of the thesis is Procrustes alignment (Chapter 3),

a two-step approach that can handle both instance-level and feature-level alignment

problems. Procrustes alignment first maps the datasets to low-dimensional spaces

reflecting their intrinsic geometries and then removes the translational, rotational

and scaling components from one set so that the optimal alignment between the two

sets can be achieved. This approach can preserve either global geometry or local

geometry depending on the dimensionality reduction approaches used in the first

step.

The second contribution is Manifold Projections (Chapter 4), a general

framework for one-step instance-level or feature-level manifold alignment preserv-

ing local geometry. This framework computes lower dimensional embedding and

alignment simultaneously. Some existing algorithms like Laplacian eigenmaps [4],

LPP [33], Canonical Correlation Analysis (CCA), semi-supervised alignment [31] can

be obtained from this framework as special cases. Manifold projections can handle

many to many correspondences, solve multiple alignment problems and be used as a

basis for many different variants. As a natural extension of this framework, we also

present a knowledge transfer algorithm to directly build mappings between spaces de-

fined by different features. This knowledge transfer algorithm can automatically solve

two key issues in transfer learning area: “what to transfer” and “how to transfer”.

The third contribution includes a set of extensions of manifold pro-

jections to solve alignment problems under different situations. The first

extension (Chapter 4) is designed to handle the situations when no correspondences

across domains are given. This problem is common in real-world applications, but

extremely difficult to solve. The second extension (Chapter 5) is an alignment algo-

rithm to match corresponding instances across domains and preserve global geometry
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of each input domain. The ability to preserve global geometry is desired in some

tasks, like text mining and robot navigation. The last extension (Chapter 6) makes

use of labels rather than correspondences to align the input manifolds. This extension

significantly broadens the application scope of manifold alignment techniques.

The relationship between different manifold alignment approaches presented in

this thesis is illustrated in Table 1.1.

Table 1.1. Relationship Between Different Alignment Approaches.

Alignment using Alignment using Unsupervised
correspondences labels alignment

Preserve local geometry Chapter 3, 4 Chapter 6 Chapter 4

Preserve global geometry Chapter 3, 5 N/A N/A

One-step alignment Chapter 4, 5 Chapter 6 Chapter 4

Two-step alignment Chapter 3 N/A N/A

Feature-level Chapter 3, 4, 5 Chapter 6 Chapter 4

Instance-level Chapter 3, 4, 5 Chapter 6 Chapter 4

1.3.2 Representation Learning (RL)

The thesis also proposes a set of representation learning techniques (as shown in

Figure 1.2) to construct a basis (a set of features) for each individual domain so that

the new representation of the data is well adapted to the given task and geometry of

the data space.

The fourth contribution of the thesis is a novel approach to learn multi-

scale representations from a given dataset (Chapter 7). This approach learns basis

functions to span the original problem space at multiple scales [20] and can automat-

ically map the data instances to lower dimensional spaces preserving the relationship

inherent in the data. It also offers the following advantages over the state of the

art methods: it provides multiscale analysis, it computes basis functions that have

local support, it is able to handle non-symmetric relationships. As a case study, the

new approach has been applied to text domain to extract hierarchical topics from a
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given collection of text documents (Chapter 8). Compared to the other approaches

in the field, our method is parameter free and can automatically compute the topic

hierarchy and topics at each level. Applications to a number of other areas, including

computer vision, graph data mining, and bioinformatics have also been investigated.

The approach to learning multiscale representations is task independent. Chapter 9

presents a task dependent approach to learning new representations for the given data

preserving task oriented discriminative information.

1.3.3 A Combination of TL and RL

The fifth contribution is multiscale manifold alignment (Chapter 10),

a new approach to combine Transfer learning and Representation learning. Com-

pared to regular single-level alignment approaches, multiscale alignment automati-

cally generates alignment results at different levels by discovering the shared intrinsic

multilevel structures of the given datasets. In contrast to previous “flat” alignment

methods, where users need to specify the dimensionality of the new space, the multi-

level approach automatically finds alignments of varying dimensionality. Compared

to regular representation learning techniques, which learn a new representation for

each individual dataset, the new algorithm learns a common representation across all

input datasets.
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CHAPTER 2

RELATED WORK

2.1 Transfer Learning

2.1.1 Overview

Transfer learning involves three main research issues [52]: (1) What to transfer; (2)

How to transfer; (3) When to transfer. “What to transfer” involves determining which

part of knowledge can be transferred across domains. Some knowledge is specific for

individual domains, and some knowledge may be common across different domains

such that they may help improve performance for the target domain. After discovering

what knowledge can be transferred, “How to transfer” studies how to develop learning

algorithms to transfer the knowledge. “When to transfer” asks under what situations,

knowledge should not be transferred. In some situations, when the source domain and

target domain are not related to each other, brute-force transfer may be unsuccessful.

In the worst case, it may even hurt the performance of learning in the target domain.

Most current work on transfer learning focuses on “What to transfer” and “How to

transfer”, by implicitly assuming that the source and target domains are related to

each other.

2.1.2 Related Work

Since my thesis studies how to construct a common underlying latent space shared

by all input high-dimensional datasets, we only focus on the work in transfer learning

that is related to this particular area.

Semi-supervised manifold alignment [31] is a one-step instance-level alignment

algorithm. In this approach, the points of two datasets are mapped to a new space by
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solving a constrained embedding problem, where the embeddings of the corresponding

points from different sets are constrained to be similar. Semi-supervised alignment

directly computes the embedding results rather than the mapping functions, so the

(latent) mapping function can be any non-linear function, but the alignment is defined

only on the known data points, and it is hard to handle the new test points. Semi-

supervised alignment can be obtained as a special case of our general framework

for one-step alignment (see Equation (4.20) for more details). Semi-definite manifold

alignment [75] is also a one-step instance-level alignment algorithm. It solves a similar

problem as semi-supervised alignment in a semi-definite programming framework.

Semi-definite alignment can handle multiple manifold alignment problems and also

handle relative comparison information.

Diffusion maps-based manifold alignment [40] is a two-step approach and can

handle both instance-level and feature-level alignment problems. In the first step,

this approach constructs a graph to represent each given dataset and uses diffusion

maps [19] to map the vertices (instances) to lower dimensional spaces. In the second

step, it applies affine matching to align the resulting points that are in correspondence.

A similar framework is presented in [2], where ISOMAP [63] is used to embed the

nodes of the graphs corresponding to the aligned datasets and a graph-matching

approach is then applied to align the point sets.

Canonical Correlation Analysis (CCA) finds linear mappings that transform in-

stances from multiple datasets to one space, where the correlation between the cor-

responding points is maximized. CCA is a feature-level alignment approach, but it

does not preserve the local geometries of the given manifolds. CCA can be obtained

as a special case of Manifold Projections (Chapter 4). A nonlinear extension of CCA

using cross-entropy was developed in [68]. A similar method to coordinate local charts

based on the LLE [55] framework was proposed in [62]. This approach requires access

to the underlying manifold structure, so it is not directly related to our problem.
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Knowledge transfer is becoming increasingly popular in machine learning and data

mining [52, 64]. Much previous work in transfer assumes the training data and test

data to be defined in the same space. For example, self-taught learning [54] uses

unlabeled data to help improve classification performance on labeled data, where the

unlabeled data comes from a different set of categories (e.g. if the task is to classify

motor cycles vs. bicycles, the unlabeled data could be random images of mountains

and hills). However, many real-world applications like cross-lingual information re-

trieval require transfer of knowledge across domains defined by different features. To

address this problem, multi-view learning (designed for classification) proposes a nat-

ural way to divide features into views and an instance is described by a different set

of features in each view [11]. The classifiers in multiple views learn from each other to

enhance the learning process. Translated learning [23] shows how labeled data from

one feature space is used to enhance the classification performance for another space.

In this approach, the translator (φ(yt, ys) ∝ p(yt|ys)) connecting two feature spaces

is computed by a simple algorithm leveraging the given feature-level co-occurrence

p(yt, ys), where ys and yt represent the features in the source and target spaces,

p(a|b) represents conditional probability, and p(a, b) represents co-occurrence proba-

bility. Compared to the translator φ(yt, ys), using manifold alignment for feature-level

knowledge transfer is much more powerful. The latter builds mappings between mul-

tiple feature spaces (rather than just two) considering both partial correspondence

information and the manifold topology. It is also unlikely to run into an overfitting

problem, since the manifold topology needs to be preserved in the alignment pro-

cess. A growing body of recent research uses graphical models to address the transfer

learning problem, e.g. Bayesian Task-Level Transfer [56] uses Hierarchical Dirich-

let Processes (HDP) [61] to extend the simple Näıve Bayesian classifier to multiple

classification domains. The approaches based on graphical models generally require

specifying a fairly large number of parameters. The process of fitting a model to
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the data requires sampling, and can incur significant computational time. However,

the advantages of graphical models are their generality and power. In contrast, the

manifold alignment approaches studied below generally require far fewer parameters,

and their training time is usually considerably less. However, the tradeoffs are some

of the models are simpler and less general, e.g. feature-level alignment methods use

linear mappings.

2.2 Representation Learning

Representations play a major role in intelligent systems. Representation learning

studies how to construct a basis so that the new representation of the data is well

adapted to the given task and geometry of the data space.

2.2.1 Overview

In machine learning, a function could represent almost any instance that we are

interested in, like an image (defined in pixel space) and a document (defined in word

space). The space that such functions are defined on is called a function space and

spanned by a set of basis functions (bases).

For functions on Euclidean spaces, two types of “fixed” bases are widely used:

wavelet bases used in wavelet analysis [24], and Fourier bases used in Fourier anal-

ysis [13]. For functions on non-Euclidean spaces, which include discrete spaces such

as graphs and continuous spaces such as manifolds, these fixed bases may not be

optimal. In particular, as the geometry of the space may be unknown and needs to

be reconstructed from the data, the bases themselves need to be learned from the

data. One example of non-Euclidean space is a 2D Swiss roll manifold embedded in

a 3D space (Figure 2.1). From this figure, we can see that the instances that are far

away from each other on the manifold could be neighbors in Euclidean space. So Eu-
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Figure 2.1. A 2D Swiss Roll Embedded in a 3D Space.

clidean distance is not appropriate to compute the distance between non-neighboring

instances for this manifold.

Table 2.2 explains a framework of representation discovery. It is a process that lies

in between the given data and tasks. It explores the intrinsic structure of the data,

learns basis functions that provide more efficient representations of the instances and

may significantly simplify the standard learning or analysis algorithms.

Example:

In this section, we use a real-world text mining example to show why constructing

new basis functions can be useful.

A document can be defined in a word vector space, where each basis function

represents a word, and the coefficient corresponding to word i represents the number

of times that word i occurs in that document. Another way to represent documents is

to describe them in a “topic” space, where each basis function is a concept (topic). A

topic can be thought as a multinomial word distribution learned from a collection of

text documents and the words that contribute more to each topic provide keywords

that briefly summarize the themes in the collection. An example of a document

represented in a topic space is as follows (details on how such a basis is generated is
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Figure 2.2. A Framework of Representation Discovery.
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in Chapter 8):

Documentj = ‘Kernel’× 0.5 + ‘SVM’× 0.3 + ‘Protein’× 0.1 + · · · (2.1)

= ‘Computer Science’× 0.9 + ‘Biology’× 0.1. (2.2)

Compared to unit vectors, the new bases provide a set of topics defined by the

documents, providing quantitative measures that can be used to identify the content

of documents. For example, we can estimate that Document j is a paper discussing

how to use kernel methods to study protein structure data. Such new bases also

compress the representation of documents, since the number of topics is usually much

smaller than the number of the words in the dictionary.

2.2.2 Traditional Approaches for Basis Construction

There are two widely used approaches of decomposing a function into a sum

of basis functions on real-valued function spaces: Fourier analysis [13] and wavelet

analysis [24]. Recently, these two approaches have been extended to graphs and

manifolds: graph Laplacian [17] and Diffusion Wavelets [20].

The basic idea of Fourier analysis is that any function f(x) can be written as a

summation of a series of sine and cosine terms of increasing frequency. The summation

can consist of an infinite number of sine and cosine terms. Using this idea, any space

or time varying data can be transformed into a frequency space. Here, the meaning

of term “frequency” is broad. It could also be a function of spatial position (like

variation in color on an image), rather than time.

Fourier analysis has some limitations: first, Fourier bases are globally smooth,

so it is hard to represent piecewise-smooth functions with local discontinuities; sec-

ond, Fourier analysis does not reveal multiscale regularities of the data. To address

these challenges, theory of wavelets emerged roughly two decades ago [24]. Wavelets

are mathematical tools that decompose data into different frequency components,
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Figure 2.3. Relationship between Fourier Bases and Wavelet Bases.

and then represent each component with bases at a resolution matched to its scale.

Wavelet algorithms process data at different scales or resolutions, where the scale that

one uses in looking at data plays a special role. If we look at a signal with a large

“window”, we would notice gross features. Similarly, if we look at a signal with a

small “window”, we would notice small discontinuities. The result in wavelet analysis

is to “see the forest and the trees”.

A comparison of Fourier bases and wavelet bases is shown in Figure 2.3. From this

figure, we can see that wavelet bases at each scale are related to the Fourier bases at

a certain band of frequencies and wavelet bases are localized both in frequency and

time.

Wavelets are defined by the wavelet functions (the mother wavelet) and scaling

functions (the father wavelet). The wavelet function is in effect a band-pass filter and

scaling it for each level halves its bandwidth. This creates the problem that in order

to cover the entire spectrum, an infinite number of levels would be required. The
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scaling function filters the lowest level of the transform and ensures all the spectrum

is covered.

2.2.3 Graph-based Approaches for Basis Construction

Many problems in intelligent systems such as learning, optimization, search, plan-

ning are formulated in the context of graphs. In fact, any general discrete domain can

be modeled by graphs. The functions on graphs represent most of the data instances

that we are interested in. For example, an image can be thought as a function on

a pixel graph; a document can be thought as a function on a word graph, the value

function in reinforcement learning can be thought as a function on the state space

graph. In Fourier or wavelet analysis on real-valued spaces, the basis functions are

“fixed”. On many discrete spaces, like graphs, the bases have to be learned, since the

graphs are constructed from the given samples. A key goal of my thesis is to provide

a diffusion wavelets based framework to construct bases for the analysis of functions

defined on graphs.

A graph represents a set of objects and the pairwise relations between those ob-

jects. The objects are called vertices and the link between two vertices is called an

edge. A graph G is represented by G = (V,E), where V is a finite set of vertices and

E is a set of edges. Given any two vertices u and v, the weight function w maps the

relation between them to a real value: w(u, v) → R. Considering the Hilbert space

of functions on a graph, where each function f : V → R assigns a real value f(v) to

each vertex v. The function space can be endowed with the inner product of f and

g: 〈f, g〉 =
∑

v∈V f(v)g(v). Any function in this space can be thought as a column

vector in R|V |. The inner product of f and g can also be replaced by a more complex

positive semi-definite kernel [57], which arises as a similarity measure in a “modified”

feature space. The kernels designed for general purpose include Polynomial kernel

(k(x,x′) = (x · x′)d), Gaussian RBF kernel (k(x,x′) = exp
(
−‖x−x

′‖2

2σ2

)
), and Sigmoid
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kernel (k(x,x′) = tanh(κx ·x′+ c)). Numerous kernels are application oriented. Such

kernels help solve a large number of interesting real-world problems like text classifi-

cation [42] and protein tertiary structure comparison [73]. The enrichment of kernels

makes the construction of graph representation of the given instances possible.

2.2.3.1 Eigenvector Based Approaches:

Once the graph to represent a set of objects is constructed, eigenvectors corre-

sponding to this graph can be used as basis functions in many different applications.

In dimensionality reduction, Principle Component Analysis (PCA), MultiDimensional

Scaling (MDS) [21], and ISOMAP [63] use eigenvectors to compute the lower dimen-

sional embedding of the data. Eigenfaces [67] are a set of eigenvectors used in the

computer vision problem of human face recognition. In information retrieval, Latent

Semantic Indexing (LSI) [26] is a well-known eigenvector based approach and widely

used to find topics in a text corpus.

Limitations:

One key limitation of eigenvector based approaches is that it is difficult to use

these methods to uncover regularities at multiple scales. This is a significant problem

in many applications. For example, the corpora of text documents could include the

concepts at multiple levels. Using NIPS paper dataset1 as an example, at the most

abstract level, there are two main concepts in the published papers: machine learning

and neuroscience. At the next level, there may be topics pertaining to a number of

areas, such as reinforcement learning, dimensionality reduction, etc. LSI discovers

flat topics (topics at one level), but it would be better to go one step further to look

at the whole topic hierarchy. This is beyond what eigenvalue decomposition can do.

1www.cs.toronto.edu/∼roweis/data.html
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The second problem is that eigenvector based methods cannot handle the relation-

ships characterized by directed graphs without some ad-hoc symmetrization. Some

typical examples where non-symmetric matrices arise are when k-nearest neighbor

relationships are used, in information retrieval/data mining applications based on

network topology [58], and state space transitions in a Markov decision process.

The third limitation is that eigenvectors only detect global smoothness, and may

poorly model the relationship which is not globally smooth but only piecewise smooth,

or with different smoothness in different regions. This limits eigenvector based ap-

proaches in applications like topic discovery and value function approximation, since

the generated topics (eigenvectors) are not interpretable, and the globally smooth

eigenvectors are not able to approximate some discontinuous value functions.

2.2.3.2 Extension of Fourier Analysis to Graphs: Graph Laplacian

As a special case of eigenvector based approach, graph Laplacian [17] extends

Fourier analysis to graphs, where Laplacian eigenvectors are used as bases to approx-

imate functions defined on graphs. In particular, spectral graph theory [17] combined

with classical differential geometry and global analysis on manifolds forms the theo-

retical basis for “Laplacian” techniques for function approximation and learning on

graphs and manifolds, using the eigenfunctions of a Laplace operator to reveal hidden

structure.

The combinatorial Laplacian is defined as:

L = D −W, (2.3)

where W is a weight matrix, and D is a diagonal matrix (Dii =
∑

jWij). We often

consider the normalized Laplacian

L = D−1/2(D −W )D−1/2, (2.4)
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which has a spectrum in [0,2]. It is easy to see that

〈f, Lf〉 =
∑

x

f(x)Lf(x) =
∑

x,y

w(x, y)(f(x)− f(y))2 = ‖∇f‖22, (2.5)

so Laplacian is related to the notion of smoothness of functions. Laplacian eigen-

vectors {ξi} and corresponding eigenvalues: 0 ≤ λ0 ≤ λ1 . . . ≤ λi . . . are computed

by solving the eigenvalue equation Lξi = λiξi or Lξi = λiξi. The graph Laplacian

has many nice properties. For example, L (or L) is always positive-semidefinite and

the multiplicity of 0 as an eigenvalue of L (or L) gives the number of connected

components of a graph.

Consider the problem of building basis functions for smooth functions (func-

tions with low Sobolev norm [17]) on graphs. Given any graph G, an obvious

but poor choice of basis functions is to encode the ith node in the graph using

φ(i) = [0 · · · 1 · · · 0], where the ith entry is the only non-zero entry. This represen-

tation does not reflect the topology of the specific graph under consideration. The

Laplacian eigenfunction approach uses the eigenvectors of graph Laplacian, in effect

performing a global Fourier analysis on the graph. Given the observation that ξi sat-

isfies ‖∇ξi‖
2
2 = λi, the characterization of eigenvectors shows that ξi is the normalized

function orthogonal to ξ0, . . . , ξi−1 with minimal ‖∇ξi‖2. Hence the projection of a

function f (on the problem space) onto the top k eigenvectors of the Laplacian is

the smoothest approximation to f [46]. The eigenfunctions of the Laplacian can be

viewed as an orthonormal basis of global Fourier smooth functions that can be used

for approximating any smooth function on a graph.[17].

The graph Laplacian has been applied in many fields: one example is in dimen-

sionality reduction, which will be discussed below in detail. Another example is

spectral clustering [51], where smoothest Laplacian eigenvectors are used to represent

the original data points for clustering. Proto-value function approximation [46] in re-

inforcement learning also falls into this framework. It uses a summation of Laplacian
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eigenvectors to approximate value functions defined on the state space graph.

Case Study: Graph Laplacian-Based Dimensionality Reduction

In many application domains of interest, from information retrieval and natural lan-

guage processing to perception and robotics, data appears high dimensional, but

often lies near or on low-dimensional structures, such as a manifold or a graph. By

explicitly modeling and recovering the underlying structure, graph Laplacian based

methods such as Laplacian eigenmaps [4] have been shown to be significantly more

effective than classical Euclidean methods, such as multidimensional scaling [21] and

principal component analysis. Laplacian eigenmaps [4] constructs an embeddings of

the data using the low-order eigenvectors of graph Laplacian as a new coordinate ba-

sis [17], which extends Fourier analysis to graphs and manifolds. Locality Preserving

Projections (LPP) is a linear approximation of Laplacian eigenmaps [33], where the

mapping functions to compute lower dimensional embeddings are constrained to be

linear.

Assume X = [x1, · · · , xn] is a p×n matrix representing n instances defined in a p

dimensional space. W is an n×n weight matrix, where Wi,j represents the similarity

of xi and xj. D is a diagonal matrix, where Di,i =
∑

jWi,j . W = D−0.5WD−0.5.

L = I −W , where L is the normalized Laplacian matrix and I is an identity matrix.

(1) Laplacian eigenmaps constructs Y = (y1, · · · , yn) to minimize the cost

function
∑

i,j

‖yi − yj‖
2Wi,j , (2.6)

which encourages the neighbors in the original space to be neighbors in the new

space. Under the constraint to prevent the embedding results from collapsing into

one point, the c dimensional embedding is provided by the eigenvectors of Lx = λx

corresponding to the c smallest non-zero eigenvalues.
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(2) LPP is a linear approximation of Laplacian eigenmaps. LPP constructs

mapping function f to minimize the cost function

∑

i,j

‖fTxi − f
Txj‖

2Wi,j , (2.7)

where the f to achieve c dimensional embedding is provided by the eigenvectors of

XLXTx = λXXTx corresponding to the c smallest non-zero eigenvalues under a

similar constraint.

2.2.3.3 Extension of Wavelets to Graphs: Diffusion Wavelets

While Fourier analysis is a powerful tool for global analysis of functions, it is

known to be poor at recovering multiscale regularities across data and for modeling

local or transient properties [47]. Consequently, one limitation of graph Laplacian

based approaches is that they only yield a “flat” embedding but not a multiscale

embedding. Another problem is that such eigenvector methods cannot handle the

relationships characterized by directed graphs without some ad-hoc symmetrization.

For a general weight matrix W representing the edge weights on a directed graph, its

eigenvalues and eigenvectors are not guaranteed to be real. Many current approaches

to this problem convert directed graphs to undirected graphs. A simple solution is

setting W to be W +W T or WW T . A more sophisticated symmetrization method

uses the directed Laplacian [18], where the symmetrization uses the Perron-Frobenius

theorem. It is more desirable to find an approach that handles directed graphs without

the need for symmetrization.

DiffusionWavelets [20] approach is a recent extension of wavelet analysis to graphs,

where diffusion scaling functions and diffusion wavelet functions are used as bases to

approximate functions defined on graphs. Diffusion wavelets can be used to solve the

problems mentioned above. Details about this approach are discussed in Chapter 7.

23



CHAPTER 3

PROCRUSTES MANIFOLD ALIGNMENT

3.1 Overview

Given two datasets: S1 = S l1
⋃
Su1 , S2 = S l2

⋃
Su2 , where S l1 = {s11, · · · , s

l
1},

Su1 = {sl+1
1 , · · · , sm1 }, S

l
2 = {s12, · · · , s

l
2}, S

u
2 = {sl+1

2 , · · · , sn2} along with additional

pairwise correspondences between a subset of the training instances (S l1 and S
l
2 are in

pairwise correspondence (si1 ←→ si2 for i ≤ l)), Procrustes manifold alignment learns

an alignment of the remaining instances in the two datasets. An illustrative example

of Procrustes manifold alignment is in Figure 3.1, where two manifolds X1 and X2

are seemingly different in their original space (Figure 3.1(A)), and the goal is to align

them in a new space (Figure 3.1(B)). The data comes from a real protein tertiary

structure dataset. The approach and experiment setting used in this example are

discussed in Section 3.5.
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Figure 3.1. Illustration of Procrustes Manifold Alignment.
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Procrustes manifold alignment is a two-step alignment method. In the first step,

we map the datasets to lower dimensional spaces reflecting their intrinsic geometries

using a standard (nonlinear or linear) dimensionality reduction approach. For ex-

ample, using a graph-based nonlinear dimensionality reduction method provides a

discretized approximation to the manifolds, so the new representations characterize

the relationships between points but not the original features. By doing this, we can

compare the embeddings of the two sets instead of their original representations. In

the second step, we apply Procrustes analysis to align the two lower dimensional em-

beddings of the datasets based on a number of landmark points. Procrustes analysis,

which has been used for statistical shape analysis and image registration of 2D/3D

data [44], removes the translational, rotational and scaling components from one set

so that the optimal alignment between the two sets can be achieved. Procrustes

alignment approach results in a mapping that is defined everywhere rather than just

on the known data points (provided a suitable dimensionality reduction method like

LPP [33] or PCA is used). Compared to well-known affine matching [37], which

changes the shape of one given manifold to achieve alignment, Procrustes alignment

preserves the manifold shape. This property preserves the relationship between any

two data points within each individual manifold in the process of alignment.

The rest of this chapter is as follows. In Section 3.2 we describe the main algo-

rithm. In Section 3.3 we explain the rationale underlying our approach. Given the

fact that dimensionality reduction approaches play a key role in this approach, Sec-

tion 3.4 provides a theoretical bound for the difference between subspaces spanned

by low dimensional embeddings of the two datasets. This bound analytically char-

acterizes when the two datasets can be aligned well. We use a protein example to

illustrate how this approach works in Section 3.5.
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3.2 The Algorithm

Similar to other work in the field [31], we assume a kernel for computing the

similarity between data points in each of the two datasets is already given. The

algorithmic procedure is stated in Figure 3.2. For the sake of concreteness, Laplacian

eigenmaps [4] is used for dimensionality reduction in the procedure. Depending on the

dimensionality reduction approach that we want to use, there are several variations

of Step 1. For example, if we are using LPP [33], then we use linear approximation

of Laplacian eigenmaps for embedding computation. Note that when LPP is used,

the lower dimensional embedding will be defined everywhere rather than just on the

training instances.

3.3 Justification

Procrustes analysis seeks the isotropic dilation and the rigid translation, reflection

and rotation needed to best match one data configuration to another [21]. Given low

dimensional embeddings Embed1 = [XT
l , X

T
u ]

T and Embed2 = [Y T
l , Y

T
u ]T (defined in

Figure 3.2), the most convenient way to do translation is to translate the configu-

rations in Xl and Yl so that their centroids are at the origin. Then, the problem

is simplified as: finding Q and k so that ‖Xl − kYlQ‖F is minimized, where ‖ · ‖F

is Frobenius norm. The matrix Q is orthonormal, giving a rotation and possibly a

reflection, k is a re-scale factor to either stretch or shrink Yl. Below, we show that

the optimal solution is given by the SVD of Y T
l Xl. Theorem 1 is credited to regular

Procrustes analysis [21].

Theorem 1. Let rows of Xl and Yl be low dimensional embeddings of the points

with known pairwise correspondences in dataset S1, S2, and xi matches yi for each

i ∈ [1, l]. If Singular Value Decomposition (SVD) of Y T
l Xl is UΣV

T , then Q = UV T

and k = trace(Σ)/trace(Y T
l Yl) minimize ‖Xl − kYlQ‖F .
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1. Construct the relationship matrices:

• Construct the weight matrices Wx for S1 and Wy for S2 using kernels

K1 and K2, where Wx(i, j) = K1(s
i
1, s

j
1) and Wy(i, j) = K2(s

i
2, s

j
2).

• Compute Laplacian matrices Lx = I − D−0.5x WxD
−0.5
x and Ly =

I − D−0.5y WyD
−0.5
y , where Dx is a diagonal matrix (Dx(i, i) =∑

jWx(i, j)), Dy is a diagonal matrix (Dy(i, i) =
∑

jWy(i, j)) and
I is the identity matrix.

2. Learn low dimensional embeddings of the datasets:

• Compute c selected eigenvectors of Lx and Ly for the low dimensional
embeddings of the datasets S1 and S2. Let Embed1 = [XT

l , X
T
u ]

T ,
where row i of Xl (or Xu) is the c dimensional embedding of the ith

element of S l1 (or Su1 ). Let Embed2 = [Y T
l , Y

T
u ]T , where row i of Yl

(or Yu) is the c dimensional embedding of the ith element of S l2 (or
Su2 ). Embed1 is an m× c matrix, Embed2 is an n× c matrix.

3. Find the optimal alignment of Xl and Yl:

• Let xi represent row i of Xl, yi represent row i of Yl. Translate the
configurations in Xl, Xu, Yl and Yu, so that Xl, Yl have their centroids
(
∑l

i=1 xi/l,
∑l

i=1 yi/l) at the origin.

• Compute the singular value decomposition (SVD) of Y T
l Xl, that is

UΣV T = SVD(Y T
l Xl).

• Y ∗l = kYlQ is the optimal mapping result that minimizes ‖Xl −
Y ∗l ‖F , where ‖.‖F is the Frobenius norm, Q = UV T and k =
trace(Σ)/trace(Y T

l Yl).

4. Apply Q and k to find correspondences between Su1 and Su2 .

• Y ∗u = kYuQ.

• For each element x in Xu, its correspondence in Y ∗u =
argminy∗∈Y ∗

u
‖y∗ − x‖.

Figure 3.2. Procrustes Manifold Alignment Algorithm.
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Proof: The problem is formalized as:

{kopt, Qopt} = argmin
k,Q
‖Xl − kYlQ‖F . (3.1)

It is easy to verify that

‖Xl − kYlQ‖
2
F = trace(XT

l Xl) + k2 · trace(Y T
l Yl)− 2k · trace(QTY T

l Xl). (3.2)

Since trace(XT
l Xl) is a constant, the minimization problem is equivalent to

{kopt, Qopt} = argmin
k,Q

(k2 · trace(Y T
l Yl)− 2k · trace(QTY T

l Xl)). (3.3)

Differentiating with respect to k, we have

2k · trace(Y T
l Yl) = 2 · trace(QTY T

l Xl), (3.4)

i.e.
k = trace(QTY T

l Xl)/trace(Y
T
l Yl). (3.5)

(3.3) and (3.5) show that the minimization problem reduces to

Qopt = argmax
Q

(trace(QTY T
l Xl))

2. (3.6)

Case 1:

If trace(QTY T
l Xl) ≥ 0, then the problem becomes

Qopt = argmax
Q

trace(QTY T
l Xl). (3.7)

Using Singular Value Decomposition, we have Y T
l Xl = UΣV T , where U and V are

orthonormal, and Σ is a diagonal matrix having as its main diagonal all the positive

singular values of Y T
l Xl. So

max
Q

trace(QTY T
l Xl) = max

Q
trace(QTUΣV T ). (3.8)

It is well-known that for two matrices A and B, trace(AB) = trace(BA), so

max
Q

trace(QTUΣV T ) = max
Q

trace(V TQTUΣ). (3.9)

For simplicity, we use Z to represent V TQTU . We know Q, U and V are all or-

thonormal matrices, so Z is also orthonormal. It is well-known that any element in
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an orthonormal matrix, say B, is in [-1,1] (otherwise BTB is not an identity matrix).

So we know

trace(ZΣ) = Z1,1Σ1,1 + · · ·+ Zc,cΣc,c ≤ Σ1,1 + · · ·+Σc,c, (3.10)

which implies Z = I maximizes trace(ZΣ), where I is an identity matrix.

The solution to Z = I is
Q = UV T . (3.11)

Case 2:

If trace(QTY T
l Xl) < 0, then the problem becomes

Qopt = argmin
Q

trace(QTY T
l Xl). (3.12)

Following the similar procedure shown above, we have

trace(ZΣ) = Z1,1Σ1,1 + · · ·+ Zc,cΣc,c ≥ −Σ1,1 − · · · − Σc,c, (3.13)

which implies that Z = −I minimizes trace(ZΣ).

The solution to Z = −I is
Q = −UV T . (3.14)

Considering (3.6), it is easy to verify that Q = UV T and Q = −UV T return the

same results, so Q = UV T is always the optimal solution to (3.6), no matter whether

trace(QTY T
l Xl) is positive or not. Further, we can simplify (3.5), and obtain:

k = trace(Σ)/trace(Y T
l Yl). (3.15)

3.4 Theoretical Analysis

Given the fact that dimensionality reduction approaches play a key role in our

approach, Theorem 2 provides a theoretical bound for the difference between em-

bedding subspaces. Theorem 3 shows why the bound in Theorem 2 characterizes

the conditions under which two datasets can be aligned well. Notation used in this

section is shown in Figure 3.3.
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Many dimensionality reduction approaches first compute a relationship matrix,

and then project the data onto a subspace spanned by the “top” eigenvectors of the

matrix. The “top” eigenvectors mean some subset of eigenvectors that are of inter-

est. They might be eigenvectors corresponding to largest, smallest, or even arbitrary

eigenvalues. One example is Laplacian eigenmaps, where we project the data onto

the subspace spanned by the “smoothest” eigenvectors of the graph Laplacian. An-

other example is PCA, where we project the data onto the subspace spanned by the

“largest” eigenvectors of the covariance matrix. In this section, we study the general

approach, which provides a general framework for each individual algorithm such as

Laplacian eigenmaps. We assume the two given datasets S1 and S2 do not differ sig-

nificantly, so the related relationship matrices A and B are “very similar”. We study

the difference between the embedding subspaces corresponding to the two relation-

ship matrices. The difference between orthogonal projections ‖Q− P‖ characterizes

the distance between the two subspaces. The proof of the theorem below is based

on the perturbation theory of spectral subspaces, where E = B − A can be thought

as the perturbation to A. The only assumption we need to make is for any i and j,

|Ei,j| ≤ τ .

Theorem 2. If the absolute value of each element in E is bounded by τ , and τ ≤

2εd1/(n(π + 2ε)), then the difference between the two embedding subspaces ‖Q − P‖

is at most ε.

Proof: From the definition of operator norm, we know

‖E‖ = max
k1,k2,··· ,kn

√∑

i

(
∑

j

kjEi,j)2, given
∑

i

k2i = 1. (3.16)

We can verify the following inequality always holds:

∑

i

(
∑

j

kjEi,j)
2 ≤ n

∑

j

k2j
∑

i

E2
i,j . (3.17)
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A is an n× n relationship matrix computed from S1, which is defined in Section 3.1.
B is an n× n relationship matrix computed from S2, which is defined in Section 3.1.
E = B −A.

X denotes a subspace of the column space of A spanned by top c eigenvectors of A.
Y denotes a subspace of the column space of B spanned by top c eigenvectors of B.
X is a matrix whose columns are an orthonormal basis of X .
Y is a matrix whose columns are an orthonormal basis of Y.

δ1A is the set of top c eigenvalues of A, δ2A includes all eigenvalues of A except those in δ1A.
δ1B is the set of top c eigenvalues of B, δ2B includes all eigenvalues of B except those in δ1B.

d1 is the eigengap between δ1A and δ2A, i.e. d1 = minλi∈δ1A,λj∈δ
2
A
|λi − λj |.

d = δ1A − δ
2
B.

P denotes the orthogonal projection onto subspace X .
Q denotes the orthogonal projection onto subspace Y.

‖ · ‖ denotes Operator Norm, i.e. ‖L‖µ,ν = maxν(x)=1 µ(Lx), where µ, ν are simply ‖ · ‖2.

Figure 3.3. Notation used in Section 3.4.

From (3.16) and (3.17), we have
∑

i

(
∑

j

kjEi,j)
2 ≤ n2τ2

∑

j

k2j = n2τ2. (3.18)

Combining (3.16) and (3.18), we have:

‖E‖ ≤ nτ. (3.19)

It can be shown that if A and E are bounded self-adjoint operators on a separable

Hilbert space, then the spectrum of A+E is in the closed ‖E‖-neighborhood of the

spectrum of A [39]. We also have the following inequality:

‖Q⊥P‖ ≤ π‖E‖/2d. (3.20)

We know A has an isolated part δ1A of the spectrum separated from its remainder δ2A

by gap d1. To guarantee A + E also has separated components, we need to assume

‖E‖ < d1/2. Thus (3.20) becomes

‖Q⊥P‖ ≤ π‖E‖/2(d1 − ‖E‖). (3.21)
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Interchanging the roles of δ1A and δ2A, we have the analogous inequality:

‖QP⊥‖ ≤ π‖E‖/2(d1 − ‖E‖). (3.22)

Since
‖Q− P‖ = max{‖Q⊥P‖, ‖QP⊥‖}, (3.23)

we have
‖Q− P‖ ≤ π‖E‖/2(d1 − ‖E‖). (3.24)

We define R = Q− P , and from (3.24), we get

‖R‖ ≤ π‖E‖/2(d1 − ‖E‖). (3.25)

(3.25) implies that
if ‖E‖ ≤ 2d1ε/(2ε+ π), then ‖R‖ ≤ ε. (3.26)

So we have the following conclusion: if the absolute value of each element in E is

bounded by τ , and τ ≤ 2εd1/(n(π+2ε)), then the difference of the subspaces spanned

by top c eigenvectors of A and B is at most ε.

Theorem 2 tells us that if the eigengap (between δ1A and δ2A) is large, then the

subspace corresponding to the top c eigenvectors of A is insensitive to perturbations.

In other words, the algorithm can tolerate larger differences between A and B. So

when we are selecting eigenvectors to form a subspace, the eigengap is an important

factor to be considered. The reasoning behind this is that if the magnitudes of

the relevant eigenvalues do not change too much, the top c eigenvectors will not be

overtaken by other eigenvectors, thus the related space is more stable. Our result in

essence connects the difference between two relationship matrices to the difference

between two subspaces (of the column spaces of the relationship matrices).

Now we want to connect the relationship between subspaces to the relationship

between lower dimensional embeddings. Our conclusion is that if X and Y are the

same, then the related lower dimensional embeddings are also the same up to a ro-

tation. In the first scenario (used in PCA or LPP), we compute lower dimensional

embeddings of S1 and S2 by projecting the data onto X and Y . The conclusion is
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trivial, since the projection results of the same data instance on X and Y are always

the same. In the second scenario, we directly use rows of X and Y as embeddings,

similar to Laplacian eigenmaps. The following theorem shows why the same conclu-

sion is also valid. Following the notation presented in Figure 3.3, we know the ith row

of X (or Y ) is the c dimensional embedding of the ith element of S1 (or S2).

Theorem 3. If columns of X and Y span the same subspace, then the corresponding

rows of X and Y are the same up to a rotation: X = Y T , where T is a rotation.

Proof: If columns of X and Y span the same space, then

XXT = Y Y T . (3.27)

Since the columns of both X and Y are orthonormal,

XTX = Y TY = I, where I is an identity matrix. (3.28)

From (3.27) and (3.28), we know

X = XI = XXTX = Y Y TX = Y (Y TX). (3.29)

Next, we show T = Y TX is a rotation matrix: (3.28) implies

T TT = XTY Y TX = XTXXTX = I. (3.30)

Also from (3.28), we have

T T T = Y TXXTY = Y TY Y TY = I. (3.31)

Since
det(T TT ) = (det(T ))2 = 1, (3.32)

we have
det(T ) = 1. (3.33)

From (3.30)-(3.33), we know T is a rotation matrix.
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3.5 Experimental Results

In this section, we use a protein example to illustrate how Procrustes manifold

alignment works. Results on more experiments are reported in Chapter 4.

Protein 3D structure reconstruction is an important step in Nuclear Magnetic

Resonance (NMR) protein structure determination. Basically, it finds a map from

pairwise distances between amino acids to coordinates. A protein 3D structure is a

chain of amino acids. Let n be the number of amino acids in a given protein and

C1, · · · , Cn be the coordinate vectors for the amino acids, where Ci = (Ci,1, Ci,2, Ci,3)
T

and Ci,1, Ci,2, and Ci,3 are the x, y, z coordinates of amino acid i (in biology, one

usually uses atoms, and not amino acids, as the basic element in determining protein

structure. Since the number of atoms is large, for simplicity, we use amino acids as

the basic element). Then the distance di,j between amino acids i and j can be defined

as di,j = ‖Ci − Cj‖. Define A = {di,j , i, j = 1, · · · , n}, and C = {Ci, i = 1, · · · , n}.

It is easy to see that if C is given, then we can immediately compute A. However, if

A is given, it is non-trivial to compute C. The latter problem is essentially Protein

3D structure reconstruction. In fact, the problem is even more tricky, since only the

distances between neighbors are reliable, and this makes A an incomplete distance

matrix. The problem has been proved to be NP-complete for general sparse distance

matrices [35]. In practice, other techniques such as angle constraints and human

experience are used together with the partial distance matrix to determine protein

structures. With the information available to us, NMR techniques might find multiple

estimations (models), since more than one configuration can be consistent with the

distance matrix and the constraints. Thus, the result is an ensemble of models,

rather than a single structure. Usually, the ensemble of structures, with perhaps

10 - 50 members, all of which fit the NMR data and retain good stereochemistry is

deposited with the Protein Data Bank (PDB) [7]. Models related to the same protein

should be similar and comparisons between the models in this ensemble provides some
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information on how well the protein conformation was determined by NMR. In this

thesis, we study a Glutaredoxin protein PDB-1G7O (this protein has 215 amino acids

in total), whose 3D structure has 21 models. In this chapter, we assume that only

the distance matrices related to these models are available. In the other chapters, we

directly make use of the 3D data in PDB.

In this test, we select Model 1 and Model 21 for testing. These models are related

to the same protein, so it makes sense to treat them as manifolds to test our tech-

niques. We denote the ith model by Manifold Xi, which is represented by a 215× 215

distance matrix Di. Since the distance matrices are already given, we skip Step 1

in Procrustes alignment algorithm (Figure 3.2). In Step 2, we apply MDS [21] to

construct 3D embeddings from the distance matrices resulting in two 3 × 215 ma-

trices X1 and X2. To evaluate how manifold alignment can re-scale manifolds, we

manually stretch manifold X2 by letting X2 = 4X2. The comparison of Manifold X1

and X2 (column vectors of X1 and X2 represent points in the 3D space) are shown

in Figure 3.4(A). It is clear that manifold X2 is larger than X1. The orientations of

these manifolds are also quite different. To simulate pairwise correspondence infor-

mation, we uniformly selected 10% amino acids as correspondence resulting in two

3× 22 matrices. In Step 3, we align X1 and X2. Procrustes alignment first translates

the configurations of X1 and X2 so that they have their centroids at the origin (See

Figure 3.4(B) for the result). Then it re-scales X2 to make its size match the size

of X1 (Figure 3.4(C)). Finally, a rotation is applied to X2 such that X1 and X2 are

perfectly aligned (Figure 3.4(D)).

3.6 Remarks

In this chapter we introduced a novel approach to manifold alignment: Procrustes

alignment (a two-step alignment approach). Procrustes alignment first maps the

datasets to low-dimensional spaces reflecting their intrinsic geometries and then re-
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Figure 3.4. (A): Comparison of Manifold X1 (red) and X2 (blue); (B): After translations
are done; (C): After re-scaling is done; (D): After rotation is done.

moves the translational, rotational and scaling components from one set so that the

optimal alignment between the two sets can be achieved.
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CHAPTER 4

MANIFOLD ALIGNMENT PRESERVING LOCAL
GEOMETRY

4.1 Overview

We now present Manifold Projections, a general framework that consists of

a family of approaches to align manifolds by simultaneously matching the corre-

sponding instances and preserving the local geometry of each given manifold. Some

existing approaches like canonical correlation analysis [34], semi-supervised align-

ment [31], Laplacian eigenmaps [4], and LPP [33] can be obtained as special cases.

Our framework can solve multiple manifold alignment problems, process many to

many correspondences, and be adapted to handle the situation when no correspon-

dence information is available. The goal of this framework is illustrated in Figure 4.1

using an example with three input datasets.

The key idea underlying manifold projections is to map different feature spaces

to a new latent space, simultaneously matching the corresponding instances and pre-

serving local geometry of each input dataset. Manifold projections makes use of both

unlabeled and labeled data. The ability to exploit unlabeled data is particularly useful

for knowledge transfer tasks, where the number of labeled instances is limited. Given

the input manifolds X1, · · · ,Xc, manifold projections first creates a graph Laplacian

matrix L to represent the joint manifold, which jointly models all input manifolds by

concatenating the corresponding instances across manifolds and preserving topology

of each manifold. The given correspondences play a key role in creating L. They

force the instances in correspondence (from different manifolds) to be neighbors in
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Figure 4.1. This figure illustrates the goal for manifold projections, a manifold alignment
framework preserving local geometry. We have three input datasets (treated as manifolds)
together with some training corresponding pairs. The goal is to construct three mapping
functions (represented as black arrows) to project instances from their original spaces to
a new latent space, where instances in correspondence are projected near each other and
neighborhood relationship within each input set is also respected. In this figure, we show
three possible latent spaces (3D, 2D, 1D). The approach and experiment setting used in
this example are discussed in Section 4.6.1.
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Figure 4.2. Illustration of the general framework for Manifold Projections.

the joint manifold. In the second step, manifold projections projects the joint man-

ifold to a lower dimensional space preserving its (joint) local geometry resulting in

a new feature space. The new feature space is common to all input manifolds. The

overall idea is illustrated in Figure 4.2.

The rest of this chapter is as follows. In Section 4.2 we analyze the problem

theoretically. In Section 4.3, we present the framework of manifold projections and

its relationship to some previously studied approaches including Canonical Correla-

tion Analysis (CCA), Laplacian eigenmaps, LPP, etc. We also show how manifold

projections is adapted to handle the problem of unsupervised alignment. Section 4.4

compares different manifold alignment algorithms. In Section 4.5, we provide a knowl-

edge transfer framework based on manifold projections. Some novel applications and

our experimental results are summarized in Section 4.6.

4.2 Theoretical Results

Manifold projections can be done at two levels: instance-level and feature-

level. In text mining, examples of instances can be documents in English, Arabic,

etc; examples of features can be English words/topics, Arabic words/topics, etc.

Instance-level alignment builds connections between instances. It can compute non-
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linear embeddings for alignment, but such an alignment result is defined only on

known instances, and difficult to generalize to new instances. Feature-level alignment

builds connections between features, and is more appropriate for knowledge transfer

applications than instance-level alignment. Feature-level alignment can only compute

linear mappings for alignment, but it can be easily generalized to new instances and

provides a “dictionary” representing direct connections between features in different

spaces. In this section, we first introduce the cost functions for both instance-level

and feature-level alignment tasks, and then justify the corresponding algorithms. No-

tation used to present this framework is summarized in Figure 4.3.

Cost functions for instance-level alignment: First, we consider the problem of

computing instance-level alignment. The cost function being minimized is as follows:

C(Y1, · · · ,Yc) = 0.5µ1

c∑

a=1

c∑

b=1

ma∑

i=1

mb∑

j=1

‖Y ia − Y
j
b‖

2W i,j
a,b

+0.5µ2

c∑

k=1

mk∑

i=1

mk∑

j=1

‖Y ik − Y
j
k‖

2W i,j
k , (4.1)

where Y ik represents the embedding result of xik (for alignment). The first term of

C(Y1, · · · ,Yc) penalizes the differences between the given manifolds on the mapping

results of the corresponding instances. The second term encourages the local geometry

of each given manifold to be preserved. When C(Y1, · · · ,Yc) is used, alignment

algorithms build mappings between instances. µ1/µ2 is the weight of the first term in

the loss function. We use the following simple strategy to decide the value of µ1/µ2.

Assuming all input weight matrices are normalized, then µ1 = µ2 means the first term

and the second term are equally important. If we want to focus more on manifold

geometry preservation, we let µ1 < µ2; if we want to focus more on the alignment,

we let µ1 > µ2.

Cost functions for feature-level alignment: Next, we consider the problem of

computing feature-level alignment. Here, we compute mapping functions for the
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c: number of manifolds that we want to align.
xik is defined in a pk dimensional space (manifold Xk);
Xk = {x1k, · · · , x

mk

k }, Xk is a pk ×mk matrix.

Wk is an mk ×mk matrix, where W i,j
k is the similarity of xik and xjk (could be defined by

heat kernel).

Dk is an mk ×mk diagonal matrix: Di,i
k =

∑
jW

i,j
k .

Lk = Dk −Wk.
Ik is an mk ×mk identity matrix; I is a (

∑c
k=1mk)× (

∑c
k=1mk) identity matrix.

Ik is a pk × pk identity matrix; I is a (
∑c

k=1 pk)× (
∑c

k=1 pk) identity matrix.

When a = b: Wa,a is an ma ×ma zero matrix.

When a 6= b: Wa,b is an ma × mb matrix, where W i,j
a,b = 1, when xia and xjb are in

correspondence; 0, otherwise. W i,j
a,b can also be set in a more flexible way based on how

important the given corresponding pair is. Note: the correspondence can be many to
many correspondence.

Ωa is an ma ×ma diagonal matrix, where Ωa(i, i) =
∑c

b=1

∑
jW

i,j
a,b.

D =




D1 · · · 0
· · ·

0 · · · Dc


 or




I1 · · · 0
· · ·

0 · · · Ic


 depending on what constraint we are using.

Z =




X1 · · · 0
· · ·

0 · · · Xc


, L =




µ2L1 + µ1Ω1 −µ1W1,2 · · · −µ1W1,c

· · ·
−µ1Wc,1 −µ1Wc,2 · · · µ2Lc + µ1Ωc


.

Y ik is the mapping result of xik in the common space (d dimensional) (Yk is an mk ×
d matrix). (YT1 ,Y

T
2 , · · · ,Y

T
c )

T = γ1:d, where γ1:d represent eigenvectors of Lγ = λDγ
corresponding to the d smallest non-zero eigenvalues.
Fk is a mapping to map xik to the common space (d dimensional): FT

k xi (Fk is a pk ×
d matrix). (FT1 ,F

T
2 , · · · ,F

T
c )

T = γ1:d, where γ1:d represent eigenvectors of ZLZTγ =
λZDZTγ corresponding to the d smallest non-zero eigenvalues.

Figure 4.3. Notation used in Manifold Projections.

computation of embeddings (rather than directly computing an embedding). The

cost function for this case is as follows:

C(F1, · · · ,Fc) = 0.5µ1

c∑

a=1

c∑

b=1

ma∑

i=1

mb∑

j=1

‖FT
a x

i
a −F

T
b x

j
b‖

2W i,j
a,b

+0.5µ2

c∑

k=1

mk∑

i=1

mk∑

j=1

‖FTk x
i
k −F

T
k x

j
k‖

2W i,j
k , (4.2)

where Fk is the mapping function to map instances from Xk to the new space. Com-

pared to instance-level alignment, feature-level alignment uses F T
k x

i
k to approximate
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Y ik. In some applications, we also want to consider a possible translation follow-

ing the linear transform, i.e. using FT
k x

i
k + tk to approximate Y ik. In fact, such a

translation can be naturally combined with C(F1, · · · ,Fc). Note that FT
k x

i
k + tk =

[FT
k , tk][x

i
k
T
, 1]T . To consider the translations, what we need to do is to add a new

feature (with value 1) to each xik ∈ Xk. The form of C(F1, · · · ,Fc) still holds.

Theorem 4. Eigenvectors corresponding to the minimum eigenvalues of ZLZTγ =

λZDZTγ provide optimal linear mappings to align X1, · · · , Xc for the cost function

C(F1, · · · ,Fc).

Proof: When c = 1: It is trivial to see that

C(F1) = 0.5µ2

m1∑

i=1

m1∑

j=1

‖FT1 x
i
1 −F

T
1 x

j
1‖

2W i,j
1 = µ2F

T
1 X1L1X

T
1 F1. (4.3)

When c = 2:

The first term of the cost function becomes

0.5µ1

2∑

a=1

2∑

b=1

ma∑

i=1

mb∑

j=1

‖FTa x
i
a −F

T
b x

j
b‖

2W i,j
a,b = µ1

m1∑

i=1

m2∑

j=1

‖FT1 x
i
1 −F

T
2 x

j
2‖

2W i,j
1,2 (4.4)

= Trace(µ1(F
T
1 X1,F

T
2 X2)

(
Ω1 −W1,2

−W2,1 Ω2

)(
XT

1 F1
XT

2 F2

)
). (4.5)

The second term can be written as:

0.5µ2

2∑

k=1

mk∑

i=1

mk∑

j=1

‖FT
k x

i
k −F

T
k x

j
k‖

2W i,j
k

= 0.5µ2

m1∑

i=1

m1∑

j=1

‖FT1 x
i
1 −F

T
1 x

j
1‖

2W i,j
1 + 0.5µ2

m2∑

i=1

m2∑

j=1

‖FT2 x
i
2 −F

T
2 x

j
2‖

2W i,j
2 , (4.6)

where

0.5

m1∑

i=1

m1∑

j=1

‖FT1 x
i
1 −F

T
1 x

j
1‖

2W i,j
1 = Trace(FT1 X1L1X

T
1 F1), (4.7)

0.5

m2∑

i=1

m2∑

j=1

‖FT2 x
i
2 −F

T
2 x

j
2‖

2W i,j
2 = Trace(FT2 X2L2X

T
2 F2). (4.8)

So

C(F1,F2) = Trace((FT1 X1,F
T
2 X2)

(
µ2L1 + µ1Ω1 −µ1W1,2

−µ1W2,1 µ2L2 + µ1Ω2

)(
XT

1 F1
XT

2 F2

)
) (4.9)
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= Trace((FT1 ,F
T
2 )

(
X1 0
0 X2

)(
µ2L1 + µ1Ω1 −µ1W1,2

−µ1W2,1 µ2L2 + µ1Ω2

)(
XT

1 0
0 XT

2

)(
F1
F2

)
)

(4.10)

Similarly, when c > 2:

C(F1, · · · ,Fc) = Trace(γTZLZTγ), (4.11)

where γ = [FT
1 , · · · ,F

T
c ]

T . We can verify the result by expanding the right hand

side of the equation. The matrix L is used to join the given manifolds such that the

underlying structure in common can be explored.

To remove an arbitrary scaling factor in the embedding, we impose an extra con-

straint:
FTk XkX

T
k Fk = Ik, for k = 1, · · · c. (4.12)

or
FTk XkDkX

T
k Fk = Ik, for k = 1, · · · c. (4.13)

where Ik is a pk × pk identity matrix. When the constraint in Equation 4.13 is used,

the matrices Dk (k = 1, · · · , c) provide a natural measure on the vertices (instances)

of the graph. If the value Di,i
k is large, it means xik is more important. Without such

constraints, all instances could be mapped to the same location in the new space. A

similar constraint is also used in Laplacian eigenmaps [4].

The constraint in Equation 4.12 can be re-written as

γTZZTγ = I. (4.14)

Similarly, the constraint in Equation 4.13 can be re-written as

γTZDZTγ = I. (4.15)

When d = 1, the optimization problem can be written as:

arg min
γ:γTZDZT γ=1

C(F1, · · · ,Fc) = arg min
γ:γTZDZT γ=1

γTZLZTγ (4.16)

By using Lagrange multipliers, it can be shown that the solution to this equation is

the same as the minimum eigenvector solution to

ZLZTγ = λZDZTγ. (4.17)
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When d > 1, the problem becomes argminγ:γTZDZT γ=I Trace(γ
TZLZTγ). Standard

methods [30] show that the solution to find a d dimensional alignment is provided

by the eigenvectors corresponding to the d lowest eigenvalues of the same generalized

eigenvalue decomposition equation.

Theorem 5. Eigenvectors corresponding to the minimum eigenvalues of Lγ = λDγ

provide optimal embeddings to align X1, · · · , Xc for the cost function C(Y1, · · · ,Yc).

This instance-level alignment problem is simpler than the feature-level alignment.

The proof (skipped) is similar to the proof of Theorem 4.

4.3 The Main Framework and Some Special Cases

In this section, we first present manifold projections framework, and then discuss

how some previously studied approaches are obtained as special cases of the frame-

work. We also discuss how the main algorithmic framework can be adapted to handle

the situation when no correspondence is available.

4.3.1 The Main Algorithmic Framework

The main algorithmic framework is summarized in Figure 4.4.

4.3.2 Laplacian Eigenmaps and LPP

When c = 1, µ1 = 0, and µ2 = 1, equations (4.1) and (4.2) reduce to

C(Y1) = 0.5

m1∑

i=1

m1∑

j=1

‖Y i1 − Y
j
1‖

2W i,j
1 (4.18)

and

C(F1) = 0.5

m1∑

i=1

m1∑

j=1

‖FT1 x
i
1 −F

T
1 x

j
1‖

2W i,j
1 , (4.19)

which are exactly the loss functions of Laplacian eigenmaps [4] and LPP [33]. When

c = 1, there is only one given manifold, so the target is simplified to mapping the

given dataset to a lower dimensional space preserving its local geometry. This is what
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1. Construct the relationship matrices Wk(k = 1 · · · c) to model the
local geometry of each manifold, and Wa,b (a, b ∈ {1, · · · , c}) to
model the correspondence relationship across manifolds.

2. Create the joint manifold:

• Compute the matrices L,Z and D. They are used to model the
joint structure.

3. Compute the optimal embedding results (or mapping func-
tions) to reduce the dimensionality of the joint structure:

• instance-level alignment: The d dimensional embedding result
is computed by d minimum eigenvectors γ1 · · · γd of the generalized
eigenvalue decomposition Lγ = λDγ.

• feature-level alignment: The d dimensional mapping function
is computed by d minimum eigenvectors γ1 · · · γd of the generalized
eigenvalue decomposition ZLZTγ = λZDZTγ.

4. Find the correspondence between Xa and Xb:

• instance-level alignment: Let Yk be part of [γ1 · · · γd] (from
row 1 +

∑k−1
a=1ma to row

∑k
a=1ma). Now Y ia and Yjb are in the

same space and can be directly compared.

• feature-level alignment: Let Fk be part of [γ1 · · · γd] (from row
1 +

∑k−1
a=1 pa to row

∑k
a=1 pa). Now FTa x

i
a and FTb x

j
b are in the

same space and can be directly compared.

Figure 4.4. The algorithmic framework for manifold projections.

regular dimensionality approaches are solving. So Laplacian eigenmaps and LPP are

obtained as special cases of our framework.

4.3.3 General Forms of Semi-Supervised Manifold Alignment

When c = 2 and µ2 = 1, equations (4.1) and (4.2) reduce to

C(Y1,Y2) = µ1

m1∑

i=1

m2∑

j=1

‖Y i1 − Y
j
2‖

2W i,j
1,2 + 0.5

m1∑

i=1

m1∑

j=1

‖Y i1 − Y
j
1‖

2W i,j
1

+0.5

m2∑

i=1

m2∑

j=1

‖Y i2 − Y
j
2‖

2W i,j
2 , (4.20)
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and

C(F1,F2) = µ1

m1∑

i=1

m2∑

j=1

‖FT
1 x

i
1 −F

T
2 x

j
2‖

2W i,j
1,2

+0.5

m1∑

i=1

m1∑

j=1

‖FT1 x
i
1 −F

T
1 x

j
1‖

2W i,j
1 + 0.5

m2∑

i=1

m2∑

j=1

‖FT2 x
i
2 −F

T
2 x

j
2‖

2W i,j
2 . (4.21)

The loss functions of semi-supervised manifold alignment [31] and its linear approxi-

mation [71] are special cases of C(Y1,Y2) and C(F1,F2), when the given correspon-

dence is constrained to be one to one correspondence. An advantage of the proposed

algorithms is that they can also handlemany to many correspondences. The ability

to handle many to many correspondences is extremely important for real-world ap-

plications, and offers us the ability to solve label-based alignment problems (Chapter

6) and unsupervised alignment problems (Section 4.3.6).

4.3.4 Canonical Correlation Analysis

There is an interesting connection between our feature-level alignment algorithm

and canonical correlation analysis (CCA) [34]. Following the notation we are using,

CCA can be written with a least-square formulation as follows (Chapter 1.1 of [16]

has a detailed description):

minF1,F2
‖FT

1 X1 −F
T
2 X2‖

2,

s.t. FT1 X1X
T
1 F1 = I1 and FT2 X2X

T
2 F2 = I2. (4.22)

The loss function shown above is the same as C(F1,F2) shown in Equation 4.21,

when the given correspondence is one to one correspondence, µ1 = 1 and µ2 = 0. µ2 =

0 means the manifold topology does not need to be respected. The above constraint

is also the same as the constraint we use in our algorithm (See Equation 4.12). So

CCA can be obtained as a special case from manifold projections framework, which

goes beyond CCA in that it can also handle many to many correspondences, and take

the given manifold topology into consideration.
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4.3.5 Multiple Manifold Alignment

When c ≥ 3, the framework can automatically handle multiple manifold alignment

problems, which are not well studied yet. Multiple manifold alignment problems

arise in many applications, such as finding common topics shared by many document

collections, and in data mining over multiple language datasets.

4.3.6 Unsupervised Manifold Alignment

When correspondences are not given, and the datasets Xa and Xb are represented

by different features, it is difficult to directly compare xia and xjb. To build mappings

between them, we propose an approach using the relation between xia and its neighbors

to characterize xia’s local geometry. Using relations rather than features to represent

local geometry makes the direct comparison of xia and xjb possible. This approach

can be combined with the main algorithm in Figure 4.4. In this section, we first

show how local patterns representing local geometry are computed and matched, and

then explain why this is valid (see Theorem 6). Some notation used in unsupervised

alignment is as follows: Rxia
is a (k + 1) × (k + 1) matrix representing the local

geometry of xia. Rxia
(u, v) = distance(zu, zv), where z1 = xia, {z2, · · · zk+1} are x

i
a’s k

nearest neighbors. Similarly, Rxj
b
is a (k + 1)× (k + 1) matrix representing the local

geometry of xib. The order of xjb’s k nearest neighbors have k! permutations, so Rxj
b

has k! variants. Let {Rxj
b
}h denote its hth variant.

Given Xa, we first construct an ma ×ma distance matrix Distancea(i, j) = Eu-

clidean distance between xia and xja. We then decompose it into elementary contact

patterns of fixed size k + 1. Each local contact pattern Rxia
is represented by a

submatrix, which contains all pairwise distances between local neighbors around xia.

Such a submatrix is a 2D representation of a high dimensional substructure, and is

independent of the coordinate frame. All such submatrices together contain enough

information to reconstruct the whole manifold. Xb is processed similarly and the
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distance between Rxia
and Rxj

b
is defined as follows:

dist(Rxia
, R

xj
b

) = min
1≤h≤k!

min(dist1(h), dist2(h)), (4.23)

where
dist1(h) = ‖{Rxj

b

}h − k1Rxia
‖, (4.24)

dist2(h) = ‖Rxia
− k2{Rxj

b

}h‖, (4.25)

k1 = trace(RT
xia
{R

xj
b

}h)/trace(R
T
xia
Rxia

), (4.26)

k2 = trace({R
xj
b

}ThRxia
)/trace({R

xj
b

}Th {Rxj
b

}h). (4.27)

Finally, Wa,b is computed as follows:

W i,j
a,b = e

−dist(R
xia
,R

x
j
b

)/δ2

. (4.28)

Theorem 6. Given two (k + 1)× (k + 1) distance matrices R1 and R2,

k2 = trace(RT
2R1)/trace(R

T
2R2) minimizes ‖R1 − k2R2‖

and

k1 = trace(RT
1R2)/trace(R

T
1R1) minimizes ‖R2 − k1R1‖.

Proof: Finding k2 is formalized as

k2 = argmin
k2

‖R1 − k2R2‖, (4.29)

where ‖ · ‖ represents Frobenius norm.

It is easy to verify that

‖R1 − k2R2‖ = trace(RT
1R1)− 2k2trace(R

T
2R1) + k22trace(R

T
2R2). (4.30)

Since trace(RT
1R1) is a constant, the minimization problem is equal to

k2 = argmin
k2

k22trace(R
T
2R2)− 2k2trace(R

T
2R1). (4.31)

Differentiating with respect to k2, (4.31) implies

2k2trace(R
T
2R2) = 2trace(RT

2R1). (4.32)

(4.32) implies
k2 = trace(RT

2R1)/trace(R
T
2R2). (4.33)

Similarly,
k1 = trace(RT

1R2)/trace(R
T
1R1). (4.34)
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To compute matrix Wa,b, we need to compare all pairs of local patterns. When

comparing local patterns Rxia
and Rxj

b
, we assume xia matches xjb. However, how xia’s

k neighbors match xjb’s k neighbors is not known to us. To find the best possible

match, we have to consider all k! possible permutations. This is tractable, since we

are comparing local patterns and k is always small. Rxia
and Rxj

b
are from different

manifolds, so their sizes could be quite different. In Theorem 6, we show how to

find the best re-scaler to enlarge or shrink one of them to match the other. It is

straightforward to show that dist(Rxia
, Rxj

b
) considers all the possible matches between

two local patterns and returns the distance computed from the best possible match.

Other Ways to Compute Wa,b: dist(·) defined in this section provides a general

way to compare local patterns. In fact, the local pattern generation and comparison

should be application oriented. For example, many existing kernels based on the

idea of convolution kernels [32] can be applied here. Similarity W i,j
a,b is then directly

computed from dist(i, j) of neighboring points with either heat kernel e−dist(i,j)/δ
2

or

something like vl − dist(i, j), where vl is larger than dist(i, j) for any i and j.

4.4 A Comparison of Manifold Alignment Approaches

All manifold alignment approaches need to balance two goals: matching instances

in correspondence and preserving local geometry. The first goal is obviously the key.

The second goal lowers the chance of running into overfitting problems by taking

consideration of unlabeled data. Local geometry preservation is extremely important

when we only have a limited number of training correspondences.

In Procrustes alignment, local geometry is perfectly preserved. Recall that the

only goal in its first step is to map the data to a lower dimensional space preserving

the local geometry. In its second step, alignment is achieved by removing rotational,

scaling, reflectional and translational components. None of these operations will

change the local geometry. The chief drawback of Procrustes alignment is there is no
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guarantee that a reasonably good alignment result can be achieved (for the training

data) when the underlying structures of the given manifolds are different. Diffusion

maps-based alignment slightly relaxes the local geometry constraint by using affine

matching in the second step. The “shearing” operation in affine matching might

change the local geometry.

Manifold projections framework combines two separate steps mentioned above in

one step and uses µ1 and µ2 to balance the two goals. When µ1 = 0 and µ2 = 1, the

approach is reduced to regular dimensionality reduction; When µ1 = 1 and µ2 = 0, it

is reduced to a linear transform (for feature-level alignment). A significant challenge

in one-step alignment is how to find the best µ1/µ2 for each individual application.

In manifold projections framework, the local geometry cannot be preserved as well

as two-step alignment and thus the alignment result might not be generalized to

new instances very well. When the given manifolds are excessively complex, such as

having too many degrees of freedom in relation to the amount of data available or

the training data is not well sampled, overfitting can occur. The problem becomes

worse for instance-level alignment, where the mapping function for alignment can be

any function and can be over-tuned for the training data. The feature-level alignment

can reduce the chance of overfitting, since there is a strong constraint to guarantee

robustness: the mapping function has to be a linear transform.

4.5 Knowledge Transfer via Manifold Alignment

In this section, we use two input datasets to explain the framework for knowl-

edge transfer based on feature-level manifold alignment. The same framework can

naturally generalize to multiple datasets. Following the main algorithm discussed

in Section 4.3, once mapping functions like Fa and Fb are available, we can map

instances from each individual manifold to the latent space as follows:
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For any xia ∈ Xa, its representation in latent space is FT
a x

i
a. (4.35)

For any xjb ∈ Xb, its representation in latent space is FT
b x

j
b. (4.36)

Compared to Fa and Fb, FaF
+
b and FbF

+
a go one step further. They directly build

mappings between input manifolds, and can be used as “keys” to translate instances

between spaces defined by very different features. Recall that Fa is a pa × d matrix,

Fb is a pb × d matrix. The formulas to translate instances across translated spaces

are as follows:

For any xia ∈ Xa, its representation in Xb is (FaF
+
b )Txia. (4.37)

For any xjb ∈ Xb, its representation in Xa is (FbF
+
a )Txjb. (4.38)

When the alignment is perfect, FT
a x = FT

b y holds for any pair (x, y) in correspon-

dence, where x ∈ Xa, y ∈ Xb. To show (4.37) is valid (the validity of (4.38) can be

shown similarly), we need to prove (FaF
+
b )

Tx is a solution to y satisfying the equation

FT
a x = FT

b y. This is trivial when Fb is a full rank square matrix. Now we discuss

two more general cases:

Case 1: When F+
b Fb = I. The solution to y might not be unique. It is easy to

verify that (FaF
+
b )

Tx is one of them:

FT
b y = FT

a x =⇒ FT
b y = FT

b (F
T
b )

+FT
a x =⇒ FT

a x = FT
b (FaF

+
b )

Tx. (4.39)

Case 2: When FbF
+
b = I. The solution to y might not exist, and the goal is

then to find the y that best fits the equation. A well-known solution to this problem

is given by y = (FaF
+
b )

Tx. A similar idea has also been used to solve least squares

problems.

FT
a x = FT

b y =⇒ (FT
b )

+FT
a x = (FT

b )
+FT

b y = y =⇒ y = (FaF
+
b )

Tx. (4.40)

Manifold alignment based knowledge transfer is illustrated in Figure 4.5, where the

blue solid lines represent the “keys”. The two keys (FaF
+
b and FbF

+
a ) are extremely
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Figure 4.5. Knowledge transfer across manifolds.

useful in knowledge transfer. One thing to note is that the knowledge transfer is done

via the latent space, which only has information that is common to all input datasets.

So only the knowledge shared across all input datasets will be transferred, and the

knowledge that is only useful for one particular input dataset will be automatically

filtered out.

The knowledge transfer framework is based on feature-level alignment algorithms.

In such algorithms, the computational complexity (of training) depends on the num-

ber of features rather than the number of instances. In the algorithmic framework, the

most time consuming step is eigenvalue decomposition, which requires O(d(
∑c

i=1 pi)
2)

time to align cmanifolds (manifold i is defined by pi features) in a d dimensional space.

We know no matter how large the dataset is, the number of features is determined,

and we can always set a threshold to filter out the features that are not quite useful, so

our feature-level algorithm can handle problems at a very large scale. The testing is

computationally tractable, since what we need to do is just apply a linear mapping. In

real applications, the testing can be done in real time without much computational

cost. So our mapping functions for alignment can even be combined with search

engines to provide real time knowledge transfer like automatic query translation.
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4.6 Experimental Results

In this section, we first use a bioinformatics example to illustrate how our manifold

alignment algorithms work, then we apply our approaches to two real-world problems

in information retrieval: corpora alignment and cross-lingual information retrieval. In

all experiments, µ1 = µ2 = 1, and weight matrices Wi are adjacency matrices created

by k-nearest-neighbor approach, where k = 10.

4.6.1 A Protein Example

In this example, we directly align the given manifolds and use some pictures to

illustrate how the manifold alignment algorithms work. The given manifolds come

from a real protein tertiary structure dataset, which is described in Section 3.5.

In this test, we study a Glutaredoxin protein PDB-1G7O (this protein has 215

amino acids in total), whose 3D structure has 21 models. We select Model 1, Model

21 and Model 10 for testing. These models are related to the same protein, so it

makes sense to treat them as manifolds to test our techniques. We denote the ith

model by Manifold Xi, which is represented by matrix Xi. X1, X2 and X3 are all

3 × 215 matrices. To evaluate how manifold alignment can re-scale manifolds, we

manually stretch manifold X2 by letting X2 = 4X2, manifold X3 by letting X3 = 2X3.

The comparison of Manifold X1 and X2 (row vectors of X1 and X2 represent points

in the 3D space) are shown in Figure 4.6(A). The comparison of all three manifolds

are shown in Figure 4.7(A). In biology, such chains are called protein backbones. It is

clear that manifold X2 is larger than X3, which is larger than X1. The orientations of

these manifolds are also quite different. To simulate pairwise correspondence infor-

mation, we uniformly selected 10% amino acids as correspondence resulting in three

3× 22 matrices.
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Procrustes Manifold Alignment:

Since such models are already low dimensional (3D) embeddings of the distance ma-

trices, we skip Step 1 and 2 in Procrustes alignment algorithm [70]. We run the

algorithm from Step 3 (Figure 3.2) to align X1 and X2. Procrustes alignment removes

the translational, rotational and scaling components so that the optimal alignment

between the instances in correspondence is achieved. The algorithm identifies the

re-scale factor k as 0.2471, and the rotation matrix Q as

Q =




0.6045 −0.5412 0.5845
0.6212 0.7796 0.0794
−0.4987 0.3151 0.8075


 .

X∗
2 , the new representation of X2, is computed as X∗

2 = kX2Q. We plot X∗
2 and

X1 in the same graph (Figure 4.6(B)). The result shows that Manifold X2 is rotated

and shrunk to the similar size as X1, and now the two manifolds are aligned very well.

Manifold Projections (Feature-Level):

We plot 3D (Figure 4.6(C)), 2D (Figure 4.6(D)) and 1D (Figure 4.6(E)) feature-level

alignment results in Figure 4.6. The nD alignment results are based on the top n

eigenvectors corresponding to the smallest eigenvalues. These figures clearly show

that the alignment of two different manifolds is achieved by projecting the data (rep-

resented by the original features) onto a new space using our mapping functions.

Compared to the 3D alignment result of Procrustes alignment, 3D alignment from

manifold projection changes the topologies of both manifolds to make them match.

Recall that Procrustes alignment does not change the shapes of the given manifolds.

The mapping functions F1 and F2 to compute alignment are as follows:

F1 =




0.1016 −0.1592 0.9392
−0.2473 0.9109 0.2449
0.9331 0.2935 0.0055


 ,

F2 =




0.1828 −0.1041 0.1081
−0.0157 0.1603 0.1926
0.1555 0.1492 −0.0951


 .
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Manifold Projections (Instance-Level):

We tried instance-level manifold projections using the same data and correspondence.

We only have two input datasets for this test and the given correspondence is one

to one correspondence, so running instance-level manifold projections is the same as

running semi-supervised manifold alignment. We plot 3D (Figure 4.6(F)), 2D (Fig-

ure 4.6(G)) and 1D (Figure 4.6(H)) results in Figure 4.6. These figures show that the

alignment of different manifolds is achieved in the latent space. Instance-level align-

ment is sensitive to the constraint we use and the way that the adjacency graphes

are constructed. The reason for this is that the mapping function in instance-level

alignment can be any function, which might “overfit” the training data and does not

generalize well to the test data. Under another experiment setting with a different

number of training corresponding pairs, instance-level alignment failed while feature-

level alignment succeeded. We checked the results and found that the test data was

not aligned well but the training instances were perfectly aligned. The feature-level

alignment can reduce the chance of overfitting, since there is a strong constraint to

guarantee robustness: the mapping function has to be a linear transform.

Unsupervised Manifold Alignment:

We tested our manifold alignment approach assuming no pairwise correspondence

information is given. We plot 3D (Figure 4.6(I)), 2D (Figure 4.6(J)) and 1D (Fig-

ure 4.6(K)) alignment results in Figure 4.6. nD alignments are based on the top n

eigenvectors associated with the smallest eigenvalues. A more detailed description

of the setting of this experiment is in [71]. These figures show that alignment can

still be achieved using the local geometry matching algorithm when no pairwise cor-

respondence information is given.
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Figure 4.6. (A): Comparison of Manifold X1(red) and X2(blue) before alignment; (B):
Procrustes manifold alignment; (C): 3D alignment using feature-level manifold projections;
(D): 2D alignment using feature-level manifold projections; (E): 1D alignment using feature-
level manifold projections; (F): 3D alignment using instance-level manifold projections; (G):
2D alignment using instance-level manifold projections; (H): 1D alignment using instance-
level manifold projections; (I): 3D alignment using unsupervised manifold alignment; (J): 2D
alignment using unsupervised manifold alignment; (K): 1D alignment using unsupervised
manifold alignment.
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Figure 4.7. (A): Comparison of Manifold X1(red), X2(blue) and X3(green) before align-
ment; (B): 3D alignment using feature-level multiple manifold projections; (C): 2D align-
ment using feature-level multiple manifold projections; (D): 1D alignment using feature-level
multiple manifold projections.

Multiple Manifold Alignment:

Our algorithmic framework for multiple manifold alignment using feature-level algo-

rithm (c = 3) is also tested with all three manifolds. The alignment results are shown

in Figure 4.7. From these figures, we can see that our approach can project all three

manifolds to the same space, where alignment is achieved. The mapping functions

F1, F2 and F3 to compute alignment are as follows:

F1 =




0.0852 0.1467 0.8418
−0.1691 −0.8351 0.2294
0.8531 −0.2100 −0.0258


 ,

F2 =




0.1593 0.1053 0.0904
−0.0049 −0.1464 0.1736
0.1473 −0.1245 −0.0890


 ,

F3 =



−0.0566 0.3056 0.2712
−0.2015 −0.2820 0.2566
0.3813 −0.1267 0.2291


 .
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4.6.2 Alignment of Document Corpora

Another application of manifold alignment in information retrieval is corpora

alignment, where corpora can be aligned so that knowledge transfer between different

collections is possible. In this section, we apply our manifold alignment framework

(feature-level alignment, c = 2) to this problem.

The dataset we use in this experiment is the NIPS (1-12) full paper dataset, down-

loadable from http://www.cs.toronto.edu/∼roweis/data.html. This dataset includes

1,740 papers and 2,301,375 tokens. We first represent this dataset using two different

topic spaces: Latent Semantic Indexing (LSI) topic space [26] and Latent Dirichlet

Allocation (LDA) topic space [9]. Then the different representations of the original

dataset are aligned using our manifold alignment algorithm. The reasons why we

align such “simulated” datasets rather than two real data sets are as follows: (1) The

two sets are defined by different features, LSI topics and LDA topics, so they are

sufficient to test our methods for transferring knowledge across domains. (2) Even

though the representations of the two sets are different, they are constructed from

the same data. So the resulting datasets are related and should be aligned well. (3)

Both LSI and LDA topics can be mapped back to English words, so the mapping

functions are semantically interpretable. This helps us understand how alignment of

two collections is achieved (by aligning their underlying topics). (4) The problem

of aligning two topic spaces itself is inherently useful, since it computes the topics

shared by two collections.

Topic modeling is designed to extract succinct descriptions of the members of

a collection that enable efficient generalization and further processing. It has been

successfully used to analyze large amounts of textual information for many tasks.

A topic could be thought as a multinomial word distribution learned from a collec-

tion of textual documents using either linear algebraic or statistical techniques. The
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words that contribute more to each topic provide keywords that briefly summarize

the themes in the collection.

If a topic space S is spanned by a set of r topic vectors, we write the set as

S = (t(1), · · · , t(r)), where topic t(i) is a column vector (t(i)1, t(i)2 · · · , t(i)n)
T . Here

n is the size of the vocabulary set, ‖t(i)‖ = 1 and the value of t(i)j represents the

contribution of term j to t(i). Obviously, S is an n × r matrix. We know the term-

document matrix A (an n×m matrix) models the corpus, where m is the number of

the documents and columns of A represent documents in the “term” space. The low

dimensional embedding of A in the “topic” space S is then ATopic = STA. ATopic is

a r ×m matrix, whose columns are the new representations of documents in S.

We extract 400 topics from the dataset with both LDA and LSI models (in LSI,

we simply select the top 400 topics; in LDA, we set the number of topics to 400).

The top 10 words of topic 1-5 from each model are shown in Table 4.1 and Table 4.2.

It is clear that none of the corresponding topics are similar across the two sets. We

represent the original dataset in both topic spaces. This step eliminates a lot of

information from the original set and can only provide us with an approximation.

We denote the dataset represented in LDA topic space as manifold X1 (represented

by a 400× 1, 740 matrix X1), and in LSI topic space as manifold X2 (represented by

a 400× 1, 740 matrix X2).

Following our main framework (feature-level alignment, c = 2), given 25% uni-

formly selected documents as the initial correspondences, we align these two col-

lections in a 300 dimensional space. The mapping functions F1 and F2 are both

400 × 300 matrices. They change the original LDA, LSI topic vectors (defining the

original spaces) to vectors spanning the new joint space (latent space). Such vectors

can be treated as latent topics (spanning the latent space), which are represented

over LDA/LSI topics. We know LDA/LSI topics are represented over English words,

so latent topics can also be directly represented with English words. In Table 4.3 and
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Table 4.1. Topic 1-5 (LDA).

Top 10 Terms

generalization function generalize shown performance theory size shepard general generalizes

hebbian hebb plasticity activity neuronal synaptic anti hippocampal modification

grid moore methods atkeson steps weighted start interpolation space locally

measure standard data dataset datasets results experiments measures ranking significantly

energy minimum yuille minima shown local university physics valid make

Table 4.2. Topic 1-5 (LSI).

Top 10 Terms

fish terminals gaps arbor magnetic die insect cone crossing wiesel

learning algorithm data model state function models distribution policy algorithms

model cells neurons cell visual figure time neuron response system

data training set model recognition image models gaussian test classification

state neural network model time networks control system models states

4.4, we show the top 5 latent topics constructed from manifold X1 (LDA space) and

X2 (LSI space). From these tables, we can see that the corresponding latent topics

are very similar to each other. This implies that the spaces spanned by two different

latent topic sets are almost the same (they approximate the latent space). An inter-

esting thing is that the latent topics constructed from LSI (or LDA) space are linear

combinations of the existing LSI (or LDA) topics. So the new space is a subspace

of the original LSI (or LDA) space. The alignment of two document collections is in

fact done by finding a common topic subspace shared by both LSI and LDA spaces.

We also ran a test to directly translate test documents from LDA space to LSI

space using F1F
+
2 (defined in Figure 4.3). For each test document x, we compare its

mapping result to all documents in LSI space and see if x’s true match is among its j

nearest neighbors. The results are summarized in Table 4.5. The results show that for

any given document in LDA space, we can translate it to LSI space. Its translation

has a roughly 89% probability of being the nearest neighbor of its true match. This

test explains how knowledge is transferred between different topic spaces. The same

technique can also be applied to build mappings between datasets defined by different
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Table 4.3. Top 5 latent topics constructed from LDA space.

Top 10 Terms

network learning networks training error input neural recurrent output hmm

network neural input networks figure output hierarchical xor neurons units

data set training model test models error hmm missing parameters

function figure tangent basis vector measure university theorem average convergence

learning input training figure units visual pattern output unit error

Table 4.4. Top 5 latent topics constructed from LSI space.

Top 10 Terms

network learning networks training input error hidden units neural output

network neural input output figure networks neurons processing units neuron

data training set model mixture error test models recognition performance

function theorem approximation figure theory functions process dynamics basis vector

learning input training figure visual units pattern unit output error

Table 4.5. The probability that x’s true match is among (F1F
+
2 )Tx’s j nearest neighbors.

j 1 2 3 4 5

% 89.6552% 91.2644% 91.8774% 92.1073% 92.4904%

j 6 7 8 9 10

% 92.56700% 92.8736% 93.2567% 93.2567% 93.4110%

languages. The latter is useful in machine translation and cross-lingual information

retrieval.

4.6.3 European Parliament Proceedings Parallel Corpus

In this section, we compare our approaches with state of the art methods using a

real-world cross-lingual information retrieval dataset. The task here is to find exact

correspondences between documents in different languages. This is quite useful, since

it allows users to query a document in their native language and retrieve documents

in a foreign language. Seven approaches are compared in this experiment. Three of

them are instance-level approaches: Procrustes alignment with Laplacian eigenmaps,

Affine matching with Laplacian eigenmaps, and instance-level manifold projections.

The other four are feature-level approaches: Procrustes alignment with LPP, Affine

matching with LPP, CCA, and feature-level manifold projections. Procrustes align-
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ment and affine matching can only handle pairwise alignment, so when we align two

collections the third collection is not taken into consideration. Manifold projections

and CCA align all input collections simultaneously. In contrast to most approaches

in cross-lingual knowledge transfer, we are not using any specialized pre-processing

technique from information retrieval to tune our algorithms to this task.

4.6.3.1 Data

In this experiment, we make use of the proceedings of European Parliament [38],

dating from 04/1996 to 10/2009. The corpus includes versions in 11 European

languages: French, Italian, Spanish, Portuguese, English, Dutch, German, Danish,

Swedish, Greek and Finnish. Altogether, the corpus comprises of about 55 million

words for each language. The data for our experiment comes from English, Italian

and German collections. The dataset has many files, each file contains the utter-

ances of one speaker in turn. We treat an utterance as a document. We filtered out

stop words, and extracted English-Italian-German document triples where all three

documents have at least 75 words. This resulted in 70,458 document triples. We

then represented each English document with the most commonly used 2,500 English

words, each Italian document with the most commonly used 2,500 Italian words, and

each German document with the most commonly used 2,500 German words. The

documents were represented as bags of words, and no tag information was included.

The topical structure of each collection can be thought as a manifold over documents.

Each document is a sample from the manifold. To our knowledge, no one has ever

used a dataset at this scale to test manifold alignment approaches.

4.6.3.2 A Comparison of All Approaches

Instance-level manifold projections cannot process a very large collection since it

needs to do an eigenvalue decomposition of an (m1+m2+m3)×(m1+m2+m3) matrix,

where mi represents the number of examples in the ith input dataset. Approaches
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based on Laplacian eigenmaps suffer from a similar problem. In this experiment, we

use a small subset of the whole dataset to test all seven approaches. 1, 000 document

triples were used as corresponding triples in training and 1, 500 other document triples

were used as unlabeled documents for both training and testing, i.e. p1 = p2 = p3 =

2, 500, m1 = m2 = m3 = 2, 500. xi1 ←→ xi2 ←→ xi3 for i ∈ [1, 1000]. Similarity

matrices W1, W2 and W3 were all 2, 500 × 2, 500 adjacency matrices constructed

by nearest neighbor approach, where k = 10. To use Procrustes alignment and

Affine matching, we ran a pre-processing step with Laplacian eigenmaps and LPP to

project the data to a d = 200 dimensional space. In CCA and feature-level manifold

projections, d is also 200, i.e. we map all three collections to the same 200 dimensional

space.

Our testing scheme is as follows: for each given document in one language, we

retrieve its top K most similar documents in another language. The probability that

the true match is among the top K documents is used to show the goodness of the

method. Here, we consider three scenarios: English ↔ Italian, English ↔ German

and Italian ↔ German. Figure 4.8 summarizes the average performance of all these

three scenarios.

The first result we can see from Figure 4.8 is that all three instance-level ap-

proaches outperform the corresponding feature-level approaches. There are two possi-

ble reasons for this. One is that feature-level approaches use linear mapping functions

to compute lower dimensional embedding or alignment. Instance-level approaches are

based on non-linear mapping functions, which are more powerful than linear map-

pings. Another reason is that the number of training samples in this experiment is

smaller than the number of features. So the training data is not sufficient to deter-

mine the mapping functions for feature-level approaches. Feature-level approaches

have two advantages over instance-level approaches. Firstly, feature-level approaches

learn feature feature correlations, so they can be applied to a very large dataset and

63



directly generalize to new test data. Secondly, their chance of getting into overfitting

problems is much lower than instance-level approaches due to the “linear” constraint

on mapping functions.

The second result from Figure 4.8 is that Procrustes alignment performs better

than Affine matching on both feature-level and instance-level alignments. The reason

is that Affine matching has an extra action compared to Procrustes alignment: shear-

ing. To achieve a high accuracy in training, this action can break the topology of the

given manifold. If the labeled data is sufficient, Affine matching can work well; if the

labeled data is limited, Affine matching has a larger chance of running into overfitting

problems compared to Procrustes alignment. In this experiment, the given labeled

corresponding triples are not sufficient, so Procrustes alignment performs better than

Affine matching.

The third result is that CCA does a very poor job in aligning the test documents.

We also took a closer look at the the training corresponding document triples, and

found that they were perfectly aligned in the result. So it is clear that the poor

performance is due to insufficiency of the training data. When the training data is

limited, CCA has a large chance of overfitting the given correspondences. Feature-

level manifold projections does not suffer from this problem and performs much better

than CCA in this experiment, since the manifold topology also needs to be respected

in the alignment.

4.6.3.3 A Comparison of Feature-level Approaches

Time complexity of feature-level approaches depends on the number of features

rather than the number of instances. We know no matter how large the dataset is,

the number of features is determined. So feature-level approaches can process a very

large dataset. In this experiment, 7, 500 corresponding document triples and 7, 500

documents from each collection were used in training, i.e. p1 = p2 = p3 = 2, 500,
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Figure 4.8. EU Test: A Comparison of All Approaches Using the Average Performance
over All Three Scenarios.

m1 = m2 = m3 = 15, 000. xi1 ←→ xi2 ←→ xi3 for i ∈ [1, 7500]. Similarity matrices

W1, W2 andW3 were all 15, 000×15, 000 adjacency matrices constructed by a nearest

neighbor approach, where k = 10. To use Procrustes alignment and Affine matching,

we pre-processed the dataset by applying LPP to project the data to a d = 200

dimensional space. In CCA and feature-level manifold projections, d = 200. The

test procedure in this test is similar to that used in Section 4.6.3.2. We test all four

feature-level approaches using the remaining 62,958 unlabeled corresponding triples.

All three scenarios: English↔ Italian, English↔ German and Italian↔ German

are considered. The results are summarized in Figure 4.9, 4.10 and 4.11. From these

figures, we can see that the performance on English-Italian alignment is significantly

better than the other two. We also summarize the average performance over all three

scenarios in Figure 4.12. Compared to the experiment in Section 4.6.3.2, CCA does

a much better job in this test. This is due to the large number of corresponding

triples used in the training set. Feature-level manifold projections performs the best
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Figure 4.9. English-Italian.
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Figure 4.10. English-German.
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Figure 4.11. Italian-German.
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in this experiment, achieving roughly 10% improvement over CCA. The improvement

comes from the preservation of manifold topology. In this experiment, Procrustes

alignment and Affine matching do not perform quite well. In the pre-processing step,

LPP is used to project the data from 2,500 dimensional space to a 200 dimensional

space. In this step, dimensionality reduction is done without considering the purpose

of alignment. So some useful information for alignment might be lost. In CCA and

feature-level manifold projections, dimensionality reduction and alignment are done

simultaneously, preserving the information that is useful for alignment in the lower

dimensional embedding. Since the training corresponding triples are sufficient, CCA

performs better than Procrustes alignment in this experiment.
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Figure 4.12. EU Test: A Comparison of Feature-level Approaches.

4.6.3.4 Mapping Function Interpretation and Cross-domain Translation

Feature-level manifold projections results in three mapping functions: F1 (for En-

glish), F2 (for Italian) and F3 (for German) to construct the new latent space. These
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Top Terms
fisheries fishing agency fishermen negotiated applause protocol nos sustainability ports
consumers internet consumer strategies b5 bulgaria behaviour b4 discharge november

strategies swedish courage denmark telecommunications nato credibility wine regional brings
interinstitutional parliaments repeated guarantees century rail finland british choose conciliation

unemployment thursday heads portuguese economies declarations balkans widespread islands india

Figure 4.13. 5 selected mapping functions (English)

Top Terms
pesca agenzia a5 applausi protocollo ripartizione pescatori bilaterali sostenibilita tonnellate

consumatori reca internet consumatore strategie discarico bulgaria novembre allargamento chiusa
strategie svedese interrogazioni occidentali danimarca regionale kyoto coraggio credibilita segretario

parlamenti sentenza interistituzionale aprile ferroviario britannica tecnici essenzialmente unanimita indipendenza
disoccupazione giovedi scientifica portoghese balcani aeree firmato turco maggio piccoli

Figure 4.14. 5 selected mapping functions (Italian)

Top Terms
fischerei fischereipolitik agentur protokolls fischer protokoll ablehnen a5 tatsächlichen arten

verbrauchern verbraucher strategien internet bulgarien entlastung anfragen todesstrafe b4 zukünftigen
schwedischen strategien regionalpolitik frist anfragen westlichen mut nato regionalen minuten

parlamente interinstitutionelle b4 parlamenten urteil spezielle folgt anmerkungen nächster beschluß
portugiesischen personal arbeitslosigkeit offenen wissenschaftlichen polizei verordnungen donnerstag inseln

Figure 4.15. 5 selected mapping functions (German)

three mapping functions project documents from the original English/Italian/German

spaces to the same 200 dimensional space. Each column of Fi is a 2, 500× 1 vector.

Each entry on this vector corresponds to a word. To illustrate how the alignment is

achieved using our approach, we show the words that make the largest contributions

to 5 corresponding triples of columns selected from F1, F2 and F3 in Figure 4.13,

4.14 and 4.15. Our resulting tables resemble inter-language dictionaries, since they

have roughly the same contents but in different languages. Note that we did not use

any dictionary or ad-hoc information retrieval technique in this alignment process.

From these figures, we can see that the corresponding mapping functions can auto-

matically project the documents with similar contents but in different languages to

similar locations in the new space.

As shown in our knowledge transfer framework (Figure 4.5), F1F
+
2 can automati-

cally translate any unseen instance from domain X1 (English) to domain X2 (Italian),
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Italian Words turismo regno reddito sussidiarieta tornata sessuale unito

Translations tourism kingdom income subsidiarity return sexual united

Contributions 0.1433 0.0249 0.0134 0.0060 0.0058 0.0043 0.0034

Figure 4.16. The words that make the largest contributions to the resulting Italian query
generated by F2F

+
1 from English query “UK tourism income”.

German Words fremdenverkehr königreich großbritannien einkommen

Translations tourism kingdom Great Britain income

Contributions 0.0968 0.0279 0.0058 0.0043

Figure 4.17. The words that make the largest contributions to the resulting German
query generated by F3F

+
1 from English query “UK tourism income”.

where F+
2 is the inverse of F2. Similarly, F1F

+
3 can automatically translate any un-

seen instance from domain X1 (English) to domain X3 (Italian). Such a translation

is via the latent space, so the information that is only useful for the source domain

will not be transferred. To illustrate how F1F
+
2 and F1F

+
3 work, we generate an

English query “UK tourism income”, and use these mapping functions to translate

this query into Italian and German. The English query is represented by a vector

of length 2,500, corresponding to 2,500 English words. Only 3 entries on that vector

are 1s, all the other entries are 0s. The resulting Italian and German queries are also

vectors of length 2,500, corresponding to 2,500 Italian/German words. The numbers

on the resulting vectors show the contribution from each Italian/German word to

the queries. We print out top words for the resulting Italian query in Figure 4.16,

top words for the resulting German query in Figure 4.17. The results show that the

resulting Italian query and German query can be used as translations of the input

English query, and applied for cross-lingual information retrieval.

4.7 Remarks

In this chapter we introduced a general framework for manifold alignment. Our

framework computes lower dimensional embedding and alignment simultaneously.

69



Some existing algorithms like CCA, or semi-supervised alignment can be obtained

from this framework as special cases. Our framework can handle many to many cor-

respondences, solve multiple manifold alignment problems and be applied to handle

the situation when no correspondence information is available. As a natural extension

of our manifold alignment algorithms, we presented a knowledge transfer framework

to directly build mappings between spaces defined by different features and discussed

some sample applications. The approaches are described and evaluated both theoret-

ically and experimentally, providing results showing useful knowledge transfer from

one domain to another.
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CHAPTER 5

MANIFOLD ALIGNMENT PRESERVING GLOBAL
GEOMETRY

5.1 Overview

Previous approaches to manifold alignment are designed to only preserve local

geometries of the input manifolds. This objective is not desirable in many applications

where the global geometries of the input datasets also need to be respected. One such

example is from text mining. Documents in different languages can be aligned in a

new space, where direct comparison and knowledge transfer between documents (in

different languages) is desired. Local geometry preserving manifold alignment [31, 71]

does not prevent dissimilar documents in the original space from being neighbors in

the new space (it only encourages similar documents in the original space to be

neighbors in the new space). This could lead to poor performance in some tasks, and

needs to be addressed. In some other applications, the distance between instances also

provides us with valuable information. For example, in a robot navigation problem,

we may be given distances between locations recorded by different sensors, which

are represented in distinct high-dimensional feature spaces. We want to align these

locations based on a partial correspondence, where we also want to preserve the

pairwise distance score. Clearly, manifold alignment based on local geometry may

not be sufficient for such tasks.

To address the problems mentioned above, we describe a novel framework that

constructs functions mapping data instances from different high dimensional datasets

to a new lower dimensional space, simultaneously matching the instances in corre-

spondence and preserving pairwise distances between instances within the original
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dataset. The goal of this framework is illustrated in Figure 5.1. Our algorithm

has several other added benefits. For example, its solution involves computing the

eigenvectors associated with the largest eigenvalues, which are easier and more stable

numerically than computing the smallest eigenvectors used by many other manifold

alignment methods. It also has fewer parameters that need to be specified. The effec-

tiveness of our algorithm is demonstrated and validated in two real-world cross-lingual

information retrieval tasks.
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Figure 5.1. This figure illustrates the goal for manifold alignment preserving global
geometry. X and Y are two input datasets. Three corresponding pairs are given: red i
corresponds to blue i for i ∈ [1, 3]. α and β are mapping functions that we want to construct.
They project instances from X and Y to a new space Z, where instances in correspondence
are projected near each other and pairwise distance within each input set is also respected.

The rest of this chapter is organized as follows. In Section 5.2 we give a theoretical

analysis of the problem. In Section 5.3 we describe our algorithms. Section 5.4

summarizes our experimental results.

5.2 Theoretical Analysis

5.2.1 High Level Explanation

As discussed in Chapter 4, the optimal instance-level solution with regard to the

cost function defined in Equation 4.1 is given by Laplacian eigenmaps [4] on a graph

Laplacian matrix modeling the joint manifold that involves the input datasets and
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the correspondence information, whereas the optimal feature-level solution is given

by locality preserving projections (LPP) [33] on the same graph Laplacian matrix.

To preserve global geometries instead of local geometries, the proposed approach uses

a distance matrix D rather than a Laplacian matrix to represent the joint manifold.

Our contributions are two-fold: (a) we provide a way to construct a distance matrix

to model the joint manifold; (b) the proposed approach learns a mapping function

for each input dataset (treated as a manifold), such that the mapping functions can

work together to project the input manifolds to the same latent space preserving

global geometry of each manifold. The proposed approach builds on the well-known

MDS/ISOMAP [63] as well as isometric projections [14]. Similar to local geometry

preserving approaches, there are two solutions to this problem: instance-level and

feature-level. In this chapter, we focus on the latter, which is technically more chal-

lenging than the former and a better match to transfer learning tasks. For the sake

of simplicity, we use two input datasets to explain the algorithm. The algorithm can

easily generalize to more than two datasets.

5.2.2 Notation

Notation used in this chapter is as follows:

Datasets and correspondences:

X = [x1 · · · xm] is a p × m matrix, where xi is defined by p features. X represents

one high-dimensional dataset. Y = [y1 · · · yn] is a q × n matrix, where yi is defined

by q features. Y represents another high-dimensional dataset. The correspondence

between X and Y is given as follows: xai ←→ ybi , where i ∈ [1, l], ai ∈ [1,m] and

bi ∈ [1, n]. Here, xi ∈ X can match more than one instance in Y .

Matrices used to compute re-scaling factor:

Da is an l × l matrix, where Da(i, j) is the distance between xai and xaj . Db is an

l × l matrix, where Db(i, j) is the distance between ybi and ybj .
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Distance matrices modeling the joint graph:

Dx,x is an m×m matrix, where Dx,x(i, j) is the distance between xi and xj. Dx,y =

DT
y,x is an m × n matrix, where Dx,y(i, j) represents the distance between xi and

yj. Dy,y is an n × n matrix, where Dy,y(i, j) is the distance between yi and yj.

D =

(
Dx,x Dx,y

Dy,x Dy,y

)
is a (m + n) × (m + n) matrix, modeling a joint graph used in

our algorithm.

Mapping functions:

We construct mapping functions α and β to map X and Y to the same d-dimensional

space. α is a p× d matrix, β is a q × d matrix.

Others:

‖.‖ represents Frobenius norm, tr(.) represents trace, Id represents a d dimensional

identity matrix. The τ operator [63] converts distances to inner products, which

uniquely characterize the geometry of the data. Given an m×m distance matrix D,

where Di,j represents the distance between instance i and j, τ(D) = −HSH/2. Here,

Si,j = D2
i,j , Hi,j = πi,j − 1/m and πi,j = 1 when i = j; 0, otherwise.

5.2.3 The Problem

Assume the (m + n) × (m + n) distance matrix D, representing the pairwise

distance between any two instances from {x1, · · · , xm, y1, · · · , yn}, is already given

(we will discuss how to construct D later). Since the τ operator converts distances to

inner products, which uniquely characterize the geometry of the data, we define the

cost function to minimize as follows:

C(α, β, k) = ‖τ(D)− τ(DX,Y,α,β,k)‖
2

= ‖τ(D)− k
[
αTX, βTY

]T [
αTX, βTY

]
‖2, (5.1)

where α, β and k are to be determined: α is a d× p matrix, β is a d× q matrix, k is

a positive number to rescale mapping functions.
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5.2.4 Construct Matrix D to Represent the Joint Manifold

When datasets X and Y are given, Dx,x and Dy,y are easily computed using

the geodesic distance measure. However, the scales of Dx,x and Dy,y could be quite

different. To create a joint manifold of both X and Y , we need to learn an optimal

rescale factor η such that Dx,x and ηDy,y are rescaled to the same space. To compute

η, we first create distance matrices Da and Db using the instances in correspondence.

Da and Db are both l× l matrices. The formula to compute η is given in Theorem 7.

Theorem 7. Given two l × l matrices Da and Db, the solution to η that minimizes

‖Da − ηDb‖
2 is given by η = tr(DT

b Da)/tr(D
T
b Db).

Proof:
‖Da − ηDb‖

2 = tr(DT
aDa)− 2ηtr(DT

b Da) + η2tr(DT
b Db). (5.2)

tr(DT
aDa) is constant, so

argηmin ‖Da − ηDb‖
2 = argηmin η2tr(DT

b Db)− 2ηtr(DT
b Da). (5.3)

Differentiating η2tr(DT
b Db)− 2ηtr(DT

b Da) with respect to η, we have

η = tr(DT
b Da)/tr(D

T
b Db). (5.4)

To construct a distance matrix D representing the joint manifold, we need to

compute distances between instances across datasets. We use Dx,x, Dy,y and the

correspondence information to compute these distances. We know Dx,x and Dy,y

model the distance between instances within each given dataset. The corresponding

pairs can then be treated as “bridges” to connect the two datasets. For any pair (xi

and yj), we compute the distances between them through all possible “bridges”, and

set Dx,y(i, j) to be the minimum of them. i.e.

Dx,y(i, j) = min
u∈[1,l]

(Dx,x(xi, xau) +Dy,y(yj , ybu)). (5.5)

In the approach shown above, we provide one way to compute the distance matrix

D using geodesic distance. Depending on the application, we can also use other ap-

proaches to create D. For example, D could be constructed using Euclidean distance.
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5.2.5 Find Correspondence Across Datasets

Given X, Y , and the correspondence information, we want to learn mapping

functions α for X, β for Y and rescale parameter k, such that C(α, β, k) is minimized.

The optimal solution will encourage the corresponding instances to be mapped to

similar locations in the new space, and the pairwise distance between instances within

each set to be respected. To guarantee the generated lower dimensional data is

sphered, we add one more constraint:

[
αTX βTY

] [ XTα
Y Tβ

]
=
[
αTβT

] [ X 0
0 Y

] [
XT 0
0 Y T

] [
α
β

]
= Id. (5.6)

Theorem 8. Let Z =



X 0

0 Y


. Then, the eigenvectors corresponding to the d

maximum eigenvalues of Zτ(D)ZTγ = λZZTγ provide optimal mappings to minimize

C(α, β, k).

Proof:

C(α, β, k) = ‖τ(D)− k ·

[
XT 0
0 Y T

] [
α
β

] [
αTβT

] [ X 0
0 Y

]
‖2. (5.7)

Let f =



α

β


, then we have

C(α, β, k) = ‖τ(D)− k ·ZTffTZ‖2 = tr((τ(D)− k ·ZTffTZ)(τ(D)− k ·ZTffTZ)T )

= tr(τ(D)τ(D)T )−k ·tr(ZT ffTZτ(D)T )−k ·tr(τ(D)ZT ffTZ)+k2 ·tr(ZT ffTZZT ffTZ).
(5.8)

Given the property that tr(AB) = tr(BA), we have

C(α, β, k) = tr(τ(D)τ(D)T )− 2k · tr(fTZτ(D)ZT f) + k2 · tr(Id). (5.9)

Differentiating C(α, β, k) with respect to k, we have

2 · tr(fTZτ(D)ZT f) = 2k · d. (5.10)
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This implies
k = tr(fTZτ(D)ZT f)/d. (5.11)

So

C(α, β, k) = tr(τ(D)τ(D)T )−2/d ·(tr(fTZτ(D)ZT f))2+1/d ·(tr(fTZτ(D)ZT f))2. (5.12)

Since both tr(τ(D)τ(D)T ) and d are constant, we have

arg min
α,β,k

C(α, β, k) = argmax
f

(tr(fTZτ(D)ZT f))2. (5.13)

It is easy to verify that fTZτ(D)ZTf is positive semi-definite, so

tr(fTZτ(D)ZT f) ≥ 0. (5.14)

So
arg min

α,β,k
C(α, β, k) = argmax

f
(tr(fTZτ(D)ZT f)). (5.15)

It can be shown that the solution to

argmax tr(fTZτ(D)ZT f), s.t. fTZZT f = Id. (5.16)

is given by the eigenvectors corresponding to the d largest eigenvalues of

Zτ(D)ZTγ = λZZTγ. (5.17)

5.3 The Algorithms

5.3.1 The Algorithmic Procedure

Notation used in this section is defined in Section 5.2.2. Given two high dimen-

sional datasets X, Y along with additional pairwise correspondences between a subset

of the instances, the algorithmic procedure is as follows:

1. Rescale dataset Y :
Y = ηY,

where
η = tr(DT

b Da)/tr(D
T
b Db).

77



2. Construct distance matrix D, modeling the joint graph:

D =

(
Dx,x Dx,y

Dy,x Dy,y

)
,

where

Dy,x(j, i) = Dx,y(i, j) = min
u∈[1,l]

(Dx,x(xi, xau) +Dy,y(yj, ybu)).

3. Find the correspondence between X and Y :

Compute the eigenvectors [γ1, · · · , γd] corresponding to d maximum eigenvalues

of [
X 0
0 Y

]
τ(D)

[
XT 0
0 Y T

]
γ = λ

[
X 0
0 Y

] [
XT 0
0 Y T

]
γ.

4. Construct α and β to map X and Y to the same d-dimensional space:

The d-dimensional representations of X and Y are columns of αTX and βTY ,

where [
α
β

]
= [γ1, · · · , γd].

5.3.2 Comparison of Global Geometry Preserving and Local Geometry

Preserving Approaches

Pros: The cost function for local geometry preserving manifold alignment shown

in Chapter 4 uses a scalar real-valued parameter µ1/µ2 to balance the conflicting

objectives of matching corresponding instances and preserving manifold topologies.

µ1/µ2 is usually manually specified by trial and error. In the new approach, µ1 and

µ2 are not needed. The usage of them is replaced by setting the distance between

corresponding instances across domains to 0. In contrast to local geometry preserving

manifold alignment approaches that use eigenvectors corresponding to the smallest

eigenvalues, the new approach is based on eigenvectors corresponding to the largest

eigenvalues. Numerically, eigensolvers are less stable in computing the smallest eigen-

vectors than when they compute the largest eigenvectors.
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Cons: Global geometry preserving alignment approach needs to maintain a dis-

tance matrix modeling pairwise distance between any two instances in the given data.

This matrix is expensive to construct, and consumes a lot memory when the input

datasets are large. Overall speaking, the time complexity of global geometry preserv-

ing approach is O(N 3) + O(kP 2), where k is the number eigenvectors we want to

compute, N is the total number of instances and P is the total number of features

across all input datasets.

5.4 Experimental Results

We compare global geometry preserving approaches to local geometry preserv-

ing manifold alignment approaches at finding both instance-level [31] and feature-

level [71] alignments. The experiments include two real-world examples on cross-

lingual information retrieval. In the first experiment, we use parallel data in two lan-

guages: English and Arabic. In the second experiment, we use three input datasets

from the proceedings of European Parliament [38].

5.4.1 English Arabic Cross-Lingual Retrieval

In this test, we compare different methods using a real-world cross-lingual informa-

tion retrieval dataset. The task is to find exact correspondences between documents

in different languages. This application is useful, since it allows users to input queries

in their native language and retrieve results in a foreign language. The dataset used

below was originally studied in [27]. It includes two collections: one in English

and one in Arabic (manually translated). The topical structure of each collection is

treated as a manifold over documents. Each document is an instance sampled from

the manifold. To learn correspondences between the two collections, we are also given

some training correspondences between documents that are exact translations of each
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other. The task is to find the most similar document in the other corpus for each

English or Arabic document in the untranslated set.

In this experiment, each of the two document collections has 2,119 documents.

We tried two different settings: (1) Correspondences between 25% of them were

given and used to learn the alignment. The remaining 75% were held for testing; (2)

Correspondences between 10% of them were given and used to learn the alignment.

The remaining 90% were held for testing. Our testing scheme is as follows: for each

given English document, we retrieve its top k most similar Arabic documents. The

probability that the true match is among the top k documents is used to show the

goodness of the method. We use this data to compare the global geometry preserving

correspondence learning framework with the local geometry preserving framework.

Both frameworks map the data to a 100 dimensional latent space (d = 100), where

documents in different languages can be directly compared. A baseline approach was

also tested. The baseline method is as follows: assume that we have l correspondences

in the training set, then document x is represented by a vector V with length l, where

V (i) is the similarity of x and the ith document in the training correspondences. The

baseline method maps the documents from different collections to the same embedding

space Rl.

When 25% instances are used as training correspondences, the results are in Fig-

ure 5.2. In our global geometry preserving approach, for each given English docu-

ment, if we retrieve the most relevant Arabic document, then the true match has a

35% probability of being retrieved. If we retrieve the 10 most similar documents, the

probability increases to 80%. For feature-level local geometry preserving manifold

alignment [71], the corresponding numbers are 26% and 68%. Instance-level local

geometry preserving manifold alignment [31] results in a very poor alignment. One

reason for this is that instance-level alignment learns non-linear mapping functions

for alignment. Since the mapping function can be any function, it might overfit the
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training data and does not generalize well to the test data. To verify this, we also

examined a case where the training instances lie on the new space and found out

that the training instances were perfectly aligned. When 10% instances are used as

training correspondences, the results are as shown in Figure 5.3. Global geometry

preserving approach has the best performance among all four approaches, followed by

feature-level local geometry preserving manifold alignment. Interestingly, the baseline

approach also performs reasonably well in both tests.

5.4.2 European Parliament Proceedings Parallel Corpus Test

In this test, we make use of the EU dataset discussed in Section 4.6.3. To speed

up the computation, we represented each English document with the most commonly

used 1,000 English words, each Italian document with the most commonly used 1,000

Italian words, and each German document with the most commonly used 1,000 Ger-

man words. The documents were represented as bags of words, and no tag information

was included. 1, 000 resulting document triples were used as corresponding triples in

training and the remaining 69, 458 document triples were held for testing. In this

test, the only parameter we need to set is d = 100, i.e. we map all three manifolds to

the same 100 dimensional space.

Instance-level local geometry alignment approach [31] cannot process a very large

collection, since it needs to do an eigenvalue decomposition of an (n1+n2+n3)×(n1+

n2 + n3) matrix where ni represents the number of examples in the ith input dataset.

In the first setting, we use 2,500 corresponding triples from the data including the

given 1,000 corresponding triples to compare different approaches (i.e. n1 = n2 =

n3 = 2, 500). The procedure for the test is quite similar to the previous test. The

only difference is that we consider three different scenarios in the new setting: English

↔ Italian, English ↔ German and Italian ↔ German. Figure 5.4 summarizes the

average performance of these three scenarios. Given a document in one language, our
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new approach has a 40% probability of finding the true match if we retrieve the most

similar document in another language. If we retrieve 10 most similar documents, the

probability of finding the true match increases to more than 60%. Feature-level local

geometry preserving approach is roughly 20% worse, but still better than the baseline

approach and instance-level local geometry preserving approach. Our global geometry

preserving approach results in three mapping functions to construct the new latent

space: F1 (for English), F2 (for Italian) and F3 (for German). These three mapping

functions project documents from the original English/Italian/German spaces to the

same 100 dimensional space. Each column of Fi is a 1, 000 × 1 vector. Each entry

on this vector corresponds to a word. To illustrate how the alignment is achieved

using our approach, we show the words that make the largest contributions to 3

selected corresponding columns from F1, F2 and F3 in Figure 5.6, 5.7 and 5.8. From

these figures, we can see that the mapping functions can automatically project the

documents with similar contents but in different languages to similar locations in the

new space.

In our global geometry preserving alignment approach and feature-level local ge-

ometry preserving approach, the most time consuming step is an eigenvalue decom-

position of a (p1+p2+p3)×(p1+p2+p3) matrix, where pi is the number of features of

the ith dataset. We know no matter how large the dataset is, the number of features

is determined, and we can always set a threshold to filter out the features that are not

quite useful, so our new approach and feature-level local geometry preserving manifold

alignment algorithm can handle datasets at a large scale. In our second setting, we

apply these two approaches (they achieved the best performances in English-Arabic

retrieval and Figure 5.4) to process all 69,458 test document pairs in English-Italian

parallel collection. The results are summarized in Figure 5.5. For any English docu-

ment, if we retrieve the most similar Italian document, the new approach has a 17%

chance of getting the true match. If we retrieve 10 most similar Italian documents,
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the new approach has a 30% probability of getting the true match. Feature-level lo-

cal geometry preserving approach performs much worse than the new approach. This

shows that global geometry preservation is quite important for applications like text

mining. This test under the second setting is in fact very difficult, since we have 1,000

features, roughly 70,000 documents in each input dataset but only 1,000 given corre-

sponding triples. In contrast to most approaches in cross-lingual knowledge transfer,

we are not using any specialized pre-processing technique from information retrieval

to tune our framework to this task.

5.5 Remarks

In this chapter, we propose a novel framework for manifold alignment, which maps

data instances from different high dimensional datasets to a new lower dimensional

space, simultaneously matching the instances in correspondence and preserving global

distances between instances within the original dataset. Unlike previous approaches

based on local geometry preservation, the proposed approach is better suited to appli-

cations where the global geometry of manifold needs to be respected. The effective-

ness of our algorithm was demonstrated and validated in two real-world cross-lingual

information retrieval tasks.
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Figure 5.2. Test on cross-lingual data (25% instances are
in the given correspondence).
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Figure 5.3. Test on cross-lingual data (10% instances are
in the given correspondence).
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Figure 5.4. EU parallel corpora data with 1,500 English-
Italian-German test triples.

84



1 2 3 4 5 6 7 8 9 10
0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

K

P
ro

ba
bi

lit
y 

of
 M

at
ch

in
g

 

 

Global geometry preserving manifold alignment
Feature−level local geometry preserving manifold alignment

Figure 5.5. EU parallel corpora data with 69,458 English-
Italian test pairs.

Top Terms
amendments directive proposal amendment ladies committee challenges application accept asked

policy gentlemen foreign committee behalf security eu defence rights development
programme administrative turkey process answer ministers adoption conclusions created price

Figure 5.6. 3 selected mapping functions (English).

Top Terms
direttiva emendamenti proposta reca emendamento chiusa modifica nome giuridica relatore

politica chiusa estera nome sicurezza sapere modifica chiarezza dobbiamo diritti
programma turchia processo paese chiusa disoccupazione cambiamenti obiettivi milioni potra

Figure 5.7. 3 selected mapping functions (Italian).

Top Terms
richtlinie ausschuss nr vorschlag abanderungsantrag antrag abanderungsantrage vorgeschlagen abanderungsantragen

politik ausschusses gemeinsame bereich man namen eu menschenrechte herren insgesamt
programm turkei prozess meines programms britischen linie aufmerksam menschenrechte zweitens

Figure 5.8. 3 selected mapping functions (German).
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CHAPTER 6

MANIFOLD ALIGNMENT USING LABELS

6.1 Overview

It is often the case that plentiful labeled data exists in one domain, but one desires

a model that performs well on another related, but not identical domain. Labeling

data in the new domain is always costly, so one often wishes to be able to leverage

the original data when building a model for the new data. This problem is known as

domain adaptation [25]. In this chapter, we study how to apply manifold alignment

techniques to domain adaptation.

A key difficulty in applying manifold alignment to domain adaptation is that the

alignment method requires specifying a small amount of cross-domain correspondence

relationship to learn mapping functions, but such information may be difficult to

obtain for most domain adaptation applications. To solve this problem, we extend

the manifold alignment framework to domain adaptation by exploring how to use label

information rather than correspondence to align input domains. This idea is based

on the observation that many source and target domains defined by different features

often share the same labels. Our approach is designed to learn mapping functions to

project the source and target domains to a new latent space, simultaneously matching

the instances with the same labels, separating the instances with different labels and

preserving the topology of each input domain. An illustration of the approach is given

in Figure 6.1.

The contributions of this chapter are two-fold. From the perspective of domain

adaptation, our contribution is a new approach to address the problem of transfer
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Figure 6.1. Manifold alignment using labels. Different colors represent different classes.

even in the case when the source and target domains do not share any common fea-

tures or instances. It can also process multiple (> 2) input domains by exploring their

common underlying structure. As a pre-processing step, our approach can be com-

bined with existing domain adaptation approaches to learn a common feature space

for all input domains. From the perspective of manifold alignment, our contribution

is a new approach that uses labels rather than correspondences to learn alignment.

This significantly broadens the application scope of manifold alignment. In experi-

ments, we present case studies on how the new approach is applied to cross-domain

text categorization, and cross-domain ranking.

The rest of this chapter is organized as follows. In Section 6.2, we define the

problem, and provide a theoretical analysis of the problem. Subsequently, Section 6.3

describes the main algorithmic framework, and an algorithm for domain adaptation

making use of the manifold alignment results. Section 6.4 presents the main experi-

mental results.
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6.2 Manifold Alignment using Labels

6.2.1 The Problem

Assume we are given K input datasets, where the data instances come from c

different classes. Let Xk = (x1k, · · · , x
mk

k ) represent the kth input dataset, where the

ith instance xik is defined by pk features. Xk can be viewed as a matrix of size pk×mk.

The labels for the first lk instances of Xk are given as Vk = (v1k, · · · , v
lk
k ). When Xk

corresponds to a source domain, lk is usually large; when Xk corresponds to a target

domain, lk is usually small. In this problem formulation, X1, · · · , XK are assumed to

be disjoint.

The problem is to construct K mapping functions, f1, · · · , fK to map the K

input sets to a new d dimensional (latent) space, where (1) the topology of each set

is preserved, (2) the instances from the same class (across the input sets) are mapped

to similar locations, and (3) the instances from different classes are well-separated

from each other.

6.2.2 High Level Explanation

We treat each input domain as a manifold. The goal is to construct K mapping

functions to project the input domains to a new latent space preserving the topology

of each domain, matching instances with the same labels and separating instances

with different labels. To achieve this goal, we first create a matrix representation of

the joint manifold modeling the union of all input domains. Each manifold is rep-

resented by a Laplacian matrix constructed from a graph defined by an “affinity”

measure connecting nearby instances. The label information plays a key role in join-

ing these adjacency graphs, forcing the instances with the same labels to be neighbors

and separating instances with different labels. The joint manifold has features from

all input domains, so its feature space is redundant. To remove the redundant fea-

tures, we project the joint manifold to a lower dimensional space preserving manifold
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topology. This is a dimensionality reduction step, and is solved by a generalized

eigenvalue decomposition. The resulting feature space is a common underlying space

shared by all the input domains, and can be directly used for knowledge transfer

across domains.

6.2.3 Notation

Before defining the cost function being optimized, we need to define some matrices

used in the problem formulation. We first define the similarity matrix Ws, dissimilar-

ity matrix Wd, their row sum matrices Ds, Dd and combinatorial Laplacian matrices

Ls, Ld. Then we define matrices L and Z to model all the input domains.

¨ Similarity matrix Ws =




W 1,1
s · · · W 1,K

s

· · · · · · · · ·

WK,1
s · · · WK,K

s




is an (m1+ · · ·+mK)× (m1+

· · · + mK) matrix, where W a,b
s is an ma × mb matrix. W a,b

s (i, j) = 1, if xia and

xjb are from the same class; W a,b
s (i, j) = 0, otherwise (including the case when the

label information is not available). The corresponding diagonal row sum matrix is

defined as Ds(i, i) =
∑

jWs(i, j), and the combinatorial graph Laplacian matrix

Ls = Ds −Ws.

¨ Dissimilarity matrix Wd =




W 1,1
d · · · W 1,K

d

· · · · · · · · ·

WK,1
d · · · WK,K

d




is an (m1 + · · · + mK) ×

(m1+ · · ·+mK) matrix, whereW a,b
d is an ma×mb matrix. W a,b

d (i, j) = 1, if xia and x
j
b

are from different classes; W a,b
d (i, j) = 0, otherwise (including the case when the label

information is not available). The corresponding diagonal row sum matrix is defined

as Dd(i, i) =
∑

jWd(i, j), and the combinatorial Laplacian matrix Ld = Dd −Wd.

¨ To represent the topology of each given domain, we define Wk, Dk and Lk as

follows. Let Wk(i, j) represent the similarity of xik and xjk. This similarity can be

computed as e−‖x
i
k
−xj

k
‖2 . We also define the corresponding diagonal row sum matrix
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Dk as Dk(i, i) =
∑

jWk(i, j) and combinatorial Laplacian matrix as Lk = Dk −Wk.

Matrices L and Z are defined as follows:

L =




L1 0 · · · 0

· · · · · · · · · · · ·

0 · · · 0 LK




is an (m1 + · · ·+mK)× (m1 + · · ·+mK) matrix.

Z =




X1 0 · · · 0

· · · · · · · · · · · ·

0 · · · 0 XK




is a (p1 + · · ·+ pK)× (m1 + · · ·+mK) matrix.

6.2.4 The Cost Function

We then define A, B and C: three scalars to be used in the cost function.

A = 0.5µ1

K∑

a=1

K∑

b=1

ma∑

i=1

mb∑

j=1

‖fTa x
i
a − f

T
b x

j
b‖

2W a,b
s (i, j), (6.1)

If xia and xjb are from the same class, but their embeddings are far away from each

other, then A will be large. Minimizing A encourages the instances from the same

class to be projected to similar locations in the new space. µ1 is a weight parameter.

B = 0.5

K∑

a=1

K∑

b=1

ma∑

i=1

mb∑

j=1

‖fTa x
i
a − f

T
b x

j
b‖

2W a,b
d (i, j), (6.2)

If xia and xjb are from different classes but their embeddings are close to each other

in the new space, then B will be small. So maximizing B encourages the instances

from different classes to be separated in the new space.

C = 0.5µ2

K∑

k=1

mk∑

i=1

mk∑

j=1

‖fTk x
i
k − f

T
k x

j
k‖

2Wk(i, j). (6.3)

If xik and xjk are similar in their domain, then the corresponding Wk(i, j) will be

large. When the embeddings fTk x
i
k and fTk x

j
k are well-separated from each other in

the new space, C becomes large. So minimizing C preserves the topology of each

given domain. µ2 is a weight parameter.
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We want our algorithm to simultaneously achieve three goals in the new space:

matching instances with the same labels, separating instances with different labels,

and preserving topology of each given domain. So the overall cost function C(f1, · · · , fK)

to be minimized is:
C(f1, · · · , fK) = (A+ C)/B. (6.4)

6.2.5 Theoretical Analysis

Let γ = (fT1 , · · · , f
T
K)

T be a (p1 + · · ·+ pK)× d matrix (representing K mapping

functions) that we want to construct. The solution that minimizes the cost function

is given in the following theorem.

Theorem 9. The embedding that minimizes the cost function C(f1, · · · , fK) is given

by the eigenvectors corresponding to the smallest non-zero eigenvalues of the general-

ized eigenvalue decomposition Z(µ1Ls+ µ2L)Z
Tx = λZLdZ

Tx.

Proof: Given the input and the cost function, the problem is formalized as:

{f1, · · · , fK} = argminf1,··· ,fK (C(f1, · · · , fK)) = argminf1,··· ,fK (
A+ C

B
) (6.5)

When d = 1, we can verify the following results hold:

A = 0.5µ1

K∑

a=1

K∑

b=1

ma∑

i=1

mb∑

j=1

‖fTa x
i
a − f

T
b x

j
b‖

2W a,b
s (i, j) = γTZµ1LsZ

Tγ. (6.6)

B = 0.5
K∑

a=1

K∑

b=1

ma∑

i=1

mb∑

j=1

‖fTa x
i
a − f

T
b x

j
b‖

2W a,b
d (i, j) = γTZLdZ

Tγ. (6.7)

C = 0.5µ2

K∑

k=1

mk∑

i=1

mk∑

j=1

‖fTk x
i
k − f

T
k x

j
k‖

2Wk(i, j) = γTZµ2LZ
Tγ. (6.8)

So argf1,··· ,fK min C(f1, · · · , fK) = argf1,··· ,fK min γTZ(µ1Ls+µ2L)ZT γ
γTZLdZT γ

. (6.9)
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It follows directly from the Lagrange multiplier method that the optimal solution to

minimize the loss function C(f1, · · · , fK) is given by the eigenvector corresponding to

the minimum non-zero eigenvalue solution to the generalized eigenvalue problem:

Z(µ1Ls+ µ2L)Z
Tx = λZLdZ

Tx. (6.10)

When d > 1,

A = Tr(γTZµ1LsZ
Tγ), B = Tr(γTZLdZ

Tγ), C = Tr(γTZµ2LZ
Tγ). (6.11)

So argf1,··· ,fK min C(f1, · · · , fK) = argf1,··· ,fK min Tr(γTZ(µ1Ls+µ2L)ZT γ)
Tr(γTZLdZT γ)

. (6.12)

Standard approaches [74] show that the solution to γ1 · · · γd that minimizes C(f1, · · · , fK)

is provided by the eigenvectors corresponding to the d lowest eigenvalues of the gen-

eralized eigenvalue decomposition equation:

Z(µ1Ls+ µ2L)Z
Tx = λZLdZ

Tx. (6.13)

6.2.6 A Discussion on Non-linear Mapping Functions

In this chapter, the mapping functions f1, · · · , fK are linear. In some scenarios, we

might want the mapping functions to be nonlinear. Then, instead of constructing K

linear mapping functions, f1, · · · , fK , we can directly compute the embedding result

of each given instance. In this situation, the “latent” mapping functions can be

nonlinear. This problem is in fact technically less challenging, and the corresponding

cost function and algorithm can be given in a similar manner as the linear case

discussed in this chapter.
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1. Construct matrices Z, L, Ls and Ld as defined in Section 6.2.3.

2. Compute the mapping functions (f1, · · · , fK) to align the input
datasets:


f1
· · ·
fK


 = (γ1, · · · , γd), where γ1, · · · , γd are eigenvectors corresponding

to the d smallest eigenvalues of Z(µ1Ls+ µ2L)Z
Tx = λZLdZ

Tx.

3. Apply f1, · · · , fK to map the input datasets to the new d dimen-
sional latent space:

For any xia and xjb, f
T
a x

i
a and fTb x

j
b are in the same d-dimensional space

and can be directly compared.

4. Compute solutions for the learning tasks (e.g. classification, rank-
ing) in the latent space with regular learning/transfer learning
techniques, leveraging the data from the source domains.

Figure 6.2. The Algorithmic Framework.

6.3 Domain Adaptation using Manifold Alignment

Assuming all but one of the input datasets correspond to the source domains, and

one input dataset corresponds to the target domain, the algorithmic procedure to

construct f1, · · · , fK by minimizing C(f1, · · · , fK) is given in Figure 6.2.

Most existing domain adaptation approaches assume that the input domains are

defined by the same features and the difference between domains largely comes from

data distributions. Our approach projects the input domains defined by different

features to a new space, so it can be combined with most existing domain adaptation

algorithms to help solve more challenging adaptation problems. This chapter focuses

on the construction of common latent space rather than studying which existing

domain adaptation approach fits our framework the best. So in the experiments, we

compare our algorithm and the other related algorithms on the ability to create such

a latent space. A simple domain adaptation approach is applied on top of the latent

spaces to see how different algorithms help in heterogeneous domain adaptation. The
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simple domain adaptation approach we use is as follows: After the latent space is

constructed, we first use the labeled instances from the source domains to train a

linear regression model for the given learning task, like ranking/classification. Then

we use the instances from the target domain to create a second linear regression

model, such that the sum of these two regression scores is close to the desired label

for each labeled instance in the target domain. The second regression model is also

fitted such that similar instances (including both labeled and unlabeled instances)

in the target domain have similar regression scores. This simple domain adaptation

approach is implemented following the idea of manifold regularization [5].

6.4 Applications and Results

6.4.1 An Illustrative Example

In this example, we directly align the given datasets and use some pictures to

illustrate how the alignment algorithms work. The given manifolds come from a real

protein tertiary structure dataset, which is described in Section 3.5. We manually

label 10% of the amino acids in each set as positive, 10% as negative, and the re-

maining are unlabeled. We denote the first set X1, the second set X2, which are both

represented by 3 × 215 matrices. To evaluate how the new algorithm re-scales the

input datasets, we manually stretch X1 by setting X1 = 10 ·X1.

Datasets 1 and 2 are shown in Figure 6.3(A) and 6.3(B). For the purpose of

comparison, we also plot both of them on the same graph (Figure 6.3(C)). It is clear

that these two datasets are quite different. The alignment results using the algorithm

in Figure 6.2 are shown in Figure 6.3(D). In dataset 1, a red • represents a positive

instance, a blue • represents a negative instance, and a green · represents an unlabeled

instance; In dataset 2, a red 4 represents a positive instance, a blue 4 represents a

negative instance, and a yellow · represents an unlabeled instance. From the results,

we can see that both datasets are rescaled to the same size, the positive instances take
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Figure 6.3. An Illustrative Example.

the right side, and the negative instances take the left side, no matter which domain

they are from. In the middle of the figure, some positive and negative instances mix

together. The reason for this is that our approach also preserves the topology of

the given dataset. So the final solution is in fact a tradeoff of three goals: matching

the instances with the same labels, separating the instances with different labels and

preserving the topology for each dataset. In this test, µ1/µ2 = 1.

6.4.2 Text Categorization

The TDT2 corpus consists of data collected during the first half of 1998 and taken

from 6 sources, including 2 newswires (APW, NYT), 2 radio programs (VOA, PRI)

and 2 television programs (CNN, ABC). It consists of more than 10,000 documents

which are classified into 96 semantic categories. In the dataset we are using, the doc-

uments that appear in more than one category were removed, and only the largest 30

categories were kept, thus leaving us with 9,394 documents in total. For the purpose

of this test, we construct feature sets using two well-known topic modeling algorithms:

Latent semantic indexing (LSI) [26] and Latent Dirichlet Allocation (LDA) [9].
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We divide the dataset into two subsets of the same size, and then learn LSI topics

from the first subset and LDA topics from the second subset. We project the first

subset onto top 1,000 LSI topics, the second subset onto 1,000 LDA topics. This

results in two datasets X1 and X2. We assume the labels for all documents in the

first subset are available. For the second subset, only 5% documents are labeled. In

this test, µ1/µ2 = 1. We first applied our approach to align source and target domains,

resulting in a common latent space. Then we applied domain adaptation algorithm on

top of this space to learn class categorization for the unlabeled documents in the target

domain. For any document xi2, the predicted “category label” is a 30× 1 vector. We

use the probability that the true category is among the top K categories in this label

vector to evaluate the performance of different approaches. Note that if we use the

largest entry of the label vector to label the document, then the prediction accuracy

is equal to the reported result for K = 1. For the purpose of comparison, we also

tested Canonical Correlational Analysis (CCA) and feature-level manifold alignment

using correspondence under the same setting. Strictly speaking, correspondence-

based manifold alignment and CCA are not appropriate for this task, since we do

not have correspondence information. However, we can assume two instances are

in correspondence if their labels are the same. We also report the performance of

manifold regularization using the data from target domain only. The results are

summarized in Figure 6.4. The new label-based manifold alignment outperformed the

other approaches. Correspondence-based manifold alignment performed the worst.

One possible reason for the poor performance is that correspondence-based manifold

alignment approach does not separate instances with different labels in the new space.

So the information transferred from the source domain might be misleading. The

performance of CCA was as poor as correspondence-based manifold alignment.
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6.4.3 Learning to Rank

In this test, we apply our algorithm to the problem of learning to rank. We

assume that for the queries in the training set (source domain), we have a large

number of judged documents. For each query in the test set (target domain), we

only have judgements for a few documents even though the total number of retrieved

documents could be larger than several thousand. The problem is to improve ranking

performances for the queries in the test set. We assume that the source and target

domains do not share common features.

The data we use in this experiment is the TREC collection used by Aslam et al. [1]

to compare the effect of different document selection methodologies for learning to

rank. The document corpus, the queries and the relevance judgments in this collection

are obtained from TREC 6, 7 and 8 ad-hoc retrieval track. This dataset contains 150

queries. The document set we use in our experiments contains the documents from

the depth-100 pools of a number of retrieval systems run over these queries. Depth-k

pools are constructed by judging only the top k documents from different systems and

ignoring the rest of the documents. Each query on average contains approximately

1,500 judged documents, where on average 100 of them are relevant. In this dataset,

each query-document pair is represented by 22 features. These features are a subset

of the LETOR 3.0 features [41]. The description of these features along with their

exact formulas can be found in the LETOR 3.0 documentation [41]. The documents

in this dataset have two labels: relevant and non-relevant. Relevant documents do not

distribute uniformly. Some queries have much less relevant documents than others.

For the purpose of test, the dataset is split into 5 folds, where each fold contains

a training set with 60 queries and a test set with 90 queries. In the training set,

all query-document pairs are labeled. In the test set, for each query we have 10

documents that are labeled and roughly 1,500 documents that are not labeled. To

simulate a real-world problem, we assume 2 features in the source domain are missing.
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We also apply a rotation to the remaining 20 features in the source domain such that

the training and test sets do not share common features.

We treat the training set as the source domain; each test query together with its

retrieved documents forms the target domain. This results in one source domain and

many target domains. We test each target domain independently. Since the source

and target domains are defined by different features, most existing domain adaptation

approaches will not work for this scenario. Similar to the previous test, we tested

our new algorithm, correspondence-based manifold alignment, CCA and manifold

regularization (target domain only) using this data. We use the average precision

(AP) of each query in the test set to compare the quality of different algorithms.

Figure 6.5 summarizes the average of 90 average precision scores for each fold. The

y axis in the plots shows the average precision value and the x axis shows the fold in

the datasets used to test the method. In this test, µ2/µ1 = 100 and d = 40. Similar

to the result of TDT2 test, the new label-based manifold alignment outperformed the

other approaches. CCA performed the worst for this task. Interestingly, manifold

regularization (target domain only) did a reasonably good job in this test (and also

in the previous test). Manifold regularization takes unlabeled data instances in the

target domain into consideration. This helps solve overfitting problems even in the

case when the labeled information is very limited in the target domain.

6.5 Remarks

This chapter extends correspondence-based manifold alignment approaches by

making use of labels rather than correspondences to align the manifolds. This exten-

sion significantly broadens the application scope of manifold alignment. We describe

and evaluate our approach both theoretically and experimentally, providing results

showing useful knowledge transfer from one domain to another. Case studies on text

categorization and learning to rank across domains are also presented.
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CHAPTER 7

LEARNING MULTISCALE REPRESENTATIONS

7.1 Overview

We start this section with an illustration example from computer vision. Figure 7.1

shows a set of human face images. These images are originally defined in an n

dimensional unit vector space, where n is equal to the number of pixels in the image

and each unit vector can be thought as a basis function (n = 64×64 for this example).

Figure 7.2 explains how one image is decomposed into its bases. Using a similar

manner, all the other images in Figure 7.1 can also be represented by a summation

of the same set of basis functions.

Figure 7.3 shows another way to represent the images, where each basis function

(on the right hand side of the equation) is “constructed” from the given data. These

new bases (200 in total) can represent any image in the dataset without any significant

information loss. Compared to the unit vectors, the new bases are much more efficient,

since 200 new bases can represent the images originally defined by 4,096 bases. Details

on how such a basis is generated is in Section 7.6.1. The approach is based on diffusion

wavelets model presented in this chapter.

Interestingly, the images can be represented using the new bases at multiple scales

(there are 5 scales for this example), where the finest scale shows all the details about

each image, while the coarser scales skip some of the details and only keep the lower

frequency information of each image. Figure 7.4 compares the images represented at

multiple scales. The basis functions at scale 3 and 1 are in Figure 7.5 and 7.6. We

also plot the well-known eigenfaces [67] bases in Figure 7.7.
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Figure 7.1. A Set of Face Images.

Figure 7.2. The Representation of a Face Image using Unit Vectors.

Figure 7.3. The Representation of a Face Image using New Basis Functions.
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Figure 7.4. Representations of the Same Face Image at Multiple Scales

Figure 7.5. All 9 Diffusion Wavelets Basis Functions at Scale 3.

Figure 7.6. 24 Selected Diffusion Wavelets Basis Functions at Scale 1.

Figure 7.7. Eigenfaces.
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From this example, it is clear that using the new basis functions offers the following

advantages:

• It provides more efficient representations of the data. In this example, we

achieve 95% data compression compared to using unit vectors as basis functions.

• Some of the new bases are interpretable. For instance, in Figure 7.6, we can

easily see that some new bases correspond to eyes, some correspond to mouths,

etc. On the contrary, unit vector bases and eigenface bases (Figure 7.7) based

on eigenvectors are not interpretable.

• The new basis functions are defined at multiple scales, and they provide tools

to represent the contents of the images defined at different frequencies.

While Fourier analysis is a powerful tool for global analysis of functions, it is known

to be poor at recovering multiscale regularities across data and for modeling local or

transient properties [47]. Consequently, one limitation of graph Laplacian based di-

mensionality reduction approaches like Laplacian eigenmaps [4] and LPP [33] is that

they only yield a “flat” representation but not a multiscale representation. It is

our belief that multiscale representation learning methods in machine learning are

not well studied, and this chapter is intended to address this long-ignored problem.

To address the need for multiscale analysis and directional neighborhood relation-

ships, we explore multiscale extensions of Laplacian eigenmaps and LPP based on

wavelet analysis. In particular, this chapter makes the following specific contribu-

tions: (1) We investigate the relationships between diffusion wavelets (DWT) [20]

and (multiscale) Laplacian eigenmaps and LPP. To extend LPP to a multiscale vari-

ant requires solving a generalized eigenvalue decomposition problem using diffusion

wavelets. This extension requires processing two matrices, and was not addressed in

previous work on diffusion wavelets. (2) We also show how to apply the method to
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directed (non-symmetric) graphs. Previous applications of diffusion wavelets did not

focus on non-symmetric weight matrices.

The rest of this chapter is organized as follows: Section 7.2 describes the framework

of diffusion wavelets and gives a theoretical analysis of it. Section 7.3 shows how the

graph to represent the given dataset is constructed. Section 7.4 and 7.5 present two

multiscale embedding construction algorithms: one is for non-linear case to extend

Laplacian eigenmaps to multiple scales; another is for linear case to extend LPP to

multiple scales. Section 7.6 summarizes our experimental results.

7.2 Diffusion Wavelets Model

Classical wavelets in Euclidean spaces allow a very efficient multiscale analysis of

a function at different locations and scales. Diffusion wavelets (DWT) [20] extends

the strengths of classical wavelets to data that lie on graphs and manifolds. The

term diffusion wavelets is used because it is associated with a diffusion process that

defines the different scales, and allows a multiscale analysis of functions on manifolds

and graphs. Diffusion wavelets have been applied in an number of areas, including

developing fast methods for policy evaluation in Markov decision processes [45].

The procedure for generating multiscale diffusion wavelets model and the relevant

notation are shown in Figure 7.8 and 7.9. The main procedure can be explained

as follows: an input square matrix T is orthogonalized using an approximate QR

decomposition in the first step. T ’s QR decomposition is written T = QR, where

Q is an orthogonal matrix and R is an upper triangular matrix. The orthogonal

columns of Q are the scaling functions. They provide a basis (up to precision ε) for

matrix T . The upper triangular matrix R is used to construct the representation

of T on the basis Q. In the second step, we compute wavelet functions using the

new basis. This step is justified in Theorem 10. In the third step, we compute T 2.

Note this is not done simply by multiplying T by itself. Rather, T 2 is represented on
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{φj , ψj , Tj} = DWT (T, φ0, QR, J, ε)
//INPUT:
//T : Diffusion operator.
//φ0: Initial (unit vector) basis matrix.
//QR: A modified QR decomposition.
//J : Max step number. This is optional, since the algorithm automatically terminates.
//ε: Desired precision, which can be set to a small number or simply machine precision.
//OUTPUT :
//φj : Scaling functions at scale j. They are also used as basis functions.
//ψj : Wavelet functions at scale j.

//Tj = [T 2j ]
φj
φj
.

For j = 0 to J − 1
{

([φj+1]φj , [T
2j ]

φj+1

φj
)← QR([T 2j ]

φj
φj
, ε);

[ψj ]φj ← QR(I − [φj+1]φj [φj+1]
T
φj
, ε);

[T 2j+1

]
φj+1

φj+1
= ([T 2j ]

φj+1

φj
[φj+1]φj )

2;

}

Figure 7.8. Construction of Diffusion Wavelets. The notation [T ]φbφa denotes matrix T
whose column space is represented using basis φb at scale b, and row space is represented
using basis φa at scale a. The notation [φb]φa denotes basis φb represented on the basis φa.
[ψa]φa denotes wavelet functions ψa represented on the basis φa. At an arbitrary scale j,

we have pj basis functions, and length of each function is lj . [T ]
φb
φa

is a pb× la matrix, [φb]φa
is an la × pb matrix. Typically the initial basis for the algorithm φ0 is assumed to be the
delta functions (represented by an identity matrix), but this is not strictly necessary.
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{Q,R} ←− QR (A, ε)
{

// Aj : the jth column of A.
k = 0; stop = 0; Q = {}; B = A;
while (stop 6= 1)
{
i←− argj max(‖Aj‖2);

if (‖Ai‖ < ε) {stop = 1; }
else
{

k = k + 1;
ek = Ai/‖Ai‖;
Q = Q

⋃
ek;

A = A \Ai;

Orthogonalize all the remaining elements of A to ek, obtaining a new set Ã;

A←− Ã;
}
}
R = QTB;

}

Figure 7.9. The Modified QR Decomposition.
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Figure 7.10. An Illustration of Diffusion Wavelets Construction.
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the new basis Q: T 2 = (RQ)2. This result is justified in Theorem 11 using matrix

invariant subspace theory [59]. Since Q may have fewer columns than T , T 2 may be

a smaller square matrix. The above process is repeated at the next level, generating

compressed dyadic powers T 2j , until the maximum level is reached or its effective size

is a 1× 1 matrix. The whole procedure is illustrated in Figure 7.10.

The matrix of T can be viewed as a transition matrix, and the probability of

transition from x to y in t time steps is given by T t(x, y). So the procedure described

in Figure 7.8 is equivalent to running the Markov chain represented by T forward in

time and allows us to integrate the local geometry and therefore reveal the relevant

geometric structures of data at different scales. Scaling functions at each level are

orthonormal to each other. When T is symmetric, these functions span the subspace

spanned by selected bands of eigenvectors of T . Small powers of T t correspond to

short-term behavior in the diffusion process and large powers correspond to long-

term behavior. Scaling functions are naturally multiscale basis functions because

they account for increasing powers of T t (in particular, the dyadic powers 2j). At

scale j, the representation of T 2j is compressed based on the amount of remaining

information and the precision we want to keep.

Theorem 10. Wavelet Functions [ψj]φj can be constructed using QR decomposition:

{[ψj]φj , R} = QR(I − [φj+1]φj [φj+1]
T
φj
, ε).

Proof: We know the column space of Tj is spanned by both scaling functions [φj]φj

and wavelet functions [ψj]φj .

Let Cj = [[φj]φj , [ψj]φj ], then Cj is a pj × pj full rank matrix, and any two columns

of Cj are orthonormal to each other based on the definitions of scaling functions and

wavelet functions [20]. This means

CT
j Cj = I. (7.1)

From the previous step, we have

CjC
T
j = Cj(I)C

T
j = Cj(C

T
j Cj)C

T
j = (CjC

T
j )

2. (7.2)
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So,
CjC

T
j = I. (7.3)

From Cj = [[φj]φj , [ψj]φj ], we have

[[φj ]φj , [ψj ]φj ][[φj ]φj , [ψj ]φj ]
T = I, (7.4)

This implies that the subspace spanned by wavelet functions [ψj]φj is the column

space of I − [φj]φj [φj]
T
φj
, since

[ψj ]φj [ψj ]
T
φj

= I − [φj ]φj [φj ]
T
φj
. (7.5)

So we can construct [ψj]φj that spans the column space of I − [φj]φj [φj]
T
φj

up to a

precision ε using QR decomposition:

{[ψj ]φj , R} = QR(I − [φj+1]φj [φj+1]
T
φj
, ε). (7.6)

Theorem 11. If the QR decomposition of Tj is Tj = QR, then RQ is the unique

representation of Tj regarding the space spanned by Q’s columns.

Proof: Let Q = {q1 · · · qk} and Q denote Q’s column space. If Q is Tj’s invariant

subspace, then there is a unique matrix L [59] such that

TjQ = QL. (7.7)

Since Tj = QR, we have
TjQ = (QR)Q = Q(RQ). (7.8)

Now we want to show that Q is an invariant subspace of Tj. Considering the process

of QR decomposition, it is clear that the columns of Q span the whole column space of

Tj. It is well-known that the column space of any matrix A is A’s invariant subspace.

So columns of Q span an invariant subspace of Tj.

So RQ is the unique representation of Tj corresponding to Q (Q’s column space).
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7.3 Graph Constructions

Similar to Laplacian eigenmaps and LPP, our multiscale approaches also represent

the set of instances by vertices of a graph, where an edge is used to connect instances

x and y using a distance measure, such as if y is among the k-nearest neighbors of x.

The weight of the edge is specified typically using either a symmetric measure, such as

the heat kernel or a non-symmetric measure, such as a directional relationship induced

by non-symmetric actions in a Markov decision process. Such pairwise similarities can

be used to derive a transition probability matrix for a random walk P (P = D−1W ),

where W is the weight matrix, and D is a diagonal matrix of the row-sums of W . In

contrast to almost all previous graph-based eigenvector methods, we do not require

W to be symmetric. Our approach thus addresses the problem of learning multiscale

low dimensional embeddings from directed graphs (undirected graphs are a special

case of directed graphs) without symmetrizing them, as many previous approaches

require. In Laplacian eigenmaps and LPP, dimensionality reduction is achieved using

eigenvectors of graph Laplacian. In the new approaches, instead of using eigenvectors,

we use scaling functions, which are defined at multiple scales and in the special case of

symmetric matrices can be shown to span the same space as selected spectral bands

of eigenvectors.

7.4 Multiscale Laplacian Projections

7.4.1 Notation

Let X = [x1, · · · , xn] be a p × n matrix representing n instances defined in a p

dimensional space. W is an n×n weight matrix, where Wi,j represents the similarity

of xi and xj (Wi,j can be defined by e−‖xi−xj‖
2

). D is a diagonal matrix, where

Di,i =
∑

jWi,j . W = D−0.5WD−0.5. L = I−W , where L is the normalized Laplacian

matrix and I is an identity matrix. XXT = FF T , where F is a p× r matrix of rank
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1. Construct diffusion matrix T characterizing the given dataset:

• T = I − L is an n× n matrix.

2. Construct multiscale basis functions using diffusion wavelets:

• {φj , ψj , Tj} = DWT (T, I,QR, J, ε).

• The resulting [φj ]φ0
is an n× pj matrix (see Equation (7.9)).

3. Compute lower dimensional embedding (at level j):

• The embedding xi → yi = row i of [φj ]φ0
.

Figure 7.11. Multiscale Laplacian projections.

r. One way to compute F from X is singular value decomposition. (·)+ represents

the Moore-Penrose pseudo inverse.

7.4.2 The Problem

Laplacian eigenmaps minimizes the cost function
∑

i,j(yi − yj)
2Wi,j , which en-

courages the neighbors in the original space to be neighbors in the new space. The

c dimensional embedding is provided by eigenvectors of Lx = λx corresponding to

the c smallest non-zero eigenvalues. The cost function for multiscale Laplacian

projections is defined as follows: given X, compute Yk = [y1k, · · · , y
n
k ] at level k (Yk

is a pk×n matrix) to minimize
∑

i,j(y
i
k−y

j
k)

2Wi,j . Here k = 1, · · · , J represents each

level of the underlying multi-level structure of the given dataset.

7.4.3 The Algorithm

Multiscale Laplacian projections is shown in Figure 7.11, where [φj]φ0
is used to

compute lower dimensional embedding. As shown in Figure 7.8, the scaling functions

[φj+1]φj are the orthonormal bases to span the column space of T at different levels.

They define a set of new coordinate systems revealing the information in the original

system at different scales. The scaling functions also provide a mapping between the
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data at longer spatial/temporal scales and smaller scales. Using the scaling functions,

the basis functions at level j can be represented in terms of the basis functions at the

next lower level. In this manner, the extended basis functions can be expressed in

terms of the basis functions at the finest scale using:

[φj]φ0
= [φj]φj−1

[φj−1]φ0
= [φj]φj−1

· · · [φ1]φ0
[φ0]φ0

, (7.9)

where each element on the right hand side of the equation is created in the procedure

shown in Figure 7.8. In our approach, [φj]φ0
is used to compute lower dimensional

embeddings at multiple scales. Given [φj]φ0
, any vector/function on the compressed

large scale space can be extended naturally to the finest scale space or vice versa. The

connection between vector v at the finest scale space and its compressed representation

at scale j is shown in the following equation: [v]φ0
= ([φj]φ0

)[v]φj . The elements in

[φj]φ0
are usually much coarser and smoother than the initial elements in [φ0]φ0

, which

is why they can be represented in a compressed form.

As the procedure in Figure 7.8 suggests, the spaces at different scales are spanned

by varying numbers of basis functions. These numbers are completely data-driven,

and reveal the dimensions of the relevant geometric structures of the data at different

scales. In practice, we can use the scaling functions at an arbitrary scale j to achieve

the low dimensional embedding at that scale.

7.4.4 Justification

It is well-known that regular Laplacian eigenmaps is optimal with respect to its

cost function [4]. If the input matrix is symmetric, there is an interesting connection

between our algorithm and Laplacian eigenmaps. Theorem 12 below proves that the

proposed approach at level k and the result from Laplacian eigenmaps (with top pk

eigenvectors) are the same up to a rotation. So the proposed approach is also optimal
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with respect to the same cost function. One significant advantage of our approach is

that it directly generalizes to non-symmetric input matrices.

Theorem 12. Laplacian eigenmaps (with eigenvectors corresponding to pj smallest

non-zero eigenvalues) and Multiscale Laplacian projections (at level j) return the

same pj dimensional embedding up to a rotation Q.

Proof: In Laplacian eigenmaps, we use row i of V1:pj to represent pj dimensional em-

bedding of xi, where V1:pj is an n×pj matrix representing the pj smallest eigenvectors

of L. When T = I −L, the largest eigenvectors of T are the smallest eigenvectors of

L. Let [φj]φ0
represent the scaling functions of T at level j, then V1:pj and [φj]φ0

span

the same space [20], i.e.
V1:pjV

T
1:pj = [φj ]φ0

[φj ]
T
φ0
. (7.10)

Since the columns of both V1:pj and [φj]φ0
are orthonormal, it is easy to verify that

V T
1:pjV1:pj = [φj ]

T
φ0
[φj ]φ0

= I, (7.11)

where I is a pj × pj identity matrix. So

V1:pj = V1:pjV
T
1:pjV1:pj = [φj ]φ0

[φj ]
T
φ0
V1:pj = [φj ]φ0

([φj ]
T
φ0
V1:pj ). (7.12)

Next, we show Q = [φj]
T
φ0
V1:pj is a rotation matrix.

QTQ = V T
1:pj [φj ]φ0

[φj ]
T
φ0
V1:pj = V T

1:pjV1:pjV
T
1:pjV1:pj = I. (7.13)

QQT = [φj ]
T
φ0
V1:pjV

T
1:pj [φj ]φ0

= [φj ]
T
φ0
[φj ]φ0

[φj ]
T
φ0
[φj ]φ0

= I. (7.14)

det(QTQ) = (det(Q))2 = 1 =⇒ det(Q) = 1 (7.15)

So Q is a rotation matrix.

7.5 Multiscale Locality Preserving Projections

Notation used in this section is the same as that used in Section 7.4.
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1. Construct relationship matrix T characterizing the given dataset:

• T = (F+XLXT (F T )+)+ is an r × r matrix..

2. Apply diffusion wavelets to explore the intrinsic structure of the data:

• {φj , ψj , Tj} = DWT (T, I,QR, J, ε).

• The resulting [φj ]φ0
is an r × pj matrix (see Equation (7.9)).

3. Compute lower dimensional embedding (at level j):

• The embedding xi → yi = ((F T )+[φj ]φ0
)
T
xi.

Figure 7.12. Multiscale Locality Preserving Projections.

7.5.1 The Problem

LPP is a linear approximation of Laplacian eigenmaps. LPP minimizes the cost

function
∑

i,j(f
Txi − fTxj)

2Wi,j, where the mapping function f constructs a c di-

mensional embedding, and is defined by the eigenvectors of XLXTx = λXXTx cor-

responding to the c smallest non-zero eigenvalues. Similar to multiscale Laplacian

projections, multiscale LPP learns linear mapping functions defined at multiple

scales to achieve multilevel results.

7.5.2 The Algorithm and Justification

Multiscale LPP algorithm is shown in Figure 7.12. The lower dimensional em-

bedding construction with LPP reduces to solving the generalized eigenvalue decom-

position XLXTx = λXXTx, where we have two input matrices XLXT and XXT

to handle. However, using the DWT procedure requires converting the generalized

eigenvalue decomposition to a regular eigenvalue decomposition problem (with one

input matrix). Theorems 14 justifies the conversion used in our algorithm, and proves

that the multiscale LPP result at level k and the result from LPP (with top pk eigen-

vectors) are the same up to a rotation. Theorem 13 proves some intermediate results.
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Theorem 13. Solution to generalized eigenvalue decomposition XLXTv = λXXTv is

given by ((F T )+x, λ), where x and λ are eigenvector and eigenvalue of F+XLXT (F T )+x =

λx.

Proof: We know XXT = FF T , where F is a p× r matrix of rank r.

Case 1: When XXT is positive definite: It follows immediately that r = p. This

implies that F is a p× p full rank matrix, and F−1 = F+.

XLXT v = λXXT v =⇒ XLXT v = λFF T v =⇒ XLXT v = λFF T (F T )−1F T v (7.16)

=⇒ XLXT v = λF (F T v) =⇒ XLXT (F T )−1(F T v) = λF (F T v) (7.17)

=⇒ F−1XLXT (F T )−1(F T v) = λ(F T v) (7.18)

So solution to XLXT v = λXXT v is given by ((F T )+x, λ), where x and λ are eigen-

vector and eigenvalue of
F+XLXT (F T )+x = λx. (7.19)

Case 2: When XXT is positive semi-definite, but not positive definite: In this case,

r < p and F is a p× r matrix of rank r. Since X is a p× n matrix and F is a p× r

matrix, there exits a matrix G such that X = FG. This implies G = F+X.

XLXT v = λXXT v =⇒ FGLGTF T v = λFF T v =⇒ FGLGT (F T v) = λF (F T v) (7.20)

=⇒ (F+F )GLGT (F T v) = λ(F T v) =⇒ GLGT (F T v) = λ(F T v) (7.21)

=⇒ F+XLXT (F T )+(F T v) = λ(F T v) (7.22)

So one solution to XLXT v = λXXTv is ((F T )+x, λ), where x and λ are eigenvector

and eigenvalue of
F+XLXT (F T )+x = λx. (7.23)

Note that eigenvector solution to Case 2 is not unique.

Theorem 14. For any instance u, its embedding under LPP (using the top pj eigen-

vectors) is the same as its embedding under multiscale LPP (at level j) up to a rota-

tion.
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Proof: It is well-known that the normalized graph Laplacian L is positive semi-definite

(PSD), so F+XLXT (F T )+ is also PSD, and all its eigenvalues are ≥ 0. This implies

that eigenvectors corresponding to F+XLXT (F T )+’s smallest non-zero eigenvalues

are the same as eigenvectors corresponding to (F+XLXT (F T )+)+’s largest eigenval-

ues.

Let T = (F+XLXT (F T )+)+, [φj]φ0
(a p× pj matrix) represents the diffusion scaling

functions of T at level j. From Theorem 12, it follows that V1:pj = [φj]φ0
Q, where

V1:pj is a p× pj matrix, representing the pj smallest eigenvectors of F+XLXT (F T )+

and Q is a rotation. Given an instance u (p × 1 vector): its embedding result with

LPP is
((F T )+V1:pj )

Tu = V T
1:pjF

+u; (7.24)

its embedding result with multiscale LPP is

((F T )+[φj ]φ0
)Tu = [φj ]

T
φ0
F+u = QV T

1:pjF
+u. (7.25)

So, the two embeddings are the same up to a rotation Q.

7.6 Experimental Results

We compare flat and multiscale methods on both synthetic and real-world datasets.

The DWT parameters are fixed at ε = 10−8 and J = 20 in all the experiments. J

is optional, since the algorithm automatically terminates. It is useful to emphasize

that the intrinsic structure of the dataset does not depend on the parameters. The

structure only depends on the given data. The input parameters decide the way to

explore the structure. The time complexity of the proposed approaches are similar

to the corresponding eigenvector based approaches.

7.6.1 Diffusion Faces

In this experiment, we use a face recognition task from computer vision to illus-

trate the difference between eigenvalue decomposition and diffusion wavelets construc-

tion. We call this multiscale approach diffusionfaces, by analogy with the well-known
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eigenvector based approach called eigenfaces [67]. This example is just an illustration,

and not a proof to show the method works in vision. Given m face images I1, · · · Im,

each of which is represented by an n×n matrix, the “eigenfaces” algorithm works as

follows: (1) Convert each image Ii to a n2×1 vector Γi; (2) Compute the average face

vector: Γ =
∑m

i=1 Γi/m; (3) Normalize each image vector: Φi = Γi − Γ; (4) Compute

the covariance matrix C = [Φ1, · · · ,Φm][Φ1, · · · ,Φm]
T ; (5) Each eigenvector of C is

an “eigenface”. Using this approach, each image can be written as a linear combina-

tion of eigenfaces. In our approach, we start with the same covariance matrix C, but

we use diffusion wavelets instead of applying eigenvectors. Each column of [φj]φ0
is

used as a diffusionface.

We used the “Olivetti Faces” data in our test. This dataset includes 400 face

images, each of which is represented by 8-bit grayscale color and stored in a 64× 64

matrix. Diffusion wavelets model identifies a 4 level hierarchy of diffusionfaces, and

dimensionality of each level is: 200, 53, 9, 2. We plot all 9 diffusionfaces at level

3 in Figure 7.5, the top 24 diffusionfaces at level 1 in Figure 7.6. We also plot the

top 24 eigenfaces in Figure 7.7. It is clear that these two types of basis are quite

different: eigenvectors are global, and almost all such bases model the whole face.

Diffusion faces are defined at multiple scales, where the finer scale (e.g. Figure 7.6)

characterizes the details about each image, while the coarser scales (e.g. Figure 7.5)

skip some of the details and only keep the lower frequency information. Scaling

functions (especially those at low levels) are usually sparse (with local support), and

most of them focus on just one particular feature on the face, like eyes, noses. So they

are easier to interpret. Given an image written as a summation of diffusionfaces, we

can estimate what the image looks like by checking the coefficients (contributions) of

each type of eyes, noses, etc.

Interestingly, the images can be represented at multiple scales (there are 4 scales

for this example), where the finest scale shows all the details about each image,
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while the coarser scales skip some of the details and only keep the lower frequency

information of each image. Figure 7.4 compares the images represented at multiple

scales. The related basis functions at scale 3 and 1 are in Figure 7.5 and 7.6.

7.6.2 Punctured Sphere Example

Consider the punctured sphere in Figure 7.13(A) based on 800 samples. We use

heat kernel to generate its weight matrix, and for each point, we compute the weights

for 20 nearest neighbors (in each row). This results in a non-symmetric matrix W .

To apply Laplacian eigenmaps and LPP, we symmetrize W : W = (W + W T )/2.

Figure 7.13(B) shows the spectrums of W and its higher powers. The high powers

have a spectrum that decays much more rapidly than the low powers. This spec-

tral decay property is characteristic of “diffusion-like” matrices, particularly those

generated by the k nearest neighbor similarity metric. The embedding results are

in Figure 7.13(C)-(I). The results verify Theorem 12 and 14, showing multiscale ap-

proaches (using diffusion scaling functions at level j) and eigenmap approaches (using

top pj eigenvectors) result in the same embeddings up to a rotation. Furthermore,

multiscale approaches successfully identify the intrinsic structures of the dataset. Di-

mensionality of the coarsest scales of all four multiscale approaches is 3, which is the

intrinsic dimensionality of the given data. For example, Multiscale Laplacian projec-

tions identifies the numbers of basis functions spanningW ’s column space at each level

are: 800, 741, 347, 63, 38, 23, 12, 6, 3. Also, among all four non-linear dimensionality

reduction approaches (Direct Laplacian, Laplacian eigenmaps, Multiscale Laplacian

projections with W and W ), only Multiscale Laplacian projections with the original

weight matrix W reconstructs the original structure, while both approaches based on

symmetrized W fail. The reason that symmetrization does not work is that for the

points (red) on the rim of the sphere, their 20 neighbors are mostly red points. For

the points (yellow) in the middle, some of their 20 neighbors are red, since the yellow
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points are sparse. Symmetrizing the relationship matrix will add links from the red to

the yellow. This is equal to reinforcing the relationship between the red and yellow,

which further forces the red to be close to the yellow in the low dimensional space.

The above process weakens the relationship between the red points. So in the 3D

embedding, we see some red points are far away from each other, while the red-yellow

relationship is well preserved. Directed Laplacian also fails to generate good embed-

dings in this task. Finally, all three linear dimensionality reduction approaches (LPP,

multiscale LPP with W and W ) can reconstruct the original structure. A possible

reason for this is that the strong linear mapping constraint prevents overfitting from

happening for this task.
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Figure 7.13. Punctured Sphere Example: (A) Puncture Sphere; (B) Spectrum of W ; (C)
Directed Laplacian with W ; (D) Laplacian eigenmaps with W ; (E) Multiscale Laplacian
projections withW (finest scale); (F) Multiscale Laplacian projections withW (finest scale);
(G) LPP with W ; (H) Multiscale LPP with W ; (I) Multiscale LPP with W .
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Figure 7.14. Comparison of citation graph embeddings.

7.6.3 Citation Graph Mining

The citation dataset in KDD Cup 2003 consists of scientific papers (about 29, 000

documents) from arXiv.org. These papers are from high-energy physics. They cover

the period from 1992 through 2003. We sampled 3,369 documents from the dataset

and created a citation graph, i.e. a set of pairs of documents, showing that one paper

references another. To evaluate the methods, we need to assign each document a class

type. To compute this, we first represent each paper using a TF-IDF vector based

on the text of its abstract and the title, then we use the dot product to compute

the similarity between any two papers. Hierarchy clustering is used to assign each

document with a class. As a result, we get 7 classes. We apply both Multiscale

Laplacian projections and regular Laplacian eigenmaps to the citation graph (without

using document contents). Since the input is a graph, LPP and multiscale LPP

cannot be used. Multiscale approach results in a 9 level hierarchy. Dimensionality

of each level is: 3369, 1442, 586, 251, 125, 105, 94, 7. From the result, we can see

that multiscale approach successfully identifies the real intrinsic dimensionality at the

highest level: 7 classes. Obviously, the citation graph is non-symmetric, and to apply

Laplacian eigenmaps, we symmetrize the graph as before. A leave-one-out test is used
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to compare the low dimensional embeddings. We first map the data to a d dimensional

space (we run 10 tests: d = 10, 20, 30 · · · 100) using both multiscale approach (using

basis functions at level 6) and regular Laplacian eigenmaps. For each document in the

new space, we check whether at least one document from the same class is among its

K nearest neighbors. The multiscale approach using a non-symmetric graph performs

much better than regular Laplacian eigenmaps with a symmetric graph in all 10 tests.

We plot the average performance of these tests in Figure 7.14. Laplacian eigenmaps

is less effective because the citation relationship is directed, and a paper that is cited

by many other papers should be treated as completely different from a paper that

cites many others but is not cited by others.

7.6.4 NSF Research Awards Abstracts Data

We also ran a test on a selected set of the NSF research awards abstracts [29],

which includes 5,000 abstracts describing NSF awards for basic research. The dataset

is represented by bag-of-words and has already been cleaned. Each abstract has two

corresponding labels: “directorate” (9 different values) and “division” (37 different

values). Using Multiscale Laplacian projections, a 9 level hierarchy was automatically

constructed. Dimensionality discovered at each level was: 5000, 3069, 3052, 2524, 570,

54, 20, 13, 9. We applied the same quantitative comparison approach as that used

in Section 7.6.3 to compare Multiscale Laplacian projections (level 5) and regular

Laplacian eigenmaps (with varying numbers of eigenvectors: 100, 1200, 1600, 2000).

The results are summarized in Figure 7.15 and 7.16. The proposed approach returns

the best results in both tests.

From the figures, we can see that choosing an appropriate scale for embedding

can help improve learning performance. Using too many or too few bases may result

in a redundant feature space or loss of valuable information. Finding an appropriate

value for dimensionality is quite difficult. In previous approaches, the users need to
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specify this value. Generally speaking, even though a given problem may have tens of

thousands of instances, the number of levels identified by the new approach is a much

smaller number (often < 10). Also, some levels are defined by either too many or too

few features. This eliminates from consideration additional levels, usually leaving a

handful of levels as possible candidates. In this example, we only have results at 9

levels involving 5000, 3069, 3052, 2524, 570, 54, 20, 13, 9 dimensional spaces. We

chose the space defined by 570 features, since the levels below and above this have too

few or too many features, respectively. The intrinsic multilevel structure of the given

dataset is task independent. For different tasks, users can select the most appropriate

level by testing his/her data at different levels. For simplicity, the paper focuses on

selecting scaling functions at a single level, but the methods can be extended to use

multiple levels together. We have studied such methods in other applications of the

multiscale framework.

7.7 Remarks

This chapter presents a framework that extends Laplacian eigenmaps and LPP to

produce multiscale representations. The proposed framework is based on the diffusion

wavelets model, and is data-driven. In contrast to eigenvector based approaches,

which can only deal with symmetric relationships, our approach is able to analyze

non-symmetric relationship matrices without ad-hoc symmetrization. The superior

performance of the multiscale approach and some of its advantages are illustrated

using both synthetic and real-world datasets.
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Figure 7.15. Comparison of NSF abstracts embeddings (using ‘direc-
torate’ as label).
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Figure 7.16. Comparison of NSF abstracts embeddings (using ‘divi-
sion’ as label).
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CHAPTER 8

CASE STUDY: LEARNING MULTISCALE
REPRESENTATIONS OF DOCUMENT CORPORA

8.1 Background

The problem of analyzing text corpora has emerged as one of the most active areas

in data mining and machine learning. The goal here is to extract succinct descrip-

tions of the members of a collection that enable efficient generalization and further

processing. Many real-world corpora of text documents exhibit non-trivial semantic

regularities at multiple levels, which cannot be easily discerned using “flat” methods,

such as Latent Semantic Indexing (LSI) [26]. For example, in the well-known NIPS

conference paper dataset, at the most abstract level, the set of all papers can be

categorized into two main topics: machine learning and neuroscience. At the next

level, the papers can be categorized into a number of areas, such as dimensional-

ity reduction, reinforcement learning, etc. The key problem in analyzing document

collections at multiple levels is to find a multiscale representation of the documents.

This problem can be formalized as follows: given a collection of documents, each of

which is represented as a bag of words, can we discover a hierarchical representation

of the documents that reveals multiscale conceptual regularities?

Topic models are useful in extracting concepts from document corpora. They

have been successfully used to analyze large amounts of textual information for many

tasks. A topic could be thought as a multinomial word distribution learned from a

collection of documents using either linear algebraic or statistical techniques. The

words that contribute more to each topic provide keywords that briefly summarize
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the themes in the collection. The new representations of documents can be computed

by projecting the original documents onto the space (topic space) spanned by topic

vectors. Popularly used topic models include the aforementioned LSI and Latent

Dirichlet Allocation (LDA) [9]. However, these models can only find regularities at

a single level. Recently, several statistical approaches were proposed to find topical

hierarchies. One of them is hLDA [8]. Such new methods heavily depend on detailed

prior information, like number of levels, and the number of topics. Exact inference

in these graphical models is also generally intractable, and requires sampling-based

methods.

In this chapter, we present a new diffusion wavelets-based approach that automat-

ically and efficiently finds multiscale embeddings of documents in a given corpus [72].

One novel aspect of our work is that the DWTmultiscale construction is carried out on

the variables, but not on the instances (as many previous applications of DWT have

been). The key strength of the approach is that it is data-driven, largely parameter-

free and can automatically determine the number of levels of the topical hierarchy,

as well as the topics at each level. To our knowledge, none of the competing methods

can produce a multiscale analysis of this type. Further, when the input term-term

matrix is a very sparse matrix, the algorithm runs in time approximately linear in

the number of non-zero elements of the matrix. In contrast to the topics learned from

LSI, the topics learned using the DWT-based approach have local support. This is

particularly useful when the concept only involves a small group of words. We achieve

multiscale embeddings of document corpora by projecting the documents onto such

a hierarchical, interpretable topic space.

8.2 Learning Topic Spaces

Learning a topic space means learning the topic vectors spanning the concept

space. In a collection of documents (defined on a vocabulary with n terms), any
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document can be represented as a vector in Rn, where each axis represents a term.

The ith element of the vector can be some function of the number of times that the ith

term occurs in the document. There are several possible ways to define the function

to be used here (frequency, tf-idf, etc.), but the precise method does not affect our

results. In this chapter, we assume A is an n×m matrix whose rows represent terms

and columns represent documents.

8.2.1 Learning Topic Spaces using LDA

Latent Dirichlet Allocation (LDA) [9] is a widely used probabilistic topic model

and the basis for many variants. LDA treats each document as a mixture of topics,

where each topic is a distribution over words in a vocabulary. To generate a doc-

ument, LDA first samples a per-document distribution over topics from a Dirichlet

distribution, and then it samples a topic from the distribution and a word from the

topic. Documents in LDA are linked only through a single Dirichlet prior, so the

model makes no attempt to find the distribution over topic mixtures. LDA is a “flat”

topic model.

8.2.2 Learning Topic Spaces using hLDA and Others

The hLDA model [8] represents the distribution of topics within documents by

organizing the topics into a tree. Each document is generated by the topics along a

path of this tree. To learn the model from the data, we need to alternately sample

between choosing a new path through the tree for each document and assigning each

word in each document a topic along the chosen path. In the hLDA model, the

quality of the distribution of topic mixtures depends on the topic tree. To learn the

structure of the tree, hLDA applies a nested Chinese restaurant process (NCRP) [8],

which requires two parameters: the number of levels of the tree and a parameter γ.

hLDA and some other methods can learn hierarchical topics, but they need detailed

prior information, such as number of levels, number of topics and the performance
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of these models heavily depends on the priors. Inference in these graphical models is

also generally intractable, and typically a sampling based approach is used to train

these models, which is computationally expensive.

8.2.3 Learning Topic Spaces using LSI

Latent semantic indexing (LSI) [26] is a well-known linear algebraic method to

find topics in a text corpus. The key idea is to map high-dimensional vectors to a

lower-dimensional representation in a latent semantic space. The goal of LSI is to

find a mapping that provides information that reveals semantical relations between

the entities of the interest. Let the singular values of A be δ1 ≥ · · · ≥ δr, where

r is the rank of A. The singular value decomposition of A is A = UΣV T , where

Σ = diag(δ1, · · · δr), U is an n × r matrix whose columns are orthonormal, and V

is an m × r matrix whose columns are also orthonormal. LSI constructs a rank-k

approximation of the matrix by keeping the k largest singular values in the above

decomposition, where k is usually much smaller than r. LSI is also a “flat” topic

model, which means it cannot find hierarchical topics.

8.2.4 Learning Topic Spaces using Diffusion Wavelets

The term-term matrix AAT is a Gram matrix with nonnegative entries. Define

D as a diagonal matrix, whose entry Di,i is the sum of the entries on the i-th row of

AAT . We define the normalized term-term matrix T as D−0.5AATD−0.5. In fact, the

normalized Laplacian operator associated with AAT is L = I−T . Instead of learning

the eigenvectors of T , multiscale diffusion analysis involves learning the diffusion scal-

ing functions of T using diffusion wavelets. Diffusion scaling functions are multiscale

basis functions, with local support and can be computed efficiently. These properties

make our multiscale diffusion approach attractive in applications to text mining.
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1. Constructing the normalized term-term matrix T :

• T = D−0.5AATD−0.5, where D is a diagonal matrix, whose entry Dii is the
sum of the entries on the i-th row of AAT .

2. Generating diffusion wavelets:

• {φj , ψj , Tj} = DWT (T, I,QR, J, ε). (See Figure 7.8 for the details)

3. Computing the extended basis functions:

• [φj ]φ0
is an n× nj matrix. Each column vector represents a topic at level j.

• Entry k on the column vector shows term k’s contribution to this topic.

4. Computing multiscale embeddings of the corpora:

• At scale j, the embedding of A is ([φj ]φ0
)TA.

Figure 8.1. Multiscale framework for learning topic models using diffusion wavelets.

8.3 The Main Algorithm

8.3.1 The Algorithmic Procedure

Assume the term-document matrix A is already given. The algorithmic procedure

is given in Figure 8.1.

8.3.2 High Level Explanation

Instead of using the document-document matrix ATA, as is done in [20], we run the

multiscale algorithm on the term-term matrix AAT , which models the co-occurrence

relationship between any two term vectors over the documents in the given corpora.

In fact, almost all state of the art approaches learn topics from such co-occurrence in-

formation. Our algorithm starts with the normalized term-term co-occurrence matrix

and then repeatedly applies QR decomposition to learn the topics at the current level

while at the same time modifying the matrix to focus more on low-frequency indirect

co-occurrences for the next level. Our approach is in spirit similar to LSI, but goes
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beyond LSI to naturally generate topics in multiple resolutions through progressively

constructing a matrix to model the low frequency indirect co-occurrences.

8.3.3 Finding a Multiscale Embedding of the Documents

If a topic space S is spanned by a set of r topic vectors, we write the set as

S = (t(1), · · · , t(r)), where topic t(i) is a column vector (t(i)1, t(i)2 · · · , t(i)n)
T . Here

n is the size of the vocabulary set, ‖t(i)‖ = 1 and the value of t(i)j represents the

contribution of term j to t(i). S is an n × r matrix. We know the term-document

matrix A (an n × m matrix) models the corpus, where m is the number of the

documents and columns of A represent documents in the “term” space. The low-

dimensional embedding of A in the “topic” space S is then ATopic = STA. ATopic is

an r ×m matrix, whose columns are the new representations of documents in S.

Diffusion wavelets extract topics at multiple scales, yielding a multiscale embed-

ding of the documents. The new representation of the documents at a particular

scale may significantly compress the data preserving the most useful information at

that scale. Since all the topics are interpretable, we may read the topics at different

scales and select the best scale for embedding. At one scale, we can determine which

topic is more relevant to our task and discard the non-useful topics. The diffusion

wavelets-based multiscale embedding method provides a powerful tool to analyze the

document corpora and will be quite useful for classification, information retrieval,

clustering, etc.

8.3.4 Comparison to Other Methods

As shown in Figure 7.8, the spaces at different levels are spanned by a different

number of basis functions. These numbers reveal the dimensions of the relevant

geometric structures of data at different levels. These numbers are completely data-

driven: the diffusion wavelets approach can automatically find the number of levels

and simultaneously generate the number of topics at each level. Once the term-
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document matrix A is given, users only need to specify one parameter ε – the precision.

In fact, this parameter can be automatically set by computing the average of the non-

zero entries on the normalized term-term matrix T , and taking its product with a

small number like 10−5 to get ε. So, our approach is essentially parameter free, a

significant advantage over competing methods. To incorporate prior knowledge, the

term-document matrix A can be suitably modified.

Learning hierarchical topics could be done very efficiently, when T is a “local”

diffusion operator [20, 45]. The main idea is that most examples defined in the

diffusion operator T have “small” degrees in which transitions are allowed only among

neighboring points, and the spectrum of the transition matrix decays rapidly. This

result is in contrast to the time needed to compute k eigenvectors, which is O(kn2). In

many applications, the normalized term-term matrix T is already a localized diffusion

operator. If it is not, we can simply convert it to such a matrix: for each term in the

collection, we only consider its most relevant k terms since the relationships between

terms that co-occur many times are more important. The same technique has been

widely used in manifold learning to generate the relationship graph from the given

data examples. The algorithm is modified to retain the top k entries in each row of

T , and all other entries are set to 0. The resulting matrix is not symmetric, so we

need to symmetrize it in the end.

Interestingly, the space spanned by topic vectors from diffusion wavelets models

are the same as the space spanned by some LSI topic vectors up to a precision ε.

This is justified by the following theorem.

Theorem 15. Given a term-document matrix A, the topics from diffusion wavelets

at level j and the top pj = |[φj]φ0
| topics from LSI model span the same topic space

up to a precision.

Proof: The term-term matrix AAT gives the correlation between terms over the doc-

uments. Using singular value decomposition, we have
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AAT = (UΣV T )(UΣV T )T = UΣΣTUT . (8.1)

Assume A = EΛ, where ith column of E represents A’s ith eigenvector and Λi is the

corresponding eigenvalue. Then

AAT = EΛΛET . (8.2)

Since both E and U are orthonormal, and both Σ and Λ are diagonal matrices, it is

easy to see that the column vectors of U (topic vectors) are also the eigenvectors of

the term-term matrix AAT .

We know the largest pj eigenvectors and [φj]φ0
span the same space up to a preci-

sion [20], so the topics from diffusion wavelets at level j and the top pj = |[φj]φ0
|

topics from LSI model span the same topic space up to a precision.

Although the space spanned by topic vectors from diffusion wavelets are the same

as the space spanned by some LSI topic vectors up to a precision ε, the topic vec-

tors (in fact eigenvectors) from LSI have a potential drawback that they detect only

global smoothness, and may poorly model the concept/topic which is not globally

smooth but only piecewise smooth, or with different smoothness in different regions.

Unlike the global nature of eigenvectors, our topic vectors are local (sparse). This can

better capture some concepts/topics that only involve a particular group of words.

Experiments show that most diffusion wavelets model based topics are interpretable,

such that we can interpret the topics at different scales and select the best scale for

embedding. Further, at the selected scale, we can check which topic is more relevant

to our application and skip the non-useful topics. In contrast, many LSI topics are

not interpretable.

Topic vectors from diffusion wavelets are orthonormal to each other. In other

words, for any two topics ti and tj at an arbitrary level, we have ti · tj = 0 and

‖ti‖ = ‖tj‖ = 1. This means the information encoded using diffusion wavelets topics

is not redundant and representation of documents in the topic space is unique. This

property does not hold for parametric statistical approaches (like LDA, hLDA).
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The complexity of generating diffusion wavelets mostly depends on the size of the

vocabulary set in the corpus, but not the number of the documents, or the number

of the tokens. We know no matter how large the corpus is, the size of the vocabulary

set is determined. So our approach should be scalable to large datasets.

8.4 Experimental Results

We validate the diffusion wavelets based approach to hierarchical topical modeling

using experiments on four real-world datasets: the NIPS (1-12) conference full paper

dataset (http://www.cs.toronto.edu/∼roweis/data.html), the NSF research award

abstracts (http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html), the 20 newsgroups

dataset (http://people.csail.mit.edu/jrennie/20Newsgroups), and the TDT2 dataset

(http://projects.ldc.upenn.edu/TDT2). The results show that multiscale diffusion

wavelets can successfully identify the structure of each collection at multiple scales.

The NIPS conference paper dataset (Section 8.4.1) and NSF research award ab-

stracts dataset (Section 8.4.2) are used to illustrate the resulting multiscale analysis,

and how to interpret these topics. The 20 NewsGroups dataset (Section 8.4.3), and

TDT2 dataset (Section 8.4.4) are used to show the multiscale embeddings of the cor-

pora. Since our model is largely parameter-free, we do not need any special settings.

The precision used for all these experiments was ε = 10−5. One issue we have not

addressed so far is how to interpret topics constructed by diffusion wavelets. A topic

vector v is a column vector of length n, where n is the size of the vocabulary set

and ‖v‖ = 1. The entry v[i] represents the contribution of term i to this topic. To

illustrate a topic v, we sort the entries on v and display the terms corresponding to

the top 10 entries. These terms summarize the topics in the collection.
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Table 8.1. Number of topics at different levels (Diffusion wavelets, NIPS).

Level Number of Topics

1 3413

2 1739

3 1052

4 37

5 2

8.4.1 NIPS Papers Dataset

We generated hierarchical topics from the NIPS papers dataset, which includes

1,740 papers. The original vocabulary set has 13,649 terms. The corpus has 2,301,375

tokens in total. We filtered out the terms that appear ≤ 100 times in the corpus,

and only 3,413 terms were kept. The total number tokens in the collection did not

change too much. The number of the remaining tokens was 2,003,017. For comparison

purpose, we also tested LSI, LDA and hLDA using the same dataset.

Multiscale diffusion wavelets identifies 5 levels of topics, and the number of

the topics at each level is shown in Table 8.1. At the first level, each column in T is

treated as a topic. At the second level, the number of the columns is almost the same

as the rank of T . The number of topics at level 4 is 37, which appear to capture the

main categories of NIPS papers. Finally at level 5, the number of topics is 2. The

2 topics at level 5 are “network, learning, model, neural, input, data, time, function,

figure, set” and “cells, cell, neurons, firing, cortex, synaptic, visual, stimulus, cortical,

neuron”. The first is about machine learning, while the second is about neuroscience.

These two topics are exactly the main topics at the highest level of NIPS. Almost all

37 topics at level 4 look semantically meaningful. They nicely capture the function

words. Some examples are in Table 8.2.

LSI computes “flat” topics only, so we compare the top 37 LSI topics to the results

from diffusion wavelets. The LSI topics (Table 8.3) look much less interpretable. The

reason is the diffusion wavelets based topics are with local support, while LSI topics

are globally “smooth”. Even though such vectors are spanning the same space, they
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Table 8.2. Some topics at level 4 (Diffusion wavelets, NIPS).

Top 10 Terms

policy state action reinforcement actions learning reward mdp agent sutton

mouse chain proteins region heavy receptor protein alpha human domains

distribution data gaussian density bayesian kernel posterior likelihood em regression

chip circuit analog voltage vlsi transistor charge circuits gate cmos

speech hmm word speaker phonetic recognition spike markov mixture acoustic

iiii border iii texture ill bars suppression ground bar contextual

face facial images faces image tangent spike object views similarity

adaboost margin boosting classifiers head classifier hypothesis training svm motion

stress syllable song heavy linguistic vowel languages primary harmony language

routing traffic load shortest paths route path node message recovery

actor critic pendulum tsitsiklis pole barto harmony signature routing instructions

documents query document retrieval queries words relevant collection text ranking

classifier classifiers clause knn rbf tree nearest neighbor centers classification

stack symbol strings grammars string grammar automata grammatical automaton giles

song template production kohonen syllable pathway harmonic nucleus lesions motor

Table 8.3. Top 10 Topics (LSI, NIPS).

Top 10 Terms

f ish terminals gaps arbor magnetic die insect cone crossing wiesel

learning algorithm data model state function models distribution policy

training learning network error networks set hidden algorithm weights units

data training set model recognition image models gaussian test classif ication

learning input units cells layer visual unit cell error image

function functions neural neuron neurons threshold networks algorithm linear

model network units networks learning models weights hidden unit data

learning training neural error neuron control data neurons rate performance

input time training error output speech hidden noise spike state

training function state error model cells set functions cell generalization

Table 8.4. hLDA topics (NIPS).

Node Top 10 Terms

1 task performance training data learning output algorithm time processing trained

1.1 function terms networks abstract linear case references equation set functions

1.1.1 activity brain visual response neurons cells shown model cell properties

1.1.2 posed cell soc movements contour response minimization biol orientations

1.2 statistical distribution figure matrix approach parameters gaussian data model

1.2.1 neuron cells neurons synaptic inhibition cell physics american phase strength

1.2.2 function theory show result finite class called positive introduction define

1.3 finite noise gaussian constant solved terms corresponds equation exp variables

1.3.1 og obtain equations dynamics distribution matrix choice stable moore estimation
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look quite different. “Local support” is particularly important to represent a concept

that only involve a small number of words in document corpora.

LDA was also tested on this dataset. To use LDA, we need to specify the number

of topics. In this test, we tried two numbers: 2 and 37. When topic number is 2, the

two topics are “model, network, input, figure, time, system, neural, neurons, output,

image” and “learning, data, training, network, set, function, networks, algorithm,

neural, error”. They do not cover neuroscience, which is covered by our diffusion

wavelets model. We did not list the 37 LDA topics (most of them also look reason-

able). Again, to use LDA, users need to specify the number of topics, but in diffusion

wavelets, this number is automatically determined.

hLDA requires specifying the number of levels of the topic tree (and some other

parameters). In this test, we set this number to 3. The hLDA module in MALLET

[49] was applied to this task. The resulting topic tree is in Table 8.4, where the Node

record shows the path from the root to the node. Node 1 is the root of the tree, which

has 3 children (1.1, 1.2 and 1.3). Both Node 1.1 and 1.2 have two children. Node 1.3

has one child: 1.3.1. hLDA does not cover the topic of neuroscience at level 1 and 2.

Compared to diffusion wavelets, hLDA topics are harder to interpret. We also tested

level=4, and the result did not make much difference.

Empirical Evaluation of Time Complexity

Given the collection with 2,003,017 tokens, multiscale diffusion wavelets needs

roughly 15 minutes (2G PC with 2G memory) to do the multiscale analysis. This

includes data preparation, construction of the diffusion wavelets model and computing

topic vectors at all 5 levels. In contrast, we need about 4 and 6 minutes to compute

37 topics using LSI and LDA on the same machine. LSI and LDA only computes

“flat” topics, but not topics at multiple levels, and they do not need to explore the

intrinsic structure of the dataset, so they are doing something much simpler. Running
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Table 8.5. Number of topics at different levels (diffusion wavelets model, NSF).

Level Number of Topics

1 6873

2 6852

3 89

4 5

5 1

Table 8.6. All 5 topics at level 4 (diffusion wavelets model, NSF).

Top 10 Terms

research project data students study systems science program development high

protein proteins gene genes cell cells expression dna binding rna

genes gene students science protein teachers cell proteins expression school

theory algebraic manifolds spaces geometry algebras problems invariants geometric

ice climate ocean data sea species social antarctic theory change

hLDA is much more expensive than the others. It needs roughly 20 hours for this

task. Considering the time complexity, hLDA is not tested in the experiments below.

8.4.2 NSF Research Awards Abstracts

We also generated hierarchical topics from the NSF research awards abstracts,

which includes 129,000 abstracts describing NSF awards for basic research (1990-

2003). The original vocabulary set has 30,779 terms. We filtered out the terms that

appear ≤ 200 times in the corpus, and only 6,873 terms were kept. The dataset is

represented by bag-of-words and has already been cleaned.

The multiscale diffusion wavelets based approach identifies 5 levels of topics, and

the number of the topics at each level is shown in Table 8.5. At the first level,

each column in T is treated as a topic. At level 3, the number of topics is down to

89. Almost all of them are meaningful. We list 20 of them in Table 8.7. Most of

these topics represent one particular area in basic research. At level 4, we have 5

remaining topics (Table 8.6). Two of them are on biology, one on mathematics, one

on geosciences and social sciences, and the other is about basic research in general.
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Table 8.7. 20 selected topics at level 5 (diffusion model, NSF).

Top 10 Terms

galaxies stars galaxy star stellar ast galactic telescope universe halo

party political election elections electoral voting voters parties policy vote

mantle crust fault crustal seismic os deformation slip plate rocks

conference workshop meeting held international symposium scientists travel invited

neurons brain nerve synaptic nervous synapses visual cells neural calcium

transceivers equipment deck navigational motorized ship vessel deemed pin radars

network qos wireless routing tcp networks multicast traffic quantum packet

language languages linguistic speech syntactic lexical grammatical semantic spoken

ef rna trna chemistry reactions nmr complexes molecules ribosome splicing

archaeological mr stone dating ice remains ms societies sites equations

auctions auction price markets prices market trading monetary pricing inflation

calcium membrane muscle channels proteins channel actin intracellular cell ca

court judicial judges courts legal trial law justice criminal rights

algebraic arithmetic varieties adic codes automorphic galois curves polynomials oldest

retirement labor workers job wage wages earnings employment languages wealth

metal reactions complexes prey metals ligands vessel copper reaction oxidation

ionosphere ionospheric auroral magnetospheric plasma solar wind cedar reconnection

aviation security screening intractable secure privacy deploy aircraft heuristics optimally

racial crime race black police neighborhood ethnic white african segregation

pollen tube tubes bees plants seeds insulin seed plant actin

8.4.3 20 Newsgroups

The 20 Newsgroups dataset is a popular dataset for experiments in text applica-

tions. The version that we are using is a collection of 18,774 documents (11,269 for

training, 7,505 for testing), partitioned evenly across 20 different newsgroups, each

corresponding to a different topic. Some of the newsgroups are very closely related

to each other, while others are highly unrelated. The dataset has 61,188 terms in the

vocabulary set (stop words are not removed) and nearly 2,500,000 tokens. We filtered

out the terms that appear ≤ 100 times in the training set, and only 2,993 terms were

kept.

Using the training data, the diffusion wavelets model identifies 5 levels of topics,

and the number of topics at each level is: 2993, 2992, 589, 29 and 1. Since 29 is

the closest number to the real topic number 20, we select level 4 for further analysis.

We find 3 of the 29 topics are related to stop words. For example, the top 10 words
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of one such topic are: “the, to, of, and, in, is, that, it, for, you”. The remaining

26 topics cover almost all 20 known topics. For example, the topic “probe, mars,

lunar, moon, missions, surface, jupiter, planetary, orbit, planet” corresponds to topic

“space”. LDA and LSI were also tested. For LDA, we tried two topic numbers: 20

and 29. The latter number returned a better result. The LDA topics do not look as

good as the topics from the diffusion wavelets model. Stop words always dominate

the top words of each topic. For example, the topic “the, and, of, to, for, key, space,

on, in, by” might be related to topic “space”, but most of the top words are stop

words. The LSI topics do not look good either. For many applications, LSI topics

might span a good concept space, but they are hard to interpret.

To compare the low-dimensional embeddings generated from the diffusion wavelets

model with LSI and LDA, we used a nearest neighbor method to classify the test

documents. We first represent all the documents in the topic space using the 29 topics

learned from the training set. For each test document, we compute the similarity (dot

product) of it and all the training documents. For each news group, we consider the

top k most similar documents to the test document. The label of the group with

the largest sum of such similarities is used to label the test document. Since 3 topics

returned by the diffusion wavelets model are related to stop words, we also ran a test

using the remaining 26 topics. We tried different k in the experiment and the results

are shown in Figure 8.2. From the figure, it is clear that the embeddings coming from

the diffusion wavelets model (29 topics) and LSI are similar. Both of them are better

than the embedding from LDA. It is also shown that filtering out the non-relevant

topics can improve the performance. The LSI topics are hard to interpret, so we

cannot filter any of them out.
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8.4.4 TDT2

The TDT2 corpus consists of data collected during the first half of 1998 and taken

from 6 sources, including 2 newswires (APW, NYT), 2 radio programs (VOA, PRI)

and 2 television programs (CNN, ABC). It consists of more than 10,000 documents

which are classified into 96 semantic categories. In the dataset we are using, the

documents that appearing in more than one category were removed, and only the

largest 30 categories were kept, thus leaving us with 9,394 documents in total. Using

the same procedure shown in the other tests, we identified a 5 level hierarchy (topic

number at each level is: 2800, 2793, 287, 17, 2). To better understand what the

embeddings look like, we project the documents onto a 3D space spanned by three

topic vectors from each model (Diffusion wavelets model: top 3 topic vectors at level

4; LDA: all topics when topic number =3; LSI: top 3 topic vectors). In this test, we

plot the documents from category 1-7 (nearly 7,000 documents in total) and each color

represents one category. The diffusion wavelets model returns the best embedding

(Figure 8.4). We also run a leave one out test with kNN method (as described in the

20 NewsGroups test) to classify each document in the collection. The results are in

Figure 8.3. It is also clear that the embedding from the multiscale diffusion wavelets

model (using level 4) is better than LSI and LDA.

8.5 Remarks

This chapter proposes a novel approach based on diffusion wavelets model to

extract semantic structure of real-world corpora of text documents at multiple scales.

Experimental results show this approach successfully extracts hierarchical regularities

at multiple levels. The hierarchy yields semantically meaningful topics, and efficient

multiscale embeddings for classification.
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CHAPTER 9

LEARNING REPRESENTATIONS PRESERVING
DISCRIMINATIVE INFORMATION

9.1 Background

In many areas of data mining and information retrieval, it is highly desirable to

map high dimensional data instances to a lower dimensional space, preserving topol-

ogy of the given data manifold. In this chapter, we consider a more general problem:

learning lower dimensional embedding of data instances preserving both manifold

topology and discriminative information to separate instances from different classes.

Our proposed approach has its goal to eliminate useless features and improve the

speed and performance of classification, clustering, ranking, and multi-task learning

algorithms. Our work is related to previous work on regression models, manifold reg-

ularization [5], linear discriminant analysis (LDA) [30], and dimensionality reduction

methods such as locality-preserving projections (LPP) [33].

Linear regression involves estimating a coefficient vector of dimensionality equal

to the number of input features using which data instances are mapped to real-valued

outputs (or continuous class labels). For example, given a set of instances {xi} defined

in a p dimensional space, a linear regression model computes β0, · · · , βp such that label

yi can be approximated by

ŷi = β0 + β1xi(1) + · · ·+ βpxi(p) for i = 1, . . . , n. (9.1)

The framework of manifold regularization [5] combines the standard loss functions

associated with regression or classification with an additional term that preserves the
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local geometry of the given data manifold (the framework has another term corre-

sponding to an ambient regularizer). One problem solved under this framework can

be characterized as follows: given an input dataset X = (x1, · · · , xm) and label in-

formation V = (v1, · · · , vl) (l ≤ m), we want to compute a function f that maps

xi to a new space, where fTxi matches xi’s label yi. In addition, we also want f to

preserve the neighborhood relationship within dataset X (making use of both labeled

and unlabeled data). This problem can be viewed as finding an f that minimizes the

cost function:

C(f) =
∑

i≤l

(fTxi − yi)
2 + µ

∑

i,j

(fTxi − f
Txj)

2WX(i, j). (9.2)

We can interpret the first mean-squared error term of C(f) as penalizing the

difference between a one-dimensional projection of the instance xi and the label yi.

The second term enforces the preservation of the neighborhood relationship within

X (where WX is a similarity measure). Under this interpretation, manifold regular-

ization constructs embeddings preserving both the topology of the manifold and a

1-dimensional real-valued output structure. The proposed approach generalizes this

idea to compute higher order locality-preserving discriminative projections.

Linear Discriminant Analysis (LDA) and some of its extensions like semi-supervised

discriminant analysis [15, 76] find a dimensionality-reducing projection that best sep-

arates two or more classes of objects or events. The resulting combination may be

used as a linear classifier, or for dimensionality reduction before later classification.

However, for a dataset with c class labels, LDA type approaches can only achieve a

c− 1 dimensional embedding (since the matrix to model the between-class difference

only has c − 1 nontrivial eigenvectors). In many applications, c − 1 is far from suf-

ficient. For example, given a dataset with two class labels (positive/negative), LDA

type approaches only yield a 1D embedding for each instance, even when the data is

defined by several hundreds of features in the original space.
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Many linear (e.g. PCA) and nonlinear (e.g. Laplacian eigenmaps [4]) dimension-

ality reduction methods convert dimensionality reduction problems to an eigenvalue

decomposition. One key limitation of these approaches is that when they learn lower

dimensional embeddings, they do not take label information into account. So only the

information that is useful to preserve the topology of the whole manifold is guaran-

teed to be kept, and the discriminative information separating instances from different

classes may be lost. For example, when we are required to describe a human being

with a couple of words, we may use such characteristics as two eyes, two hands, two

legs and so on. However, none of these features is useful to separate men from women.

Similar to our approach, the well-known Canonical Correlation Analysis (CCA) also

simultaneously computes two mapping functions. CCA finds linear functions that

map instances from two different sets to one space, where the correlation between the

corresponding points is maximized. There are two fundamental differences between

our approach and CCA: 1. The number of non-zero solutions to CCA is limited to

the smallest dimensionality of the input data. For our case, CCA can only get a c−1

dimensional embedding since the label is in a c dimensional space. 2. Our approach

can make use of unlabeled data, while CCA cannot. The proposed approach can be

distinguished from some recent work. LDPP [69] learns the dimensionality reduction

and nearest neighbor classifier parameters jointly. LDPP does not preserve the topol-

ogy of the given dataset. The algorithm in [53] provides a framework to learn a (local

optimal) linear mapping function to map the given data to a new space to enhance

a given classifier. Their mapping function is designed for classification only and does

not preserve the topology of the dataset.

In this chapter, we present a framework for learning optimal discriminative pro-

jections to map high-dimensional data instances to a new lower dimensional space,

leveraging the given class label information such that instances from different classes

will be mapped to different locations. Similar to the goal of manifold-preserving

142



dimensionality reduction approaches, we also want the topology of the given data

manifold to be respected. Our new approach combines the ideas of manifold regu-

larization, LDA and regular dimensionality reduction. Both LDA and our approach

provide discriminative projections to separate instances from different classes, but

LDA can only return c − 1 dimensional projections for a problem with c classes.

Compared to dimensionality reduction methods like PCA, our approach preserves

both manifold topology and class separability.

The rest of this chapter is organized as follows. In Section 9.2 we describe and

justify our algorithm. Section 9.3 summarizes our experimental results. Section 9.4

provides some concluding remarks.

9.2 Overall Framework

We introduce the overall framework in this section. It is helpful to review the

notation described below. In particular, we assume that class labels can be viewed

as c-dimensional real-valued vectors if there are c possible labels.

9.2.1 The Problem

Assume the given dataset X = (x1, · · · , xm) is a p × m matrix, where instance

xi is defined by p features. c = number of classes in X. Label yi is a c × 1 vector

representing xi’s class label. If xi is from the jth class, then yi(j) = 1; yi(k) = 0 for

any k 6= j. We also assume xi’s label is given as yi for 1 ≤ i ≤ l; xi’s label is not

available for l + 1 ≤ i ≤ m. Y = (y1, · · · , yl) is a c× l matrix.

The problem is to compute mapping functions f (for data instances) and g (for

labels) to map data instance xi ∈ Rp and label yi ∈ Rc to the same d-dimensional

space, where the topology of the data manifold is preserved, the instances from dif-

ferent classes are separated and d ¿ p. Here, f is a p × d matrix and g is a c × d

matrix.
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9.2.2 The Cost Function

The solution to the overall problem of learning locality preserving discrimina-

tive projections can be formulated as constructing mapping functions f and g that

minimize the cost function

C(f, g) =

∑
i≤l ‖f

Txi − g
T yi‖

2 + µ
∑

i,j ‖f
Txi − f

Txj‖
2WX(i, j)

∑
i≤l

∑c
k=1,sk 6=yi

‖fTxi − gT sk‖2
, (9.3)

where sk andWX are defined as follows: sk is a c×1 matrix. sk(k) = 1, and sk(j) = 0

for any j 6= k. Sk is a c× l matrix= (sk, · · · , sk). WX is a matrix, where WX(i, j) is

the similarity (could be defined by heat kernel) between xi and xj.

Here, fTxi is the mapping result of xi. g
Tyi (or g

T sk) is the mapping result of

label yi (or sk). The first term in the numerator represents the difference between

the projection result of any instance xi and its corresponding label yi. We want this

value to be small, since this makes xi be close to its true label. The second term in

the numerator models the topology of dataset X using both labeled and unlabeled

data. When it is small, it encourages the neighborhood relationship within X to be

preserved. µ is a weight to balance the first and second terms. It is obvious that we

want the numerator of C(f, g) to be as small as possible. The denominator models

the distance between the projection result of each instance xi and all the labels other

than the correct label. We want this value to be as large as possible, since this

makes xi be far away from its wrong labels. Thus, minimizing C(f, g) will preserve

the topology of dataset X, and project instances to a new lower dimensional space,

where the instances from different classes are well separated from each other.

9.2.3 High Level Explanation

Manifold regularization addresses the problem of learning projections to map the

data instances (with known labels) to their class labels, preserving the manifold topol-
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Figure 9.1. Illustration of regular regression approaches (A), and our approach (B).

ogy. The loss function used in one algorithm under the manifold regularization frame-

work is as follows:

C(f) =
∑

i≤l

(fTxi − yi)
2 + µ

∑

i,j

(fTxi − f
Txj)

2WX(i, j), (9.4)

where yi is the real-valued label of xi. This loss function can be relaxed for our

problem, since our goal is to separate instances from different classes. It is less

important whether the embedding of each instance is close to its given class label

or not. In our algorithm, we have a mapping function f for data instances, and g

for labels such that f and g can work together to map the data instances and labels

to the same space, where the mapping results of instances and their labels are close

to each other. The mapping g allows us to scale the entries of the label vector by

different amounts, which then allows better projections of points. An illustration of

this idea is given by Figure 9.1. In summary, the numerator of our loss function

encourages the instances with the same label to stay together, preserving the data

manifold topology. The denominator of the loss function encourages the instances

with different labels to be away from each other.
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9.2.4 Discriminative Projections: The Main Algorithm

Some notation used in the algorithm is as follows:

γ = (fT , gT )T is a (p+ c)× d matrix. Tr() means trace. I is an l× l identity matrix.

U1 =




I 0

0 0




m×m

, U2 = UT
3 =




I

0




m×l

, U4 = I.

The algorithmic procedure is as follows:

1. Construct matrices A,B and C:

A =

(
X 0
0 Y

)(
U1 −U2

−U3 U4

)(
XT 0
0 Y T

)
(9.5)

B =

c∑

k=1

(
X 0
0 Sk

)(
U1 −U2

−U3 U4

)(
XT 0
0 STk

)
(9.6)

C =

(
X 0
0 Y

)(
µLx 0
0 0

)(
XT 0
0 Y T

)
(9.7)

2. Compute γ = (γ1, · · · , γd): the d minimum eigenvector solutions to the

generalized eigenvalue decomposition equation:

(A+ C)x = λ(B + C)x. (9.8)

3. Compute discriminative projection functions f and g:

γ = (γ1, · · · , γd) is a (p + c) × d matrix, whose top p rows= mapping function

f , the next c rows= mapping function g. i.e.
(
f

g

)
= (γ1, · · · , γd). (9.9)

4. Compute the d-dimensional embedding of dataset X:

The d-dimensional embedding of X is fTX, whose ith column represents the

embedding of xi.

9.2.5 Justification

Theorem 16. d minimum eigenvector solutions to (A + C)x = λ(B + C)x provide

the optimal d-dimensional discriminative projections to minimize the cost function

C(f, g).
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Proof: Given the input and the cost function, the problem is formalized as:

{f, g} = argf,g min(C(f, g)). (9.10)

When d = 1, we define M,N and L as follows:

M =
∑

i≤l

(fTxi − g
T yi)

2, (9.11)

N =
∑

i≤l

c∑

k=1

(fTxi − g
T sk)

2, (9.12)

L = µ
∑

i,j

(fTxi − f
Txj)

2WX(i, j). (9.13)

argf,g min(C(f, g)) = argf,g min
M + L

N −M
(9.14)

= argf,g max
N −M

M + L
(9.15)

= argf,g max
N −M +M + L

M + L
(9.16)

= argf,g max
N + L

M + L
(9.17)

= argf,g min
M + L

N + L
. (9.18)

M =
∑

i≤l

(fTxi − g
Tyi)

2 (9.19)

= (fTX, gTY )




U1 −U2

−U3 U4







XTf

Y Tg


 = γTAγ. (9.20)

N =
∑

i≤l

c∑

k=1

(fTxi − g
T sk)

2 = (fT , gT )B




f

g


 = γTBγ. (9.21)

L = µ
∑

i,j

(fTxi − f
Txj)

2WX(i, j) = µfTXLXX
Tf = γTCγ. (9.22)

So

argf,g minC(f, g) = argf,g min
M + L

N + L
= argf,g min

γT (A+ C)γ

γT (B + C)γ
. (9.23)
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It follows directly from the Lagrange multiplier method that the optimal solution that

minimizes the loss function C(f, g) is given by the minimum eigenvector solution to

the generalized eigenvalue problem:

(A+ C)x = λ(B + C)x. (9.24)

When d > 1,

M =
∑

i≤l

‖fTxi − g
Tyi‖

2 = Tr((γ1 · · · γd)
TA(γ1 · · · γd)). (9.25)

N =
∑

i≤l

c∑

k=1

‖fTxi − g
T sk‖

2 = Tr((γ1 · · · γd)
TB(γ1 · · · γd)). (9.26)

L = µ
∑

i,j

‖fTxi − f
Txj‖

2WX(i, j) = Tr((γ1 · · · γd)
TC(γ1 · · · γd)). (9.27)

argf,g minC(f, g) = argf,g min
Tr((γ1 · · · γd)

T (A+ C)(γ1 · · · γd))

Tr((γ1 · · · γd)T (B + C)(γ1 · · · γd))
. (9.28)

Standard approaches [74] show that the solution to γ1 · · · γd that minimizes C(f, g)

is provided by the eigenvectors corresponding to the d lowest eigenvalues of the gen-

eralized eigenvalue decomposition equation:

(A+ C)x = λ(B + C)x. (9.29)

9.3 Experimental Results

In this section, we test discriminative projections, manifold regularization, LDA,

and LPP using four datasets: recognition of handwritten digits using the USPS

dataset (a vision dataset with multiple classes), TDT2 data (a text dataset with

multiple classes). We use the following simple strategy to decide the value of µ in

the loss function C(f, g). Let s = the sum of all entries of WX and l = the number
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of training examples with labels, then l/s balances the scales of the first term and

second term in the numerator of C(f, g). We let µ = l/s, if we treat accuracy and

topology preservation as equally important. We let µ > l/s, when we focus more on

topology preservation; µ < l/s, when accuracy is more important. In this paper, we

use µ = l/s for discriminative projections.

9.3.1 USPS Digit Data (Vision Data)

The USPS digit dataset (http://www.gaussianprocess.org/gpml/data/) has 9,298

images and is randomly divided into a training set (4,649 cases) and a test set (4,649

cases). Each image contains a raster scan of the 16 × 16 grey level pixel intensities.

The intensities have been scaled to the range [-1, 1].

We first computed lower dimensional embeddings of the data using regular discrim-

inative projections, LDA and Locality Preserving Projections (LPP). This dataset has

10 labels, so LDA can only return an embedding of 9 or less dimensions. LPP and

discriminative projections can return an embedding of any dimensionality. The 3D

and 2D embedding results are shown in Figure 9.2, from which we can see that regu-

lar discriminative projections and LDA can separate the data instances from different

classes in the new space, but LPP cannot.

To see how the discriminative information is preserved by different approaches,

we ran a leave-one-out test. We first computed 9D and 50D embeddings using dis-

criminative projections and LPP. We also computed 9D embedding using LDA. Then

we checked for each point xi whether at least one point from the same class were

among its K nearest neighbors in the new space. We tried K = 1, · · · , 10. The

results are summarized in Figure 9.3. From this figure, we can see that discrimina-

tive projections (50 dimensional), (9 dimensional) and LDA (9 dimensional) achieve

similar performance, and perform much better than LPP. The results also show that
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Figure 9.2. USPS digit test: (the color represents class label): (A) discriminative projec-
tions using 3D embedding; (B) discriminative projections using 2D embedding; (C) LDA
using 3D embedding; (D) LDA using 2D embedding; (E) LPP using 3D embedding; (F)
LPP using 2D embedding.

the projections that best preserve the dataset topology might be quite different from

the projections that best preserve the discriminative information.

We also used this example to visualize the new “prototype” of each label in a

2D space (Figure 9.4). The original labels are in a 10D space. The new labels are

constructed by projecting the old labels onto the space spanned by the first two

columns of mapping function g. When µ = 103, we can see from Figure 9.4 that new

labels of similar digits are close to each other in the new space. For example, ‘0’ and

‘8’ are together; ‘3’, ‘6’ and ‘9’ are also close to each other. When µ is large, we

focus more on topology preservation. Figure 9.4 makes sense, since to preserve local

topology of the given dataset, similar digits have a large chance of being projected

to similar locations. We ran another test with less respect to manifold topology (by

setting µ = 10−3). In the new scenario, the new labels were much better separated

in the new space (Figure 9.5). This experiment shows that the mapping g allows us

to scale the entries of the label vector by different amounts for different applications,

which then allows more flexible projections of instances.
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Figure 9.3. USPS test: This experiment measures how well the discriminative information
is preserved.
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digit labels (µ=0.001).

9.3.2 TDT2 Data (Text Data)

The TDT2 corpus consists of data collected during the first half of 1998 and taken

from 6 sources, including 2 newswires (APW, NYT), 2 radio programs (VOA, PRI)

and 2 television programs (CNN, ABC). It consists of more than 10,000 documents

which are classified into 96 semantic categories. In the dataset we are using, the

documents that appear in more than one category were removed, and only the largest

4 categories were kept, thus leaving us with 5,705 documents in total.
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Figure 9.6. TDT2 test: This experiment measures how well the manifold topology is
preserved.
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Figure 9.7. TDT2 test: This experiment measures how well the discriminative informa-
tion is preserved.
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We applied our approach, LDA and LPP to the TDT2 data assuming label infor-

mation of 1/3 documents from each class was given, i.e. l = 5, 705/3. We performed

a quantitative analysis to see how the topology of the given manifold was preserved.

A leave-one-out test was used to compare the lower dimensional embeddings. In this

test, we first computed 3D and 100D embeddings using discriminative projections

and LPP. We also computed 3D embedding using LDA (recall that LDA can only

return embeddings up to 3D for a dataset with 4 class labels). Then we checked for

each document xi whether its nearest neighbor in its original space was still among

its K neighbors in the new space. We tried K = 1, · · · , 10. The results are sum-

marized in Figure 9.6. From this figure, we can see that discriminative projections

with 3D embedding, LPP with 3D embedding and LDA are not effective in preserv-

ing the manifold topology. It is obvious that 3D embedding is not able to provide

sufficient information to model the neighborhood relationship for this test. However,

LDA cannot go beyond this, since it can only compute embeddings up to 3D for

TDT2 data. On the contrary, discriminative projections with 100D embedding and

LPP with 100D embedding do a much better job, and the performances of these two

approaches are also quite similar.

To see how the discriminative information is preserved by different approaches, we

ran a similar leave-one-out test. Again, we first computed 3D and 100D embeddings

using both discriminative projections and LPP. We also computed the 3D embedding

using LDA. Then we checked for each document xi whether at least one document

from the same class was among its K nearest neighbors in the new space (we use this

as correctness). We tried K = 1, · · · , 10. The results are summarized in Figure 9.7.

From this figure, we can see that discriminative projections and LDA perform much

better than LPP in all 10 tests. Discriminative projections with 3D embedding and

LDA achieve similar results, while discriminative projections with 100D embedding

is slightly better.
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Generally speaking, LDA does a good job at preserving discriminative information,

but it does not preserve the topology of the given manifold and not suitable for many

dimensionality reduction applications, which need an embedding defined by more

than c−1 features. LPP can preserve the manifold topology, but it totally disregards

the label information. Discriminative projections combines both LDA and LPP, such

that both manifold topology and the class separability will be preserved. In addition,

depending on the applications, users may decide how to choose µ to balance the two

goals. If we focus more on the manifold topology, we choose a larger value for µ;

otherwise, we choose a smaller value for µ.

9.4 Remarks

In this chapter, we introduced a novel approach (discriminative projections) to

construct discriminative features to map high-dimensional data instances to a new

lower dimensional space, preserving both manifold topology and class separability.

Discriminative projections goes beyond LDA in that it can provide an embedding of

an arbitrary dimensionality rather than c−1 for a problem with c class labels. It also

differs from regular dimensionality reduction since the discriminative information to

separate instances from different classes will be preserved. Our approach is a semi-

supervised approach making use of both labeled and unlabeled data. It is general,

since it can handle both two class and multiple class problems. In addition to the

theoretical validations, we also presented real-world applications of our approach to

information retrieval and a digit recognition task in computer vision.

154



CHAPTER 10

LEARNING MULTISCALE REPRESENTATIONS FOR
TRANSFER LEARNING

10.1 Background

Chapter 3 - Chapter 6 investigated how to construct a common feature space for

the input datasets that are originally represented by different features. Chapter 7 -

Chapter 9 focused on representation learning: constructing more efficient represen-

tations from each individual input dataset to help improve learning performance. In

this chapter, we combine these two lines of work and study how to learn a common

multiscale representation across datasets.

We call the new algorithm multiscale manifold alignment. Compared to single-

level alignment approaches discussed in previous chapters, multiscale alignment au-

tomatically generates alignment results at different levels by discovering the shared

intrinsic multilevel structures of the given datasets. In contrast to previous “flat”

alignment methods, where users need to specify the dimensionality of the new space,

the multilevel approach automatically finds alignments of varying dimensionality.

Compared to regular representation learning techniques, which learn a new represen-

tation for each individual dataset, the new algorithm learns a common representation

across all input datasets.

The rest of this chapter is as follows. In Section 10.2 we describe the problem

and the main algorithm. In Section 10.3 we provide a theoretical analysis of our

approach. We describe some applications and summarize our experimental results in

Section 10.4. Section 10.5 provides some concluding remarks.
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xi ∈ R
p; X = {x1, · · · , xm} is a p×m matrix; Xl = {x1, · · · , xl} is a p× l matrix.

yi ∈ R
q; Y = {y1, · · · , yn} is a q × n matrix; Yl = {y1, · · · , yl} is a q × l matrix .

Xl and Yl are in correspondence: xi ∈ Xl ←→ yi ∈ Yl.

Wx is a similarity matrix, e.g. W i,j
x = e−

||xi−xj ||
2

2σ2 .

Dx is a full rank diagonal matrix: Di,i
x =

∑
jW

i,j
x ;

Lx = Dx −Wx is the combinatorial Laplacian matrix.
Wy, Dy and Ly are defined similarly.

Ω1 − Ω4 are all diagonal matrices having µ on the top l elements of the diagonal
(the other elements are 0s); Ω1 is an m×m matrix; Ω2 and ΩT

3 are m×n matrices;
Ω4 is an n× n matrix.

Z =

(
X 0
0 Y

)
is a (p+ q)× (m+ n) matrix.

D =

(
Dx 0
0 Dy

)
and L =

(
Lx +Ω1 −Ω2

−Ω3 Ly +Ω4

)
are both (m + n) × (m + n)

matrices.
F is a (p+ q)× r matrix, where r is the rank of ZDZT and FF T = ZDZT . F can
be constructed by SVD.
(·)+ represents the Moore-Penrose pseudoinverse.

At level k: αk is a mapping from any x ∈ X to a pk dimensional space: αTk x (αk is
a p× pk matrix).
At level k: βk is a mapping from any y ∈ Y to a pk dimensional space: βTk y (βk is
a q × pk matrix).

Figure 10.1. Notation used in this chapter.

10.2 Multiscale Manifold Alignment

In this section, we introduce the framework of multiscale alignment. The notation

used in this chapter is summarized in Figure 10.1.

10.2.1 Multiscale Manifold Alignment Problem

To define the multiscale alignment problem, we first need to construct a multiscale

hierarchy, comprising of a hierarchy of subspaces of varying dimensionality. Given

such a hierarchy, the two loss functions given in Equation 4.1 and 4.2 can be naturally

extended by projecting onto the subspaces. In this chapter, we use the loss function

given in Equation 4.21 as an example to explain multiscale alignment approaches.
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The overall idea can be easily generalized to obtain multiscale solutions to minimize

more general loss functions given in Equation 4.1 and 4.2.

In Figure 10.1, L is the graph Laplacian matrix, reflecting the joint manifold con-

structed from two input manifolds and the given corresponding pairs. Given a fixed

subspace hierarchy, the multiscale manifold alignment problem is formally defined

as follows: given two datasets X,Y along with partial correspondence information

xi ∈ Xl ←→ yi ∈ Yl, compute mapping functions Ak and Bk that project X and Y

from level k in the hierarchy to a new space preserving local geometry of each set and

matching instances in correspondence. Here k = 1, . . . , h represents each level of the

joint manifold hierarchy.

So multiscale manifold alignment can be decomposed into two parts: determine a

hierarchy in terms of number of levels and the dimensionality at each level, then find

an alignment to minimize the cost function at each level. Our approach is basically

solving in effect both of these problems simultaneously. To construct the hierarchy,

we adopt an approach based on diffusion wavelets [20]. As described in Chapter 7,

given an input dataset, diffusion wavelets (DWT) is able to automatically identify

the multilevel intrinsic structure of the data. If the input data is a joint manifold,

then those levels will correspond to appropriate scales to align the input manifolds.

To apply diffusion wavelets to multiscale alignment problem, we need to address

the following challenge: the regular diffusion wavelets algorithm can only handle a

regular eigenvalue decomposition in the form of Aγ = λγ, where A is the given matrix,

γ is an eigenvector and λ is the corresponding eigenvalue. However, the problem we

are interested in is a generalized eigenvalue decomposition: Aγ = λBγ, where we

have two input matrices A and B. We address this challenge in Section 10.3, which

contains a theoretical analysis showing the optimality of our multiscale manifold

alignment method.
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10.2.2 The Main Algorithm

Given X,Xl, Y, Yl, using the notation defined in Figure 10.1, the algorithm is as

follows:

1. Construct a matrix representing the joint manifold: T = F+ZLZT (F T )+.

2. Use diffusion wavelets to explore the intrinsic structure of the joint man-
ifold:

[φk]φ0
= DWT (T+), where DWT () is described in Chapter 7, [φk]φ0

are the scaling
function bases at level k represented as an r× pk matrix, k = 1, · · · , h represents the
level in the joint manifold hierarchy. The value of pk is determined in DWT () based
on the intrinsic structure of the given dataset.

3. Compute mapping functions for manifold alignment (at level k):[
αk
βk

]
= (F T )+[φk]φ0

is a (p+ q)× pk matrix.

4. At level k: apply αk and βk to find correspondences between X and Y :

For any i and j, αTk xi and βTk yj are in the same pk dimensional space and can be
directly compared.

To use the multiscale framework to solve instance-level manifold alignment prob-

lem, we need to minimize the cost function given in Equation 4.20 instead. This

requires making two changes to our main algorithm. Step 1: T = H+L(HT )+, where

D = HHT . Step 4: At level k, row i of αk and row j of βk are in the same pk

dimensional space and can be directly compared.

10.3 Theoretical Analysis

One significant advantage of wavelet analysis is that it directly generalizes to non-

symmetric matrices, which are often encountered when constructing graphs using

k-nearest neighbor relationships, in directed citation and web graphs, and Markov

decision processes. If the matrix is symmetric, there is an interesting connection

between our algorithm and manifold projections. Theorem 18 below proves that

the proposed alignment result at level k and the result from feature-level manifold
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projections (with top pk eigenvectors) are both optimal with respect to the loss func-

tion C(F1,F2) described in Equation 4.21, when µ2 = 1. Theorem 17 proves some

intermediate results, which are subsequently used in Theorem 18.

Theorem 17. The matrix L is positive semi-definite.

Proof: Assume s = [s1:p, sp+1:p+q] is an arbitrary vector, where s1:p = [s1, · · · , sp],

sp+1:p+q = [sp+1, · · · , sp+q]. Let

L1 =




Lx 0

0 Ly


 , L2 =




Ω1 −Ω2

−Ω3 Ω4


 , (10.1)

then

sLsT = sL1s
T + sL2s

T . (10.2)

Firstly,

sL1s
T = s1:pLxs

T
1:p + sp+1:p+qLys

T
p+1:p+q ≥ 0. (10.3)

The reason is as follows: Lx is a graph Laplacian matrix, so it is positive semi-definite.

This implies that

s1:pLxs
T
1:p ≥ 0. (10.4)

Similarly,

sp+1:p+qLys
T
p+1:p+q ≥ 0. (10.5)

Considering the fact that

sL2s
T = µ

l∑

i=1

(si − si+p)
2, (10.6)

we have sL2s
T ≥ 0. So

sLsT = sL1s
T + sL2s

T ≥ 0. (10.7)

Since s is an arbitrary vector, L is positive semi-definite.
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Chapter 4 shows that the alignment result from manifold projections (using pk

eigenvectors corresponding to the smallest non-zero eigenvalues of ZLZTγ = λZDZTγ)

is optimal with respect to the loss function C(F1,F2). Theorem 18 shows that the

proposed multiscale algorithm also achieves the optimal result.

Theorem 18. At level k, the multiscale manifold alignment algorithm achieves the

optimal pk dimensional alignment result with respect to the cost function C(F1,F2).

Proof: Let T = F+ZLZT (F T )+. Since L is positive semi-definite (Theorem 17), T

is also positive semi-definite. This means all eigenvalues of T ≥ 0, and eigenvectors

corresponding to the smallest non-zero eigenvalues of T are the same as the eigen-

vectors corresponding to the largest eigenvalues of T+. From Theorem 13, we know

the solution to generalized eigenvalue decomposition ZLZTγ = λZDZTγ is given by

((F T )+x, λ), where x and λ are eigenvector and eigenvalue of Tx = λx. Let columns

of PX denote the eigenvectors corresponding to the pk largest non-zero eigenvalues of

T+. Then the manifold projections solution is given by (F T )+PX .

Let columns of PY denote [φk]φ0
, the scaling functions of T+ at level k and pk be

the number of columns of [φk]φ0
. In our multiscale algorithm, the solution at level k

is provided by (F T )+PY .

From [20], we know PX and PY span the same space. This means PXP
T
X = PY P

T
Y .

Since the columns of both PX and PY are orthonormal, we have P T
XPX = P T

Y PY = I,

where I is an pk×pk identity matrix. Let Q = P T
Y PX , then PX = PXI = PXP

T
XPX =

PY P
T
Y PX = PY (P

T
Y PX) =⇒ PX = PYQ.

QTQ = QQT = I and det(QTQ) = (det(Q))2 = 1, det(Q) = 1. So Q is a rotation

matrix.

Combining the results shown above, the multiscale alignment algorithm at level k

and feature-level manifold projections with pk smallest non-zero eigenvectors achieve

the same alignment results up to a rotation Q.
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10.4 Experimental Results

We apply our approach to the protein example and corpora alignment problem.

ε = 10−5 and µ = 1 for both experiments, where ε represents the desired precision used

in DWT , and µ = 1 means preserving manifold topology and matching corresponding

instances are equally important.

10.4.1 An Illustrative Example

In this experiment, we directly align two protein manifolds (details about this

dataset are described in Section 3.5) and use figures to illustrate how our algorithm

works. The dataset has two protein manifolds, each of which has 215 points (amino

acids) defined in a 3D space. We plot both manifolds on the same graph (Fig-

ure 10.2(A)). It is clear that manifold X (red) is much smaller than Y (blue), and the

orientations of them are quite different. We use matrix X to represent manifold X

and Y to represent X . Both X and Y are 3×215 matrices. Without loss of generality,

we assume xi and yi are in correspondence for 1 ≤ i ≤ l, where l = 22 ≈ 215× 10%.

Multiscale algorithm identified a four level hierarchy in the joint manifold structure

defined by 6, 3, 2, and 1 basis functions. The alignment results in 3D, 2D and 1D

spaces are in Figure 10.2(B), (C) and (D). Rather than ask users to estimate the

dimensionality, our algorithm can automatically compute alignment results at differ-

ent levels by exploring the intrinsic structures (in common) of the two datasets at

different scales. In this test, the 3D-1D alignment results make sense in biology. They

correspond to the tertiary, secondary, and primary protein structures.

10.4.2 Multiscale Alignment of Corpora/Topics

One application of manifold alignment in information retrieval is corpora align-

ment, where corpora can be aligned so that knowledge transfer between different

collections is possible. In this test, we applied our approach to align corpora rep-

resented in different topic spaces. Interestingly, our approach was also shown to be
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Figure 10.2. An Illustrative Example: (A) Manifold X and Y; (B) Multiscale alignment
at level 2 (3D); (C) Multiscale alignment at Level 3 (2D); (D) Multiscale alignment at Level
4 (1D).

useful in finding topics shared by multiple collections. Given two collections: X1 (a

|W1| × |D1| matrix) and X2 (a |W2| × |D2| matrix), where |Wi| is the size of the

vocabulary set and |Di| is the number of the documents in collection Xi. Assume

the topics learned from the two collections are given by S1 and S2, where Si is a

Wi × ri matrix and ri is the number of the topics in Xi. Then the representations

of Xi in the topic space is STi Xi. Following our main algorithm, ST1 X1 and ST2 X2

can be aligned in the latent space at level k by using mapping functions αk and βk.

The representations of X1 and X2 after alignment become αTk S
T
1 X1 = (S1αk)

TX1

and βTk S
T
2 X2 = (S2βk)

TX2. Obviously, the document contents (X1 and X2) are not

changed. The only thing that has been changed is Si - the topic matrix. Recall that

the columns of Si are topics of Xi. The alignment algorithm changes S1 to S1αk and

S2 to S2βk. The columns of S1αk and S2βk are still of length |Wi|. Such columns are

in fact the new “aligned” topics.

The dataset we used is the NIPS (1-12) full paper dataset, which includes 1,740

papers and 2,301,375 tokens in total. We first represented this dataset using two

different topic spaces: LSI space [26] and LDA space [9]. In other words, X1 = X2,
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but S1 6= S2 for this set. We extracted 400 topics from the dataset with both LDA

and LSI models (r1 = r2 = 400). The top 8 words of topic 1-5 from each model

are shown in Figure 10.3 and Figure 10.4. It is clear that none of those topics are

similar across the two sets. We ran the main algorithm using 20% uniformly selected

documents as correspondences. We identified a 3 level hierarchy of mapping functions

and the number of basis functions spanning each level was: 800, 91, 2. These numbers

correspond to the intrinsic structure of the underlying joint manifold. At the finest

scale, the manifold is spanned by 800 vectors. This makes sense, since the joint

manifold is definitely spanned by 400 LSI topics+ 400 LDA topics. At level 3, the

joint manifold is spanned by 2 vectors. To see how the original topics were changed

can help us better understand the alignment algorithm. In Figure 10.5 and 10.6,

we show 5 corresponding topics (corresponding columns of S1α2 and S2β2) at level

2. From these figures, we can see that the new topics in correspondence are very

similar to each other across the datasets, and interestingly the new aligned topics

are semantically meaningful to represent some areas in either machine learning or

neuroscience. At level 3, there are only two aligned topics (Figure 10.7 and 10.8).

One of them is about machine learning and the other is about neuroscience. These

two topics are the most abstract topics of NIPS papers. From these results, we

can see that our algorithm can automatically align the given datasets at different

scales following the intrinsic structure of the joint manifold. Since the alignment of

collections is done via topic alignment, the new approach is also useful to find the

common topics shared by the given collections.

10.4.3 Discussion

In previous manifold alignment approaches, the users need to specify the dimen-

sionality of the intended alignment. Finding an appropriate value for this is quite

difficult. The proposed approach constructs multilevel alignment results based on the
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common underlying intrinsic structures of the given datasets, leaving the users with

a small number of levels to consider (often < 10) even when the underlying problem

may be defined by tens of thousands of features. Also, some levels are defined by

either too many or too few features. This eliminates from consideration additional

levels, usually resulting a handful of levels as possible candidates. The users can select

the level that is the most appropriate for their applications. For example, in parallel

corpus test presented in Section 10.4.2, we only have alignment results at 3 levels

involving 800, 91, 2 dimensional spaces. Choosing the space defined by 91 features

is a natural choice, since the levels below and above this have too few or too many

features, respectively. A user can also select the most appropriate level by testing

his/her data at different levels.

10.5 Remarks

In this chapter, we introduce multiscale manifold alignment– a novel approach to

learn multiscale representations across input datasets. Our approach extends previ-

ously studied approaches in that it produces a hierarchical alignment that preserves

the local geometry of each given manifold and matches the corresponding instances

across manifolds at multiple scales.
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Figure 10.3. Topic 1-5 (LDA) before alignment.
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Figure 10.4. Topic 1-5 (LSI) before alignment.
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Figure 10.5. 5 LDA topics at level 2 after alignment.
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Figure 10.6. 5 LSI topics at level 2 after alignment.
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Figure 10.7. 2 LDA topics at level 3 after alignment.
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Figure 10.8. 2 LSI topics at level 3 after alignment.
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CHAPTER 11

CONCLUSIONS AND FUTURE WORK

11.1 Summary

As illustrated in Figure 11.1, transfer learning and representation learning are two

main components of my thesis. Inside the triangle, manifold alignment (a geomet-

ric framework for transfer learning) is used to map different datasets (manifolds) to

the same feature space, simultaneously matching the corresponding instances and pre-

serving topology of each input dataset. Once the common space is constructed, useful

knowledge can be transferred across domains via this space. Outside the triangle, a

set of representation learning techniques construct a new basis (a set of features) for

each individual domain so that the new representation of the data is well adapted to

the given task and geometry of the data space.

Manifold alignment makes use of both unlabeled and labeled data. The ability to

exploit unlabeled data is particularly useful for transfer learning and domain adapta-

tion, where the number of labeled instances in the target domain is usually limited.

One main result of this thesis is manifold projections, a general framework for man-

ifold alignment. Manifold projections can handle many to many correspondences,

solve multiple alignment problems and be used as a basis for many different variants.

Some existing algorithms like Laplacian eigenmaps [4], LPP [33], Canonical Correla-

tion Analysis (CCA), and semi-supervised alignment [31] can be obtained from this

framework as special cases. Some problems (like unsupervised alignment and multiple

alignment), which were difficult to solve and thus not well studied yet, can also be

solved from this framework in a straightforward way. As a natural extension of mani-
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Figure 11.1. The two main components of the thesis: Transfer Learning and Represen-
tation Learning. X1, X2 and X3 are three input domains.

fold projections, we present a knowledge transfer algorithm to directly build mappings

between spaces defined by different features. This algorithm can automatically solve

two key issues in transfer learning area: “what to transfer” and “how to transfer”.

We also provide a set of extensions of this framework to more challenging situations:

(1) when no correspondences across domains are given; (2) when the global geometry

of each input domain needs to be respected; (3) when label information rather than

correspondence information is available. These extensions significantly broadens the

application scope of manifold alignment techniques.

Another main result of my thesis is a novel representation learning approach to

construct multiscale representations for the input data. This approach learns basis

functions to span the original problem space at multiple scales and can automatically

map the data instances to lower dimensional spaces preserving the relationship in-

herent in the data. It also offers the following advantages over the state of the art

methods: it provides multiscale analysis, it computes basis functions that have local

support, and it is able to handle non-symmetric relationships. As an application of

the proposed approach in the text domain, we use it to extract hierarchical topics
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from a given collection of text documents. Compared to the other approaches in the

field, the new approach is largely parameter free and can automatically compute the

topic hierarchy and topics at each level.

As a combination of transfer learning and representation learning, multiscale man-

ifold alignment is proposed in this thesis to construct multiscale representations of

the input datasets, matching corresponding pairs and preserving manifold topology at

differen scales. Many real-world challenges cannot be addressed by transfer learning

or representation learning alone. A combination of these two offers us a new tool to

solve more interesting problems.

11.2 Limitations

The assumption of manifold alignment is the data from each input domain lies

on a manifold, which is embedded in Euclidean space, and the given data is sampled

from the underlying manifold in terms of the features of the embedding space. This

requires (1) the given data is well sampled from the input domain, and (2) related

instances in each input domain should be close to each other in Euclidean space. The

first requirement is not special to manifold alignment. It is needed for all machine

learning approaches. The second requirement is important to decide whether manifold

alignment will succeed or not. We observe that if this assumption does not hold, then

manifold alignment could fail.

One example that manifold alignment fails is on matching face images in the wild

and the corresponding captions. In this task, we are given some training image–

caption pairs (one example is shown in Figure 11.2), and the goal is to find the

correlations between visual features and text features (words) such that the alignment

between test images and captions can be achieved. We applied feature-level manifold

projections to this task. Manifold projections can perfectly align the training images

and captions, but the alignment does not generalize well to the test data. The problem
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Figure 11.2. Mary Pierce of France plays a return to Patricia Wartusch of Austria at the
Australian Open tennis tournament in Melbourne, Tuesday, Jan. 14, 2003. Pierce won the
match 6-1, 6-4.

is that the visual features (SIFT features [43]) we use are not sufficient to capture

the image contents for this task. Two images with similar contents might not be

neighbors in the visual feature space regarding Euclidean distance, while neighboring

images might represent different contents. So requirement (2) does not hold for this

task. This example tells us that finding a better representation for each input domain

is always important for transfer learning.

11.3 Future Work

THEORETICAL WORK:

There are a number of interesting directions for future work on developing new more

scalable algorithms for manifold alignment.

a. New Algorithms to Create the Joint Manifold

The most important part of each manifold alignment algorithm is on how the joint

manifold is constructed. This thesis presents two major ways for this: one is based on

a joint Laplacian matrix (Chapter 4 and 6), and another is based on a joint distance

matrix (Chapter 5). We like to explore other solutions to this problem, and one of
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them is based on maximizing mutual information. It has been shown that the solu-

tion to maximize mutual information between two feature spaces is equal to solving

a canonical correlation analysis problem and an assignment problem jointly [12]. As

shown in Chapter 4, CCA is a special case of manifold projections, so it is a rea-

sonable idea to combine mutual information based approach with manifold topology

preservation techniques to provide new manifold alignment algorithms.

b. Transfer Learning and Representation Learning in Tensor Space

Most algorithms presented in this thesis are based on matrix operations like sin-

gular value decomposition and eigenvalue decomposition. Powerful as they may be,

such operations are not sufficient to handle the problem like finding the patterns in

author-keyword associations evolving over time. The crux is that matrices have only

two dimensions (e.g., “instance” and “features”), while we may often need more (e.g.,

“time”). This is what tensor is. A tensor is a generalization of a matrix or a vector.

An illustration of tensor is given in Figure 11.3. Multilinear algebra extends linear

algebra to analyze higher-order tensors.

Figure 11.3. An illustration of first-order (vector), second-order (matrix) and third-order
tensors.

Using tensors, we can attack a wider range of problems, that matrix opera-

tions cannot process. For example, alignment of human behaviors involving spatio-

temporal motion patterns (a transfer learning problem) and learning how topics
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change over time (a representation learning problem).

c. Scalability

It takes O(kn2) time to compute top k eigenvectors of an n×n matrix in the general

case. So a significant challenge for any eigenvalue decomposition based approach is

scalability. This problem is particularly important for instance-level manifold align-

ment approaches. For example, a näıve implementation of instance-level manifold

projections becomes infeasible with increasing number of the instances. This is com-

monly referred to as the curse of dimensionality, and is well-known in the area of

manifold learning. This issue needs to be addressed in the future. One possible so-

lution is the Automated Multilevel Substructuring (AMLS) algorithm [6], which was

recently introduced as a way to scale up eigenvector computation to very large-scale

problems that involves in sparse symmetric matrices. Bennighof and Lehoucq re-

ported computing thousands of eigenpairs on a matrix with millions of rows using a

commodity computer and doing so orders of magnitude faster than current state-of-

the-art algorithms [6].

APPLICATIONS:

Manifold alignment is a very general technique, and can be used for different applica-

tions that involve different types of features. This thesis reports alignment results on

biological and text domains. There are also a number of other interesting application

areas to explore.

a. Matching Pictures and Words

One interesting area is matching pictures and words. This area learns how to predict

words associated with whole images (auto-annotation) and corresponding to particu-

lar image regions (region naming). Auto-annotation might help organize and access
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large collections of images. Region naming is a model of object recognition as a pro-

cess of translating image regions to words, much as one might translate from one

language to another [3]. A similar but more challenging task is on face detection [36]

to determine whether pairs of face images, taken under different illumination condi-

tions, were pictures of the same person or not.

b. Modeling Human Behaviors

In this thesis, we studied multiple manifold alignment problem using a cross-lingual

information retrieval dataset. We also like to apply alignment techniques to other in-

teresting datasets that have more modalities. A great showcase is the CMU-MMAC

database (http://kitchen.cs.cmu.edu), which contains multimodal measures of hu-

man activity of subjects performing tasks involved in cooking and food preparation.

A dataset of anomalous situations while cooking was recorded including the following

modalities: audio, video, accelerations, angular velocity, motion capture, light, gal-

vanic skin response, heat flux sensor, skin temperature, RFIDs.

c. Improving Advertisement and Search

We are also studying how manifold alignment can be used to improve advertisement

selection: exploring the intent of user queries for search advertising, as well as com-

bining relevance and click based feedback for ad selection. Advertisement selection

problems are manifold alignment problems. When a user is searching for something,

the company running the search engine likes to show the user the most relevant spon-

sored results, such that the users may click on those links and the company can charge

sponsors some fee for this. The problem here is to match the input query words and

the sponsors’ advertisement words. Following the notation defined in Figure 4.5, now

xia is a user input query, which includes a couple of query words. xjb is a sponsor link,

which is characterized by some advertisement words representing the sponsor. We
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want to compute mapping functions Fa and Fb to best match queries and sponsors.

This problem can be solved by feature-level manifold projections and the resulting

mapping functions can translate user input words to advertisement words. One prob-

lem that we need to answer is how correspondence information is achieved for such

applications. Recall that in our alignment approach, we need some correspondence

to align two datasets. One way to get the correspondence information is exploring

“click-through history”. If a user inputs a query and then clicks on a sponsor’s link,

it means the query-sponsor pair is a match. The click information might have some

“noise”, since users might accidently click on something. This is not a significant

problem, since the resulting mapping functions are linear and they are less sensitive

to such type of random noise. Such click information has already been used to learn

correspondence between queries and documents, and provides an efficient way for

image search [22].

d. Transfer Learning in Reinforcement Learning

Transfer learning studies how to re-use knowledge learned from one domain or task to

a related domain or task. Here, we discuss transfer learning in Markov decision pro-

cesses (MDPs). Transfer learning has been actively studied in the context of MDPs.

However, most of the existing work on this topic is based on constructing mappings

between pre-defined features of the source and target state spaces, and not on auto-

matically constructed features from modeling the geometry of the underlying state

space manifolds [66, 65, 60, 50]. In an MDP, a value function is a mapping from states

to real numbers, where the value of a state represents the long-term reward achieved

starting from that state, and executing a particular policy. An interesting problem for

future work is to extend our main algorithmic framework to transfer value functions

across domains.
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