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Abstract. This paper describes a novel framework for learning discrim-
inative features, where both labeled and unlabeled data are used to map
the data instances to a lower dimensional space, preserving both class
separability and data manifold topology. In contrast to linear discrimi-
nant analysis (LDA) and its variants (like semi-supervised discriminant
analysis), which can only return c−1 features for a problem with c classes,
the proposed approach can generate d features, where d is bounded only
by the dimensionality of the original problem. The proposed framework
can be used with both two class and multiple class problems. It can also
be adapted to problems where class labels are continuous. We describe
and evaluate the new approach both theoretically and experimentally,
and compare its performance with other state of the art methods.
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1 Introduction

In many areas of data mining and information retrieval, it is highly desirable to
map high dimensional data instances to a lower dimensional space, preserving
topology of the given data manifold. In this paper, we consider a more gen-
eral problem: learning lower dimensional embedding of data instances preserv-
ing both manifold topology and discriminative information to separate instances
from different classes. Our proposed approach has its goal to eliminate useless
features and improve the speed and performance of classification, clustering,
ranking, and multi-task learning algorithms. Our work is related to previous
work on regression models, manifold regularization [1], linear discriminant anal-
ysis (LDA) [2], and dimensionality reduction methods such as locality-preserving
projections (LPP) [3].

Linear regression involves estimating a coefficient vector of dimensionality
equal to the number of input features using which data instances are mapped
to real-valued outputs (or continuous class labels). For example, given a set of
instances {xi} defined in a p dimensional space, a linear regression model com-
putes β0, · · · , βp such that label yi can be approximated by ŷi = β0 + β1xi(1) +
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· · · + βpxi(p) for i = 1, . . . , n. The framework of manifold regularization [1]
combines the standard loss functions associated with regression or classification
with an additional term that preserves the local geometry of the given data man-
ifold (the framework has another term corresponding to an ambient regularizer).
One problem solved under this framework can be characterized as follows: given
an input data set X = (x1, · · · , xm) and label information V = (v1, · · · , vl)
(l ≤ m), we want to compute a function f that maps xi to a new space, where
fT xi matches xi’s label yi. In addition, we also want f to preserve the neighbor-
hood relationship within data set X (making use of both labeled and unlabeled
data). This problem can be viewed as finding an f that minimizes the cost
function: C(f) =

P
i≤l(f

T xi − yi)
2 + µ

P
i,j(f

T xi − fT xj)
2WX(i, j). We can in-

terpret the first mean-squared error term of C(f) as penalizing the difference
between a one-dimensional projection of the instance xi and the label yi. The
second term enforces the preservation of the neighborhood relationship within X
(where WX is a similarity measure). Under this interpretation, manifold regular-
ization constructs embeddings preserving both the topology of the manifold and
a 1-dimensional real-valued output structure. The proposed approach generalizes
this idea to compute higher order locality-preserving discriminative projections,
for both discrete as well as continuous-valued labels.

Linear Discriminant Analysis (LDA) and some of its extensions like semi-
supervised discriminant analysis [4, 5] find a dimensionality-reducing projection
that best separates two or more classes of objects or events. The resulting combi-
nation may be used as a linear classifier, or for dimensionality reduction before
later classification. However, for a data set with c class labels, LDA type ap-
proaches can only achieve a c − 1 dimensional embedding (since the matrix to
model the between-class difference only has c − 1 nontrivial eigenvectors). In
many applications, c − 1 is far from sufficient. For example, given a data set
with two class labels (positive/negative), LDA type approaches only yield a 1D
embedding for each instance, even when the data is defined by several hundreds
of features in the original space.

Many linear (e.g. PCA) and nonlinear (e.g. Laplacian eigenmaps [6]) dimen-
sionality reduction methods convert dimensionality reduction problems to an
eigenvalue decomposition. One key limitation of these approaches is that when
they learn lower dimensional embeddings, they do not take label information
into account. So only the information that is useful to preserve the topology of
the whole manifold is guaranteed to be kept, and the discriminative information
separating instances from different classes may be lost. For example, when we
are required to describe a human being with a couple of words, we may use such
characteristics as two eyes, two hands, two legs and so on. However, none of
these features is useful to separate men from women. Similar to our approach,
the well-known Canonical Correlation Analysis (CCA) also simultaneously com-
putes two mapping functions. CCA finds linear functions that map instances
from two different sets to one space, where the correlation between the corre-
sponding points is maximized. There are two fundamental differences between
our approach and CCA: 1. The number of non-zero solutions to CCA is limited
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to the smallest dimensionality of the input data. For our case, CCA can only
get a c− 1 dimensional embedding since the label is in a c dimensional space. 2.
Our approach can make use of unlabeled data, while CCA cannot.

The proposed approach can be distinguished from some recent work. LDPP [7]
learns the dimensionality reduction and nearest neighbor classifier parameters
jointly. LDPP does not preserve the topology of the given data set. The al-
gorithm in [8] provides a framework to learn a (local optimal) linear mapping
function to map the given data to a new space to enhance a given classifier.
Their mapping function is designed for classification only and does not preserve
the topology of the data set. Transductive component analysis [9] can return a
lower dimensional embedding of an arbitrary dimensionality, preserving mani-
fold topology. It differs from our approach in that our approach can be adapted
to handle continuous labels. Colored maximum variance unfolding is not directly
related to our work either. It is designed to preserve local distance structure [10].

In this paper, we develop a framework for learning optimal discriminative
projections to map high-dimensional data instances to a new lower dimensional
space, leveraging the given class label information such that instances from differ-
ent classes will be mapped to different locations. Similar to the goal of manifold-
preserving dimensionality reduction approaches, we also want the topology of the
given data manifold to be respected. Our new approach combines the ideas of
manifold regularization, LDA and regular dimensionality reduction. Both LDA
and our approach provide discriminative projections to separate instances from
different classes, but LDA can only return c − 1 dimensional projections for
a problem with c classes. Compared to dimensionality reduction methods like
PCA, our approach preserves both manifold topology and class separability. In
addition to the benefits discussed above, our approach has an added benefit that
it can be extended to handle continuous class labels. In many applications, we
might not have discrete class labels. Instead, each instance is assigned with a
value and two instances are supposed to be similar if their associated values are
similar. Such values can be treated as continuous (real-valued) labels. The ability
to handle continuous labels is also useful in the other scenarios. For example, we
might use 4 values to label the instances in a ranking algorithm: 1-“excellent”,
2-“good”, 3-“fair”, 4-“bad”. The instances labeled with “excellent” should be
more similar to the instances labeled with “good”, compared to the instances
labeled with “bad”.

The rest of this paper is organized as follows. In Section 2 we describe our
algorithm to address regular two class/multiple class problems. In Section 3,
we show how our algorithm can be extended to solve problems with continuous
labels. Section 4 summarizes our experimental results. Section 5 provides some
concluding remarks.
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2 Overall Framework

We introduce the overall framework in this section. It is helpful to review the no-
tation described below. In particular, we assume that class labels can be viewed
as c-dimensional real-valued vectors if there are c possible labels.

2.1 The Problem

Assume the given data set X = (x1, · · · , xm) is a p × m matrix, where instance
xi is defined by p features. c = number of classes in X . Label yi is a c× 1 vector
representing xi’s class label. If xi is from the jth class, then yi(j) = 1; yi(k) = 0
for any k �= j. We also assume xi’s label is given as yi for 1 ≤ i ≤ l; xi’s label is
not available for l + 1 ≤ i ≤ m. Y = (y1, · · · , yl) is a c × l matrix.

The problem is to compute mapping functions f (for data instances) and
g (for labels) to map data instance xi ∈ Rp and label yi ∈ Rc to the same
d-dimensional space, where the topology of the data manifold is preserved, the
instances from different classes are separated and d � p. Here, f is a p×d matrix
and g is a c × d matrix.

2.2 The Cost Function

The solution to the overall problem of learning locality preserving discriminative
projections can be formulated as constructing mapping functions f and g that
minimize the cost function

C(f, g) =

∑
i≤l ‖fT xi − gT yi‖2

2 + µ
∑

i,j ‖fT xi − fT xj‖2
2WX(i, j)∑

i≤l

∑c
k=1,sk �=yi

‖fT xi − gT sk‖2
2

,

where sk and WX are defined as follows: sk is a c × 1 matrix. sk(k) = 1, and
sk(j) = 0 for any j �= k. Sk is a c × l matrix= (sk, · · · , sk). WX is a matrix,
where WX(i, j) is the similarity (could be defined by heat kernel) between xi

and xj .
Here, fT xi is the mapping result of xi. gT yi (or gT sk) is the mapping result

of label yi (or sk). The first term in the numerator represents the difference
between the projection result of any instance xi and its corresponding label yi.
We want this value to be small, since this makes xi be close to its true label.
The second term in the numerator models the topology of data set X using both
labeled and unlabeled data. When it is small, it encourages the neighborhood
relationship within X to be preserved. µ is a weight to balance the first and
second terms. It is obvious that we want the numerator of C(f, g) to be as small
as possible. The denominator models the distance between the projection result
of each instance xi and all its wrong labels. We want this value to be as large as
possible, since this makes xi be far away from its wrong labels.

Thus, minimizing C(f, g) will preserve the topology of data set X , and project
instances to a new lower dimensional space, where the instances from different
classes are well separated from each other.
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2.3 High Level Explanation

Manifold regularization addresses the problem of learning projections to map the
data instances (with known labels) to their class labels, preserving the manifold
topology. The loss function used in one algorithm under the manifold regular-
ization framework is as follows:

C(f) =
∑
i≤l

(fT xi − yi)2 + µ
∑
i,j

(fT xi − fT xj)2WX(i, j),

where yi is the real-valued label of xi. This loss function can be relaxed for our
problem, since our goal is to separate instances from different classes. It is less
important whether the embedding of each instance is close to its given class label
or not. In our algorithm, we have a mapping function f for data instances, and
g for labels such that f and g can work together to map the data instances and
labels to the same space, where the mapping results of instances and their labels
are close to each other. The mapping g allows us to scale the entries of the label
vector by different amounts, which then allows better projections of points. An
illustration of this idea is given by Figure 1.

Fig. 1. Illustration of regular regression approaches (A), and our approach (B).

In summary, the numerator of our loss function encourages the instances
with the same label to stay together, preserving the data manifold topology.
The denominator of the loss function encourages the instances with different
labels to be away from each other.

2.4 Discriminative Projections: The Main Algorithm

Some notation used in the algorithm is as follows:
γ = (fT , gT )T is a (p + c) × d matrix. Tr() means trace. I is an l × l identity
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matrix. U1 =
(

I 0
0 0

)
m×m

, U2 = UT
3 =

(
I
0

)
m×l

, U4 = I.

The algorithmic procedure is as follows:

1. Construct matrices A, B and C:

A =

„
X 0
0 Y

« „
U1 −U2

−U3 U4

« „
XT 0
0 Y T

«

B =
cX

k=1

„
X 0
0 Sk

« „
U1 −U2

−U3 U4

« „
XT 0
0 ST

k

«

C =

„
X 0
0 Y

« „
µLx 0
0 0

« „
XT 0

0 Y T

«

2. Compute γ = (γ1, · · · , γd): the d minimum eigenvector solutions to
the generalized eigenvalue decomposition equation:

(A + C)x = λ(B + C)x.

3. Compute discriminative projection functions f and g:
γ = (γ1, · · · , γd) is a (p+c)×d matrix, whose top p rows= mapping function
f , the next c rows= mapping function g. i.e.

(
f

g

)
= (γ1, · · · , γd).

4. Compute the d-dimensional embedding of data set X:
The d-dimensional embedding of X is fT X , whose ith column represents the
embedding of xi.

2.5 Justification

Theorem 1: d minimum eigenvector solutions to (A + C)x = λ(B +
C)x provide the optimal d-dimensional discriminative projections to
minimize the cost function C(f, g).
Proof: Given the input and the cost function, the problem is formalized as:

{f, g} = argf,g min(C(f, g)).

When d = 1, we define M, N and L as follows:

M =
∑
i≤l

(fT xi − gT yi)2, N =
∑
i≤l

c∑
k=1

(fT xi − gT sk)2,

L = µ
∑
i,j

(fT xi − fT xj)2WX(i, j).
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It is easy to verify that:

argf,g min(C(f, g)) = argf,g min
M + L

N − M
= argf,g max

N − M

M + L

= argf,g max
N − M + M + L

M + L
= argf,g max

N + L

M + L

= argf,g min
M + L

N + L
.

M =
∑
i≤l

(fT xi − gT yi)2 = (fT X, gT Y )
(

U1 −U2

−U3 U4

) (
XT f
Y T g

)
= γT Aγ.

N =
∑
i≤l

c∑
k=1

(fT xi − gT sk)2 = (fT , gT )B
(

f
g

)
= γT Bγ.

L = µ
∑
i,j

(fT xi − fT xj)2WX(i, j) = µfT XLXXT f = γT Cγ.

So

argf,g min C(f, g) = argf,g min
M + L

N + L
= argf,g min

γT (A + C)γ
γT (B + C)γ

.

It follows directly from the Lagrange multiplier method that the optimal solution
that minimizes the loss function C(f, g) is given by the minimum eigenvector
solution to the generalized eigenvalue problem:

(A + C)x = λ(B + C)x.

When d > 1,

M =
∑
i≤l

‖fT xi − gT yi‖2
2 = Tr((γ1 · · ·γd)T A(γ1 · · · γd)).

N =
∑
i≤l

c∑
k=1

‖fT xi − gT sk‖2
2 = Tr((γ1 · · ·γd)T B(γ1 · · · γd)).

L = µ
∑
i,j

‖fT xi − fT xj‖2
2WX(i, j) = Tr((γ1 · · · γd)T C(γ1 · · ·γd)).

argf,g min C(f, g) = argf,g min
Tr((γ1 · · · γd)T (A + C)(γ1 · · · γd))
Tr((γ1 · · · γd)T (B + C)(γ1 · · ·γd))

.

Standard approaches [11] show that the solution to γ1 · · · γd that minimizes
C(f, g) is provided by the eigenvectors corresponding to the d lowest eigenvalues
of the generalized eigenvalue decomposition equation:

(A + C)x = λ(B + C)x.

��
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3 Extension to Continuous Labels

3.1 The Problem

The algorithm discussed in the previous section can handle both two class and
multiple class problems. However, in many applications, we might not have class
label information. Instead, each instance xi is assigned with a value and xi and
xj are supposed to be similar if their associated values are similar. This value can
be treated as a continuous (real-valued) label associated with each instance. We
call this problem a problem with continuous labels. One example of this is from
reinforcement learning, where each (high-dimensional) state in the state space
of a Markov decision process is assigned with a value to represent its long-term
reward achieved starting from that state.

The ability to handle continuous labels is useful in many applications like
ranking, where the instances with similar labels are supposed to be similar.
For example, a search engine needs to rank many documents for each query.
The documents that are ranked at the top of the result list will be returned to
the users as the retrieval results. In this scenario, the documents labeled with
“perfect match” should be more similar to the documents labeled with “good
match”, compared to the documents labeled with “bad match”. Such a problem
cannot be solved by approaches like semi-supervised discriminant analysis [4] and
transductive component analysis [9], which can not handle continuous labels.

The problem to solve in this section is described as follows: given a data set
X = (x1, · · · , xm) and real-valued label information Y = (y1, · · · , yl) (l ≤ m), we
compute mapping functions f (for data instances) and g (for labels) to map the
data instances xi ∈ Rp and the real-valued labels yi to the same d-dimensional
space, where the topology of the data manifold is preserved, and the instances
with similar labels are mapped to the similar locations.

3.2 The Cost Function

The new cost function

C(f, g) =
∑
i≤l

‖fT xi − gT yi‖2
2 + µ

∑
i,j

‖fT xi − fT xj‖2
2WX(i, j),

where g re-scales label yi. To remove an arbitrary scaling factor in the embedding,
we impose an extra constraint: fT XDXXT f + gT Y Y T g = I. It is easy to verify
that ‖yi − yj‖2 ≤ ‖yi − yk‖2 → ‖gT yi − gT yj‖2 ≤ ‖gT yi − gT yk‖2. This property
guarantees that similar labels will be mapped to similar locations in the new
space.

In C(f, g), the first term penalizes the difference between the projection result
of xi and the corresponding real-valued label yi. The second term encourages
the neighborhood relationship within X to be preserved. Compared to the cost
function discussed in the previous section, the new cost function does not have
the denominator part. The reason for this is when labels are continuous, we have
an unlimited number of possible labels. So we cannot construct the denominator
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part as before, and instead instances with different labels are projected away
from each other by mapping them to their labels.

3.3 Discriminative Projections over Continuous Labels

In this section, we discuss how to adapt the algorithm in the previous section
to the problems with continuous labels. In the new settings, Y = (y1, · · · , yl)
becomes a 1× l matrix, where yi represents the real-valued label assigned to xi.
We define five new matrices as follows:
DX is a diagonal matrix: DX(i, i) =

∑
j WX(i, j).

LX = DX − WX is the graph Laplacian matrix corresponding to WX .

Z =
(

X 0
0 Y

)
is a (p + 1) × (m + l) matrix.

L̂ =
(

U1 + µLX −U2

−U3 U4

)
is an (m + l) × (m + l) matrix.

D̂ =
(

DX 0
0 I

)
is also an (m + l) × (m + l) matrix.

The solution to minimize C(f, g) is given by the minimum eigenvector solu-
tion to ZL̂ZT x = λZD̂ZT x.

3.4 Justification

Theorem 2: d minimum eigenvector solutions to ZL̂ZT x = λZD̂ZT x
provide d-dimensional discriminative projections to minimize C(f, g).
Proof:
Given the input, we want to find the optimal mapping functions f and g such
that C(f, g) is minimized:

{f, g} = argf,g min(C(f, g)).

When d = 1,
The first term of C(f, g) becomes

∑
i≤l

(fT xi − gT yi)2 = (fT X, gT Y )
(

U1 −U2

−U3 U4

) (
XT f
Y T g

)
.

The second term can be written as:

µ
∑
i,j

(fT xi − fT xj)2WX(i, j) = µfT XLXXT f.

So

C(f, g) =
∑
i≤l

(fT xi − gT yi)2 + µ
∑
i,j

(fT xi − fT xj)2WX(i, j)

= (fT X, gT Y )
(

U1 + µLX −U2 + 0
−U3 + 0 U4 + 0

) (
XT f
Y T g

)
= γT ZL̂ZT γ.
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To remove an arbitrary scaling factor in the embedding, we impose an extra
constraint:

fT XDXXT f + gT Y Y T g = γT ZD̂ZT γ = 1.

This constraint balances f and g. Without this constraint, all instances and
labels could be mapped to the same location in the new space. Here, the ma-
trix DX provides a natural measure on the vertices (instances) of the graph. If
the value of DX(i, i) is large, it means xi is important. Then the problem of
minimizing C(f, g) can be written as:

arg min
f,g:γT ZD̂ZT γ=1

γT ZL̂ZT γ.

The Lagrangian multiplier method shows that the solution to this problem is
given by the minimum eigenvector solution to the generalized eigenvalue equa-
tion:

ZL̂ZT x = λZD̂ZT x.

When d > 1, the problem of minimizing C(f, g) can be written as:

arg min
f,g:γT ZD̂ZT γ=I

Tr(γT ZL̂ZT γ).

Optimization problems of this type can be solved by standard approaches [2]. The
d-dimensional projection is provided by the eigenvectors corresponding to the d
lowest eigenvalues of the same generalized eigenvalue decomposition equation. ��

In the new settings,
(
f
g

)
= (γ1, · · · , γd). One issue that we need to address

is how the value of g will be set. Theoretically speaking, g can be very close to
a zero vector, which fails to distinguish the difference between different labels.
However, this is unlikely to happen in real-world applications. If g is close to zero,
the constraint becomes fT XDXXT f = I. To minimize the cost function C(f, g),
fT xi also needs to be close to 0 for i ∈ [1, l]. The new constraint fT XDXXT f =
I will prevent that from happening, when the labeled data is well sampled from
the original data set.

4 Experimental Results

In this section, we test discriminative projections, manifold regularization, LDA,
and LPP using four data sets: recognition of handwritten digits using the USPS
dataset (a vision data set with multiple classes), TDT2 data (a text data set
with multiple classes), classification of mushrooms (a data set with two classes)
and OHSUMED data (a text data set with two classes). We use the following
simple strategy to decide the value of µ in the loss function C(f, g). Let s = the
sum of all entries of WX and l = the number of training examples with labels,
then l/s balances the scales of the first term and second term in the numerator
of C(f, g). We let µ = l/s, if we treat accuracy and topology preservation as
equally important. We let µ > l/s, when we focus more on topology preservation;
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µ < l/s, when accuracy is more important. In this paper, we use µ = l/s for
regular discriminative projections; µ = 0.1 · l/s when we assume the label is
continuous.

4.1 USPS Digit Data (Vision Data)

The USPS digit data set (http://www.gaussianprocess.org/gpml/data/) has 9,298
images and is randomly divided into a training set (4,649 cases) and a test set
(4,649 cases). Each image contains a raster scan of the 16 × 16 grey level pixel
intensities. The intensities have been scaled to the range [-1, 1].

We first computed lower dimensional embeddings of the data using regu-
lar discriminative projections, LDA and Locality Preserving Projections (LPP).
This data set has 10 labels, so LDA can only return an embedding of 9 or less
dimensions. LPP and discriminative projections can return an embedding of any
dimensionality. The 3D and 2D embedding results are shown in Figure 2, from
which we can see that regular discriminative projections and LDA can separate
the data instances from different classes in the new space, but LPP can not.

To see how the discriminative information is preserved by different approaches,
we ran a leave-one-out test. We first computed 9D and 50D embeddings using dis-
criminative projections and LPP. We also computed 9D embedding using LDA.
Then we checked for each point xi whether at least one point from the same class
were among its K nearest neighbors in the new space. We tried K = 1, · · · , 10.
The results are summarized in Figure 3. From this figure, we can see that discrim-
inative projections (50 dimensional), (9 dimensional) and LDA (9 dimensional)
achieve similar performance, and perform much better than LPP. The results
also show that the projections that best preserve the data set topology might
be quite different from the projections that best preserve the discriminative in-
formation. In Figure 4, we compare discriminative projections (assuming the
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Fig. 2. USPS digit test: (the color represents class label): (A) discriminative projections
3D embedding; (B) discriminative projections 2D embedding; (C) LDA 3D embedding;
(D) LDA 2D embedding; (E) LPP 3D embedding; (F) LPP 2D embedding.
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label is continuous) to regular discriminative projections, LDA and LPP using
the data for digit ‘1’, ‘2’, ‘3’ and ‘4’. The reason to select 4 categories was due
to the visualization consideration. When we assume the label is continuous, the
algorithm treats a label as a value associated with an instance, and the instances
that are associated with similar values will be projected to similar locations. Our
algorithm is also useful when the class label is discrete (e.g. in this test). In this
scenario, instances from different classes are treated differently based on the sim-
ilarity between classes. From the results, we can see that the new algorithm goes
beyond its regular version and LDA in that the instances with similar labels are
mapped to similar locations. For example, in the new space, the instances corre-
sponding to digit ‘1’ (label=1) are closer to the instances corresponding to dight
‘2’ (label=2), compared to the instances corresponding to digit ‘4’ (label=4).
Regular discriminative projections and LDA treat different classes equally. They
make no attempt to map the instances with similar associated values (labels) to
the similar locations.

We also used this example to visualize the new “prototype” of each label in a
2D space (Figure 5). The original labels are in a 10D space. The new labels are
constructed by projecting the old labels onto the space spanned by the first two
columns of mapping function g. From the figure, we can see that new labels of
similar digits are close to each other in the new space. For example, ‘0’ and ‘8’
are together; ‘3’, ‘6’ and ‘9’ are also close to each other. This result makes sense,
since to preserve local topology of the given data set, similar digits have a large
chance of being projected to similar locations. We ran another test with less
respect to manifold topology (by setting µ = 10−10). In the new scenario, all 10
new labels were very well separated. This experiment shows that the mapping g
allows us to scale the entries of the label vector by different amounts for different
applications, which then allows more flexible projections of instances.

4.2 TDT2 Data (Text Data)

The TDT2 corpus consists of data collected during the first half of 1998 and
taken from 6 sources, including 2 newswires (APW, NYT), 2 radio programs
(VOA, PRI) and 2 television programs (CNN, ABC). It consists of more than
10,000 documents which are classified into 96 semantic categories. In the data
set we are using, the documents that appear in more than one category were
removed, and only the largest 4 categories were kept, thus leaving us with 5,705
documents in total.

We applied our approach, LDA and LPP to the TDT2 data assuming label
information of 1/3 documents from each class was given, i.e. l = 5, 705/3. We
performed a quantitative analysis to see how the topology of the given manifold
was preserved. A leave-one-out test was used to compare the lower dimensional
embeddings. In this test, we first computed 3D and 100D embeddings using
discriminative projections and LPP. We also computed 3D embedding using LDA
(recall that LDA can only return embeddings up to 3D for a data set with 4 class
labels). Then we checked for each document xi whether its nearest neighbor in
its original space was still among its K neighbors in the new space. We tried
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K = 1, · · · , 10. The results are summarized in Figure 6. From this figure, we can
see that discriminative projections with 3D embedding, LPP with 3D embedding
and LDA are not effective in preserving the manifold topology. It is obvious
that 3D embedding is not able to provide sufficient information to model the
neighborhood relationship for this test. However, LDA can not go beyond this,
since it can only compute embeddings up to 3D for TDT2 data. On the contrary,
discriminative projections with 100D embedding and LPP with 100D embedding
do a much better job, and the performances of these two approaches are also
quite similar.

To see how the discriminative information is preserved by different approaches,
we ran a similar leave-one-out test. Again, we first computed 3D and 100D em-
beddings using both discriminative projections and LPP. We also computed the
3D embedding using LDA. Then we checked for each document xi whether at
least one document from the same class was among its K nearest neighbors in
the new space (we use this as correctness). We tried K = 1, · · · , 10. The results
are summarized in Figure 7. From this figure, we can see that discriminative
projections and LDA perform much better than LPP in all 10 tests. Discrim-
inative projections with 3D embedding and LDA achieve similar results, while
discriminative projections with 100D embedding is slightly better.

Generally speaking, LDA does a good job at preserving discriminative in-
formation, but it does not preserve the topology of the given manifold and not
suitable for many dimensionality reduction applications, which need an embed-
ding defined by more than c− 1 features. LPP can preserve the manifold topol-
ogy, but it totally disregards the label information. Discriminative projections
combines both LDA and LPP, such that both manifold topology and the class
separability will be preserved. In addition, depending on the applications, users
may decide how to choose µ to balance the two goals. If we focus more on the
manifold topology, we choose a larger value for µ; otherwise, we choose a smaller
value for µ.
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Fig. 6. TDT2 test: how the manifold topology is preserved.



Learning Locality-Preserving Discriminative Features 15

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

K

P
er

ce
nt

ag
e

 

 

Discriminative Projections (100D Embedding)

Discriminative Projections (3D Embedding)

LDA (3D Embedding)

LPP (100D Embedding)

LPP (3D Embedding)

Fig. 7. TDT2 test: how the discriminative information is preserved.

4.3 OHSUMED Data and Mushroom Data

In Section 4.1 and 4.2, we show how discriminative information is preserved.
In this section, we directly test how the new approach can improve classifica-
tion performance. The classifier we are using is a linear regression model. Two
datasets are tested in this section: OHSUMED data and Mushroom data.

The OHSUMED collection is a standard dataset provided by the LETOR3.0
collection [12]. The version that we are using contains 63 queries and 10,494
different query-document pairs. There are two labels in the dataset: relevant
and non-relevant. All query-document pairs are represented in the same feature
space with 45 standard features, including BM25, TF, TF-IDF, etc. In this test,
labels of 500 randomly chosen pairs are given and the remaining pairs are held
for test. We applied our approach, LDA and LPP to this dataset. LDA can only
result in 1D embedding. In discriminative projections and LPP we tested both
1D and 30D embedding. We also ran a test using the original 45 features without
doing any feature construction. The Mushroom dataset is a standard dataset
from UCI machine learning repository. Mushrooms are described in terms of 112
binary features, and the classification task is to predict whether a mushroom
is edible or poisonous. The dataset has 8,124 instances, and 500 instances are
used in training. The experiment setting is the same as the OHSUMED test.
The results of both tests are summarized in Table 1.

Dataset Discriminative Discriminative LDA LPP LPP Original
Projections 1D Projections 30D 1D 1D 30D

OHSUMED 60.24% 68.83% 49.78% 60.73% 64.98% 63.56%

Mushroom data 52.83% 76.34% 68.36% 48.95% 52.35% 54.67%
Table 1. Classification Accuracies



16 Chang Wang and Sridhar Mahadevan

The results show that discriminative projections with 30D embeddings im-
proves the classification performances over LDA and LPP in both tests. It is
also better than directly using the original features. Discriminative projections
fits classification tasks for the following reasons: 1, the mapping g offers us more
flexible “labels”, which allow better projections of instances; 2, the new discrim-
inative features also take dataset topology into consideration, which lowers the
chance of running into overfitting problem; 3, discriminative projections results
in more discriminative features than LDA. This is particularly useful to design
complicated non-linear classifiers.

5 Conclusions

In this paper, we introduced a novel approach to learn discriminative projec-
tions to map high-dimensional data instances to a new lower dimensional space,
preserving both manifold topology and class separability. Discriminative projec-
tions goes beyond LDA in that it can provide an embedding of an arbitrary
dimensionality rather than c − 1 for a problem with c class labels. It also dif-
fers from regular dimensionality reduction since the discriminative information
to separate instances from different classes will be preserved. Our approach is
a semi-supervised approach making use of both labeled and unlabeled data. It
is general, since it can handle both two class and multiple class problems and
can also be adapted to problems with continuous labels. In addition to the theo-
retical validations, we also presented real-world applications of our approach to
information retrieval and computer vision.
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