
PAYING ATTENTION TO WHAT MATTERS: OBSERVATION
ABSTRACTION IN PARTIALLY OBSERVABLE ENVIRONMENTS

A Dissertation Presented

by

ALICIA PEREGRIN WOLFE

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2010

Computer Science

c© Copyright by Alicia Peregrin Wolfe 2010

All Rights Reserved

PAYING ATTENTION TO WHAT MATTERS: OBSERVATION
ABSTRACTION IN PARTIALLY OBSERVABLE ENVIRONMENTS

A Dissertation Presented

by

ALICIA PEREGRIN WOLFE

Approved as to style and content by:

Andrew G. Barto, Chair

Sridhar Mahadevan, Member

Shlomo Zilberstein, Member

Leslie Kaelbling, Member

Bruce Turkington, Member

Andrew G. Barto, Department Chair
Computer Science

To my mother, Mary Anne Schweitzer, for her time and patience.

ACKNOWLEDGMENTS

Thanks firstly to my committee, in particular for bearing with me through several sched-

ule changes. Also to the members of the Autonomous Learning Laboratory for many inter-

esting discussions, including but not limited to Ozgur Simsek, Amy McGovern, Balaraman

Ravindran, Sarah Osentoski and Ashvin Shah. Other members of the UMass Computer

Science community I’ve enjoyed many long discussions with include Victoria Manfredi,

Jen Neville, Lisa Friedland, Emily Horrell and TJ Brunette. Prof. David Jensen, while

not on the committee for my dissertation, was a helpful mentor and collaborator on earlier

projects.

Supportive friends and family include: Martin Walkow, providing the linguist’s per-

spective; my sister Rachel Wolfe who can always make me see the humor in any situation;

my father John Wolfe; who taught me to always question, question, question; and my

mother Mary Anne Schweitzer, who, in addition to probably hundreds of long phone calls

pitched in at the last minute to transport my shoes into town from Connecticut.

Also thanks to the many helpful staff members in the department, including but not

limited to Leeanne Leclerc, Barb Sutherland and Gwyn Mitchell.

v

ABSTRACT

PAYING ATTENTION TO WHAT MATTERS: OBSERVATION
ABSTRACTION IN PARTIALLY OBSERVABLE ENVIRONMENTS

FEBRUARY 2010

ALICIA PEREGRIN WOLFE

Combined B.A./B.Sc., BROWN UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

Autonomous agents may not have access to complete information about the state of the

environment. For example, a robot soccer player may only be able to estimate the locations

of other players not in the scope of its sensors. However, even though all the information

needed for ideal decision making cannot be sensed, all that is sensed is usually not needed.

The noise and motion of spectators, for example, can be ignored in order to focus on the

game field. Standard formulations do not consider this situation, assuming that all the can

be sensed must be included in any useful abstraction.

This dissertation extends the Markov Decision Process Homomorphism framework

(Ravindran, 2004) to partially observable domains, focusing specically on reducing Par-

tially Observable Markov Decision Processes (POMDPs) when the model is known. This

involves ignoring aspects of the observation function which are irrelevant to a particular

vi

task. Abstraction is particularly important in partially observable domains, as it enables the

formation of a smaller domain model and thus more efficient use of the observed features.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS .v

ABSTRACT .vi

LIST OF TABLES .x

LIST OF FIGURES .xi

CHAPTER

1. INTRODUCTION .1

1.1 Background: Model Minimization . 5

1.1.1 Controlled Markov Process Homomorphisms . 9
1.1.2 Model Minimization in Partially Observable Domains 10

2. POMDP HOMOMORPHISMS: POMDP TO POMDP
ABSTRACTION .15

2.1 Introduction . 15
2.2 Partial Observability . 15
2.3 POMDP Homomorphisms . 17
2.4 Evaluating an Observation Map . 25

2.4.1 Abstract Model . 27
2.4.2 Abstract and Shadow Models: Two Examples . 30
2.4.3 Shadow Model . 33
2.4.4 Abstract Shadow Model . 36
2.4.5 Independence of Shadow and Abstract Models 38
2.4.6 Time Analysis . 42
2.4.7 Shortcomings of the Shadow Model . 43

2.5 Compatible Shadow States . 47

viii

2.5.1 Composite Model . 54
2.5.2 Compatibility Algorithm . 64
2.5.3 Time Analysis . 71

2.6 Comparison of Shadow Model and Compatibility Tests 72
2.7 Improving the Observation Map . 73

2.7.1 Merging Distributions . 76
2.7.2 Observation Splits . 77

2.8 Time Complexity . 89
2.9 Conclusion . 89

3. THE KRYLOV BASIS: POMDP TO PSR ABSTRACTION91

3.1 Overview . 91
3.2 Background: Predictive State . 92

3.2.1 POMDP to PSR Compression . 95

3.3 PSR Homomorphisms . 99
3.4 Outline . 101
3.5 Shadow Model Test . 102
3.6 Compatibility Test . 111
3.7 Compatibility Algorithm . 118

3.7.1 Time Analysis . 120

3.8 Comparison of PSR and POMDP Methods . 121
3.9 Observation and Value-directed Models . 121
3.10 PSR vs. POMDP: One Step and Two Step Update Models 123
3.11 Observation Splitting . 132

3.11.1 Graph Based Matching algorithm . 139

3.12 Time Experiments: Comparison to Existing Work . 141
3.13 Conclusion . 147

4. CONCLUSION .148

BIBLIOGRAPHY .151

ix

LIST OF TABLES

Table Page

2.1 Comparison of Procedures 2.4.1 and 2.5.1, and a direct simulation of
10,000 belief states (“Sim” column). In the observation map column,
observations are identified by their first letter, except in the case of
lightgrey (lg) andcat (a). Each set of observation symbols represents
a single abstract observation. 72

3.1 Comparison of Observation and Value-directed models. 123

3.2 Comparison of observation-directed POMDP and PSR algorithms. 125

3.3 Comparison of observation-directed OC-POMDP, POMDP and PSR
algorithms for the POMDP of Figure 3.4. 130

x

LIST OF FIGURES

Figure Page

1.1 Classes of abstraction methods, ordered in terms of both the specificity of
the models they create (from general purpose models to task specific
models) and the size of the abstract models they typically create.
General purpose models must generally include more information than
task specific models, while output function models occupy a middle
ground between the two extremes. 3

1.2 Action mappings would enable a reduction (b) of this simple gridworld
(a). This is a simpler example of the symmetric gridworld from
(Ravindran, 2004). The marked square in the upper right corner is the
“goal” and has positive reward, all other states have small negative
reward. Both starred states map to the same abstract state, and the
actions marked by arrows map to the same abstract action. Note that
depending on which actual state the agent is in, the abstract action may
correspond to either the action “right” or “up”. 7

1.3 The model acceptance sets for the range of algorithms presented in this
dissertation. 13

2.1 Diagram illustrating the overlap between the accept sets for the two
approaches outlined in this chapter. The Compatibility Model
approach is more likely to find a smaller abstract model than the
Shadow Model since its accept set is a superset of the Shadow Model
accept set. 25

2.2 The abstract model and the abstract shadow model (see Section 2.4.4),
illustrated as Baysian Networks. Three “rolled out” time steps are
shown. Action nodes are not shown. Shaded nodes are observed
variables. 28

2.3 In this gridworld (2.3(a)), there are two features. The cheese locations are
predicted by the column of the state, and the color of the location is
predicted by the row of the state. Abstract models for each feature are
shown in 2.3(b) and 2.3(c). 32

xi

2.4 In this gridworld (2.4(a)), there are two features. The cheese locations are
predicted by the column of the state. The color of the state in this case
is also predicted by the column of the state. Abstract models for each
feature are shown in 2.4(b) and 2.4(c). 33

2.5 Abstract and shadow model interactions, shown as a Bayesian Network.
Three time steps are shown. Shaded nodes are observed. Action nodes
are not shown. The states of the two models are independent if the
observationso, o′, o′′, etc, can be accurately predicted without
dependency edges between the state nodes of the two models. 38

2.6 Independence test for the initial belief state test, domain from Figure 2.3.
Black circles represent probability mass. The abstract shadow model
is shown to the right of the gridworld, and the abstract model is shown
below it. 41

2.7 Independence test for the initial belief state test, domain from Figure 2.4.
Black circles represent probability mass. The abstract shadow model
is shown above the gridworld, and the abstract model is shown below
it. 41

2.8 Three corridor gridworld POMDP. The initial state distribution places the
agent in the leftmost state of each corridor with equal probability. The
colors of the states labeled “x”, “y” and“z” signal whether the agent
must go straight or turn right at the end of the corridor to choose
between the cheese and the cat. 44

2.9 Three corridor gridworld POMDP from Figure 2.8, with starting state
labels. The initial state distribution places the agent ins0, s7, ands14

with equal probability. 51

2.10 The functionwλ for the domain of Figure 2.9 for the abstraction shown in
Figure 2.8(b), illustrated as a graph . 53

2.11 Matching graph for the belief stateb̆h. 58

2.12 Matching algorithm graph for the abstract statess̄l (in the left side
distribution) and̄sr (in the right side distribution). See the text for
edge weight definitions. 67

2.13 Summing over all pairs of abstract states to get the weight functionw. 67

2.14 Two hypothetical belief states for which thelightgrey/greyfeature
distinction would be useful. 74

xii

2.15 Observation compatibility graph for the POMDP of Figure 2.8.
Compatible observations are linked by edges. 83

2.16 Three corridor gridworld POMDP with two noisy observation markers in
each hallway. In this case there are two color markings in each
hallway, which signal the type of hallway the agent is in, as well as the
location within that hallway. However, the observation of these
markers is noisy (see POMDP definition in text for details). 84

2.17 Observation compatibility graph for the POMDP of Figure 2.16.
Compatible observations are linked by edges. 86

3.1 The tree of tests for a POMDP. The bolded vectors correspond to the tests
λ, aioj, akol, andanomaioj which are chosen to form the core set if
testsQ in this hypothetical example. Other tests are not expanded. 96

3.2 POMDP Krylov Subspace Projection Matrix . 97

3.3 Three Hallway domain. Each hallway ends with a transition which has a
different reward distribution, but the same mean expected reward. 122

3.4 Integer Counter Domain. Three states are shown, representing three
numbers of 7 digits each. The “add 1” action increases the counter by
one, with noisy transitions, and the action “subtract 1” decreases the
counter by one, again with noisy transitions. Every other bit is hidden,
so that observations include only every other bit. 124

3.5 The bayesian model from which the POMDP test is derived (Figure
3.5(a)) and the bayesian model from which the OC-POMDP test is
derived (Figure 3.5(b)). 126

3.6 Hallway domains in which the distance to the distinct states varies. 142

3.7 Comparison of the History Method and OC-POMDP method. 143

3.8 The number of histories of lengthn for n from 1 to 7. 144

3.9 Comparison of the time and history length curves for the history based
algorithm. 144

3.10 The number of state pairs examined for each POMDP, from1 to 7 states
between the initial belief and the state distinctions. 146

xiii

3.11 Comparison of the shape of the curve representing the number of state
pairs examined by OC-POMDP, and the number of second to
completion of the algorithm. 146

xiv

CHAPTER 1

INTRODUCTION

One of the most important tasks an independent learning agent faces is to separate

what is important and relevant from what is not — to separate the wheat from the chaff.

Focusing on essential details can make a task possible: for example, when driving it is not

advised that one take in all of the scenery — focusing on the road and road signs improves

performance on the task (and safety). Separating what is relevant from what is not can

turn an intractable learning problem into a solvable one by reducing the complexity of the

problem. In humans, this is most obvious in competitive situations: the chess player whose

focus on the board is absolute, the basketball player who ignores the fans in the bleachers

to focus only on the basket. This is even more important when the state is only partially

observable.

The agent must solve two problems in order to construct a useful representation for a

task when state is partially observable. First, some information may be missing, and must

be inferred from the available observations: for example, the location of cars on the road

behind a driver, or hidden by other cars ahead of the driver. Typically it is assumed that all

of the information that is observed will be useful in making inferences about the missing

information. For example, the behavior of the other visible cars on the road can alert the

driver to hidden obstacles ahead. However, not all information is necessarily useful: paying

attention to details of the scenery, or cloud patterns overhead, is likely to distract the driver,

making the task more difficult. The second problem an agent must solve in order to find a

good representation is the problem of deciding which information to ignore.

1

Existing literature on abstraction for learning and planning in both partially and fully

observable problems can largely be grouped into two catagories:

• Specific task abstraction methods

• General purpose abstract representations

One example of the task-specific abstraction approach is the the UTree algorithm (Mc-

Callum, 1995). UTree is a decision-tree based abstraction algorithm, in which relevant fea-

tures are chosen to fit a specific task. Methods like value-directed compression for PSRs

(Poupart and Boutilier, 2002) and DEC-POMDPs (Carlin and Zilberstein, 2008) also fall

in this category. The advantage of taking a task-specific approach is that the abstract model

can ignore as much information as possible, leading to faster learning and planning.

Methods like Proto-Value Functions (PVFs) (Mahadevan, 2005) and Action Respecting

Embeddings (AREs) (Bowling et al., 2005) fall at the other end of this spectrum.1 They

create general purpose abstractions by transforming the agent’s representation of the envi-

ronment to more closely mimic the structure of that environment. In the case of PVFs, this

structure is the graph structure of the transitions between states of the environment, while

in the case of AREs, the structure is the local action transition behavior. Methods from

this catagory have two advantages: first, the abstract models may be constructed before the

agent knows what task it will need to perform, and second, the abstract models may be

used for multiple tasks. However, this generality means that in some cases the models may

be larger than a task-specific model would be, resulting in lower savings when planning or

learning.

This dissertation chiefly addresses an intermediate type of abstraction, one that falls

between the single task and general purpose abstract representations (see Figure 1.1). This

type of abstraction is built to predict a specific aspect of the environment, represented via an

output function. The output function could be anything from a boolean variable indicating

1Neither of these examples have yet been adapted to accommodate partial observability.

2

Single
Task

Model

Output Function
Model

General Purpose Model

M
od

el
 S

pe
cifi

cit
y

Increasing M
odel Size

Figure 1.1. Classes of abstraction methods, ordered in terms of both the specificity of the
models they create (from general purpose models to task specific models) and the size of
the abstract models they typically create. General purpose models must generally include
more information than task specific models, while output function models occupy a middle
ground between the two extremes.

whether some test is currently true (“is the glass on the table?”) to a feature of a specific

object in the agent’s environment (“how much water is in the glass?”). An abstract output-

function model must support planning and learning for any task that depends only on the

output function. In the first example, supported tasks could achieve each possible setting:

glass on or off the table. In the second example, any task that controls the level of water in

the glass (fill the glass, empty the glass, etc.) would be supported.

An abstract model is only useful if the savings garnered from using the model out-

weigh the cost of constructing it. Unlike the single task learning models, output-drected

models are not single-use abstractions, to be discarded once their target policy has been

constructed. In Wolfe and Barto (2006) we show that if the output function is chosen

wisely, an output-directed abstract model can be reused for multiple related tasks, amor-

tizing the cost of constructing the abstract model over multiple uses. However, learning

and planning only become more efficient if there is information that can be ignored by the

abstract model. Focusing on a single output function, rather than every possible task, can

also allow more information to be ignored than in general purpose abstract representations.

3

Algorithms like UTree can be adapted to build output-directed models. Wolfe and Barto

(2006) uses an adapted UTree algorithm to find output-directed abstractions when the state

is fully observed, but UTree was originally designed for situations with partially observable

state, and thus the same algorithm could be applied to partially observable situations. This

dissertation does not take quite that direction. UTree is a fast, approximate algorithm, with

several drawbacks, relating both to the fact that it is based on a Decision Tree algorithm,

and the fact that features are constructed over the entire history of the agent. Holmes and

Isbell (2006) address some of the issues with history-based features.

However, rather than focussing on a specific approximation algorithm, this dissertation

examines a more idealized case, in which:

• an accurate model is given

• an exact (accurate) abstraction of this model is required

• the observations have not been factored into features

It is unlikely that there are many cases in which an exact solution of this nature would be

practical. In practice, some approximate algorithm is likely to be the best option when

an agent’s computational time is limited. Nonetheless, the abstraction definitions and al-

gorithms that will be presented here serve several purposes. First, they will demonstrate

that polynomial time algorithms for abstraction construction are possible, even in this most

strict case (although it may not always be possible to find the smallest possible abstract

model in polynomial time). This is a step forward, as existing exact methods are exponen-

tial time in the worst case. Approximation methods will presumably further improve on the

run time. Second, when forming approximate abstract models it is important to understand

what is being approximated: a good approximation is not as useful if it is an approximation

of a poor target. Since the algorithms in this dissertation all find accurate models, the main

trade off the speed of the algorithm and the quality in terms of size of the abstract models it

finds. Each of the algorithms outlined in this dissertation includes two components: an ac-

4

ceptance criteria for abstract models, and a search strategy for finding an acceptable model.

Stricter acceptance criteria generally allow for faster evaluation, but may reject the small-

est abstract models in some cases. Several acceptance criteria and search strategies will be

evaluated relative to one another according to their speed and abstract model acceptance

sets.

1.1 Background: Model Minimization

This section covers definitions and methods developed for abstraction when the state

is fully observed, in particular Model Minimization in Markov Decision Processes. Model

Minimization was originally developed as a single-task abstraction approach, however, the

abstract models this approach produces are powerful enough to be used as output-directed

abstractions. These methods will be adapted throughout the remainder of the dissertation to

extend to cases where the state is not fully observed. This section first outlines the single-

task fully-observed Model Minimization definition, then reviews the modifications needed

to adapt this approach to more general output functions.

A Markov Decision Process (MDP) consists of a tuple(S, A, T, R). S is a set of states

andA a set of actions. The transition functionT : S × A × S → [0, 1] represents the

probability of transitioning to each possible next state, given the previous state and action.

The reward function (R : S × A → IR) represents the expected reward the agent receives

for being in a particular state and executing an action.

One of the earliest Model Minimization frameworks was based on methods used for de-

terministic planning with logical propositions (Dearden and Boutilier, 1997). In this type

of model, each action is defined as set of logical pre and post conditions. As initially sug-

gested in Nicholson and Kaelbling (1994), each action may have multiple non-overlapping

logical pre-conditions, each of which corresponds to a different distribution over post con-

ditions. The preconditions partition the state space into blocks: in each block the same

action has the same effect on the post-condition variables. For example, in a gridworld the

5

action of going forward might change the agent’s location when the proposition “in front

of a wall” is false, but not when this proposition is true. By examining the pre and post

conditions of possible chained sequences of actions, all propositions relevant to a particu-

lar reward function can be found in time linear in the the number of actions and number

of propositions used to represent the state (Dearden and Boutilier, 1997). Later versions

of this work added situation calculus and first-order axioms with objects (Boutilier et al.,

2001).

Dean and Givan (1997) and Givan et al. (2003) take a similar approach but base their

method explicitly on partitioning the state space according to the principles of stochastic

bisimulation, based on work on concurrent processes (Park, 1981), automata theory (Hart-

manis and Stearns, 1966) and stochastic processes (Kemeny and Snell, 1960). An initial

partition based on the reward function is constructed first. This is then refined by split-

ting the states into “stable” blocks: blocks in which the prediction of the next block which

will be encountered by the agent is uniform over all states in the same block. Givan et al.

(2003) also added a notion of “action-equivalence”, in which different actions which have

the same effect map to the same abstract action. A simple example of this might be the two

alternate methods of tying one’s shoelaces: both “actions” have the same ultimate effect of

creating a bow shape that holds the shoe closed.

Ravindran (2004) moves from the stochastic bisimulation notion to the notion of a

mathematical homomorphism between the true MDP and the abstract model (also an MDP),

again drawing on literature on automata theory and stochastic processes. A homomor-

phism, in general, is a mapping, possibly many to one, that preserves some important

aspects of the original system. In the case of MDP homomorphisms, this mapping is from

the states and actions of an MDP to the states and actions of an abstract MDP, and preserves

both the reward function, and the abstract transition function. The reward function is task

specific — an agent that must drive would have a different reward function from an agent

that must climb trees, for example. By focusing only on state and action distinctions in the

6

X

(a)

X

(b)

*

* *

Figure 1.2. Action mappings would enable a reduction (b) of this simple gridworld (a).
This is a simpler example of the symmetric gridworld from (Ravindran, 2004). The marked
square in the upper right corner is the “goal” and has positive reward, all other states have
small negative reward. Both starred states map to the same abstract state, and the actions
marked by arrows map to the same abstract action. Note that depending on which actual
state the agent is in, the abstract action may correspond to either the action “right” or “up”.

domain that are relevant to this specific function, homomorphic reduction can reduce the

complexity of learning the task.

An MDP homomorphism (Ravindran, 2004) is a mapping,h : S × A → S̄ × Ā,

from the states and actions of an MDPM = (S, A, T, R), to an abstract model MDP

M̄ = (S̄, Ā, T̄ , R̄). The mappingh must preserve both the reward function and some

properties of the transition probabilities ofM . Specifically,h consists of a set of mappings:

f : S → S̄, and for eachs ∈ S a mappinggs : A → A′ that recodes actions in a possibly

state-dependent way. The following properties must hold for all state and action pairss, a

and each next states′:

R̄(f(s), gs(a)) = R(s, a) (1.1)

P (f(s′) | f(s), gs(a)) =
∑

s′′∈[s′]f

P (s′′ | s, a). (1.2)

where[s′]f = {s|f(s) = f(s′)}.

When a state mappingf can be found that is many-to-one, the abstract MDPM̄ has

fewer states thanM . The gridworld shown in figure 1.2a, for example, can be reduced to

the model shown in 1.2b. The homomorphism conditions ensure thatM̄ accurately tracks

the transitions and rewards ofM but at the resolution of blocks of states and actions.

7

A reward function specifies positive or negative feedback for being in certain states

and performing certain actions. This can be translated into a policy for achieving optimal

reward over time. This optimal policy can be calculated via avalue functionV ∗ : S → IR.

For any states, the optimal value functionV ∗(s) is defined as (Sutton and Barto, 1998):

V ∗(s) = max
a∈A

[
R(s, a) + γ ·

∑
s′∈S

P (s′ | s, a) · V ∗(s′)

]
. (1.3)

whereγ is a discount factor between0 and1 that causes events further in the future to be

given less weight. The optimal policy chooses the action with the highest expected value.

The optimal action in states is:

arg max
a∈A

[
R(s, a) + γ ·

∑
s′∈S

P (s′ | s, a) · V ∗(s′)

]

Let V̄ ∗ : S̄ → IR be the optimal value function in the abstract MDP̄M . It has been

shown (Ravindran, 2004) that the abstract and true value functions are the same for any

given states:

V̄ ∗(f(s)) = V ∗(s). (1.4)

This property guarantees that policies optimal forM̄ can belifted to produce optimal poli-

cies of the larger MDPM (Ravindran, 2004; Givan et al., 2003). That is, for any states,

the optimal action ins can be calculated by examining the abstract model and the value

function for the abstract MDP̄M can be used to produce a policy for the MDPM .

The MDP Homomorphism framework can be used to construct task-specific abstract

models for MDPs. The framework lends itself to output function abstraction as well, how-

ever, as the next section will show.

8

1.1.1 Controlled Markov Process Homomorphisms

The MDP homomorphism definition was designed to focus on a single reward function.

Contolled Markov Process Homomorphisms Wolfe and Barto (2006) extend the framework

to more general output functions.

A Controlled Markov Process (CMP) is an MDP without the latter’s reward function:

(S, A, T). Reward functions make up one possible subcategory of functions over the states

and actions of a CMP. However, other more general classes of functions are also possible.

For example, given a set of symbolsY , an output functionΥ : S × A × Y → [0, 1] could

represent the probability of observing each output symbol after each state and action pair,

so that:

Υ(s, a, y) = P (y | s, a).

The same basic principles and algorithms used to define MDP Homomorphisms can be

used to create homomorphisms which preserve predictions aboutΥ.

A CMP Homomorphism is defined as a mappingh from a CMP with outputC =

(S, A, T, Y, Υ) to an abstract CMP with output̄C = (S̄, Ā, T̄ , Y, Ῡ). The homomorphism

h is again made up of two parts: a state mapping functionf : S → S̄ and a state-specific

action mapping functiongs : A → Ā. The following constraints must be satisfied, for all

statess, s′ and actionsa:

P (y | f(s), gs(a)) = P (y | s, a) (1.5)

P (f(s′) | f(s), gs(a)) = P (f(s′) | s, a), (1.6)

where:

P (f(s′) | s, a) =
∑

s′′∈[s′]f

P (s′′ | s, a).

9

If these constraints are satisfied predictions and control strategies forY calculated inC̄

can be accurately lifted toC. For anysupportedreward functionr : Y → IR defined over

the output function, the value of a state inC is given by:

V ∗(s) = max
a∈A

[∑
y∈Y

r(y) · P (y | s, a) + γ ·
∑
s′∈S

P (s′ | a, s′) · V ∗(s′)

]
,

whereγ is a discount factor between0 and1.

The CMP Homomorphism constraints ensure that:

V ∗(s) = V̄ ∗(f(s))

and thus, the value function can be calculated using the abstract model in order to find the

associated policy in the original model.

1.1.2 Model Minimization in Partially Observable Domains

There are two popular approaches to modeling partial observability. Partially Observ-

able MDPs (POMDPs) (Kaelbling et al., 1998) model use “hidden” state to model the

unobservable portions of the state, while Predictive State Representations (PSRs) (Littman

et al., 2001) model the hidden aspects of the environment using predictions about future

observations.

According to Givan et al. (2003) :

The simplest way of using model-reduction techniques to solve partially ob-

servable MDPs (POMDPs) is to apply the model-minimization algorithm to the

underlying fully observable MDP using an initial partition that distinguishes on

the basis ofboth reward and observation model. The reduced model can then

be solved using a standard POMDP algorithm. (emphasis mine)

10

This implies that every observation distinction observed by the agent must be modeled,

predicted and used by the abstract model. And yet it is often the case that some aspects of

the observations should not be included.

The simplest way to adapt the MDP Homomorphism framework for partial observ-

ability if abstraction over observations is desired is to transform the partially observable

problem into an MDP. This is the approach taken by Soni and Singh (2007) in their work

on Predictive State Representations (PSRs). There are three ways to construct a fully ob-

servable state set from a partially observable environment. The first possibility is to treat

the entire history of actions and observations at any given point as a state. The set of possi-

ble histories the agent might encounter is quite large — if there aren possible observations,

andm actions the agent might take, there can be up to(nm)t histories in the set of histories

of lengtht, and there is no upper bound on the length of the history collected.

In a PSR or POMDP, “state” is maintained as a real-valued vector, which serves as

a sufficient statistic for history. These vectors can be treated as the states of an MDP.

However, the number of reachable real-valued state vectors can again be quite large —

in the worst case, the number of reachable state vector differs by a small constant from

the number of histories. Applying the CMP Homomorphism or MDP Homomorphism

constraints to any of these “meta” MDPs is therefore not a practical approach, though it

does represent the ideal homomorphism definition.

Even in this dissertation, the algorithms presented will not perfectly achieve this ideal.

The goal of any abstraction algorithm is to find a small abstract model (for example, one

in which the size of the abstract state space is minimized), but the algorithm must do so

within a reasonable amount of time.

In order to discuss this trade-off between abstract model size and algorithm run time, it

will be helpful to discuss two distinct aspects of the search for an abstract model:

1. The acceptance and rejection criteria that distinguishes between accurate and inac-

curate abstractions.

11

2. The search algorithm that generates candidate abstractions.

Applying the MDP or CMP Homomorphism constraints to any of the three meta-MDPs de-

fined above produces perfect acceptance and rejection criteria for abstract models Search al-

gorithms designed to find MDP or CMP Homomorphisms find the minimal abstract mode.

However, the time complexity of these search algorithms is polynomial in the size of the

state space, which in this case corresponds to the number of reachable histories or state

vectors. Therefore, both of these criteria will need to be relaxed to achieve polynomial

time abstraction search algorithms.

Talvitie et al. (2008) present a search algorithm with exponential worst case run time

This is at least a bounded worst case run time. The algorithm examines pairs of histories in

order to test the abstraction for correctness. Rather than examining all histories, however,

they show that the length of the histories that must be examined is limited tok, wherek

is the dimensionality of the state vector. There are no more than(mn)k histories of this

length, and in some cases, the required history length may be quite a bit shorter (although

the algorithm cannot detect this). However, the algorithm is not guaranteed to find the

smallest possible model. Instead, it identifies a family of accurate abstractions for the

desired output function, and uses heuristics to choose among them.

The algorithms presented in the next several chapters also relax the first property, the

acceptance and rejection criteria by which abstractions are accepted or discarded by the

search algorithm. Each algorithm presented here has the following property: whenever

the history-based homomorphism definition would reject a particular model, they reject it,

though they accept some subset of the accurate abstract models.

In general, stricter abstraction acceptance criteria imply that smaller abstract models

may be rejected in favor of larger abstract models that satisfy the criteria. Figure 1.3 illus-

trates the abstract model acceptance sets for the history based acceptance criteria, as well

as the three types of abstraction criteria that will be presented in this dissertation. Each

acceptance criteria is based on and defined in terms of a different type of abstract partially

12

Abstract Histories

Abstract Predictive State
Representation (PSR)

Abstract
Conditional

POMDP

Abstract
POMDP

Figure 1.3.The model acceptance sets for the range of algorithms presented in this disser-
tation.

observable model. The algorithms avoid the exponential running time of the existing algo-

rithms by examining local characteristics of the abstract model. In the abstract POMDP,

these local characteristics are abstract state predictions for individual state/action pairs. The

abstract conditional POMDP uses similar local characteristics to test each model, though

the model itself has a different form. In the case of the abstract PSR, the local characteris-

tics are the probabilities of abstract tests.

In the case of this family of abstract models, the size of the acceptance set is directly

related to the worst case running time of the corresponding abstraction search algorithm.

The algorithm that searches for an accurate abstract POMDP is faster than both the abstract

conditional POMDP search algorithm and the abstract PSR search algorithm. However, it

also has the smallest acceptance set, and this may add complexity to the abstract model

found.

The following chapters define each of these types of abstract models, along with their

associated acceptance and rejection tests and search algorithms. The acceptance set rela-

13

tionships shown in Figure 1.3 will be proven, and examples of the types of environments

that cannot be accurately reduced by each algorithm will be presented.

14

CHAPTER 2

POMDP HOMOMORPHISMS: POMDP TO POMDP
ABSTRACTION

2.1 Introduction

This chapter focuses on the most restrictive abstract model acceptance criteria in this

dissertation: the abstract Partially Observable MDP (POMDP) criteria. POMDPs are a

widely used model for partial observability. This chapter outlines methods that find a

mapping from a POMDP to an abstract POMDP, using the MDP/CMP Homomorphism

definitions outlined in the previous chapter as a starting point.

2.2 Partial Observability

In an MDP or CMP, the full model state is observed. A Partially Observable MDP

(POMDP), on the other hand, does not include fully observed state. Instead, a set of obser-

vations are used to make inferences about the state, which is hidden.

A POMDP (Kaelbling et al., 1998) is defined as tuple(S, A, T, O, Ω), whereS, A and

T form an underlying CMP.O is the observation set, andΩ : S × A × O → [0, 1] is the

observation function, which gives the probability of each observation after each state and

action: Ω(s, a, o) = P (o|s, a). Over time, action/observation sequences accumulate into

histories. The history setH contains the empty historyλ and inductively, for anyh ∈ H,

o ∈ O, anda ∈ A, H containshao.

Predictions about the future, planning and learning in a POMDP can be calculated using

belief state. A belief state encodes the probability of being in each state, in the form of a

history-specific functionbh : S → [0, 1]. Each elementbh(s) is the probability of being in

15

states ∈ S after observing historyh. The initial belief state,bλ, for the empty history must

be specified as an auxiliary portion of the POMDP definition. This belief is updated over

time over time using the following formula, for each states′:

bhao(s
′) =

P (o|s′, a) ·
∑

s∈S P (s′|s, a) · bh(s)∑
s′′∈S P (o|s′′, a) ·

∑
s∈S P (s′′|s, a) · bh(s)

. (2.1)

This update rule can be separated into two steps, the action update and the observation

update:

bha(s
′) =

∑
s∈S

P (s′|s, a) · bh(s) (2.2)

bhao(s
′) =

P (o|s′, a) · bha(s
′)∑

s′′∈S P (o|s′′, a) · bha(s′′)
. (2.3)

For a particular POMDP and initial belief state pairing, some histories can be generated

by the transition and observation functions, and some cannot. LetHM denote the set of

valid histories for the POMDPM :

HM = {h |
∑
s∈S

bh(s) > 0}. (2.4)

Often multiple histories have the same belief state. The set

BM = {bh | h ∈ HM} (2.5)

contains all unique belief states reachable via some history.

The value function in a POMDP can be defined in terms of belief states. For a reward

functionr : S × A→ IR:

V ∗(bh) = max
a

[∑
s∈S

r(s, a) · bh(s) + γ
∑
o∈O

V ∗(bhao)·

∑
s′∈S

P (o | s′, a) · bha(s
′)

]
(2.6)

16

2.3 POMDP Homomorphisms

A POMDP Homomorphism is a mapping from a POMDPM = (S, A, T, O, Ω) to an

abstract POMDPM̄ = (S̄, Ā, T̄ , Ō, Ω̄). It is made up of three mappings: the state mapping

f : S → S̄, action mappingg : A → Ã and observation mappingκ : O → Ō. The action

mapping functiong is not state specific, since state specific action mapping functions (the

set of functionsgs, with one function per states) could create conflicts in the policy for

some belief states.

The abstract initial belief function̄bλ for M̄ is defined in terms ofbλ, the initial belief

function forM :

b̄λ(f(s)) =
∑

s′∈[s]f

bλ(s
′) (2.7)

The set of abstract histories for the abstract POMDPM̄ is H̄. A history mapping

χ : H → H̄ from histories ofM to abstract histories of̄Mcan be defined using the action

mapg and observation mapκ:

χ(λ) = λ (2.8)

χ(hao) = χ(h)g(a)κ(o).

The abstract belief state after historyh will be denoted̄bχ(h).

Soni and Singh (2007) use a similar abstract history mapping function to define homo-

morphisms for Predictive State Representations (PSRs), which are an alternative represen-

tation for partially observable domains, as discussed in Section 1.1.2.

As with CMP Homomorphisms, rather than focusing on a specific reward function,

POMDP Homomorphisms are defined with respect to an output function, which might

be some feature like position, color, etc. The POMDP output functionζ is defined over

observations and output symbols in the output setZ: ζ : Z × O → [0, 1]. The first

17

constraint that a valid POMDP homomorphism must obey is that the abstract observations

must predict the output symbols, by preserving the output function:

ζ(o, z) = ζ̄(κ(o), z) (2.9)

This is the first POMDP Homomorphism constraint.1

The abstract observation function̄Ω is defined over abstract states, actions and obser-

vations:Ω̄ : S̄ × Ā × Ō → [0, 1]. It must also be consistent with the original observation

functionΩ. This leads to the second POMDP Homomorphism constraint. For all statess,

actionsa, and observationso:

Ω̄(f(s), g(a), κ(o)) =
∑

o′∈[o]κ

Ω(s, a, o′).

Written in probability notation the constraint is:

P (κ(o) | f(s), g(a)) =
∑

o′∈[o]κ

P (o′ | s, a) (2.10)

= P (κ(o) | s, a).

This constraint implies that all states which map to the same abstract state must have the

same abstract observation probabilitiesP (κ(o) | s, a), for all a, o. Note the similarity

between this equation and Equation 1.5, which is the output constraint in a CMP.

The abstract transition function̄T must also be consistent with the original transition

function T . This leads to the third POMDP Homomorphism constraint. For all statess,

actionsa, and next statess′:

1It is also possible to define the output function over states and actions, rather than observations. We have
chosen to use this definition as it simplifies the notation slightly.

18

T̄ (f(s), g(a), f(s′)) =
∑

s′′∈[s′]f

T (s, a, s′′).

written in probability notation this is:

P (f(s′) | f(s), g(a)) =
∑

s′′∈[s′]f

P (s′′ | s, a) (2.11)

= P (f(s′) | s, a).

Note the similarity between this equation and Equation 1.6, which is the transition con-

straint in a CMP.

Belief state updates in the abstract POMDP proceed according to the definitions ofT̄

andΩ̄.

The constraints in Equations 2.9 - 2.11 are not sufficient without one additional con-

straint over the belief states ofM andM̄ , for each historyh in HM :

b̄χ(h)(f(s)) =
∑

s′∈[s]f

bh(s
′) (2.12)

This last constraint is difficult to verify directly, since naively it requires the analysis of

every history inHM . However, several similar but more restrictive constraints can be used

in its place. Most of this dissertation will be dedicated to defining alternative constraints

which:

1. Can be evaluated in polynomial time in the size of the POMDP state, action and

observation sets.

2. Always reject candidate homomorphisms that Equation 2.12 rejects.

3. Accept many of the candidate homomorphisms that Equation 2.12 accepts.

19

The trade off will be between the speed of the evaluation time and the number of candidate

mappings accepted. Rejecting acceptable mappings generally means accepting a possibly

larger abstract POMDP which fits more stringent constraints.

The POMDP Homomorphism constraints specified by Equations 2.9 - 2.12 entail a

number of useful properties, the most important of which is that the POMDP value function

is preserved if they are satisfied.

Before delving into these properties, it is useful to give a few notational details. For any

abstract observation̄o ∈ Ō, the label̄o will be used as shorthand for the set of observations

which map to the abstract observationō, particularly in the termo ∈ ō, which should be

read aso ∈ {o|κ(o) = ō}. This means, for example, that the statements∀o ∈ ō, κ(o) = ō,

and{o ∈ κ(o′)} = [o′]κ are both true. Similarly, for an abstract states̄ ∈ S̄, the notation

s ∈ s̄ is shorthand fors ∈ {s|f(s) = s̄}. The shorthandbh(s̄) refers to
∑

s∈s̄ bh(s) for

s̄ ∈ S̄.

An abstract observation set̄O is self-sufficient(Pfeffer, 2001) if it predicts itself —

that is, for any historyh and actiona, the history mapping functionχ and action mapping

functiong must preserve accurate predictions about each abstract observationō ∈ Ō:

P (ō | h, a) = P (ō | χ(h), g(a))

Lemma 2.1. If a POMDP homomorphism satisfying Equations 2.10, 2.11 and 2.12 exists

for the observation mappingκ, Ō is self-sufficient.

Proof.

20

∀h ∈ HM , P (ō | h, a) =
∑
s∈S

bh(s) ·
∑
o∈ō

P (o | s, a)

=
∑
s∈S

bh(s) · P (ō | s, a) Definition ofP (ō | s, a)

=
∑
s∈S

P (ō | f(s), g(a)) · bh(s) Equation 2.10

=
∑
s̄∈S̄

∑
s∈s̄

P (ō | f(s), g(a)) · bh(s) f partitionsS

=
∑
s̄∈S̄

P (ō | s̄, g(a)) ·
∑
s∈s̄

bh(s) Definition off

=
∑
s̄∈S̄

P (ō | s̄, g(a)) · b̄χ(h)(s̄) Equation 2.12

= P (ō | χ(h), g(a))

As previously mentioned, any POMDP can be transformed into a “history” CMP (though

the state set of the CMP is possibly infinite in size). The CMP uses the set of reachable

histories (HM) as the state set:CH = (HM , A, TH). The transition functionTH for two

historiesh andhao is defined as follows:

TH(h, a, hao) = P (o|h, a)

in all other casesTH(h, a, h′) = 0.

Lemma 2.2. If f , g andκ form a POMDP homomorphism satisfying Equations 2.9 -2.12,

thenχ andg form a CMP homomorphism over the history CMPCM , with output setY = Z

and output functionΥ(h, a, z) =
∑

o∈O P (o | h, a) · ζ(o, z).

Proof. Output distribution:

21

∀h ∈ HM , Υ(h, a, z) =
∑
o∈O

P (o | h, a) · ζ(o, z)

=
∑
ō∈Ō

ζ̄(κ(o), z) ·
∑
o∈ō

P (o | h, a) Equation 2.9

=
∑
ō∈Ō

ζ̄(κ(o), z) · P (κ(o) | h, a)

=
∑
ō∈Ō

ζ̄(κ(o), z) · P (ō | χ(h), g(a)) Lemma 2.1

= Ῡ(χ(h), g(a), z)

Transitions:

T̄H(χ(h), g(a), χ(hao)) = P (κ(o) | χ(h), g(a))

= P (κ(o) | h, a) Lemma 2.1

=
∑

o′∈[o]κ

P (o′ | h, a)

=
∑

hao′∈[hao]χ

TH(h, a, hao′)

A similar CMPCB = {BM , A, TB} can be constructed using belief states as the state

set. The same result can be proven for this belief state CMP, using much the same proof.

One of the most important properties of a homomorphism is that it preserves the optimal

value function, and thus the optimal policy.

Lemma 2.3. A POMDP homomorphism preserves the optimal value function for any re-

ward functionr : Z → IR which is a function of the POMDP output set.

22

Proof. Sinceχ, g is a homomorphism for the CMPCH :

∀h ∈ HM , V (h) = V̄ (χ(h)) Lemma 2.2

WhereV is the value function ofr in the history CMPCH , andV̄ is the value function

of r in the abstract history CMP̄CH̄ which results from the application of the history state

mappingχ and action mappingg.

In any POMDP, the value of a belief state is the value of the history corresponding to

that belief state:

∀h ∈ HM , V (h) = V (bh). POMDP definition

This is true in the abstract POMDP as well:

∀h ∈ HM , V̄ (χ(h)) = V̄ (bχ(h)). POMDP definition

Putting these facts together:

V (bh) = V (h)

= V̄ (χ(h))

= V̄ (b̄χ(h))

And thus the value function forM can be lifted fromM̄ .

The general outline of the entire POMDP Homomorphism finding algorithm is shown

in Procedure 2.3.1. The next several sections will build up this algorithm in stages, start-

ing with the problem of evaluating a given observation mappingκ, and presenting two

reasonable alternatives to Equation 2.12. The problems addressed, in order of appearance

are:

23

Procedure 2.3.1Find POMDP Homomorphim(M = (S, A, T, O, Ω), output = (Z, ζ))

calculateŌ to predictZ
calculatef andg to supportŌ
while κ, f, g is not a homomorphismdo

improve/evaluateκ
calculatef andg to supportŌ

return κ, f, g

• Evaluateκ when for all observation/state/action combinations,P (o | s, a) > 0

(Shadow Model test).

• Evaluateκ when there are some observation probabilities which are0 (Shadow Com-

patibility test).

• Improveκ based on its evaluation (using either algorithm)

Both of the algorithms for evaluating a givenκ construct the state and action mapsf andg

in the process of evaluation. Both algorithms also construct data structures which will be

used to refineκ. Both of these evaluation algorithms run in polynomial time in the worst

case, though the assumption thatP (o | s, a) > 0 allows the first algorithm to be somewhat

faster in the worst case than the second.

Figure 2.1 illustrates accept sets for these two algorithms. The Shadow Model test

accepts a smaller set of abstractions, particularly where the requirement thatP (o | s, a) > 0

is not met. In fact, in many cases where this requirement is not met, this test rejects all

possible abstractions — up to and including the abstraction formed by the identity mapping.

The Shadow Compatibility test has a larger accept set, indicating that in some cases it may

accept smaller abstract models. This test is also more complete in that it will accept at

least one mapping function for any given POMDP, since the identity mapping is always

accepted.

The problem of finding an optimal refinement ofκ under this framework will be shown

to be NP-hard in the worst case, whenP (o | s, a) > 0 is not satisfied for all state, actions

and observations. However, the data structures used in evaluatingκ can be used to narrow

24

History Tests

Shadow
Compatibility

Shadow
Model

Figure 2.1.Diagram illustrating the overlap between the accept sets for the two approaches
outlined in this chapter. The Compatibility Model approach is more likely to find a smaller
abstract model than the Shadow Model since its accept set is a superset of the Shadow
Model accept set.

the search for better observation maps by pinpointing aspects of the abstract model that

should be improved. As with the observation mapping function refinement algorithm in

Talvitie et al. (2008) (discussed in Section 1.1.2), theκ refinement algorithm identifies a

set of acceptable observation mapping functions. Using the Shadow Model and Shadow

Compatibility test data structures, this set can be found in polynomial time (rather than

exponential). However, the problem of choosing the specific observation mapping function

in this set for which the smallest abstract state and action sets would be required is still

NP-complete in the worst case. Any heuristic that chooses an element from the set of

acceptable observation mapping functions will produce an accurate model, but it may not

be the smallest model satisfying the acceptance criteria. Nevertheless, identifying this set

in polynomial time is an improvement over the existing literature.

2.4 Evaluating an Observation Map

Evaluating a given observation map to determine whether it corresponds to a valid

POMDP homomorphism is central to the task of building an abstract observation function.

25

In this section it will be assumed that every observation occurs in every state with some

probability. That is, for all statess, actionsa and observationso:

P (o | s, a) > 0. (2.13)

Section 2.5 will relax this assumption.

The algorithm for evaluating the observation mapκ is shown in Procedure 2.4.1. If

Procedure 2.4.1 succeeds,f , g andκ form a valid homomorphic reduction ofM . This

test is practical: it does not require the examination of every history inHM , as a naive

examination of constraint Equation 2.12 might. However, if the test fails, it is still possible

that Equations 2.12 could be satisfied, and that examining every history inHM would have

verified this fact.

At a high level, the algorithm has 3 parts:

• construct the abstract model

• construct ashadowmodel

• determine whether the shadow and abstract models are independent.

The full observation set consists of two types of information: information that is used by

the abstract model, and information that is not. The shadow model keeps track of all of

the information that is ignored by the abstract model (see Figure 2.5 for an illustration of

the relationship). The belief states of the shadow model form a sufficient statistic for the

observation information that is ignored by the abstract model. If the shadow belief state

cannot be used to improve abstract belief state predictions, then the unused observation

information also cannot be used to improve abstract state predictions.

The shadow model (Figure 2.2(c)) treats the abstract observation as a node with no par-

ents, similar to an action, and observes the true observationo according to the conditional

probabilityP (o | s, a, ō).

26

Procedure 2.4.1Evaluate observation mapping(M = (S, A, T, O, Ω), Ō, κ : O → Ō)

verify ζ(o, z) = ζ̄(κ(o), z) directly

// Construct an abstract CMP model forκ
C ← (S, A, T)
Ωχ : S × A× Ō → [0, 1]

Ωχ(s, a, ō)
def
= P (ō | s, a)

f, g ← findCMPHomomorphism(C, output = (Ō, Ωχ))

// Construct an abstract “shadow” CMP forκ
C ← (S, A, T)
Ωξ : S × A×O → [0, 1]

Ωξ(s, a, o)
def
= P (o|s,a)

P (κ(o)|s,a)

fξ, gξ ← findCMPHomomorphism(C, output = (O, Ωξ))

// determine whether the two CMP models operate independently of one another
for all s ∈ S, a ∈ A, s′ ∈ S do

P (f(s′) ∧ fξ(s
′)|s, a)⇐

∑
s′′∈[s′]f∩[s′]fξ

P (s′′ | s, a)

if ¬ (P (f(s′) ∧ fξ(s
′)|s, a) = P (f(s′)|f(s), g(a)) · P (fξ(s

′)|fξ(s), gξ(a))) then
return false

for all s ∈ S do
bλ(f(s) ∧ fξ(s))⇐

∑
s′′∈[s]f∩[s]fξ

bλ(s
′′)

if ¬ (bλ(f(s) ∧ fξ(s)) = bλ(f(s)) · bλ(fξ(s))) then
return false

// Test passes
return f, g, κ

If the abstract and shadow states are independent over time, then the true observationo

does not add any information that would help predict the abstract observations.

2.4.1 Abstract Model

The second step of Procedure 2.4.1 constructs a candidate abstract model forM . Re-

call that Equations 2.10 and 2.11 resemble Equations 1.5 and 1.6, the constraints of a CMP

Homomorphism. Procedure 2.4.1 constructs an abstract POMDP via a CMP Homomor-

phism, with one caveat: no state specific action mapping functions. Rather than a set of

functionsgs : A→ Ā for each states, there must be a single, global action mapping func-

27

o o' o''

s s' s''

(a) POMDP Model

k(o) k(o') k(o'')

f(s) f(s') f(s'')

(b) Abstract Model

fξ(s) fξ(s') fξ(s'')

o o' o''

k(o) k(o') k(o'')

(c) Abstract Shadow Model

Figure 2.2. The abstract model and the abstract shadow model (see Section 2.4.4), illus-
trated as Baysian Networks. Three “rolled out” time steps are shown. Action nodes are not
shown. Shaded nodes are observed variables.

tion g : A → Ā. State-specific action maps cannot be used in this context because they

could introduce conflicts in the policy when the state is uncertain. Procedure 2.4.2 outlines

the algorithm for finding a CMP Homomorphism, when state-specific action maps are not

used. Define:

Oχ = Ō

Ωχ(s, a, ō) =
∑
o∈ō

Ω(s, a, o).

The state and action mappingsf andg constructed in Procedure 2.4.1 form a CMP ho-

momorphism for the CMP(S, A, T) with output(Ō, Ωχ). This CMP Homomorphism pre-

serves the following constraints in the abstract model:

P (ō | f(s), g(a)) = P (ō | s, a) Equation 2.10 (from Equation 1.5)

P (f(sj) | f(si), g(a)) =
∑

s∈[sj]f

P (s | si, a) Equation 2.11 (from Equation 1.6)

Let Mχ be a POMDP with abstract observations, but the original state and action sets:

28

Procedure 2.4.2findCMPHomomorphism(C = (S, A, T), output = (Y, Υ))

// PartitionS to createf0 andS̄0 such that
f0(si) = f0(sj) ⇐⇒ P (y | si, a) = P (y | sj, a) (∀a ∈ A,∀y ∈ Y)
τ = 0
repeat

// PartitionA to creategτ+1 andĀτ+1 such that
gτ+1(ai) = gτ+1(aj) ⇐⇒ P (s̄ | s, ai) = P (s̄ | s, aj) (∀s ∈ S, s̄ ∈ S̄τ)
// PartitionS to createfτ+1 andS̄τ+1 such that
fτ+1(si) = fτ+1(sj) ⇐⇒ P (s̄ | si, ā) = P (s̄ | sj, ā) (∀ā ∈ Āτ+1, s̄ ∈ S̄τ)
// and
fτ+1(si) = fτ+1(sj) ⇐⇒ P (y | si, a) = P (y | sj, a) (∀a ∈ A,∀y ∈ Y)
τ ← τ + 1

until S̄τ = S̄τ−1

return f, g

Mχ = (S, A, T, Oχ, Ωχ). (2.14)

The belief state for abstract historyχ(h) (defined in Equation 2.8) inMχ will be denoted

bχ(h), and the initial belief state isbχ(λ) = bλ.

If f : S → S̄ andg : A→ Ā, let M̄χ denote the candidate abstract POMDP:

M̄χ = (S̄, Ā, T̄ , Oχ, Ω̄χ). (2.15)

whereT̄ is consistent with Equation 2.11 and̄Ωχ is consistent with Equation 2.10. The

belief state for abstract historyχ(h) in M̄χ will be denoted̄bχ(h). The initial belief state

b̄χ(λ) is defined:

b̄χ(λ)(s̄) =
∑
s∈s̄

bλ(s). (2.16)

At this point in the algorithm, it is not yet possible to determine whether the candidate

abstract model̄Mχ is a homomorphic abstraction forM . However,M̄χ can be shown to be

a homomorphic abstraction forMχ. The Lemma 2.4 shows that the mapping fromMχ to

M̄χ satisfies Equation 2.12, in addition to Equations 2.10 and 2.11.

29

Lemma 2.4. For anyh ∈ HM and s̄ ∈ S̄:

∑
s∈s̄

bχ(h)(s) = b̄χ(h)(s̄)

Proof. By Structural Induction onHM .

Base case (λ): By definition, for anȳs ∈ S̄:

b̄χ(λ)(s̄) =
∑
s∈s̄

bλ(s) =
∑
s∈s̄

bχ(λ)(s).

Inductive step (h to hao):

∑
s′∈s̄′

bχ(hao)(s) =

∑
s′∈s̄′ P (κ(o)|s′, a) ·

∑
s∈S P (s′|s, a) · bχ(h)(s)∑

s′∈S P (κ(o)|s′, a) ·
∑

s∈S P (s′|s, a) · bχ(h)(s)

=
P (κ(o)|s̄′, g(a)) ·

∑
s∈S P (s̄′|s, a) · bχ(h)(s)∑

s̄′∈S̄ P (κ(o)|s̄′, g(a)) ·
∑

s∈S P (s̄′|s, a) · bχ(h)(s)
Eqn 2.10

=
P (κ(o)|s̄′, g(a)) ·

∑
s̄∈S̄ P (s̄′|s̄, g(a)) ·

∑
s∈s̄ bχ(h)(s)∑

s̄′∈S̄ P (κ(o)|s̄′, g(a)) ·
∑

s̄∈S̄ P (s̄′|s̄, g(a)) ·
∑

s∈s̄ bχ(h)(s)
Eqn 2.11

=
P (κ(o)|s̄′, g(a)) ·

∑
s̄∈S̄ P (s̄′|s̄, g(a)) · b̄χ(h)(s̄)∑

s̄′∈S̄ P (κ(o)|s̄′, g(a)) ·
∑

s̄∈S̄ P (s̄′|s̄, g(a)) · b̄χ(h)(s̄)
Ind. hyp.

= b̄χ(hao)(s̄
′)

This Lemma shows that the abstract POMDP maintains its abstract belief state as accu-

rately as the abstract observations allow. NowM̄χ must be tested to determine whether its

state estimates are as accurate as they would be if the full observation set were accessible.

This requires the construction of theshadowmodel (Figure 2.2(c)).

2.4.2 Abstract and Shadow Models: Two Examples

The shadow model is somewhat easier to understand when the observations are factored

into features. Consider the gridworld shown in Figure 2.3(a). The POMDP for this domain

is defined as follows:

30

States: Each square in Figure 2.3(a) represents a location. State is the agent’s location.

Actions: up, down, left, right

Transitions: Actions fail with a small probabilityεa. Failure results in no change to the

state.

Observations: Factored, with two features:

• booleancheese or¬cheese feature

• color feature:lightgrey, grey, black

Observation Function: In each state, the agent observes only the features of the square

it currently occupies. Each feature takes on a random noise value with some small

probabilityεo.

Initial Belief State: Uniform probability of being in each state.

Takeζ to be the booleancheese indicator feature. Other observation features may be

relevant to predictingζ or not relevant. Consider the following observation map, directly

determined fromζ:

• Abstract observation 1: all observations withcheese

• Abstract observation 2: all observations with¬cheese.

Figure 2.3(b) is a candidate abstract POMDP model for the this observation function, con-

structed via a CMP Homomorphism for(S, A, T), with output functioncheese/¬cheese.

Each abstract state represents a cluster of three states, grouped according to column. The

row coordinate of the state is not helpful in predicting the output function, and is ignored

in the abstract model.

Figure 2.3(c), on the other hand, is the “shadow” model left behind by the abstract

model forcheese. Without thecheese feature the only remaining feature is color, so that

the shadow observations are:

31

(a) Domain

(b) Abstract Model: Cheese Feature (c) AbstractModel: Color Feature

Figure 2.3. In this gridworld (2.3(a)), there are two features. The cheese locations are
predicted by the column of the state, and the color of the location is predicted by the row
of the state. Abstract models for each feature are shown in 2.3(b) and 2.3(c).

• Shadow observation 1: all observations withlightgrey

• Shadow observation 2: all observations withgrey

• Shadow observation 3: all observations withblack.

The abstract shadow model is shown in Figure 2.3(c), and is formed by a CMP Homomor-

phism for the CMP(S, A, T), with output functioncolor. In this case, the abstract model

only retains row information in the abstract state and ignores column information.

Since Figure 2.3(b) (the abstract model forcheese) uses column information and Figure

2.3(c) (the shadow model forcheese) uses row information, and the row and column state

features do not affect one another in this gridworld, the abstract and shadow models should

be verifiably independent in the final test.

In Figure 2.4, on the other hand, the color of the locations varies with column, not row.

This implies that color information could be used to improve estimated column location,

32

(a) Domain

(b) Abtract Model: Cheese
Feature

(c) Abstract Model: Color
Feature

Figure 2.4. In this gridworld (2.4(a)), there are two features. The cheese locations are
predicted by the column of the state. The color of the state in this case is also predicted by
the column of the state. Abstract models for each feature are shown in 2.4(b) and 2.4(c).

and thus predictions about cheese. A test of thecheese/¬cheese observation abstraction

should reveal the fact that something useful has been left out of the abstract observation

function.

The abstract model for thecheese/¬cheese observation abstraction for this domain is

shown in Figure 2.4(b), and the shadow model for this abstraction is shown in Figure 2.4(c).

In this case the states of the abstract and shadow models are perfectly correlated (i.e. not

independent).

2.4.3 Shadow Model

In the examples of Figures 2.3 and 2.4, observations are defined by observation features,

and in addition these features are independent of each other given the state and action.

Under these conditions, the shadow observation set can be defined via the set of unused

observation features. However, in general this may not be the case.

Consider some arbitrary belief stateb. Each updateP (s′ | b, a, o) for the next state

s′, actiona and observationo can be calculated in stages. The POMDP update rule has

33

two stages: firstP (s′ | b, a) is calculated (Equation 2.2), thenP (s′ | b, a, o) (Equation

2.3). To construct the shadow observation function, notice that the update can be further

deconstructed into three stages usingκ:

1. calculate:P (s′|b, a) for all s′ ∈ S

2. use the results of 1 to calculate:P (s′|b, a, κ(o))

3. use the results of 2 to calculate:P (s′|b, a, o)

Separating the POMDP update rule into these 3 component parts yields:

P (s′ | b, a, o) =

a update︷ ︸︸ ︷
P (s′ | b, a) ·

κ(o) update︷ ︸︸ ︷
P (κ(o) | s′, a)

P (κ(o) | b, a)
·

o update︷ ︸︸ ︷
P (o | s′, a)

P (o | b, a)
· P (κ(o) | b, a)

P (κ(o) | s′, a)
.

The modelMχ uses updates 1 and 2, but not update 3:

P (s | b, a, κ(o)) =

a update︷ ︸︸ ︷
P (s′ | b, a) ·

κ(o) update︷ ︸︸ ︷
P (κ(o) | s′, a)

P (κ(o) | b, a)

=
P (κ(o) | s′, a)

∑
s P (s′ | s, a) · b(s)∑

s′ P (κ(o) | s′, a)
∑

s P (s′ | s, a) · b(s)

which is just the POMDP update rule (Equation 2.1) for a POMDP that has abstract obser-

vations (Mχ, defined in Equation 2.14).

The shadow model, on the other hand, is defined by updates 1 and 3, but ignores update

2. The shadow model update rule treats the abstract observationκ(o) as an action, rather

than an observation to be predicted (see Figure 2.2(c)). The action set is thereforeA ×

Ō, and individual “actions” can be written〈a, ō〉, wherea is an action and̄o an abstract

observation. The shadow model update rule is:

P (s′ | b, 〈a, κ(o)〉, o) ∝

a update︷ ︸︸ ︷
P (s′ | b, a) ·

o update︷ ︸︸ ︷
P (o | s′, a)

P (o | b, a)
· P (κ(o) | b, a)

P (κ(o) | s′, a)

34

Since the termP (κ(o)|b,a)
P (o|b,a)

does not vary withs′, this simplifies to:

P (s′ | b, 〈a, κ(o)〉, o) ∝

a update︷ ︸︸ ︷
P (s′ | b, a) ·

o update︷ ︸︸ ︷
P (o | s′, a)

P (κ(o) | s′, a)

Normalizing to get a probability distribution over statess′:

P (s′ | b, 〈a, κ(o)〉, o) =
P (s′ | b, a) · P (o|s′,a)

P (κ(o)|s′,a)∑
s′ P (s′ | b, a) · P (o|s′,a)

P (κ(o)|s′,a)

=

P (o|s′,a)
P (κ(o)|s′,a)

∑
s P (s′ | s, a) · b(s)∑

s′
P (o|s′,a)

P (κ(o)|s′,a)

∑
s P (s′ | s, a) · b(s)

This is similar to the POMDP update rule (Equation 2.1), with observation probability

function P (o|s′,a)
P (κ(o)|s′,a)

. The shadow model is a POMDP with this observation probability

function.

In the special case represented by Figures 2.3 and 2.4 the observation set is factored

into independent features. Under these conditions, the observation ratioP (o|s′,a)
P (κ(o)|s′,a)

reduces

to the probability of the unused feature set. Take, for example, the two observationso1 =

lightgrey∧cheese ando2 = lightgrey∧¬cheese. When the abstract observation includes

only cheese/¬cheese information, the observation ratios for boho1 ando2 reduce to the

probability of thelightgrey feature. For any states and actiona:

P (o1 | s, a)

P (κ(o1) | s, a)
=

P (lightgrey, cheese | s, a)∑
c∈colors P (c, cheese | s, a)

=
P (lightgrey | s, a) · P (cheese | s, a)

P (cheese | s, a)

= P (lightgrey | s, a)

and

35

P (o2 | s, a)

P (κ(o2) | s, a)
=

P (lightgrey,¬cheese | s, a)∑
c∈colors P (c,¬cheese | s, a)

=
P (lightgrey | s, a) · P (¬cheese | s, a)

P (¬cheese | s, a)

= P (lightgrey | s, a).

wherecolors = {lightgrey, grey, black}.

However, if appropriate observation features are not provided, or if the observation

features are not conditionally independent givens, a, the ratio may not simplify in this

manner and the ratioP (o|s′,a)
P (κ(o)|s′,a)

must be used directly.

2.4.4 Abstract Shadow Model

The abstract shadow model should be independent of the abstract model if possible,

while preserving the observation probability ratio accurately. In this chapter, the abstract

shadow model is constructed via a CMP Homomorphism (later sections will explore other

definitions). Define the shadow observation set and observation function:

Oξ = O

Ωξ(s, 〈a, κ(o)〉, o) =
P (o | s, a)

P (κ(o) | s, a)

Recall that in this section it is assumed that all observations occur with some non-zero

probability in every state. This implies thatP (o|s,a)
P (κ(o)|s,a)

is always well defined.

The state and action mappingsfξ : S → S̃ andgξ : A → Ã constructed in Procedure

2.4.1 form a CMP homomorphism for the CMP(S, A, T) with output(Oξ, Ωξ). This CMP

Homomorphism preserves the following constraints in the abstract model:

P (o | fξ(s), gξ(a)) =
P (o | s, a)

P (κ(o) | s, a)
(2.17)

P (fξ(sj) | fξ(si), gξ(a)) = P (fξ(sj) | si, a) (2.18)

36

Define the shadow POMDPMξ as:

Mξ = (S, Aξ, Tξ, Oξ, Ωξ) (2.19)

where

Aξ = A× Ō

Tξ(s, 〈a, ō〉, s′) = T (s, a, s′).

Let the shadow history mapping functionξ : HM → HMξ
be defined as:

ξ(λ) = λ (2.20)

ξ(hao) = ξ(h)〈aκ(o)〉o.

The belief statesbξ(h) for the shadow POMDP are defined according to the standard belief

state definition, with initial beliefbλ.

The state and action mapping functionsfξ and gξ can be used to build an abstract

shadow model:

M̃ξ = (S̃, Ã, T̃ , O, Õ). (2.21)

whereT̃ is consistent with Equation 2.18 and̃O is consistent with Equation 2.17. The

abstract shadow belief stateb̃ξ(h) is maintained according to the standard POMDP update

rules on this POMDP, with initial belief state definition:

b̃ξ(λ)(s̃) =
∑
s∈s̃

bλ(s). (2.22)

for any s̃ in S̃.

37

k(o) k(o') k(o'')

f(s) f(s') f(s'')

fξ(s) fξ(s') fξ(s'')

o o' o''

Figure 2.5.Abstract and shadow model interactions, shown as a Bayesian Network. Three
time steps are shown. Shaded nodes are observed. Action nodes are not shown. The
states of the two models are independent if the observationso, o′, o′′, etc, can be accurately
predicted without dependency edges between the state nodes of the two models.

2.4.5 Independence of Shadow and Abstract Models

The final stage of Procedure 2.4.1 verifies that the states of the abstract modelM̄χ and

abstract shadow model̃Mξ are independent, as shown in Figure 2.5. There are two steps

to this test: checking the next state distribution for each state and action pair, and checking

the initial belief distribution. If the following equation is satisfied for all pairss̄ ∈ S̄ and

s̃ ∈ S̃:

∑
s∈s̄∩s̃

bλ(s) = b̄λ(s̄) · b̃λ(s̃) (2.23)

wheres ∈ s̄ ∩ s̃ includes all statess for which f(s) = s̄ andfξ(s) = s̃, then the initial

belief state passes the independence test.

If following equation must be satisfied for every states, actiona and next states′:

∑
s′∈s̄′∩s̃′

P (s′ | s, a) = P (s̄′ | f(s), g(a)) · P (s̃′ | fξ(s), gξ(a)) (2.24)

then the transition function passes the test. The final steps of Procedure 2.4.1 implement

these two tests.

These two properties (Equations 2.23 and 2.24) imply that the belief state factors into

abstract and shadow components after every historyh in HM .

38

Theorem 2.5.Equations 2.23 and 2.24 imply that for any historyh in HM ,
∑

s∈s̄∩s̃ bh(s) =

b̄χ(h)(s̄
′) · b̃ξ(h)(s̃

′).

Proof. Proof by Structural Induction onHM .

Basis step (λ): By Equation 2.23.

The Inductive step is in two parts. First, the step frombh to bha then, the step frombha

to bhao.

Inductive Step (h to ha): Assume that
∑

s∈s̄∩s̃ bh(s) = b̄χ(h)(s̄
′) · b̃ξ(h)(s̃

′). For any

s̄′ ∈ S̄ ands̃′ ∈ S̃,

∑
s′∈s̄′∩s̃′

bha(s
′) =

∑
s′∈s̄′∩s̃′

∑
s∈S

P (s′|s, a)bh(s) Equation 2.2

=
∑
s∈S

bh(s) ·
∑

s′∈s̄′∩s̃′

P (s′|s, a)

=
∑
s∈S

bh(s) · P (s̄′|f(s), g(a)) · P (s̃′|fξ(s), gξ(a)) Equation 2.24

=
∑
s̄∈S̄

∑
s̃∈S̃

P (s̄′|s̄, g(a)) · P (s̃′|s̃, gξ(a)) ·
∑

s∈s̄∩s̃

bh(s) f andfξ partitionS

=
∑
s̄∈S̄

P (s̄′|s̄, g(a))b̄χ(h)(s̄) ·
∑
s̃∈S̃

P (s̃′|s̃, gξ(a)) · b̃h(s̃) Assumption

= b̄χ(ha)(s̄
′) · b̃ξ(ha)(s̃

′) Equation 2.2

Inductive Step (ha to hao): For anys̄′ ∈ S̄ ands̃′ ∈ S̃,

39

∑
s′∈s̄′∩s̃′

bhao(s
′) =

∑
s′∈s̄′∩s̃′

P (o | s′, a) · bha(s
′)∑

s′∈S P (o | s′, a) · bha(s′)

=

∑
s′∈s̄′∩s̃′ P (o | s′, a) · bha(s

′)∑
s̄′∈S̄

∑
s̃′∈S̃

∑
s′∈s̄′∩s̃′ P (o | s′, a) · bha(s′)

=
P (κ(o) | s̄′, g(a)) · P (o | s̃′, gξ(a)) ·

∑
s′∈s̄′∩s̃′ bha(s

′)∑
s̄′∈S̄

∑
s̃′∈S̃ P (κ(o)|s̄′, g(a)) · P (o|s̃′, gξ(a)) ·

∑
s′∈s̄′∩s̃′ bha(s′)

=
P (κ(o) | s̄′, g(a)) · P (o | s̃′, gξ(a)) · b̄χ(h)(s̄

′) · b̃ξ(h)(s̃
′)∑

s̄′∈S̄

∑
s̃′∈S̃ P (κ(o)|s̄′, g(a)) · P (o|s̃′, gξ(a)) · b̄χ(h)(s̄′) · b̃ξ(h)(s̃′)

=
P (κ(o) | s̄′, g(a)) · b̄χ(h)(s̄

′)∑
s̄′∈S̄ P (κ(o)|s̄′, g(a)) · b̄χ(h)(s̄′)

·
P (o | s̃′, gξ(a)) · b̃ξ(h)(s̃

′)∑
s̃′∈S̃ P (o|s̃′, gξ(a)) · b̃ξ(h)(s̃′)

= b̄χ(hao)(s̄
′) · b̃ξ(hao)(s̃

′)

With this theorem in hand, it is straightforward to prove that Equation 2.12 is satisfied

if Equations 2.23 and 2.24 are satisfied.

Theorem 2.6. If ∀h ∈ HM ,
∑

s∈s̄∩s̃ bh(s) = b̄χ(h)(s̄
′) · b̃ξ(h)(s̃

′), then Equation 2.12 is true

(for all historiesh, b̄χ(h)(f(s)) =
∑

s′∈[s]f
bh(s

′)).

Proof.

∑
s′∈s̄′

bh(s
′) =

∑
s̃′∈S̃

∑
s′∈s̄′∩s̃′

bh(s
′)

=
∑
s̃′∈S̃

b̄χ(h)(s̄
′) · b̃ξ(h)(s̃

′)

= b̄χ(h)(s̄
′) ·
∑
s̃′∈S̃

b̃ξ(h)(s̃
′)

= b̄χ(h)(s̄
′)

This concludes the proof that Procedure 2.4.1 succeeds only ifκ, f andg form a valid

POMDP Homomorphism.

40

(a) Initial Belief State

→
(b) Belief conditioned oñs

Figure 2.6. Independence test for the initial belief state test, domain from Figure 2.3. Black
circles represent probability mass. The abstract shadow model is shown to the right of the
gridworld, and the abstract model is shown below it.

(a) Initial Belief
State

→
(b) Belief condi-
tioned ons̃

Figure 2.7. Independence test for the initial belief state test, domain from Figure 2.4.
Black circles represent probability mass. The abstract shadow model is shown above the
gridworld, and the abstract model is shown below it.

Figure 2.6 illustrates the first step of the independence test for the domain in Figure

2.3, in which the initial belief state is tested. The illustration, rather than looking at the

marginals for the abstract and shadow states, examines the conditional for the abstract

state given the shadow state. Expanding the notation, defineP (s̄ | bλ) =
∑

s∈s̄ bλ(s)

andP (s̄ ∧ s̃ | bλ) =
∑

s∈s̄∩s̃ bλ(s), etc. Since we know from probability theory that the

following are equivalent tests:

P (s̄ ∧ s̃ | bλ) = P (s̄ | bλ) · P (s̃ | bλ) ⇐⇒ P (s̄ | s̃ ∧ bλ) = P (s̄ | bλ)

41

either test can be used to verify Equation 2.23.

Figure 2.6(a) illustrates the initial belief state in the modelM (center), abstract model

M̄χ (belowM) and abstract shadow modelM̃ξ (to the right ofM). The probability masses

for abstract and shadow states are calculated from the marginals of the belief state ofM .

Figure 2.6(b) illustrates the updated initial belief in all three models, conditioned on a

specific abstract shadow state,s̃. Observation of the shadow state label narrows the belief

distribution in the POMDPM . However, notice that the abstract state distribution does not

change from Figure 2.6(a) to Figure 2.6(b). This indicates that for this shadow state in the

initial belief distribution, the abstract model is independent. In order to prove thatM̄χ and

M̃ξ are independent, the full set of tests in Equations 2.23 and 2.24 must be verified.

Figure 2.7 illustrates one step of the initial belief state test in the domain from Figure

2.4. In this case, the states of the abstract and abstract shadow model are not independent.

Figure 2.7(b) again illustrates the initial belief distribution inM , M̄χ andM̃ξ. Figure 2.7(b)

illustrates the updated belief state after conditioning on a particular abstract shadow state,s̃.

In this case, revealing the abstract shadow state label improves the estimate of the abstract

state label, and thus the abstract shadow model and abstract model are not independent.

2.4.6 Time Analysis

Procedure 2.4.1 is dominated by the time needed to construct the abstract model and

abstract shadow model.

The CMP Homomorphism finding algorithm of Procedure 2.4.2, which is executed

once to find the abstract model and once to find the abstract shadow model, has a worst case

running time ofO(|S|3 · |A|). The outer while loop executes at most|S| iterations, since the

state mapping functionf must change by at least one state on each iteratio. A tighter bound

on the number of iterations would be|S̄| or |S̃|, the size of the abstract or abstract shadow

state space, since each iteration must introduce at least one new abstract state. However,

this is upper bounded by the number of states inS. Within each iteration, the algorithm

42

examines the abstract next state distribution for each state, action pair. The inner for loops

iterate for|S| and|A| steps, respectively. One method of calculating the abstract next state

distribution for a specific state, action pair is to iterate over the possible next states, adding

the probability mass for each state to the probability mass of its abstract label. This process

involves|S| steps, as it examines each possible next state. The total worst case running time

of the CMP Homomorphism finding algorithm is thusO(|S| · |S| · |A| · |S|), orO(|S|3 · |A|).

The final independence test loop must calculate the joint distribution of the next ab-

stract and shadow state labels. These calculations must be performed once for each state,

action pair. The time needed to do one such calculation isO(|S|) (to examine the labels

for each possible next state and add its probability to the proper term). The entire loop

therefore takesO(|S| · |A| · |S|) in the worst case, and is dominated in this case by the CMP

Homomorphism construction step.

2.4.7 Shortcomings of the Shadow Model

When every observation does not occur in every state, the shadow model algorithm does

not perform well. Consider the gridworld in Figure 2.8, defined as the following POMDP:

States: Each square in Figure 2.8 represents a state.

Actions: up, down, left, right

Transitions: Actions fail with a small probabilityε. Failure results in no change to the

state.

Observations: white, lightgrey, grey, black, cheese, cat

Observation Function: In each state, the agentdeterministicallyobserves only the fea-

tures of the current square.

Initial Belief State: Equal probability mass on the leftmost state in each corridor.

43

x

y

z

(a) Three Hallway POMDP

x/z

y

(b) Abstract Model

Figure 2.8.Three corridor gridworld POMDP. The initial state distribution places the agent
in the leftmost state of each corridor with equal probability. The colors of the states labeled
“x”, “y” and“z” signal whether the agent must go straight or turn right at the end of the
corridor to choose between the cheese and the cat.

The problem arises whenP (o|s,a)
P (κ(o)|s,a)

is undefined, due to the fact thatP (κ(o) | s, a) = 0.

There are a few ways working around this by defining this term under these circumstances:

• treatundefinedas a unique symbol (⊥)

• replaceundefinedwith a small realε probability

• replaceundefinedwith 0.

However, none of these approaches really addresses the problem.

44

DefineŌ as the set containing the following abstract observations:

ō1
def
= {cheese}

ō2
def
= {cat}

ō3
def
= {grey}

ō4
def
= {black, lightgrey}

ō5
def
= {white}

The abstract model for this abstract observation function is shown in Figure 2.8(b). The

shadow model state mapping functionfξ is the identity function, so that the states of the

abstract shadow model are the states of the original model, Figure 2.8(a). The two models

do not pass the independence tests (Equations 2.23 and 2.24). However, this abstract ob-

servation function is in fact self sufficient. Part of the problem with the shadow model test

for this domain lies in statesx andy from Figure 2.8. Statex has the following shadow

observation distribution, for any actiona:

cheese : ⊥

cat : ⊥

lightgrey : 1.0

grey : ⊥

black : ⊥

white : ⊥

while statey has:

45

cheese : ⊥

cat : ⊥

lightgrey : ⊥

grey : 1.0

black : ⊥

white : ⊥

Since these two shadow observation distributions are not the same, statesx andy cannot

have the same abstract shadow state label. Replacing⊥ with ε or 0 does not change this

fact. In general, this should indicate that there is some discriminative power left in the

observation distributions ofx andy, but that is not the case here. Every distinction that

can be made between these two states has been made, and the abstract observation function

perfectly discriminates between these two states. The shadow model does not reflect this

fact.

Even the observation map:

ō1
def
= {cheese}

ō2
def
= {cat}

ō3
def
= {lightgrey}

ō4
def
= {grey}

ō5
def
= {black}

ō6
def
= {white}

in which all observations distinctions available are used, does not pass the shadow model

test. Similarly, if the domain in Figure 2.4 were altered to have deterministic observations,

there would be no observation abstraction that passed the shadow model test.

46

It is to be expected that any approximation of Equation 2.12 would reject some valid

abstractions. However, there is a large class of POMDPs for which the shadow model test

does not accept any abstraction. The problem is that when the ratioP (o|s,a)
P (κ(o)|s,a)

is undefined,

it should be treated as potentially equivalent to any other probability. The next algorithm

treats undefined shadow observation probabilities ascompatiblewith any other fixed ob-

servation probability.

2.5 Compatible Shadow States

Equations 2.23 and 2.24 require exact equivalence among the shadow states. In this

section these requirements will be relaxed, and acompatibility relation over the shadow

states will be constructed. The compatibility function is not an equivalence relation over

the states, and cannot be used to construct a state mapping function.

The compatibility function takes advantage of the fact that ifP (o|s,a)
P (κ(o)|s,a)

is not defined,

κ(o) will never be observed immediately after states and actiona. The ratio could therefore

be reassigned any arbitrary value without affecting predictions. In other words, it does not

matter what the conditional probability ofo given κ(o) is if κ(o) will not occur. It is

possible to find better abstractions if these values are treated as undefined in the sense that

they could take on any value without affecting the model.

The state compatibility function is a boolean function∼c: S × S → {true, false}.

Two statesi andj are compatible if and only if their observation functions are compatible,

and their next state distributions are compatible:

i ∼c j ⇐⇒ (i ∼o j) ∧ (i ∼t j)

where∼o: S × S → {true, false} is an observation functions compatibility function, and

∼t: S × S → {true, false} is a next state distribution compatibility function.

47

The two statesi andj have compatible observations (i.e.i ∼o j) if and only if, for all

a ∈ A ando ∈ O:

((P (κ(o) | i, a) > 0) ∧ (P (κ(o) | j, a) > 0))→ P (o | i, a)

P (κ(o) | i, a)
=

P (o | j, a)

P (κ(o) | j, a)
(2.25)

This means that the two states must have the same observation ratios, but only whenκ(o)

is possible in both states. This relation is not an equivalence relation. Take states x, y and

z in the domain from Figure 2.8, under the abstraction shown in Figure 2.8(b). The states

x andy have compatible observation distributions (x ∼o y), andy andz are compatible

(y ∼o z), however,x andz are not compatible. The observation compatibility function is

not transitive, and therefore not an equivalence relation.

The next state distribution compatibility relation∼t is defined recursively, in terms of

the compatibility of the states in the two next state distributions. Two abstract POMDPs

will be important in defining the relation∼t. One has already been defined: the candidate

abstract POMDPM̄χ (Equation 2.15) with belief states̄bχ(h). The second abstract model is

an abstractavailabilyPOMDP. Define the availability functionη : Ō×S×A→ {0, 1} as:

η(ō, s, a) =

 1 if P (ō | s, a) > 0

0 otherwise
(2.26)

This function indicates whether each abstract observation is available for a particular state

and action.

The availability POMDPMη is defined as the tuple

Mη = (S, A, T, Ō, η), (2.27)

This is not precisely a POMDP, as the observation probabilities do not sum to one in each

state. Nonetheless, the usual POMDP update rule can be used to maintain a belief vec-

tor over the states. Define the state and action mapsfη : S → S̄η andgη : A → Āη

48

as a CMP Homomorphism on(S, A, T), with output function(Ō, Ωη). The usual CMP

Homomorphism properties apply, so that for anys ∈ S, a ∈ A ando ∈ O:

η̄(ō, fη(s), gη(a)) = η(ō, s, a) from Equation 1.5 (2.28)

P (fη(s
′) | fη(s), gη(a)) =

∑
s′′∈[s′]fη

P (s′′ | s, a) from Equation 1.6 (2.29)

Define the abstract availability model̄Mη as:

M̄η = (S̄η, Āη, T̄η, Ō, η̄), (2.30)

whereT̄ is consistent with Equation 2.29 and̄η is consistent with Equation 2.28. Belief

states forM̄η will be written b̄η(h).

The next state distributions for two statesi andj are compatible (i ∼t j) if and only

if there exists a function for each action,wija : S × S → IR that has the following three

properties. If a pairk, l of next states are incompatible, they have zero weight:

¬(k ∼c l)→ (wija(k, l) = 0). (2.31)

For all abstract states̄s in S̄η and any next statek ∈ S:

∑
l∈s̄

wija(k, l) = P (k | i, a) · P (s̄ | j, a). (2.32)

Finally, for all abstract availability states̄s in S̄, for any next statel ∈ S:

∑
k∈s̄

wija(k, l) = P (s̄ | i, a) · P (l | j, a). (2.33)

Reflexivity and symmetry may be violated by the constraints in Equations 2.31 - 2.33.

It is possible that for some statei there is no weight functionwiia, therefore the function is

49

not reflexive. As for symmetry, Equations 2.32 and 2.33 are similar, however, the abstract

mapping for statek is f and the abstract mapping for statel is fη and the existence ofwija

does not imply the existence ofwjia. The next state compatibility function is thus not an

equivalence relation.

However the compatibility function∼c can be used to inspect̄Mχ for correctness. For

the compatibility test to pass, the initial state distributionbλ must be compatible with itself.

That is, there must be a weight functionwλ : S × S → IR such that for alli, j ∈ S:

¬(i ∼c j)→ (wλ(i, j) = 0) (2.34)

For all abstract states̄s in S̄η:

∑
j∈s̄

wλ(i, j) = bλ(i) · bη(λ)(s̄) (2.35)

And for all abstract availability states̄s in S̄:

∑
i∈s̄

wλ(i, j) = bχ(λ)(s̄) · bλ(j) (2.36)

For example, if the states of Figure 2.8 are labeled as shown in Figure 2.9, then the state

compatibility function for the three states in the initial state distribution (s0, s7 ands14) is:

50

s7

s0

s14

Figure 2.9. Three corridor gridworld POMDP from Figure 2.8, with starting state labels.
The initial state distribution places the agent ins0, s7, ands14 with equal probability.

51

s0 ∼c s0 = true

s0 ∼c s7 = true

s0 ∼c s14 = false

s7 ∼c s0 = true

s7 ∼c s7 = true

s7 ∼c s14 = true

s14 ∼c s0 = false

s14 ∼c s7 = true

s14 ∼c s14 = true

and the initial belief matching function is:

wλ(s0, s0) =
2

9

wλ(s0, s7) =
1

9

wλ(s7, s0) =
1

9

wλ(s7, s7) =
1

9

wλ(s7, s14) =
1

9

wλ(s14, s14) =
2

9

wλ(s14, s7) =
1

9

with all state pairs not listed having0 weight.

52

s0

s14

s7

s0

s14

s7

(a) Compatible Edges

s0

i

s7

s0

s14

j

(b) out(i)

s0

i

s7

s0

s14

j

(c) in(j)

s0

i

s7

s0

s14

j

(d) Abstract i-j graph

s0

i

j

(e) Abstract out(i)

s0

i

j

(f) Abstract in(j)

Figure 2.10. The functionwλ for the domain of Figure 2.9 for the abstraction shown in
Figure 2.8(b), illustrated as a graph

53

The initial belief matching function can be visualized as a set of edges in a weighted

graph, illustrated in Figure 2.10. Figure 2.10(a) includes two nodes for each state inbλ: a

left and right node. Left to right edges are present only between pairs where the left node

state is compatible with the right node state. So, for example, there is no edge between

s0 ands14, sinces0 ands14 are not compatible. Each edge between two nodesi and j

is weighted according towλ(i, j), and these weights have several useful properties. The

sum of the out edges on any left node, like the nodei in Figure 2.10(b), is equal tobλ(i).

Similarly, the sum of the weights of the incoming edges for any right nodej is equal to

bη(λ)(j).

Consider the subgraph consisting of left nodes that share the abstract labelf(i), and

right nodes that share the abstract labelfη(j), highlighted in Figure 2.10(d). Equations

2.35 and 2.36 also imply that the in and out weight totals in this subgraph have interesting

properties. The sum of the outgoing edges fromi in this subgraph (Figure 2.10(e)) is given

in Equation 2.35, and the sum of the ingoing edges toj in this subgraph (Figure 2.10(f)) is

given in Equation 2.36.

Equations 2.34 - 2.36 are the compatibility test constraints. The next section consists of

a proof that if the compatibility test constraints are satisfied, and∼c is a compatibility func-

tion satisfying Equations 2.25 and 2.31 - 2.33, thenf, g, κ is a POMDP Homomorphism.

The following section details an algorithm for calculating the compatibility function and

wλ, implementing a polynomial time algorithm for checking these constraints.

2.5.1 Composite Model

This section proves that when Equations 2.34 - 2.36 are satisfied,M̄χ is a valid ho-

momorphic reduction ofM . The proof examines a composite POMDP denotedM̆ . This

section will outline the structure of̆M , show that it could be constructed if the compatibil-

ity properties hold, and show that the fact of its existence implies the correctness ofM̄ . It

54

should be noted that̆M never needs to actually be constructed. Its theoretical existence,

given Equations 2.34 - 2.36, is sufficient to prove the correctness ofM̄ .

The states ofM̆ each consist of a pair of state labels fromM : for example,〈i, j〉, where

i, j ∈ S. M̆ will be structured such that only compatible state pairs are used.

The left hand state labels in̆M emit abstract observations, and the right hand state labels

emit “shadow” observations. That is:

P (o | 〈i, j〉) =

abstract observation︷ ︸︸ ︷
P (κ(o) | i, a) ·

shadow observation︷ ︸︸ ︷
P (o | j, a)

P (κ(o) | j, a)
· η(κ(o), j, a) (2.37)

Recall that the functionη : Ō × S × A → {0, 1} (Equation 2.26) indicates whether the

abstract observation is available for a particular state and action. This has the effect of

setting the shadow observation probabilities to0 whenever P (o|j,a)
P (κ(o)|j,a)

is undefined.

The transition function̆T for any compatible state pair〈i, j〉 and actiona is defined via

the weight of their next state transition compatibility matchingwija, and the abstract state

predictions fori andj:

P (〈k, l〉 | 〈i, j〉, a) = wija(k, l) (2.38)

The initial belief state forM̆ is defined by the compatibility weights forbλ:

b̂λ(〈i, j〉) = wλ(i, j) (2.39)

Sincewija andwλ are always0 for pairs of incompatible states, neither the initial belief

vector nor the transition function will introduce incompatible state pairs into the belief

vector.

55

The belief state update rule is:

b̆hao(〈i, j〉) =
P (o | 〈i, j〉, a) · b̆ha((〈i, j〉)∑
i,j P (o | 〈i, j〉, a) · b̆ha(〈i, j〉)

Strictly speakingM̆ is not a POMDP, as the observation output probabilities defined

in Equation 2.37 do not necessarily sum to one after each belief state update. This can be

remedied by introducing an additional normalization constant at each historyhao:

chao =
∑
s̄∈S̄η

η̄(κ(o), s̄, gη(a)) · b̄η(ha)(s̄)

which must be applied to recover the correct observation probabilities for the belief state

b̆ha. The probability ofo given b̆ha is:

P (o | b̆ha) =

∑
i,j P (o | 〈i, j〉, a) · b̆ha(〈i, j〉)

chao

There are several elemental identities that will be used as building blocks for most of

the main proofs in this section. Ifi andj are two compatible states:

P (o | 〈i, j〉) = P (κ(o) | i, a) · P (o | j, a)

P (κ(o) | j, a)
· η(κ(o), j, a)

= P (κ(o) | i, a) · P (o | i, a)

P (κ(o) | i, a)
· η(κ(o), j, a)

= P (o | i, a) · η(κ(o), j, a) (2.40)

Similarly, due to the properties ofwija for two compatible states (Equations 2.32 and 2.33),

if s̄l ∈ S̄, s̄r ∈ S̄η:

∑
l∈s̄r

P (〈k, l〉 | 〈i, j〉, a) = P (k | i, a) · P (s̄r | j, a) (2.41)

∑
k∈s̄l

P (〈k, l〉 | 〈i, j〉, a) = P (s̄l | i, a) · P (l | j, a) (2.42)

56

M̆ is well defined, and it will be shown to accurately simulateM . This can be used to

show thatM̄ is a homomorphic reduction ofM , by showing that:

• M andM̆ are output-equivalent.

• M̄ is a homomorphic reduction of̆M .

Taken together, these two properties imply thatM̄ is a homomorphic reduction ofM .

In order to analyzeM̆ , the shadow POMDPMξ (Equations 2.19) will be useful, with

one modification. The shadow observation function for any states, actiona and observation

o is now:

Ωξ(s, a, o) =
P (o | s, a)

P (κ(o) | s, a)
· η(κ(o), s, a) (2.43)

where the availability functionη has the effect of setting the shadow observation probabil-

ities to0 whenever P (o|s,a)
P (κ(o)|s,a)

is undefined.

The next theorem (Theorem 2.7) is the central theorem aboutM̆ .

Theorem 2.7.Given Equations 2.31 - 2.36, for allh in HM , the weight functionwh:

wh(i, j) = b̆h(i, j) (2.44)

defined by̆bh corresponds to a compatibility matching for the two state distributionsbh and

bξ(h). That is:

¬(i ∼c j)→ b̆h(i, j) = 0 (2.45)∑
j∈s̄r

b̆h(〈i, j〉) = bh(i) · b̄η(h)(s̄r) (2.46)

∑
i∈s̄l

b̆h(〈i, j〉) = b̄χ(h)(s̄l) · bξ(h)(j) (2.47)

for everys̄r ∈ S̄η and s̄l ∈ S̄.

57

wh(i,j)

fη(j)

j

f(i)

i

Figure 2.11.Matching graph for the belief statĕbh.

Before addressing the proof of Theorem 2.7, a high level overview of its implications

and an outline of the proof.

Theorem 2.7 states that for everyh ∈ HM , there is a weight matching for the two

distributionsbh andbξ(h), and this weight functionwh can be derived from the belief state

of M̆ , b̆h. Figure 2.11 illustrates the structure ofb̆h as a matching graph, where each edge

corresponds to a state pair, weighted according towh.

Define the left hand state distributionl̆h of a belief statĕbh, for any statei ∈ S as:

l̆h(i) =
∑
j∈S

b̆h(〈i, j〉)

and the right hand state distributionr̆h for any statej ∈ S as:

r̆h(j) =
∑
i∈S

b̆h(〈i, j〉).

One of the implications of Theorem 2.7 is that the left state labels ofb̆h track the belief

state ofM , so thatl̆h = bh (see Lemma 2.9). This fact implies that̆M is equivalent to

58

M in terms of its observation predictions (see Lemma 2.10). Theorem 2.7 further implies

that the abstract belief stateb̄χ(h) accurately tracks the left hand belief statel̆h, at the level

of abstract state labels. Sincel̆h is equivalent tobh, b̄χ(h) is then shown to be an accurate

abstraction ofbh as well (see Theorem 2.11).

Theorem 2.7 also implies that the right hand distribution ofb̆h accurately tracks the

shadow state (̆rh = bξ(h)), and that̄bη(h) is an accurate abstract compression ofbξ(h). Al-

though this fact is tangential to the main point of this section and the proof is not included

here, it can be helpful in understanding the proofs.

Lemma 2.8. Given Equations 2.31 - 2.36, for anȳsl ∈ S̄ and s̄r ∈ S̄η: The action update

belief statĕbha is also a weight matching:

¬(i ∼c j)→ b̆ha(i, j) = 0 (2.48)∑
j∈s̄r

b̆ha(〈i, j〉) = bha(i) · b̄η(ha)(s̄r) (2.49)

∑
i∈s̄l

b̆ha(〈i, j〉) = b̄χ(ha)(s̄l) · bξ(ha)(j) (2.50)

for everys̄r ∈ S̄η and s̄l ∈ S̄.

Proof. The proof of both Theorem 2.7 and Lemma 2.8 consists of a structural induction

proof on historiesinHM , with two interlocking inductive steps: one for the action update,

and one for the observation update.

Part I: The base case:h = λ.

For the initial historyλ, the due to the form ofwλ (Equations 2.35 and 2.36), for

s̄r ∈ S̄η ands̄l ∈ S̄:

59

∑
j∈s̄r

b̆λ(〈i, j〉) =
∑
j∈s̄r

wλ(i, j)

= bλ(i) · b̄η(λ)(s̄r)∑
i∈s̄l

b̆λ(〈i, j〉) =
∑
i∈s̄l

wλ(i, j)

= b̄χ(λ)(s̄l) · bλ(j).

Part II: h to ha inductive step

Proof of Equation 2.49 assuming Equation 2.46. Fors̄r ∈ S̄η:

∑
j∈s̄r

b̆ha(〈i, j〉) =
∑
j∈s̄r

∑
k,l∈S

P (〈i, j〉|〈k, l〉, a) · b̆h(〈k, l〉)

=
∑
k,l∈S

P (i|k, a) · P (s̄r|l, a) · b̆h(〈k, l〉) Equation 2.41

=
∑
k∈S

P (i|k, a) ·
∑
s̄∈S̄η

P (s̄r|s̄, g(a)) ·
∑
l∈s̄

b̆h(〈k, l〉) Equation 1.6

=
∑
k∈S

P (i|k, a) · bh(k)
∑
s̄∈S̄η

P (s̄r|s̄, g(a)) · b̄η(h)(s̄) Equation 2.46

= bha(i) · b̄η(ha)(s̄r)

Proof of Equation 2.50 assuming Equation 2.47. Fors̄l ∈ S̄:

∑
i∈s̄l

b̆ha(〈i, j〉) =
∑
i∈s̄l

∑
k,l∈S

P (〈i, j〉|〈k, l〉, a) · b̆h(〈k, l〉)

=
∑
k,l∈S

P (j|l, a) · P (s̄l|k, a) · b̆h(〈k, l〉) Equation 2.42

=
∑
l∈S

P (j|l, a) ·
∑
s̄∈S̄

P (s̄l|s̄, g(a)) ·
∑
k∈s̄

b̆h(〈k, l〉) Equation 2.11

=
∑
l∈S

P (j|l, a) · bh(l)
∑
s̄∈S̄

P (s̄l|s̄, g(a)) · b̄χ(h)(s̄) Equation 2.47

= bha(j) · b̄χ(ha)(s̄l)

60

Part III: ha to hao inductive step

Proof of Equation 2.46 assuming Equation 2.49:

∑
j∈s̄r

b̆hao(〈i, j〉) =
∑
j∈s̄r

P (o | 〈i, j〉, a) · b̆ha(〈i, j〉)∑
i,j∈S P (o | 〈i, j〉, a) · b̆ha(〈i, j〉)

=

∑
j∈s̄r

P (o | i, a) · η(κ(o), j, a) · b̆ha(〈i, j〉)∑
i∈S P (o | i, a) ·

∑
s̄∈S̄η

∑
j∈s̄ η(κ(o), j, a) · b̆ha(〈i, j〉)

Equation 2.40

=
P (o | i, a) · η̄(κ(o), s̄r, g(a)) ·

∑
j∈s̄r

b̆ha(〈i, j〉)∑
i∈S P (o | i, a) ·

∑
s̄∈S̄η

η̄(κ(o), s̄, g(a)) ·
∑

j∈s̄ b̆ha(〈i, j〉)
Equation 2.28

=
P (o | i, a) · η̄(κ(o), s̄, g(a)) · bha(i) · b̄η(ha)(s̄)∑

i∈S P (o | i, a) ·
∑

s̄∈S̄η
η̄(κ(o), s̄, g(a)) · bha(i) · b̄η(ha)(s̄)

Equation 2.49

=
P (o | i, a) · bha(i) · η̄(κ(o), s̄, g(a)) · b̄η(ha)(s̄)∑

i∈S P (o | i, a) · bha(i) ·
∑

s̄∈S̄η
η̄(κ(o), s̄, g(a)) · b̄η(ha)(s̄)

= bhao(i) · b̄η(hao)(s̄)

Proof of Equation 2.50 assuming Equation 2.472:

∑
i∈s̄l

b̆hao(〈i, j〉) ∝
∑
i∈s̄l

P (o | 〈i, j〉, a) · b̆ha(〈i, j〉)

∝ P (o | j, a)

P (κ(o) | j, a)
η(κ(o), j, a) · P (κ(o)|s̄l, g(a)) ·

∑
i∈s̄l

b̆ha(〈i, j〉)

∝ P (o | j, a)

P (κ(o) | j, a)
η(κ(o), j, a) · P (κ(o) | s̄l, g(a)) · bξ(h)(j) · b̄χ(h)(s̄l)

∝ P (o | j, a)

P (κ(o) | j, a)
η(κ(o), j, a) · bξ(h)(j) · P (κ(o) | s̄l, g(a)) · b̄χ(h)(s̄l)

∝ bξ(hao)(j) · b̄χ(hao)(s̄l)

This ends the proof of Lemma 2.8 and Theorem 2.7.

2I am showing just the numerator in this proof due to the length of the equations. The transformation for
the denominator is similar, and factors into

∑
j bξ(hao)(j) ·

∑
s̄l

b̄χ(hao)(s̄l).

61

The next several Lemmas show that given Theorem 2.7 and Lemma 2.8,M̆ andM are

output equivalent, and that̄M is a homomorphic reduction ofM .

Lemma 2.9. If M̆ satisfies Theorem 2.7, the state distribution of the left side labels forM̆

is the same as the state distribution of the belief state inM . That is:

∀h ∈ HM , l̆h(i) = bh(i)

Proof.

l̆h(i) =
∑
j∈S

b̆h(〈i, j〉) by definition

=
∑
s̄r∈S̄

∑
j∈s̄r

b̆h(〈i, j〉)

= bh(i) ·
∑
s̄r∈S̄

b̄η(h)(s̄r) Equation 2.46

= bh(i) bη(h) belief state distribution sums to 1

Lemma 2.10. If M̂ satisfies Lemma 2.8, the observation distribution at every historyha

is identical to the observation distribution for the left side state labels, and thus for the

corresponding belief state inM .

Proof. For allo ∈ O, a ∈ A andh ∈ HM ,

62

P (o | b̆ha) =

∑
i,j∈S P (o | 〈i, j〉, a) · b̆ha(〈i, j〉)

chao

by definition

=

∑
i,j∈S P (o|i, a) · η(κ(o), j, a) · b̆ha(〈i, j〉)

chao

Equation 2.40

=

∑
i∈S P (o|i, a) ·

∑
s̄∈S̄η

η̄(κ(o), s̄, gη(a)) ·
∑

j∈s̄ b̆ha(〈i, j〉)
chao

=

∑
i∈S P (o|i, a) · bha(i) ·

∑
s̄∈S̄η

η̄(κ(o), s̄, gη(a)) · b̄η(ha)(s̄)

chao

Equation 2.49

=
∑
i∈S

P (o|i, a) · bha(i) Cancel terms

= P (o | bha).

This concludes the proof that̆M simulatesM accurately. Now this fact can be used to

show thatf , g andκ satisfy the homomorphism constraints forM : Equations 2.9 - 2.12.

Equation 2.9 is checked directly in Procedure 2.5.1. Equations 2.10 and 2.11 are satisfied

becausef and g form a CMP Homomorphism for̄O. All that remains is to show that

Equation 2.12 is satisfied.

Theorem 2.11.If M̆ satisfies Theorem 2.7, then for anys̄ ∈ S̄, for all h ∈ HM ,
∑

i∈s̄ bh(i) =

b̄χ(h)(s̄) (Equation 2.12).

Proof.

∑
i∈s̄

bh(i) =
∑
i∈s̄

l̆h(i) Lemma 2.9

=
∑
i∈s̄

∑
j∈S

b̆h(〈i, j〉)

= b̄χ(h)(s̄) ·
∑
j∈S

bξ(h)(j) Theorem 2.7

= b̄χ(h)(s̄) bξ(h) sums to 1.

63

Procedure 2.5.1State Compatibility Check(M, κ)

// Check thatκ satisfies Equation 2.9 (ζ(o, z) = ζ̄(κ(o), z))
// Construct the abstract model̄Mχ and state and action mapping functionsf , g
f, g ⇐ findCMPHomomorphism(S, A, T, output = Ō, Ωχ)

// Construct availability model̄Mη and state and action mapping functionsfη, gη

fη, gη ⇐ findCMPHomomorphism(S, A, T, output = Ō, Ωη)

// Construct the compatibility function
compatibleStates⇐ constructCompatibilityFunction(M, κ, f, fη)

// Do final check, given compatibility among shadow states
if compatibleDistributions(bλ, bλ, f, fη, compatibleStates)then

return true
else

return false

This concludes the proof that the state compatibility algorithm (Procedure 2.5.1) suc-

ceeds only ifM̄ is a homomorphic reduction ofM . The algorithm accurately detects

correct and invalid homomorphisms in the examples in the next section, however, it has not

been proven to be complete. There are cases in which this algorithm would reject a valid

homomorphism.

2.5.2 Compatibility Algorithm

This section will show that the compatibility test can be computed in polynomial time.

The state compatibility algorithm (Procedure 2.5.1) first constructsM̄χ andM̄η with their

associated state and action mapping functions. Next, the algorithm constructs the compati-

bility function (Procedure 2.5.2), and checks the initial belief statebλ for compatibility.‘

Procedure 2.5.2, which calculates the compatibility function, first initializes the com-

patibility function based on the immediate observation compatibility of the states. This is a

direct check of Equation 2.25. Then the main loop of the procedure repeatedly refines the

compatibility function to ensure that the transition constraints, Equations 2.31 - 2.33 are

satisfied. In the worst case, this loop halts when all states have been declared incompatible.

64

Procedure 2.5.2constructCompatibilityFunction(M, κ, f, fη)

compatibleStates0⇐ |S| × |S| boolean matrix
// Initialize the compatibility function using the observation function
for all i, j ∈ S do

compatibleStates(i, j)⇐ observationsCompatible(i, j) // Check Equation 2.25

// Refine the compatibility function until compatible states have compatible next state
distributions
repeat

compatibleStatesOld⇐ compatibleStates
for all i, j ∈ S, a ∈ A do

if ¬compatibleDistributions(P (S|i, a), P (S|j, a), f, fη, compatibleStates)then
compatibleStates(i, j)⇐ false

until compatibleStatesOld = compatibleStates

return compatibleStates

Procedure 2.5.3compatibleDistributions(PL(S), PR(S), f, fη, compatibleStates)

for s̄l ∈ S̄ do
for s̄r ∈ S̄η do

graph⇐ constructDistributionGraph(PL, s̄l, PR, s̄r, compatibleStates)
flow⇐ maxFlow(graph)
if flow(graph.source)< 1 then

return false
return true

Procedure 2.5.3 is key to the implementation of both Procedure 2.5.1 and 2.5.2. This

subroutine checks two state distributions to determine whether they are compatible given

f , fη and the current compatibility function. The two state distributionsPL andPR may

be:

• the next state distributions for two statesi andj under actiona, in which case the

procedure must constructwija or return failure.

• two copies of the initial state distributionbλ, in which case the procedure must con-

structwλ or return failure.

In both cases, the weight functionwija or wλ can be constructed as the sum of a set of

graph flow weights. The set consists of a flow graph for each pair of abstract statess̄l from

65

Procedure 2.5.4constructDistributionGraph(PL(S), s̄l, PR(S), s̄r, compatibleStates)
V ⇐ {s, t} // new set of vertices, source and sink vertex
capacity : V × V → IR // Edge capacity function

// Fill in the nodes and edges of the graph
for all i ∈ s̄l do

V ⇐ V ∪ {li}
capacity(s, li) = PL(i)P

i′∈s̄l
PL(i′)

for all j ∈ s̄r do
V ⇐ V ∪ {rj}
capacity(rj, t) = PR(j)P

j′∈s̄r
PR(j′)

for all i ∈ s̄l, j ∈ s̄r do
if compatibleStates(i, j) then

capacity(li, rj) = 1
else

capacity(li, rj) = 0

return graph = (V, capacity)

S̄ ands̄r from S̄η. A flow graph fors̄l ands̄r is shown in Figure 2.12. The vertices of the

graph are:

• s (source node)

• L = {li | i ∈ s̄l} (state nodes in̄sl)

• t (sink node)

• R = {rj | j ∈ s̄r} (state nodes in̄sr)

If cap(u, v) is the edge capacity between nodeu and nodev:

cap(s, li) =
PL(i)∑

i′∈s̄l
PL(i′)

(2.51)

cap(li, rj) =

 1 if i ∼c j

0 otherwise
(2.52)

cap(rj, t) =
PR(j)∑

j′∈s̄r
PR(j′)

(2.53)

66

source(s)

left state
nodes (L)

right state
nodes (R)

_
sr

sink(t)

_
sl

Figure 2.12. Matching algorithm graph for the abstract statess̄l (in the left side distribu-
tion) ands̄r (in the right side distribution). See the text for edge weight definitions.

(a) Edges used for
s̄0, s̄0

(b) Edges used for
s̄1, s̄0

. . .

(c) Sum of Edges (w)

Figure 2.13.Summing over all pairs of abstract states to get the weight functionw.

67

wherePL(i) is the probability of statei in the left (first) distribution, andPR(j) is the

probability of statej in the right (second) distribution.

If there is a flow betweens andt with weight1.0, then the matching for the abstract

state pair̄sl, s̄r succeeds. If every pair of abtsract states succeeds, the two distributions are

compatible, and the weight functionw (whether it iswλ or wija) is defined by the weight

of the flow over the edges. For any pairi, j ∈ S:

w(i, j) = flow(li, rj) ·
∑

i′∈[i]f

PL(i′) ·
∑

j′∈[j]fη

PR(j′)

where the flow fori, j is the flow taken the graph for the left and right abstract states (see

Figure 2.13).

This weight function obeys Equations 2.31 - 2.33, in the case ofwija, or Equations 2.34

- 2.36, in the case ofwλ. Equations 2.31 and 2.34 follow from the fact that there is no

available capacity between incompatible left and right vertices, thereforew(i, j) is 0 when

i andj are incompatible.

Equations 2.32 - 2.33 or 2.35 - 2.36 can be shown to be true by examining the total in

and out flow at each node inL andR.

Lemma 2.12. When the matching algorithm succeeds for the abstract state pairs̄r ∈ S̄η

and s̄l ∈ S̄, for anyi ∈ s̄l:

∑
j∈s̄r

w(i, j) = PL(i) ·
∑
j∈s̄r

PR(j)

Proof. When the matching algorithm succeeds for the pairs̄r, s̄l, the flow out of the source

node is1. However, the total available capacity of the edges leaving the source is also1:

68

∑
li∈L

cap(s, li) =
∑
li∈L

PL(i)∑
i′∈s̄l

PL(i′)

=
PL(s̄l)

PL(s̄l)

= 1.

This means that the full capacity of each edge leaving the source node must be used to

achieve a flow of1.0. This in turn implies that the total incoming or outgoing flow through

any left nodeli wherei ∈ s̄l is equivalent to the full capacity from the source to that node,

cap(s, li):

∑
j∈s̄r

flow(li, rj) = cap(s, li) total in/out flow at nodeli

Thus, for anȳsr ∈ S̄η:

∑
j∈s̄r

w(i, j) =
∑
j∈s̄r

flow(li, rj) ·

∑
i′∈[i]f

PL(i′) ·
∑

j′∈[j]fη

PR(j′)


=
∑
j∈s̄r

flow(li, rj) ·
∑

i′∈[i]f

PL(i′) ·
∑
j′∈s̄r

PR(j′) fη(j) = s̄r

= cap(s, li) ·
∑

i′∈[i]f

PL(i′) ·
∑
j′∈s̄r

PR(j′) replace in flow with out flow

=
PL(i)∑

i′∈[i]f
PL(i′)

·
∑

i′∈[i]f

PL(i′) ·
∑
j′∈s̄r

PR(j′) Equation 2.51

= PL(i) ·
∑
j′∈s̄r

PR(j′) Cancel terms

A similar proof yields the analogous lemma for the right hand distribution.

69

Lemma 2.13. When the matching algorithm succeeds fors̄r ∈ S̄η and s̄l ∈ S̄, for any

j ∈ s̄r:

∑
i∈s̄l

w(i, j) =
∑
i∈s̄l

PL(i) · PR(j)

Proof. The flow at any right side noderj is cap(rj, t) when the algorithm succeeds, so that:

∑
j∈s̄l

flow(li, rj) = cap(rj, t) total in/out flow at noderj.

Therefore, for anȳsl ∈ S̄

∑
i∈s̄l

w(i, j) =
∑
i∈s̄l

flow(li, rj) ·
∑

i′∈[i]f

PL(i′) ·
∑

j′∈[j]fη

PR(j′)

=
∑
i∈s̄l

flow(li, rj) ·
∑
i′∈s̄l

PL(i′) ·
∑

j′∈[j]fη

PR(j′) f(i) = s̄l

= cap(rj, t) ·
∑
i′∈s̄l

PL(i′) ·
∑

j′∈[j]fη

PR(j′) total out flow at noderj

=
PR(j)∑

j′∈[j]fη
PR(j′)

·
∑
i′∈s̄l

PL(i′) ·
∑

j′∈[j]fη

PR(j′)

= PR(j) ·
∑
i′∈s̄l

PL(i′)

These two lemmas can be used to show that Equations 2.32, 2.33, 2.35 and 2.36 are

satisfied. All four proofs all follow the same basic outline, shown below for Equation 2.32.

Lemma 2.14. If wija is a weight matching found by Procedure 2.5.3 for the next state

distributionsP (S | i, a) andP (S | j, a), wherei, j ∈ S anda ∈ A then Equation 2.35 is

satisfied. That is, for any abstract states̄r ∈ S̄η:

∑
l∈s̄r

wija(k, l) = P (k | i, a) · P (s̄r | j, a).

70

Proof. If PL is P (S | i, a), andPR is P (S | j, a):

∑
l∈s̄r

wija(k, l) = PL(k) ·
∑
l′∈s̄r

PR(l′)

= P (k | i, a) ·
∑
l′∈s̄r

P (l′ | j, a)

= P (k | i, a) · P (s̄r | j, a).

Procedure 2.5.1 determines whether or not Equations 2.34 - 2.36 can be satisfied byM̄χ

andM̄η.

2.5.3 Time Analysis

The run time needed to compute the compatibility function dominates the computa-

tional complexity of Procedure 2.5.1. In the worst case:

• All state pairs are incompatible, and one pair is marked as incompatible in each

iteration of the outer “repeat” loop of Procedure 2.5.2. The outer loop then executes

O(|S|2) times.

• The inner “for” loop of Procedure 2.5.2 hasO(|S|2 · |A|) iterations.

Within the inner for loop, two distributions over next states are checked for compatibil-

ity. In this section, this check was described in terms of a set of small graph flow problems.

However, these can be transformed into a multi-source multi-sink Maximum Flow problem

with O(|S|) vertices and up toO(|S|2) edges (in the worst case, when all states are com-

patible). There are many different ways of finding solving the maximum flow problem. In

the experiments for this work, the Edmons-Karp algorithm was used (Cormen et al., 2009),

with running timeO(V ·E2), whereV is the number of vertices andE the number of edges.

This implies that each flow graph takesO(|S|5) in the worst case.

71

The total running time is therefore polynomial, though the exponent is quite high:

O(|S|2 · |S|2 · |A| · |S|5) = O(|A| · |S|9)

In practice, the running time of the graph flow algorithm decreases as more states are found

to be incompatible, so that all of the worst case assumptions are unlikely to be true at the

same time on any single iteration of the outer repeat loop. Nonetheless, while this algorithm

is technically polynomial time, it has a very high exponent.

2.6 Comparison of Shadow Model and Compatibility Tests

Shadow Compat.
Domain Observation Map (κ) Proc 2.4.1 Proc 2.5.1 Sim

Figure 2.3 {c ∧ l, c ∧ g, c ∧ b}, {¬c ∧ l,¬c ∧ g,¬c ∧ b} pass pass pass

Figure 2.4 {c ∧ l, c ∧ g, c ∧ b}, {¬c ∧ l,¬c ∧ g,¬c ∧ b} fail fail fail
Figure 2.4 {c ∧ l}, {c ∧ g}, {c ∧ b}, {¬c ∧ l}, {¬c ∧ g},

{¬c ∧ b}
pass pass pass

Three halls {w}, {lg, g, b}, {c}, {a} fail fail fail
(Figure 2.8) {w}, {lg, b}, {g}, {c}, {a} fail pass pass

{w}, {lg}, {b}, {g}, {c}, {a} fail pass pass

Table 2.1. Comparison of Procedures 2.4.1 and 2.5.1, and a direct simulation of 10,000
belief states (“Sim” column). In the observation map column, observations are identified
by their first letter, except in the case oflightgrey (lg) andcat (a). Each set of observation
symbols represents a single abstract observation.

Table 2.1 compares the shadow model and compatibility function tests when applied

to the POMDPs defined thus far (Figures 2.3, 2.4 and 2.8). In each case, the outcomes of

the two tests are compared to a direct verification of the accuracy of the abstract model.

The “Sim” column reports the result of10, 000 steps of random exploration in the speci-

fied POMDP. At each step, bothbh and b̄χ(h) were calculated. The abstract state mapping

function f was then applied tobh, and the results compared tob̄χ(h). If at every step the

results matched, the abstract model was reported as passing the simulation test, otherwise

72

the abstract model was reported to be inadequate in simulation. For the size of POMDP in

each of these examples, this should provide a reasonable approximation of a direct test of

Equation 2.12 for allh, although only10, 000 histories were tested.

2.7 Improving the Observation Map

With an evaluation procedure like Procedure 2.4.1 or 2.5.1, it may be possible in some

cases to exhaustively search and test all possible candidate observation mapping functions.

However, this approach can be expensive, and directed search methods for finding candi-

dates are generally preferred. Procedure 2.3.1 is the outline of a directed search method.

It begins with the observation functionκ induced byζ. The remainder of the algorithm

is a loop that iteratively improves the observation map. This section defines the iterative

improvement step of the search algorithm.

None of the algorithms in this section are guaranteed to find the most compact obser-

vation map possible. Each algorithm presented here uses the information about how the

observation mapping functionκ fails the tests outlined in Section 2.4 and Section 2.5 to

determine what portions ofκ must change, however, they all use heuristics to determine

how to enforce those changes by updatingκ.

Procedure 2.7.1, as one example, is the simplest algorithm for observation improvement

in this Section. It refines the abstract observation clusters whenever doing so would help

to distinguish between any two abstract states. Take, for example, the domain in Figure

2.4(a), when the abstract observation function is:

• Abstract observation 1: all observations withcheese

• Abstract observation 2: all observations with¬cheese.

with abstract model shown in Figure 2.4(b). The fact thatlightgrey is observed only in

the two leftmost abstract states, whilegrey is only observed in the middle abstract state

indicates that these two observations distinguish between these groups of states. In other

73

i j

(a) Vertical Stripes

i j

(b) Horizontal Stripes

Figure 2.14.Two hypothetical belief states for which thelightgrey/greyfeature distinction
would be useful.

Procedure 2.7.1simplerImproveObservationMapAlgorithm(M, f, κ)
for all i, j ∈ S do

if f(i) 6= f(j) then
κ⇐ distinguishBetweenStates(i, j, κ)

return κ

words, if the agent had a belief distribution like the one shown in Figure 2.14(a), observing

lightgrey or grey would refine the belief distribution, and would improve the agent’s esti-

mate of its abstract state. Procedure 2.7.1 outlines a method that implements this principle

in the simplest manner possible.

Note that Procedure 2.7.1 does not reference the shadow model, or the state compatibil-

ity function. It examines each pair of statesi, j in S, and distinguishes between each pair

of states with different abstract labels. Procedure 2.7.5 will address in more detail exactly

how the methoddistinguishBetweenStates refines the observation map, as this will be

an important step of the final observation splitting algorithm. However, there is a problem

with the way that Procedure 2.7.1 chooses pairs of states to examine.

74

The simplicity of Procedure 2.7.1 method is appealing. However, it fails on some fairly

simple test cases, such as Figure 2.3. Take, for example, the two statesi andj in Figure

2.14(b). These states

(a) have different abstract labels in the abstract model shown

(b) have different observation distributions

This seems to indicate that the observation distinction that helps to distinguish between

these two states, namely thelightgrey/grey feature distinction, is important, and it would

be — if all belief statesb : S → [0, 1] were reachable from the initial belief distribution.

However, in general, this assumption is not true:BM (the set of reachable belief states,

Equation 2.5) is often a smaller subset of the set of valid belief distributions.BM is con-

strained by the initial belief state, and the transition structure of the POMDP. It is this fact

that the shadow model and compatibility function approaches exploit. Given the specific

bλ and transition function described for Figure 2.3, the belief distribution shown in Figure

2.14(b) can never occur, and in fact there is no belief state inBM for which the distinction

betweenlightgrey andgrey improves the abstract belief estimate. This is not to say that

no belief state places probability mass on bothi andj. The initial belief state (see Figure

2.6(a)) is one such example.

What is required is a more precise method of searching for pairs of states where the

distinction between the two states has an effect on the abstract projection of some belief

state inBM . It is these pairs of states that should be distinguished from one another on

the basis of their observation functions. The compatibility function provides one tool for

identifying these states.

The observation mapping function evaluation methods in Procedures 2.4.1 and 2.5.1

construct data structures (the shadow model and compatibility function) that can be used to

pinpoint pairs of states like this. The algorithm for observation map improvement has two

essential components:

75

Procedure 2.7.2improveObservationMap(M, κ)
compatibleStates⇐ constructCompatibilityFunction(M, κ, fη, f) // Procedure 2.5.2
Q⇐ an empty set of state pairs (implemented as a queue)
makeDistributionsCompatible(bλ, bλ, compatibleStates,Q) // Procedure 2.7.3
while Q not emptydo
〈i, j〉 ⇐ an element removed fromQ
κ⇐ makeObservationsCompatible(i, j, κ) // Procedure 2.7.5
for all a ∈ A do

// This step may add state pairs toQ
makeDistributionsCompatible(P (S | i, a), P (S | j, a), compatibleStates,Q) //
Procedure 2.7.3
// mark the two states as compatible
compatibleStates(i, j)⇐ true

return κ

• Searching for pairs of states that should be made compatible (Procedures 2.7.2 and

2.7.3).

• Splitting observations so that states become compatible (Procedure 2.7.5).

Both of these steps are part of a recursive process that forces pairs of states to become

compatible, and in the process refines the observation map.

2.7.1 Merging Distributions

If Procedure 2.5.1 fails and returnsfalse, it must be the case that Procedure 2.5.3 failed

for the initial belief distribution. Therefore, repair of an observation map begins at the

initial belief distribution (see Procedure 2.7.2). Failure can depend on observations in states

that are several steps removed from the initial belief distribution (see Figure 2.8). Procedure

2.7.3 locates these dependencies by iterating through state pairs, working forward from the

initial belief distributionbλ.

There must be some set of pairs of statesQ ⊂ S × S that would makebλ compatible

with itself. Procedure 2.7.3 creates one such setQ. It starts with the best possible graph

flow found using the existing state compatibility function (flow). Next, Procedure 2.7.3

adds pairs of states toQ, using three steps:

76

Procedure 2.7.3makeDistributionsCompatible(PL(S), PR(S), compatibleStates,Q)

for all s̄l, s̄r ∈ S̄ do
graph⇐constructDistributionGraph(PL(S), s̄l, PR(S), s̄r, compatibleStates)
flow ⇐ maxFlow(graph)
if
∑

i flow(s, li) < 1 then
// Add edges as necessary between incompatible states
augmentedGraph⇐ augmentedMatching(PL(S), s̄l, PR(S), s̄r)
newFlow ⇐ maxFlow(initalF low = flow, augmentedGraph)

// If an edge was added between two states, make the paired states compatible
for all edges(li, rj) where newFlow(li, rj) > flow(li, rj) do

// add the pairi, j to the merge queue
Q⇐ Q ∪ 〈i, j〉

• Assume all states are compatible, and add edges of capacity1 between all states in

the left and right distributions of the matching graph accordingly.

• Initialize the flow in this augmented graph usingflow. This ensures that existing

edges between compatible state pair edges are used before edges between other pairs

of states.

• Calculate a maximum capacity flow from the source to sink.

• For each new edge in the augmented flow that was not inflow, add the two states

corresponding to the nodes it connects toQ

The method assumes that any pair of states could become compatible. In this implementa-

tion, there is no preference given to which pairs of states are forced to become compatible.

This means that the matching found is somewhat arbitrary. This is one of the reasons that

this method cannot be guaranteed to find the optimalκ refinement.

2.7.2 Observation Splits

There are numerous supervised learning methods that search for features with discrim-

inative power, and in practice implementing some variation on one of these algorithms is

probably the best solution for implementing Procedure 2.7.5. However, in keeping with the

77

Procedure 2.7.4augmentedMatchingGraph(PL(S), s̄l, PR(S), s̄r)
V ⇐ {s, t} // new set of vertices
capacity : V × V → IR // capacity of the edges

// Fill in the nodes and edges of the graph
for all i ∈ s̄l do

V ⇐ V ∪ {li}
capacity(s, li) = PL(i)

PL(f(i)

for all j ∈ s̄r do
V ⇐ V ∪ {rj}
capacity(rj, t) = PR(j)

PR(fη(j))

for all i ∈ s̄l, j ∈ s̄r do
capacity(li, rj) = 1

return graph = (V, capacity)

Procedure 2.7.5distinguishBetweenStates(i, j, κ)
// Construct a new observation mapping function such that:
κ(on) = κ(om)→ P (on|i,a)

P (om|i,a)
= P (on|j,a)

P (om|j,a)

goal of treating each observation as a discrete entity, in this section we’ll discuss the ex-

act solution to the problem of finding discriminative observation splits. The main purpose

of this exercise is to clarify the difficulty of finding an exact solution, and to categorize

the problem, in hopes of finding good approximation algorithms. We will consider two

scenarios:

1. Equation 2.13 is satisfied, so that for all statess actionsa and observationso, P (o |

s, a) > 0.

2. Equation 2.13 is not satisfied.

The first scenario is straightforward, while the second actually results in a NP-complete

problem. This is not surprising, given the difficulty of learning problems in general.

For two states to become compatible, their observation functions must be made com-

patible, in Procedure 2.7.5. This procedure splits the observations into new groups such

that:

78

κ(on) = κ(om)→ P (on|i, a)

P (om|i, a)
=

P (on|j, a)

P (om|j, a)
(2.54)

for the two statesi andj in S, and all actionsa.

This procedure is simplest whenP (o | s, a) > 0 for all states, actions and observa-

tions (as in Section 2.4). In this case, Equation 2.54 induces an equivalence relation over

observations. Two observations are equivalent, and can thus share the same abstract label,

exactly when the ratios for the two observations are equivalent for the two statesi andj in

S. Rewriting Equation 2.54 to make the equivalence relation a bit clearer yields:

κ(on) = κ(om) ⇐⇒ ∀i, j, a,
P (on|i, a)

P (on|j, a)
=

P (om|i, a)

P (om|j, a)

The ratioP (o|i,a)
P (o|j,a)

is a real valued key for the observationo. All observations with the same

key are equivalent, and clustered under the same abstract label.

Lemma 2.15.Equation 2.54 implies that statesi andj have the same shadow observation

functions (Equation 2.17).

Proof. We must show that Equation 2.54 implies that for all observationso ∈ O, P (o|i,a)
P (κ(o)|i,a)

=

P (o|j,a)
P (κ(o)|j,a)

, indicating that as far as the observation function is concerned,i andj are obser-

vation compatible (i ∼o j, Equation 2.25).

79

P (o | i, a)

P (κ(o) | i, a)
=

P (o | i, a)∑
om∈[o]κ

P (om | i, a)

=
1P

om∈[o]κ
P (om|i,a)

P (o|i,a)

Both num. and denom. are not0

=
1∑

om∈[o]κ

P (om|i,a)
P (o|i,a)

=
1∑

om∈[o]κ

P (om|j,a)
P (o|j,a)

by Equation 2.54

=
P (o | j, a)∑

om∈[o]κ
P (om | j, a)

Both num. and denom. are not0

=
P (o | j, a)

P (κ(o) | j, a)

The problem becomes more complicated when observation probabilities can equal0.

Any observation which is never observed from either statei or statej is not useful for

distinguishing between the two states, and should not be affected by the observation splits

incurred when distinguishing betweeni andj. LetOija be the set of observations that could

be observed in either statei or statej after actiona:

Oija = {o ∈ O | P (o | i, a) > 0 ∨ P (o | j, a) > 0)}. (2.55)

Any observation mapκ which satisfies Equation 2.54 for the observations inOija is suffi-

cient. The abstract labels of observations not inOija are not specified (thus this is obviously

not an equivalence relation).

Lemma 2.16. If Equation 2.54 holds for all observationso ∈ Oija, then statesi andj have

compatible observation functions (Equation 2.25).

Proof. We must show that if Equation 2.54 is true for all observation pairs inOija, then

wheneverP (κ(o) | i, a) is greater than0 andP (κ(o) | j, a) is greater than0, it follows that

P (o|i,a)
P (κ(o)|i,a)

= P (o|j,a)
P (κ(o)|j,a)

(Equation 2.25).

80

There are three cases: the observationo can have zero probability in both statei and

statej, in either one of the states, or in neither state.

1. Case 1:P (o | i, a) = 0 andP (o | j, a) = 0. In this case,o is not inOijaand Equation

2.54 does not apply. Since the probability ofo is zero in both states, the equality is

trivially true:

P (o | i, a)

P (κ(o) | i, a)
= 0

=
P (o | j, a)

P (κ(o) | j, a)

2. Case 2: Without loss of generality, assume thatP (o | i, a) = 0 andP (o | j, a) 6= 0.

In this caseo is in Oija, and Equation 2.54 applies.

For allom ∈ [o]κ:

P (om | i, a)

P (om | j, a)
=

P (o | i, a)

P (o | j, a)
by Equation 2.54

= 0.

This can only be true ifP (om | i, a) = 0. Since this is true for allom ∈ [o]κ:

P (κ(o) | i, a) =
∑

om∈[o]κ

P (om | i, a)

= 0.

Therefore,P (κ(o) | i, a) = 0 and the implication in Equation 2.25 is true due to the

fact that the preconditions are false.

3. Case 3:P (o | i, a) 6= 0 andP (o | j, a) 6= 0. In this caseo is in Oija, and Equation

2.54 applies.

This case follows the same proof as Lemma 2.15.

81

Procedure 2.7.6observationCompatibilityFunction(i, j, κ,∼κ)
∼κ: O ×O → {true, false} // Initiailize all to true
for all a ∈ A do

for all ok, ol ∈ O do
if [P (ok | si, a) > 0] ∨ [P (ok | sj, a) > 0] then

if [P (ol | si, a) > 0] ∨ [P (ol | sj, a) > 0] then

if
[

P (ok|si,a)
P (ok|sj ,a)

6= P (ol|si,a)
P (ol|sj ,a)

]
then

ok ∼κ ol ⇐ false

Procedure 2.7.6 constructs an observation compatibility function∼κ: O×O → {true, false}

that satisfies the preconditions for Lemma 2.16. Any observation mapping functionκ which

clusters the observations into compatible groups, so thatκ(oi) = κ(oj) → oi ∼κ oj will

provide the desired changes in the state compatibility function, required by Procedure 2.7.2.

Consider the domain from Figure 2.8, with output function:

ζ({cheese}) def
= +5

ζ({cat}) def
= −10

ζ({lightgrey}) def
= 0

ζ({grey}) def
= 0

ζ({black}) def
= 0

ζ({white}) def
= 0

Applying Procedure 2.7.2 implemented using with Procedure 2.7.5 to this domain (as

though it satisfied Equation 2.13) yields the identity observation mapping function, with

no grouped obsevations3.

3Undefined ratios were treated as⊥ in this experiment.

82

Figure 2.15. Observation compatibility graph for the POMDP of Figure 2.8. Compatible
observations are linked by edges.

However, the followingζ respecting mapping function passes the compatibility test

(Procedure 2.5.1), as shown in Table 2.1:

ō1
def
= {cheese}

ō2
def
= {cat}

ō3
def
= {grey}

ō4
def
= {black, lightgrey}

ō5
def
= {white}

and yields a smaller abstract state set than the original observation set. This mapping func-

tion would satisfy the prerequisites for Lemma 2.16. The observation splitting algorithm

starts with the following observation map (split according toζ):

ō1
def
= {cheese}

ō2
def
= {cat}

ō3
def
= {grey, black, lightgrey, white}

Given this initial observation split, and its associated state compatibility function, Proce-

dure 2.7.6 can be applied to find an observation compatibility function. This observation

83

(a) POMDP (b) Abstract Model

Figure 2.16. Three corridor gridworld POMDP with two noisy observation markers in
each hallway. In this case there are two color markings in each hallway, which signal the
type of hallway the agent is in, as well as the location within that hallway. However, the
observation of these markers is noisy (see POMDP definition in text for details).

compatibility function is shown in Figure 2.15. Observationslightgrey andblack (the only

two compatible observations) can remain clustered into one abstract observation, resulting

in the correct observation mapping function.

In this particular example, it is clear which observations should be clustered, however,

in general this is not the case. Take the case of the POMDP illustrated in Figure 2.16,

defined as follows:

States: Each square in Figure 2.16 represents a state.

Actions: up, down, left, right

Transitions: Actions fail with a small probabilityε. Failure results in no change to the

state.

84

Observations: white, lightgrey, grey, top, bottom, middle, sides, cheese, cat

Observation Function: The obserationswhite, cheese andcat are deterministically ob-

served. In the marked states in each corridor, the signaling observations may be

confused with one another:

• grey may be mistaken forlightgrey with probabilityε, and vice versa.

• top may be mistaken forbottom with probabilityε, and vice versa.

• middle may be mistaken forsides with probabilityε, and vice versa.

Initial Belief State: Equal probability mass on the leftmost state in each corridor.

Given the initial obsevation split:

ō1
def
= {cheese}

ō2
def
= {cat}

ō3
def
= {grey, lightgrey, top, bottom,middle, sides, white}

Procedure 2.7.6 yields the observation compatibility relation shown in Figure 2.17. There

are at least two ways of clustering the observations to respect this compatibility relation:

• {white}, {top}, {bottom}, {middle, grey}, {sides, lightgrey}, {cheese}, {cat}

• {white}, {top}, {bottom}, {middle, lightgrey}, {sides, grey}, {cheese}, {cat}.

While both observation groupings obey the observation compatibility constraints, only the

first one results in the abstract model shown in Figure 2.16(b). The other choice results in

a larger abstract state set, in which all three corridors separate. This is easy to detect in

this case: there are only two choices to test, and the first option allows states which had the

same abstract state label before Procedure 2.7.5 was called to keep the same abstract label,

while the second option does not.

85

Figure 2.17.Observation compatibility graph for the POMDP of Figure 2.16. Compatible
observations are linked by edges.

The basic problem is determining a compatible observation mapping functionκ that

wherever possible allows abstract states to remain intact, rather than splitting them. In this

particular case, a simple heuristic can be applied to mend the abstract states. However, in

general the following question is computationally complex, even for a single pair of states:

Given two statesi andj, where at the last iterationf(i) = f(j), and an obser-

vation compatibility function∼κ, is there an observation mapping functionκ

that satisfies Lemma 2.16 for∼κ and allowsi andj to remain part of the same

abstract state?

Answering this question is NP-hard. This can be shown by reducing the NP-hard deci-

sion version of the Knapsack problem Cormen et al. (2009) to this question. The decision

version of the Knapsack Problem is as follows: given a knapsack of fixed sizek, and vari-

ous objects of weightW = {w0, w1...wn}, determine if there is a setU , U ⊆ W , such that∑
wi∈U wi = k.

Theorem 2.17. The Knapsack Problem can be reduced to the problem of determining

whether, given a particular set of observation constraints, the observation mapping func-

tion can be constructed such that two statesi and j can have the same abstract label

(f(i) = f(j)).

Proof. Construct a POMDPM with statesi andj such thati andj can only have the same

abstract label if it is possible to exactly fill the knapsack.

86

The POMDP must have two states:s0 corresponds to the items to be placed in the

knapsack, ands1 corresponds to the knapsack. The observation function for these states

under some specific actiona will be as follows:

• s2: one observationoi corresponding to eachwi ∈ W :

– P (oi | s0, a) = wi

t

wheret =
∑

wi∈W wi.

• s1 emits two observations:

– ok: P (ok | s1, a) = k/t (knapsack)

– ox: P (ox | s1, a) = 1− P (ok | s1, a) (all remaining probability).

Both s0 ands1 should have the same next state distribution, so that for all statess′, P (s′ |

s0, a) = P (s′ | s1, a). This means that the only distinction between the two states lies in

their observation functions. If the abstract observation functions for the two states is the

same, it will be the case thatf(s0) = f(s1).

Assume that the other states and observations of the POMDP, and the output functionζ

can be constructed so that the observation compatibility function for the observations ofs0

ands1 is:

ok �κ ox

and for alloi corresponding towi ∈ W :

oi ∼κ ok

oi ∼κ ox.

87

For all pairsoi, oj corresponding to pairswi, wj ∈ W :

oi ∼κ oj.

Sinceok �κ ox, s1 must emit two abstract observations,ō0 = κ(ok) and ō1 = κ(ox). If

f(s0) = f(s1), then it must be the case that for allō ∈ Ō:

P (ō | s0, a) = P (ō | s1, a)

therefore:

P (ō0 | s0, a) = P (ō0 | s1, a)

P (ok | s0, a) =
∑
oi∈ō0

P (oi | s1, a)

Let U be the set{wi ∈ W | κ(oi) = ō0}. Then:

k/t =
∑
wi∈U

wi/t

k =
∑
wi∈U

wi

andU is the set of weights needed to fill the knapsack. This indicates that wheneverκ can

be found such thati andj have the same abstract observation function, the corresponding

knapsack problem has a solution.

Similarly, if the knapsack problem has a solutionU , then the observation mapping

function should be constructed such that for alloi wherewi is in U , κ(oi) = ō0. All other

observation emitted froms0 should have abstract labelκ(oi) = ō1. With this observation

mapping function definition,f(s0) = f(s1).

Thus, the knapsack problem has a solution if and only ifκ can be constructed such that

f(s0) = f(s1).

88

2.8 Time Complexity

Procedure 2.7.2 has several parts.

• The outer repeat loop may iterate for up to|O| steps, as the abstract observation map

must change on each iteration.

• The time to construct the compatibility function. This is dominated by the time

needed to merge state pairs, in the worst case.

The remainder of each iteration is devoted to merging state pairs.

• At most|S|2 state pairs may be merged (all state pairs), with|A| actions to be exam-

ined per state pair.

• Each observation distribution merge requires at least|O|2 · |A| steps to construct

∼κ. For the purposes of this analysis, the heuristic that chooses among the possible

observation maps will be assume to require timeO(n).

• Each next state distribution merge requires two steps of graph flow construction.

Each step isO(|S|5), as shown in Section 2.5.3.

The overall complexity of the algorithm is therefore:

O
(
|O| · |S|2 · |A| ·

[(
|O|2 · |A|+ n

)
+ |S|5

])
.

Depending on the ratio between the number of states, actions and observations, different

elements of this formula will dominate the running time. The most variable portion of this

term is the number of state pairs to be merged.

2.9 Conclusion

This chapter defined two acceptance criteria for output-directed abstract POMDP mod-

els. Each of these criteria can be evaluated in polynomial time, but both may reject some

89

valid abstract models. The first acceptance criteria, the Shadow Model test, works under

the assumption that Equation 2.13 is satisfied. It is somewhat faster than the second ac-

ceptance criteria, the Shadow Compatibility test. The Shadow Compatibility test accepts a

wider range of abstract models, particularly when the Shadow Model assumptions do not

hold.

This chapter also defined an algorithm that searches for the smallest abstract models

that satisfy these acceptance criteria Section 2.7 specified such an algorithm, although the

search strategy is not guaranteed to find the smallest possible satisfying abstraction. The

algorithm includes two steps implemented using heuristics: the step that chooses one of

several possible sets of state pairs to merge, and the step that chooses one of several im-

proved observation mapping functions. Both of these steps could be improved using better

heuristics.

The next chapter will define observation map testing algorithms using Predictive State

Representations (PSRs), and examine the reasons that the PSR abstraction approach ex-

pands the set of accepted observation maps, improving on the POMDP abstraction ap-

proach.

90

CHAPTER 3

THE KRYLOV BASIS: POMDP TO PSR ABSTRACTION

3.1 Overview

POMDPs are not the only way of modeling partially observable domains. Predictive

State Representations (PSRs) (Littman et al., 2001) are an alternative method of modeling

partial-observability. Rather than modeling hidden states, PSRs represent state as a set

of predictions about future observations. PSRs represent a fully functional alternative to

POMDPs.

The last chapter discussed solutions the to he problem of finding an abstract POMDP

model from a known POMDP. The known model provided to the algorithm will be termed

the “original” model. This chapter examines two questions, in the context of the Shadow

Model and Shadow Compatibility tests developed in the previous chapter:

• Can the original POMDP be replaced with a PSR?

• Can the abstract model be constructed as a PSR rather than a POMDP?

The first question is unfortunately not true: at least in their current form, PSRs cannot

supply enough information to serve as the original model for these abstraction techniques.

PSRs can, however, serve as the abstract model. This chapter adapts both the Shadow

Model and Shadow Compatibility tests and search algorithm for the case when the original

model is a POMDP, and the abstract model is a PSR.

Finally, the chapter compares the abstract PSR model acceptance set to the acceptance

set for the abstract POMDP. As a result, we define an intermediate type of model, which

will be termed an Observation Conditional POMDP.

91

3.2 Background: Predictive State

Predictive State Representations (PSRs) (Littman et al., 2001) represent partially ob-

servable domains through a set of tests and their outcomes. As in a POMDP, a PSR has

an action setA and observation setO. A test, much like a history, is a sequence of action

observation pairs. IfΘ is the set of all possible tests, then the empty testλ is in Θ, and for

every testt ∈ Θ, ∀a ∈ A, o ∈ O, aot ∈ Θ.

Tests can succeed, or fail depending on whether the expected observation sequence is

observed. Test success is defined as observation of the specified test observations upon ex-

ecution of the test actions, test failure is defined as the observation of any other observation

sequence.

For a given set of historiesH, let wH : H × Θ → IR be a history specific function

mapping each history, test pair(h, t) to the outcome of testt after historyh. Test outcomes

can be defined in a variety of ways. Existing research has defined two types of PSR:value-

directedandobservation-directed. PSR methods differ in how the outcomes of the empty

testλ is defined. The outcome of every testaot longer than the empty testλ is defined

recursively, in terms of the shorter testt:

wH(h, aot) = P (o | ha) · wH(hao, t),

so that all longer test outcomes are defined in terms of the specifiedλ outcomes.

There are several ways of defining the base casewH(h, λ) for each history. Littman

et al. (2001) defines the outcome of the empty test as1 for every history, so thatwH(h, λ) =

1 for all h in H. In this case,wH(h, t) is the probability that the testt would succeed given

historyh:

wH(h, t) = P (t | h)

92

PSRs with this initialization will be termedobservation-directedPSRs. Poupart and Boutilier

(2002) define the outcome of the empty testλ as the expected immediate reward received

after historyh: wH(h, λ) = E(r | h). In this case,wH(h, t) is the probability that the testt

would succeed given historyh, multiplied by the expected reward after the sequenceh, t:

wH(h, t) = P (t | h) · E(r | h, t).

Poupart and Boutilier (2002) term this avalue-directedPSR.

Let Q be a set of testsQ ⊆ Θ which has the following property, for allh ∈ H and

t ∈ Θ:

wH(h, t) =
∑
q∈Q

wQ(q, t) · wH(h, q)

wherewQ is a weight function,wQ : Q × Θ → IR, encoding the weight of eacht ∈ Θ

givenq ∈ Q. The setQ is known as the set of “core” tests. PSRs that are represented using

this type of linear set of basis tests are known as “linear” PSRs.

A linear PSR can be defined as a tuple(Q,A, O, {Tao}, bλ), where:

• Q is the core set of tests,

• A is the set of actions,

• O is the set of observations,

• {Tao} is a set of transition matrices, and

• bλ : Q→ IR is the initial belief overQ.

93

For each actiona and observationo, theQ×Q transition matrixTao is defined as follows:

Tao(i, j) = wQ(qi, aoqj)

and the PSR belief update rule can be written:

bhao = bhTao (3.1)

This yields the following belief states:

bh(i) = wH(λ, hqi)

whereqi ∈ Q.

If the PSR isobservation-directed, then the belief update can be normalized:

bhao =
bhTao

bheao

(3.2)

whereeao is a vector defined bywQ:

eao(i) = wQ(qi, ao)

This yields belief states with the following entries:

bh(i) = wH(h, qi)

whereqi ∈ Q. Observation probabilities can be derived from these belief states:

P (o | h, a) = bheao

Thus far, the PSR model has been described as a stand-alone model. PSRs are also related

to POMDPs, however: any known POMDP can be transformed into either an observation-

94

directed or value-directed PSR, where the size ofQ may be equal to or smaller than the

size of the POMDP state setS.

3.2.1 POMDP to PSR Compression

Poupart and Boutilier (2002) and Littman et al. (2001) use the Krylov Basis (Saad,

2003) to construct a core set of testsQ from a POMDP. Given a POMDPM = (S, A, T, O, Ω)

with initial belief bλ, these algorithms calculate a PSR̄M = (Q,A, O, {T̄ao}, b̄λ) that

is equivalent toM in its predictions. The resulting PSR may have fewer tests than the

POMDP has states, compressing the original POMDP into an equivalent, but more com-

pact model.

Given a POMDPM = (S, A, T,O, Ω), define POMDP transition matricesTao for each

paira ∈ A ando ∈ O, as:

Tao(i, j) = P (o | sj, a) · P (sj | si, a).

Define a set of prediction vectors corresponding to the set of tests:{ut | t ∈ Θ} such

that:

uλ(i) =

 1 in Littman et al. (2001)

r(si) in Poupart and Boutilier (2002)

uaot = Taout

Each entryut(i) corresponds to a prediction aboutt given statesi. Combining this vector

with the POMDP belief vectorbh:

wH(h, t) = bh · uT
t .

The core set of testsQ corresponds to a linearly independent subset of the vectors in{ut |

t ∈ Θ}

95

u

Ta|A|o|O|
uTakol

uTaioj
uTa0o0

u

Ta|A|o|O|
Takol

uTa0o0
Takol

uTa|A|o|O|
Taioj

uTamon Taioj
uTa0o0

Taioj
u

Ta0o0
Tamon Taioj

u Ta|A|o|O
Tamon Taioj

u

Figure 3.1. The tree of tests for a POMDP. The bolded vectors correspond to the testsλ,
aioj, akol, andanomaioj which are chosen to form the core set if testsQ in this hypothetical
example. Other tests are not expanded.

Both Littman et al. (2001) and Poupart and Boutilier (2002) use the Krylov Basis

Kr({Tao}, u) to calculateQ, whereu = uλ. The two algorithms differ in their defini-

tion of uλ.

The set of operators{Tao | a ∈ A, o ∈ O} combine to form a branching tree of

possible tests, as shown in Figure 3.1. Each node in this tree corresponds to an element of

{ut | t ∈ Θ}. The search for a Krylov Basis starts with a single vectoru, which forms the

root of the test tree shown in Figure 3.1. The full set of testsΘ forms a tree rooted atu.

The setQ of core tests form a subtree also rooted atu. The rooted subtree corresponding

to Q can be found through breadth first or depth first search of the test tree. If the test at a

particular node is not added toQ, the search on that branch terminates, as all children of

the node can be eliminated from consideration.

The projection matrixF : S ×Q→ IR, shown in Figure 3.2, where:

F (i, j) = uqj
(si)

maps POMDP belief vectors over states to PSR belief vectors over tests inQ.

96

q1 q2 q3 · · · qn

s0 uq1(0) . . . uqn(0)

s1
...

. ..
s2

...
s|S| uq1(|S|)

Figure 3.2. POMDP Krylov Subspace Projection Matrix

The PSR transition matrices̄Tao andλ weight vector̄u are solutions to the formulas:

TaoF = FT̄ao (3.3)

u = Fū (3.4)

The normalized belief state update rule for a POMDP can be written:

bhao =
bhTao

bhTaoeT
(3.5)

wheree is vector of ones. The value-directed PSR does not preserve this update rule.

However, the following belief update rule can be used to calculate the un-normalized belief

vector:

bhao = bhTao (3.6)

From this point forward, the notationbh will indicate the belief state as calculated using this

update rule, without normalization. The normalized version will be denotedµ(bh). Thus

we will have:

µ(bhao) =
bhao

bhaoeT

in the POMDP.

97

The value-directed PSR algorithms take advantage of the fact that the value function

for both the normalized and non-normalized belief states are identical. That is, ifv is a

vector which maps belief states to values, then the value function for normalized belief

states (Equation 3.5) is:

µ(bh)v = µ(bh)r + γ ·
∑

o

(µ(bh)Taoe) · µ(bhao)v.

If the value function for un-normalized belief vectors is defined as:

bhv = bhr + γ ·
∑

o

bhaov,

then v is the same in the normalized and non-normalized cases (Poupart and Boutilier,

2002):

bhv = bhr + γ ·
∑

o

bhaov ⇐⇒

µ(bh)v = µ(bh)r + γ ·
∑

o

(µ(bh)Taoe) · µ(bhao)v.

The Poupart and Boutilier (2002) algorithm preserves updates tobh. If the PSR update rule

is:

b̄hao = b̄hT̄ao.

then∀h ∈ HM , bh)F = b̄h, if b̄λ is initialized tobλF .

If u = e, as in Littman et al. (2001), the normalized update rule for the vector of test

probabilities which make up the belief state is:

µ(b̄hao) =
µ(b̄h)T̄ao

µ(b̄h)T̄aoūT
.

Littman et al. (2001) have shown that the updated test probabilities are accurate, that is

∀h ∈ HM , µ(()bh)F = µ(b̄h), if b̄λ is initialized tobλF .

98

In the case in whichu is based on the reward function (Poupart and Boutilier, 2002),

the value function for the POMDP is preserved, although it may not be possible to properly

normalize the test probabilities at each step.

While both of these methods can be used to compress the belief state of the POMDP

M , neither takes advantage of observation abstraction.

3.3 PSR Homomorphisms

This section addresses the following question:

• If the input modelM were a PSR, could the krylov basis be used to form an abstract

shadow model?

In fact, the shadow model derived from a PSR, has a non-linear transition update equation.

Unfortunately, both the Shadow Model and Shadow Compatibility abstraction tests rely on

the linearity of the shadow model update equation.

To understand how one would construct a shadow PSR from an original PSR, we’ll

look in a little more depth at how the shadow model transition function/matrix is defined.

Take some testq ∈ Q for the original PSRM . Each update from one historyh to the

next (P (q | h) to P (q′ | hao)) can be broken down into stages. A POMDP has a two

stage update: firstP (s′ | ha), thenP (s′ | hao). A PSR lumps both of these steps into

a single update operation. The abstract and shadow models instead break the update into

three stages:

1. calculate:P (q′|ha)

2. update 1 to get:P (q′|haκ(o))

3. update 2 to get:P (q′|hao)

The abstract model includes update 2, but not update 3. The shadow model, on the other

hand, must include update 3, but not update 2. This means we must be able to explicitly

99

separate the update due to the abstract observation label from the update due to the full

observation label.

P (q′ | hao) =

a update︷ ︸︸ ︷
P (q′ | ha) ·

κ(o) update︷ ︸︸ ︷
P (q′κ(o) | ha)

P (q′ | ha) · P (κ(o) | ha)
·

o update︷ ︸︸ ︷
P (q′o | ha)

P (o | ha)
· P (κ(o) | ha)

P (q′κ(o) | ha)

The abstract model updates leave off the last update:

P (q′ | haκ(o)) =

a update︷ ︸︸ ︷
P (q′ | ha) ·

κ(o) update︷ ︸︸ ︷
P (q′κ(o) | ha)

P (q′ | ha) · P (κ(o) | ha)

=
P (q′κ(o) | ha)

P (κ(o) | ha)

The shadow model updates use the other part of the observation function:

P (q′ | h〈aκ(o)〉o) ∝

a update︷ ︸︸ ︷
P (q′ | ha) ·

o update︷ ︸︸ ︷
P (q′o | ha)

P (o | ha)
· P (κ(o) | ha)

P (q′κ(o) | ha)

∝

a update︷ ︸︸ ︷
P (q′ | ha) ·

o update︷ ︸︸ ︷
P (q′o | ha)

P (q′κ(o) | ha)
,

sinceP (κ(o)|ha)
P (o|ha)

does not depend onq.

If the historyh is replaced with the PSR state vectorbh from the original PSR:

P (q′ | h〈aκ(o)〉o) = P (q′ | ha) · P (q′o | ha)

P (q′κ(o) | ha)

=

(∑
q

∑
o

w(oq′ | q, a) · bh(q)

)
·

(∑
q w(oq′ | q, a) · bh(q)∑

q

∑
o′∈[o]κ

w(oq′ | q, a) · bh(q)

)

Unfortunately, there is no way to cancel out the sums overq in the ratio portion of this

update rule. This means that the update rule does not reduce to a linear transformation.

100

That is, whenM is a PSR,bξ(hao) cannot be calculated via a linear transformation ofbξ(h).

Since the Krylov basis techniques are only applicable to linear transformation functions,

the shadow model of a PSR is not a good candidate for Krylov basis reduction, though it

may be possible to adapt the PSR representation in some way to avoid this problem.

3.4 Outline

The remainder of this chapter is organized to parallel the last chapter. Ifκ is a mapping

functionκ : O → Ō mapping the observations of a POMDPM to abstract observations.,

the next several sections will present algorithms that:

• Evaluateκ when for all statess, actionsa and observationso, P (o | s, a) > 0.

• Evaluateκ when there are some observation probabilities which are0.

The difference is that rather than using CMP Homomorphisms to achieve all of these

tasks, this section uses the Krylov Basis to construct an abstract PSRM̄χ. If the algorithms

acceptκ, then the abstract PSR should make the same predictions about abstract tests that

the POMDP does. Since the abstract PSR models may be value-directed, the proofs in this

chapter will focus on showing that the value function is preserved, rather than the abstract

belief state updates.

The switch to an abstract PSR representation results in two differences in the set of

abstract observation mapping functions accepted. The first difference is that abstract PSRs

may be value-directed, where the abstract POMDP approach can only accept observation-

directed models. However, even when restricted to the observation-directed case, the ab-

stract PSR test can in some cases accept observation mapping functions that the abstract

POMDP approach would reject. This appears to be at least partly due to the fact that the

POMDP update rule can be divided into two steps (Equations 2.2 and 2.3), whereas the

PSR update rule combines both the action and observation updates (Equation 3.1). Mod-

101

ifying the POMDP abstraction algorithm to combine the action and observation updates

results in a closer match between the acceptance patterns of the two algorithms.

The final sections of this Chapter will compare the acceptance sets and experimental

running time of the both POMDP and PSR abstraction finding algorithms.

3.5 Shadow Model Test

In this section it is assumed that for all statess, actionsa and observationso:

P (o | s, a) > 0 (3.7)

Given a POMDPM = (S, A, T, O, Ω) and observation mapping functionκ : O → Ō,

Procedure 3.5.1 testsκ by constructing abstract and shadow PSRs forκ. If the abstract

PSR is independent of the shadow PSR, the test succeeds andκ is accepted. Otherwise,κ

is rejected. In order to define the shadow and abstract model transition matrices forM , the

transition matrices{Tao} must be separated into their action and observation portions. For

any actiona and observationo, observation matrixPao is a diagonal matrix, where:

Pao(i, i) = P (o | si, a). (3.8)

The separate action update matrixTa has entries:

Ta(i, j) = P (sj | si, a). (3.9)

The combined update matrix is then:

Tao = TaPao

102

Recall that the POMDPMχ (Equation 2.14) is defined as(S, A, T, Ō, Ωχ). The set

{Tχ(ao)} of transition matrices for this POMDP can be defined:

Tχ(ao) = TaPχ(ao).

where

Pχ(ao) =
∑

o′∈[o]κ

Pao.

Recall that the shadow POMDPMξ (Equation 2.19) is defined as(S, A, T, Ō, Ωξ). The

set{Tξ(ao)} of transition matrices for this POMDP can be defined:

Tξ(ao) = Ta ·
Pao

Pχ(ao)

where the division symbol indicates entry-wise division (so thatPao

Pχ(ao)
(i, i) = Pao(i,i)

Pχ(ao)(i,i)
).

Non-diagonal entries are0.

Given the assumption in Equation 3.7, for anya ∈ A andō ∈ Ō:

∑
o∈ō

Pao

Paō

= I (3.10)

whereI is an identity matrix. Procedure 3.5.1 evaluates a given observation mappingκ

under this assumption.

The first step that Procedure 3.5.1 takes is the construction of the starting vector for the

Krylov Basis. The start vectoru for the abstract model can be a reward vectorr (value-

directed) ore (observation-directed). If the model is to be observation-directed, the obser-

vations must first be tested so thatζ̄(κ(o)) = ζ(o). The next step of the algorithm is to

103

Procedure 3.5.1PSR Shadow Model Test
// Initialize the start vector
if value-directed modelthen

u = r
else ifoutput-directed modelthen

u = ζ
else ifobservation-directed modelthen

if ∃o ∈ O, ζ̄(κ(o)) 6= ζ(o) then
return false
u = e

// Construct the abstract PSR
Fχ ⇐ KrylovBasis(u, {Tχ(ao)})

// Construct the shadow PSR
Fξ ⇐ KrylovBasis(e, {Tξ(ao)})

// Construct joint projection matrixF
F (i, 〈k, l〉) = Fχ(i, k) · Fξ(i, l)

// Test the independence of the abstract and shadow PSRs
if bλF = b̄χ(λ) ⊗ b̃ξ(λ) Equation 3.18then

if TaoF =
(
T̄χ(ao) ⊗ T̃ξ(ao)

)
F Equation 3.19then

return Fχ

return false

construct krylov basis projection matrix for the abstract PSR,Fχ. The abstract PSR̄Mχ is

defined as:

M̄χ = (Q̄, A, Ō, {T̄χ(ao)}, b̄λ) (3.11)

whereQ̄ is the set of tests corresponding to the columns ofFχ, andb̄λ = bλFχ. For each

actiona and observationo, T̄χ(ao) is the solution to:

FχT̄χ(ao) = Tχ(ao)Fχ (3.12)

from Equation 3.3. From Equation 3.4:

104

Fχū = u (3.13)

Theorem 3.1 will show that̄Mχ is an accurate compressed model forMχ, although it

has not yet been shown to be an accurate abstraction forM .

Theorem 3.1.∀h ∈ HM , b̄χ(h) = bχ(h)Fχ, wherebχ(h) is the un-normalized belief state for

Mχ (Equation 3.6).

Proof. Structural Induction.

Base case:h = λ. By definition:

b̄χ(λ) = bχ(λ)Fχ

Inductive step:h to hao. Assume that̄bχ(h) = bχ(h)Fχ.

bχ(hao)Fχ = bχ(h)Tχ(ao)Fχ Equation 3.6

= bχ(h)FχT̄χ(ao) Equation 3.12

= b̄χ(h)T̄χ(ao) Inductive Assumption

= b̄χ(hao)

The next step that Procedure 3.5.1 takes is the construction of the abstract shadow PSR.

The start vector for the shadow PSR must bee (the shadow model PSR must be observation-

directed). If the krylov basis projection matrix for the abstract PSR is denotedFξ, then the

abstract PSR̄Mξ is defined as:

M̄ξ = (Q̃, A, O, {T̃ξ(ao)}, b̃λ)

105

whereQ̃ is the set of tests corresponding to the columns ofFξ, andb̃λ = bλFξ. For each

actiona and observationo, T̃ξ(ao) is the solution to:

FξT̃ξ(ao) = Tξ(ao)Fξ (3.14)

from Equation 3.3. From Equation 3.4:

Fξẽ = e (3.15)

Theorem 3.2.∀h ∈ HM , b̃ξ(h) = bξ(h)Fξ

Proof. Structural Induction.

Base case:h = λ. By definition:

b̃ξ(λ) = bξ(λ)Fξ

Inductive step:h to hao. Assume that̃bξ(h) = bξ(h)Fξ.

bξ(hao)Fξ = bξ(h)Tξ(ao)Fξ

= bξ(h)FξT̃ξ(ao) Equation 3.14

= b̃ξ(h)T̃ξ(ao) Inductive Assumption

= b̃ξ(hao)

After constructing the abstract PSR and shadow PSR, Procedure 3.5.1 tests the two

PSRs to determine whether they are independent. This require the construction of a matrix

that projects states inS onto the joint predictions of pairs of tests in̄Q andQ̃. Define the

106

matrix F as a projection matrix from belief vectors onto the joint abstract & shadow core

tests:

F (i, 〈k, l〉) = Fχ(i, k) · Fξ(i, l) (3.16)

where〈i, j〉 is an index into the columns ofF . If Fχ is ann×m matrix, then〈i, j〉 = i·n+j.

Theorem 3.3. In order to convert betweenF andFχ:

F (I ⊗ ẽT) = Fχ (3.17)

whereI is an appropriately sized identity matrix, and⊗ denotes the Kronecker Product of

two matrices.

Proof.

F (I ⊗ ẽT)(i, j) =
∑
〈k,l〉

F (i, 〈k, l〉) · (I ⊗ ẽT)(〈k, l〉, j)

=
∑
k,l

Fχ(i, k) · Fξ(i, l) · I(k, j) · ẽ(l) Kronecker Product

=
∑

l

Fχ(i, j) · Fξ(i, l) · I(j, j) · ẽ(l) I(k, j) = 0 if k 6= j

= Fχ(i, j) ·
∑

l

Fξ(i, l) · ẽ(l)

= Fχ(i, j) · (Fξẽ)(i)

= Fχ(i, j) · e(i) Equation 3.15

= Fχ(i, j)

107

The following tests are the shadow model constraints:

bλF = b̄χ(λ) ⊗ b̃ξ(λ) (3.18)

TaoF = F
(
T̄χ(ao) ⊗ T̃ξ(ao)

)
(3.19)

if these test fail, then the shadow and abstract models may be correlated, and the test fails.

The following theorem states that if Equations 3.18 and 3.19 are satisfied, then the

belief state factors into abstract and shadow components for everyh. This will be used

to show that these two tests are sufficient to show that the value function forr (or ζ) is

preserved, in Theorem 3.7.

Theorem 3.4. If M is PSR, andM̄ andM̃ are abstract and shadow models which satisfy

Equations 3.18 & 3.19, then for allh ∈ HM , Fbh = b̄χ(h) ⊗ b̃ξ(h).

Proof. By Induction onh.

Base case (h = λ): Equation 3.18.

Inductive assumption:

bhF = b̄χ(h) ⊗ b̃ξ(h)

Inductive step (h to hao):

bhTaoF = bhF
(
T̄χ(ao) ⊗ T̃ξ(ao)

)
=
(
b̄χ(h) ⊗ b̃ξ(h)

)(
T̄χ(ao) ⊗ T̃ξ(ao)

)
=
(
b̄χ(h)T̄χ(ao)

)
⊗
(
b̃ξ(h)T̃ξ(ao)

)
= b̄χ(hao) ⊗ b̃ξ(hao)

108

The following corollary to this theorem will be helpful in proving that the abstract value

function is accurate (Theorem 3.7).

Corollary 3.5. Theorem 3.4 implies that for anyh ∈ HM , bhF (I ⊗ ẽT) = b̄χ(h) · ch, where

ch is a scalar constant, andch = (b̃ξ(h)ẽ
T).

Proof.

bhF (I ⊗ ẽT) = (b̄χ(h) ⊗ b̃ξ(h))(I ⊗ ẽT) Theorem 3.4

= (b̄χ(h)I)⊗ (b̃ξ(h)ẽ
T)

= b̄χ(h) · (b̃ξ(h)ẽ
T) sinceb̃ξ(h)ẽ

T is a scalar

= b̄χ(h) · ch

The following Lemma will also be helpful in proving that the abstract value function

can be lifted back to the original POMDP. It relies on the fact that abstract observations are

treated like actions in the shadow model. Therefore, for each abstract observationō ∈ Ō,

the observations within̄o are normalized to sum to one. That is,
∑

o∈ō
Po(i,i)
Pō(i,i)

= 1.

Lemma 3.6. Equation 3.7 implies that for anyh ∈ HM , and ō ∈ Ō,
∑

o∈ō b̃ξ(hao)ẽ
T =

b̃ξ(h)ẽ
T . Equivalently,

∑
o∈ō chao = ch.

Proof.

109

∑
o∈ō

b̃ξ(hao)ẽ
T =

∑
o∈ō

b̃ξ(h)T̃ξ(ao)ẽ
T

=
∑
o∈ō

bξ(h)Ta
Pao

Paō

eT Theorem 3.2

= bξ(h)Ta

(∑
o∈ō

Pao

Paō

)
eT

= bξ(h)TaIeT Equation 3.10

= bξ(h)Tae
T

= bξ(h)e
T each row ofTa sums to one.

= b̃ξ(h)ẽ
T Theorem 3.2

Theorem 3.7. If Equations 3.18 and 3.19 are satisfied, and thus Theorem 3.4 is true, then

the value function forr can be lifted from the abstract PSR̄Mχ to the original POMDPM .

Proof. Definev = Fχv̄.

bhv = bhr + γ ·
∑

o

bhTaov ⇐⇒

bhFχv̄ = bhFχr̄ + γ ·
∑
o∈O

bhaoFχv̄ ⇐⇒ (Definition ofv)

bhF (I ⊗ ẽ)v̄ = bhF (I ⊗ ẽ)r̄ + γ ·
∑
o∈O

bhaoF (I ⊗ ẽ)v̄ ⇐⇒ (Equation 3.17)

b̄χ(h)chv̄ = b̄χ(h)chr̄ + γ ·
∑
o∈O

b̄χ(hao)chaov̄ ⇐⇒ (Corollary 3.5)

b̄χ(h)v̄ch = b̄χ(h)r̄ch + γ ·
∑
ō∈Ō

b̄χ(ha)ōv̄
∑
o∈ō

chao ⇐⇒ (κ partitionsO)

b̄χ(h)v̄ch = b̄χ(h)r̄ch + γ ·
∑
ō∈Ō

b̄χ(ha)ōv̄ch ⇐⇒ (Lemma 3.6)

b̄χ(h)v̄ = b̄χ(h)r̄ + γ ·
∑
ō∈Ō

b̄χ(ha)ōv̄ (Cancelch)

110

3.6 Compatibility Test

The proofs of the last section relied on the fact that Equation 3.7 was satisfied inM .

However, as the last chapter has shown (Section 2.4.7), this is not always the case. This

section will define state “compatibility” criteria in the PSR framework in a similar manner

to Section 2.5.

As in Section 2.5, there are several important models in the compatibility test.

• M is the POMDP

• Mξ is the shadow POMDP, defined in Equation 2.19

• M̄χ is the abstract PSR, defined in Equation 3.11

• M̄η is the availability PSR, from the availability POMDPMη (Equation 2.27)

The POMDPMη has the following observation “availability” matrices, for each actiona

and observationo:

Pη(ao) =
∑

o′∈[o]κ

Pξ(ao′). (3.20)

Each diagonal entryPη(ao)(i, i) is equivalent tot he availability functionη(ō, s, a) (Equation

2.26). The transition matrices forMη are:

Tη(ao) = Ta · Pη(o) (3.21)

The abstract PSR̄Mη can be constructed by finding the Krylov BasisKr({Tη(ao), e},

wheree is a vector of ones. The availability PSR, like the abstract shadow PSR, must be

111

observation-directed. IfFη is the projection matrix returned byKr({Tη(ao), e}, thenM̄χ is

defined as:

M̄η = (Q̄, A, Ō, {T̄η(ao)}, b̄λ) (3.22)

whereQ̄ is the set of tests corresponding to the columns ofFη, andb̄λ = bλFη. For each

actiona and observationo, T̄η(ao) is the solution to:

T̄η(ao)Fη = FηTη(ao) (3.23)

from Equation 3.3. From Equation 3.4:

ēηFη = e (3.24)

Let Ic be a diagonal compatibility function matrix, in whichIc(〈i, j〉, 〈i, j〉) = 1 if and

only if i and j are compatible, and all other entries are0. The compatibility algorithm

(Procedure 3.7.2) constructsIc, but first we will examine the properties it must have.

For eacha ∈ A ando ∈ O, there must exist a weight matrixWao, such that:

IcWaoIc(Fχ ⊗ I) = Ic(Tχ(ao) ⊗ Tξ(ao))(Fχ ⊗ I) (3.25)

IcWaoIc(I ⊗ Fη) = Ic(Tao ⊗ Tη(ao))(I ⊗ Fη) (3.26)

whereI is always an appropriately sized identity matrix, and⊗ denotes the Kronecker

product of two matrices.

There must also be a vectorwλ for the initial belief state such that:

wλIc(I ⊗ Fη) = bλ ⊗ b̄η(λ) (3.27)

wλIc(Fχ ⊗ I) = bχ(λ) ⊗ bξ(λ) (3.28)

112

Equations 3.25 - 3.28 are the PSR shadow compatibility model acceptance constraints.

Next, these constraints will be shown to imply that the value function is preserved in the

abstract model.

If v̄ is the value function forM̄χ and the value function forM is defined asv = Fχv̄,

then

bhv = bhr + γ
∑
o∈O

bhaov ⇐⇒ b̄χ(h)v̄ = b̄χ(h)r̄ + γ
∑
o∈O

b̄χ(ha)ōv̄

as Theorem 3.8 will show.

In order to show that Equations 3.25 - 3.28 are sufficient criteria for correctness, the

hypothetical POMDP model̆M will be examined.M̆ does not actually need to be con-

structed. Its only purpose is to show that the tests in Equations 3.18 and 3.19 are rigorous.

The POMDPM̆ is defined as follows:

M̆ = (S̆, A, O, {T̆ao}, b̆λ)

whereS̆ = S × S, and for each actiona and observationo:

{T̆ao = IcWaoIc}. (3.29)

The initial belief forM̆ is b̆λ = wλIc.

Theorem 3.8.From Equations 3.26, 3.25, 3.27 & 3.28, for everyh ∈ HM :

b̆h(I ⊗ Fη) = bh ⊗ b̄η(h) (3.30)

b̆h(Fχ ⊗ I) = b̄χ(h) ⊗ bξ(h) (3.31)

whereb̆h(〈i, j〉) = 0 if i andj are incompatible — that is,̆bhIc = b̆h.

113

Proof. By Structural Induction.

Base case:h = λ. Equations 3.27 & 3.28. In addition, sinceb̆λ = wλIc:

b̆λIc = wλIcIc

= wλIc

= b̆λ

Inductive step:h to hao.

Equation 3.30:

b̆hao(I ⊗ Fη) = b̆hT̆ao(I ⊗ Fη)

= b̆hIcWaoIc(I ⊗ Fη) Equation 3.29

= b̆hIc(Tao ⊗ FηT̄η(ao)) Equation 3.26

= b̆h(Tao ⊗ FηT̄η(ao)) Inductive Assumption

= b̆h(I ⊗ Fη)(Tao ⊗ T̄η(ao)) Kronecker Product

= bh ⊗ b̄η(h))(Tao ⊗ T̄η(ao)) Inductive Assumption

= bhao ⊗ b̄η(hao) Kronecker Product

Equation 3.31:

b̆hao(Fχ ⊗ I) = b̆hT̆ao(Fχ ⊗ I)

= b̆hIc(FχT̄χ(ao) ⊗ Tao) Equation 3.25

= b̆h(FχT̄χ(ao) ⊗ Tao) Inductive Assumption

= b̆h(Fχ ⊗ I)(T̄χ(ao) ⊗ Tao) Kronecker Product

= (b̄χ(h) ⊗ bh)(T̄χ(ao) ⊗ Tao) Inductive Assumption

= b̄χ(hao) ⊗ bhao Kronecker Product

114

Now we must show that this implies that the abstract PSR modelM̄χ is an accurate

reduction ofM .

First, the belief state and abstract belief state are related through a constant, at each

historych =
bξ(h)e

T

b̄η(h)ē
T
η

.

Lemma 3.9. For everyh in HM , bhFχ = b̄χ(h) ·
bξ(h)e

T

b̄η(h)ē
T
η

= b̄χ(h) · ch

Proof. Show, equivalently, thatbhFχ · b̄η(h)ē
T
η = b̄χ(h) · bξ(h)e

T , by showing that both sides

of the equation are equivalent tob̆h(Fχ ⊗ eT).

Part 1:b̆h(Fχ ⊗ eT) = bhFχ · b̄η(h)ē
T
η

b̆h(Fχ ⊗ eT) = b̆h(I ⊗ Fη)(Fχ ⊗ ēT
η) Kronecker Product

= (bh ⊗ b̄η(h))(Fχ ⊗ ēT
η) Theorem 3.8

= bhFχ ⊗ b̄η(h)ē
T
η Kronecker Product

Part 2:b̆h(Fχ ⊗ eT) = b̄χ(h) · bξ(h)e
T

b̆h(Fχ ⊗ ēT
η) = b̆h(Fχ ⊗ I)(I ⊗ eT) Kronecker Product

= (b̄χ(h) ⊗ bξ(h))(I ⊗ eT) Theorem 3.8

= b̄χ(h) · bξ(h)e
T Kronecker Product

Combined, we have:

b̆h(Fχ ⊗ eT) = b̆h(Fχ ⊗ eT)

bhFχ · b̄η(h)ē
T
η = b̄χ(h) · bξ(h)e

T

bhFχ = b̄χ(h) ·
bξ(h)e

T

b̄η(h)ēT
η

bhFχ = b̄χ(h) · ch

115

There are actually two equivalent ways of defining the constantch.

Lemma 3.10. ch = bhFχeT

b̄χ(h)e
T =

bξ(h)e
T

b̄η(h)ē
T
η

wheree is a vector of ones.

Proof.

bhFχ =
bξ(h)e

T

b̄η(h)ēT
η

· b̄χ(h) Lemma 3.9

bhFχeT =
bξ(h)e

T

b̄η(h)ēT
η

· b̄χ(h)e
T

bhFχeT

b̄χ(h)eT
=

bξ(h)e
T

b̄η(h)ēT
η

HerebhFχeT is simply the sum of the elements inbhFχ — it is not equivalent tobhe
T .

Since the abstract model may start with the reward as the initial vector (u = r), there may

not be any vector̄e that solveseT = FχēT , and thus, no vector that solvesbhFχēT = bhe
T .

Nonetheless, since each elementbhFχ(i) is a constant multiple of̄bχ(h)(i), the constantch

can be recovered without̄e.

Lemma 3.11.Given Lemmas 3.9 and 3.10, for anyō ∈ Ō,
∑

o∈ō chao = ch.

Proof.

116

∑
o∈ō

chao =
∑
o∈ō

bhaoFχeT

b̄χ(hao)eT
Lemma 3.10

=
bh

∑
o∈ō TaoFχeT

b̄χ(hao)eT

=
bhTχ(ao)FχeT

b̄χ(hao)eT
Equation

=
bhFχT̄χ(ao)e

T

b̄χ(hao)eT
Equation 3.14

=
ch · b̄χ(h)T̄χ(ao)e

T

b̄χ(hao)eT
Lemma 3.9

= ch ·
b̄χ(hao)e

T

b̄χ(hao)eT

= ch

Finally, we can show that the value function lifts from the abstract model to the true

model.

Theorem 3.12.

Proof. Definev = Fχv̄.

bhv = bhr + γ
∑
o∈O

bhaov ⇐⇒

bhFχv̄ = bhFχr̄ + γ
∑
o∈O

bhaoFχv̄ ⇐⇒ Definition ofv

ch · b̄χ(h)v̄ = ch · b̄χ(h)r̄ + γ
∑
o∈O

chao · b̄χ(hao)v̄ ⇐⇒ Lemma 3.9

ch · b̄χ(h)v̄ = ch · b̄χ(h)r̄ + γ
∑
o∈O

b̄χ(ha)ōv̄
∑
o∈ō

chao ⇐⇒

ch · b̄χ(h)v̄ = ch · b̄χ(h)r̄ + γ
∑
o∈O

b̄χ(ha)ōv̄ch ⇐⇒ Lemma 3.11

b̄χ(h)v̄ = b̄χ(h)r̄ + γ
∑
o∈O

b̄χ(ha)ōv̄ Cancel constants

117

Procedure 3.7.1PSR Compatibility Check(M, κ)
// Initialize the start vector
if value-directed modelthen

u = r
else ifobservation-directed modelthen

if ∃o ∈ O, ζ̄(κ(o)) 6= ζ(o) then
return false
u = e

// Construct the abstract PSR
Fχ ⇐ KrylovBasis(u, {Tχ(ao)})

// Construct the shadow PSR
Fη ⇐ KrylovBasis(e, {Tη(ao)})

Ic ⇐ psrCompatibilityMatrix(M, Fχ, Fη)

return checkInitialBelief(bλ, Ic, Fχ, Fη)

3.7 Compatibility Algorithm

Procedure 3.7.1 implements the PSR based compatibility check for the POMDPM and

observation mapping functionκ. It defines the projection matricesFχ andFη for the PSRs

M̄χ (Equation 3.11) andM̄η (Equation 3.22). The next step constructs the compatibility

matrix Ic, using Procedure 3.7.2. Finally, if Procedure 3.7.3 succeeds for the initial belief

vector, the procedure returns true, otherwise, it returns false and rejectsκ.

Procedure 3.7.2 constructs the compatibility matrixIc. Ic must be constructed such that

for eacha ∈ A ando ∈ O, there exists a weight matrixWao, such that Equations 3.26 and

3.25 are satisfied. This constrains the entries ofIc. If there is no solution that would satisfy

the constraints for a particular row ofWao, Ic for that row must be0.

Procedure 3.7.2 determines which rows ofWao have solutions. Solvable rows corre-

spond to compatible pairs of states. At the end of each iteration, the diagonal entries of

Ic are1 for each row ofWao for which a solution exists, and0 for all other rows. This is

achieved by solving a series of linear equations.

118

Procedure 3.7.2psrCompatibilityMatrix(M, Fχ, Fη

Ic ⇐ I // identity matrix
repeat

Iold ⇐ Ic

// Abstract projection matrix (from Equation 3.25)
abstractProjection⇐ Ic(Fχ ⊗ I)
// Availability projection matrix (from Equation 3.26)
availabilityProjection⇐ Ic(I ⊗ Fη)
A⇐ [abstractProjection : availabilityProjection]

for all a ∈ A, o ∈ O do
// Abstract prediction matrix (from Equation 3.25)
abstractPrediction⇐ (Tao ⊗ Tao)(Fχ ⊗ I)
// Availability prediction matrix (from Equation 3.26)
availabilityPrediction⇐ (Tao ⊗ Tao)(I ⊗ Fη)
Y ⇐ [abstractPrediction : availabilityPrediction]

for all i, j ∈ S do
// Solve the system of equations for the〈i, j〉th row of Wao

y ⇐ Y (〈i, j〉, ·) // The〈i, j〉th row
if the solutionx to AT x = yT existsthen

Wao(〈i, j〉, ·)⇐ xT

else
Ic(〈i, j〉, 〈i, j〉)⇐ 0

until Iold = Ic

return Ic

The 〈i, j〉th row of Wao can be found, if it exists, by solving the following system of

equations forx:

xIold(I ⊗ Fη) = (Tao ⊗ Tη(ao))(I ⊗ Fη)(〈i, j〉, ·)

xIold(Fχ ⊗ I) = (Tχ(ao) ⊗ Tξ(ao))(Fχ ⊗ I)(〈i, j〉, ·)

where the terms on the right hand side are row vectors of next time step predictions for the

selected state pair〈i, j〉. If the solution for the row ofWao corresponding to〈i, j〉 exists,

then the diagonal entry ofIc for this pair remains1. If no suchx exists, the entry for〈i, j〉

119

Procedure 3.7.3checkInitialBelief(bλ, Ic, Fχ, Fη)

A⇐ [Ic(I ⊗ Fη) : Ic(Fχ ⊗ I)]
y ⇐ [bλ ⊗ b̄η(λ) : bχ(λ) ⊗ bξ(λ)]
if the equationxA = y has a solutionthen

return x asb̆λ

else
return false

in Ic is set to0. Thus,Ic picks out those rows that have solutions (these are the compatible

pairs of states), and sets all rows that do not have solutions to0.

At the end of each iteration of the main repeat loop in Procedure 3.7.2, the following

constraints are true for all actionsa and observationso:

IcWaoIold(I ⊗ Fη) = Ic(Tao ⊗ Tη(ao))(I ⊗ Fη)

IcWaoIold(Fχ ⊗ I) = Ic(Tχ(ao) ⊗ Tξ(ao))(Fχ ⊗ I)

WhenIold = Ic, these become Equations 3.26 and 3.25.

Finally, Procedure 3.7.3 finds a weight vector to satisfy Equations 3.27 and 3.28 by

solving for wλ. If there is a real valued solution, Procedure 3.7.1 succeeds and accepts

the abstract model̄Mχ with compression matrixFχ and observation mapping functionκ.

Otherwise, the method fails and rejects the observation mapping function.

3.7.1 Time Analysis

In the worst case, the state compatibility test run time is dominated by the time needed

to construct the compatibility function. Procedure 3.7.2 has a total of 5 nested loops. The

outer “repeat” loop could execute up to|S|2 times, if each iteration marks only one pairs

of states as incompatible, and all pairs of states are incompatible in the end. The nested for

loops execute|A| · |O| · |S|2 times.

Within these for loops, the system of equationsAT x = yT must be solved, whereA is

a |S|2× |S|2 matrix. This operation has a run time ofO(n3), wheren is the dimensionality

of the matrix (Cormen et al., 2009), for a total time complexity ofO((|S|2)3) or O(|S|6).

120

The total worst case time complexity is thusO(|A| · |O| · |S|10). This differs by a factor

of |O| · |S| from the POMDP compatibility algorithm of Section 2.5.3.

3.8 Comparison of PSR and POMDP Methods

This next few sections compare the POMDP compatibility and PSR compatibility ap-

proaches, and demonstrate that the PSR compatibility approach accepts some valid models

that the POMDP compatibility approach does not. There are three sources of the difference

between the two tests, and each will be examined in turn:

1. Abstract PSR models may be value-directed or observation-directed, whereas ab-

stract POMDP models must be observation-directed.

2. The abstract POMDP state predictions must be consistent at two points: after the

action update, and after the observation update. The abstract PSR belief vector is

only required to be consistent after both updates have been completed.

3. The PSR uses a set of basis tests, rather than state.

The next several sections will focus on explaining these differences between the two tests.

3.9 Observation and Value-directed Models

One of the two differences between the POMDP and PSR tests is that the PSR tests

support both value-directed and observation-directed models. Figure 3.3 represents the

following POMDP:

States: Each square in Figure 3.3 represents a state.

Actions: up, down, left, right

Transitions: Actions fail with a small probabilityε. Failure results in no change to the

state. The actionright is noisy when transitioning to the states with cheese in them,

ending in each cheese state with the designated probability.

121

right 0
.5

0.5

right 0
.5

0.5

right 0.
75

0.25

i

j

k

Figure 3.3. Three Hallway domain. Each hallway ends with a transition which has a
different reward distribution, but the same mean expected reward.

Observations: white, lightgrey, grey, black, smallCheese, mediumCheese, largeCheese,

hugeCheese

Observation Function: In each state, the agent deterministically observes the features of

the current square.

Initial Belief State: Uniform probability of being in each of the three leftmost states.

Reward Function:

smallCheese : 4

mediumCheese : 6

largeCheese : 8

hugeCheese : 12

all other obserations: 0

122

Consider the output functionζ corresponding to the reward function for this domain.

While each of the states labeledi j andk transitions has a different pattern of next state

transitions for the actionright, the expected reward received in each state under this ac-

tion is 6 in each of these states. The value-directed PSR model predicts only this expected

reward value, where the POMDP test and observation-directed PSR test predict the exact

distribution of ζ at the next time step. This means that the observation distinctions be-

tweenlightgrey, grey andblack are necessary for accurate predictions in the observation-

directed models. In the value-directed model, these three observations may be clustered

into a single abstract observation (see Table 3.1 for test results).

Despite the fact that observation-directed abstract models are often larger than their

value-directed counterparts, in some cases, observation-directed models may nonetheless

be preferable, as they may be reused over multiple tasks (Wolfe and Barto, 2006).

Domain Observation Map (κ) POMDP PSR-Obs PSR-Val

Figure 3.3 {lg, g, b}, {w}, {sC, mC, lC, hC} pass
{lg, g, b}, {w}, {sC}, {mC}, {lC}, {hC} fail fail
{lg}, {g}, {b}, {w}, {sC}, {mC}, {lC}, {hC} pass pass

Table 3.1.Comparison of Observation and Value-directed models.

3.10 PSR vs. POMDP: One Step and Two Step Update Models

Even when the PSR abstraction is constrained to be observation-directed, the two tests

differ in the set of observation maps they accept, with the PSR test accepting more obser-

vation maps than the POMDP test. The Integer Counter domain (Figure 3.4) represents

a binary integer counter. The counter can be advanced by adding one to the integer, or

decreased by subtracting one from the integer. The POMDP definition is as follows:

States: A counter withn bits has2n states. In the figure, there are7 bits. The experiments

shown use a counter with5 bits.

123

1001100 1001101 1001110
subtract 1 add 1

1_0_1_0 1_0_1_1 1_0_1_0

Figure 3.4. Integer Counter Domain. Three states are shown, representing three numbers
of 7 digits each. The “add 1” action increases the counter by one, with noisy transitions, and
the action “subtract 1” decreases the counter by one, again with noisy transitions. Every
other bit is hidden, so that observations include only every other bit.

Actions: +1,−1

Transitions: Actions fail with a small probabilityε. Failure results in no change to the

state.

Observations: Every other bit is observed, beginning with the lowest order bit.

Observation Function: Observation probabilities are deterministic.

Initial Belief State: Uniform probability on all states.

Consider the output function where each states outputs the values mod 23 − s mod 22,

or the value of the3rd bit location. Higher order bits are not useful for predicting the

value of this output function, but any lower order bits are. Since only alternate bits are

observed, this implies that the observation mapping functionκ(o) = o mod 22 should

be self-sufficient. However, the POMDP test rejects this observation map, while the OC-

POMDP and PSR tests accept this observation map, as shown in Table 3.2.

In this particular case the difference between the two algorithms does not stem from the

difference between using the basis vector vs a belief state vector to represent state. Instead,

it stems from the point at which the state vector is calculated. Figure 3.5 illustrates two

different bayesian networks that could be used to model a partially observable domain. The

124

Domain Observation Map (κ) POMDP PSR

Binary Integer κ(o) = o mod 4 fail pass
Figure 3.4
with 5 bits

Table 3.2.Comparison of observation-directed POMDP and PSR algorithms.

POMDP tests described in Chapter 2 were designed based on the type of model shown in

Figure 3.5(a). This section defines a modified model and acceptance test, the Observation

Conditional POMDP model and test, based on the Bayesian Network shown in Figure

3.5(b).

Let A(POMDP) denote the set ofM , κ pairs accepted by the POMDP test, and simi-

larly let A(OC − POMDP) andA(PSR) be the accept sets corresponding to the Obser-

vation Conditional POMDP and PSR tests. This section will show that:

• A(POMDP) ⊂ A(OC − POMDP)

– The success of the POMDP test implies the success of the OC-POMDP test

– There is at least oneM , κ pair for which OC-POMDP returnstrue and POMDP

returnsfalse.

• A(OC − POMDP) ⊂ A(PSR)

– The success of the OC-POMDP test implies the success of the PSR test

– There is at least oneM , κ pair for which the PSR test returnstrue and OC-

POMDP returnsfalse.

Figure 3.5(a), illustrates the usual POMDP representation, with update equations:

bhao(s
′) ∝ P (o | s′, a)

∑
s∈S

P (s′ | s, a) · bh(s) (3.32)

In Figure 3.5(b), the link between each state and its corresponding observation has been

reversed, with added dependency links as necessary to preserve the probability distribution

125

o o' o''

s s' s''

a a'

(a)

o o' o''

s s' s''

a a'

(b)

Figure 3.5.The bayesian model from which the POMDP test is derived (Figure 3.5(a)) and
the bayesian model from which the OC-POMDP test is derived (Figure 3.5(b)).

represented by the Bayesian network. This is the type of model by which the OC-POMCP

tests are defined. The update equations for this model are:

bhao(s
′) ∝

∑
s∈S

P (s′, o | s, a) · bh(s) (3.33)

and the homomorphism constraints for the OC-POMDP tests are as follows. Abstract state

constraints:

P (f(s′), κ(o) | s, a) = P (f(s′), κ(o) | f(s), g(a)) (3.34)

Shadow state constraints:

P (fξ(s
′), o | s, 〈aκ(o)〉) = P (fξ(s

′), o | f(s), gξ(〈aκ(o)〉)) (3.35)

and independence constraints:

P (f(s′), fξ(s
′), o | s, a) = P (f(s′), κ(o) | s, a) · P (fξ(s

′), o | s, 〈aκ(o)〉) (3.36)

The equations given are for the shadow model test for the model of Figure 3.5(b).

Rather than redefining the compatibility test constraints, and repeating the shadow test and

126

Procedure 3.10.1abstactOC-POMDP(u, {Tao})

// Initialize f : S → S̄ so that:

F (i, j) =

{
1 if f(si) = s̄j

0 otherwise
f(i) = f(j) ⇐⇒ Taou(i) = Taou(j)
while F has changeddo

for all a ∈ A, o ∈ O do
// constructf such that:
f(i) = f(j) ⇐⇒ (TaoF)(i, ·) = (TaoF)(j, ·)
// updateF to matchf if f has changed

return F

compatibility test proofs for this model, these tests for the OC-POMDP will be defined in

terms of the PSR test algorithms from Procedure 3.5.1 and Procedure 3.7.1. State mapping

matricesFχ andFξ or Fη should be construced using Procedure 3.10.1:

Fχ ⇐ abstractOC-POMDP(u, {Tχ(ao)}) (3.37)

Fξ ⇐ abstractOC-POMDP(e, {Tξ(ao)}) (3.38)

Fη ⇐ abstractOC-POMDP(e, {Tη(ao)}) (3.39)

rather than PSR projection matrices. The Shadow Model and Shadow Compatibility test

for the PSR case can be applied directly at this point, using Procedure 3.5.1 and Procedure

3.7.1, but with the state based definitions ofFχ andFξ or Fη.

Procedure 3.10.1 constructs the state mapping matrixF for the given parametersu

and{Tao}. Corresponding abstract transition matrices can be calculated according to the

following rule:

T̄ao(f(i), ·) def
= TaoF (i, ·). (3.40)

These transition matrices have the following property:

FT̄ao = TaoF

127

much like a PSR (Equation 3.3).

The next theorem shows that whenever the POMDP test accepts, the OC-POMDP test

accepts. The proof is shown for the shadow model test, but the same theorem holds for the

compatibility test.

Recall that the POMDP Shadow Model test homomorphism constraints are as follows,

for every actiona, observationo, states and next states′. Abstract state constraints:

P (f(s′) | s, a) = P (f(s′) | f(s), g(a)) (3.41)

P (κ(o) | s′, a) = P (κ(o) | f(s′), g(a))

The shadow model constraints are:

P (fξ(s
′) | s, 〈aκ(o)〉) = P (fξ(s

′) | f(s), gξ(〈aκ(o)〉)) (3.42)

P (o | s′, 〈aκ(o)〉) = P (o | fξ(s
′), gξ(〈aκ(o)〉)))

and the independence constraints are:

P (f(s′), fξ(s
′) | s, a) = P (f(s′) | s, a) · P (fξ(s

′) | s, a) (3.43)

P (f(s′), fξ(s
′) | bλ) = P (f(s′) | bλ) · P (fξ(s

′) | bλ).

Theorem 3.13.Any pairM , κ that satisfies the POMDP constraints also satisfies the OC-

POMDP constraints.

Proof. Although only the proof for the Shadow Model case is included, the results can be

extended to the Shadow Compatibility test.

128

To derive constraint Equation 3.34 from Equation 3.41:

P (f(s′), κ(o) | s, a) =
∑

s′′∈[s′]f

P (κ(o) | s′′, a) · P (s′′ | s, a)

= P (κ(o) | f(s′), g(a)) · P (f(s′) | f(s), g(a))

= P (f(s′), κ(o) | f(s), g(a)

The derivation from Equation 3.42 to Equation 3.35 is similar.

To derive Equation 3.36 from Equation 3.43:

P (s̄′, s̃′, o | s, a) =
∑

s′∈s̄′∩s̃′

P (o | s′, a) · P (s′ | s, a)

=
∑

s′∈s̄′∩s̃′

P (o | s′, a)

P (κ(o) | s′, a)
· P (κ(o) | s′, a) · P (s′ | s, a)

=P (o | s̃′, gξ(〈aκ(o)〉)) · P ((̄o) | s̄′, gχ(a)) ·
∑

s′∈s̄′∩s̃′

P (s′ | s, a)

=P (o | s̃′, gξ(〈aκ(o)〉))P (s̃′ | fξ(s), gξ(a))·

P (κ(o) | s̄′, gχ(a)) · P (s̄′ | fχ(s), gχ(a))

=P (s̃′, o | fξ(s), gξ(〈aκ(o)〉)) · P (s̄′, κ(o) | fχ(s), gχ(a))

=P (s̃′, o | s, 〈aκ(o)〉) · P (s̄′, κ(o) | s, a)

The converse is not true, however. As Table 3.3 shows, the POMDP of Figure 3.4, with

the observation mapping functionκ(o) = o mod 4 provides a sample(M, κ) pair which

the OC-POMDP test accepts, while the POMDP test rejects.

Lemma 3.14.The OC-POMDP test accept set is a superset of the POMDP test accept set:

A(POMDP) ⊂ A(OC − POMDP).

Proof. Theorem 3.13 shows thatA(POMDP) ⊆ A(OC − POMDP) and the POMDP

example in Table 3.3 demonstrates that the sets are not equivalent.

129

Domain Observation Map (κ) POMDP OC-POMDP PSR

Binary Integer κ(o) = o mod 4 fail pass pass
Figure 3.4
with 5 bits

Table 3.3.Comparison of observation-directed OC-POMDP, POMDP and PSR algorithms
for the POMDP of Figure 3.4.

The next theorem proves thatA(OC − POMDP) ⊆ A(PSR) by proving that every

pair accepted by OC-POMDP is also accepted by the PSR test.

Theorem 3.15.Any pairM , κ that satisfies the OC-POMDP constraints (Equations 3.34 -

3.36) also satisfies the PSR constraints (Equations 3.18 and 3.19) for some pair of abstract

and shadow PSRs.

Proof. This proof assumes that an abstract OC-POMDP that passes the shadow model

tests is given. From this, we show that a PSR that passes the PSR shadow model test can

be constructed.

Assume thatFχ andFξ have been calculated according to Equations 3.37 and 3.38,

and that they have associated abstract transition matrix sets{T̄χ(ao)} and{T̄ξ(ao)} defined

according to Equation 3.40. Further, assume that these two matrices obey the Shadow

Model test constraints. That is, if the joint mapping matrixF is defined fromFχ andFξ as

in Equation 3.16, then Equations 3.18 and 3.19 are satisfied:

bλF = b̄χ(λ) ⊗ b̃ξ(λ)

TaoF = F
(
T̄χ(ao) ⊗ T̄ξ(ao)

)
,

whereb̄χ(λ) = bλFχ andb̃ξ(λ) = bλFξ.

We can define a further mapping from the abstract states of the abstract OC-POMDP to

a set of abstract PSR tests. Ifu is the target vector on whichFχ was built, define:

130

F ′
χ ⇐ krylovBasis(u, {T̄χ(ao)})

F ′
ξ ⇐ krylovBasis(e, {T̄ξ(ao)})

Define the abstract PSR transition matrices{T̄ ′
χ(ao)} as the solutions to:

T̄ ′
χ(ao)F

′
χ = F ′

χT̄χ(ao)

and the shadow transition matrices{T̃ ′
ξ(ao)} as the solutions to :

T̃ ′
ξ(ao)F

′
ξ = F ′

ξTξ(ao)

The two matricesFχ andF ′
χ can be combined to construct a matrix mapping states inS

to abstract tests in̄Q: FχF ′
χ. This composite matrix is the PSR mapping matrix that must

be shown to satisfy the shadow model test constraints.

The two matricesFξ andF ′
ξ can also be combined to construct a matrix mapping states

in S to tests in the shadow basis̃Q: FξF
′
ξ. Together, the abstract and shadow projection

matrices have a joint projection matrixF (F ′
χ ⊗ F ′

ξ), and they satisfy Equations 3.18 and

3.19. With the joint projection matrixF (F ′
χ ⊗ F ′

ξ):

bλ(F (F ′
χ ⊗ F ′

ξ)) = b̄′χ(λ) ⊗ b̃′ξ(λ)

Tao(F (F ′
χ ⊗ F ′

ξ)) = (F (F ′
χ ⊗ F ′

ξ))
(
T̄ ′

χ(ao) ⊗ T̄ ′
ξ(ao)

)
The initial belief state constraint is straightforward to verify. For the transition constraint:

TaoF (F ′
χ ⊗ F ′

ξ) = F
(
T̄χ(ao) ⊗ T̄ξ(ao)

)
(F ′

χ ⊗ F ′
ξ)

= F
(
T̄χ(ao)F

′
χ ⊗ T̄ξ(ao)F

′
ξ

)
= F

(
F ′

χT̄ ′
χ(ao) ⊗ F ′

ξT̄
′
ξ(ao)

)
= F (F ′

χ ⊗ F ′
ξ)
(
T̄ ′

χ(ao) ⊗ T̄ ′
ξ(ao)

)
131

Procedure 3.11.1observationMapCompatibiliy(M, κ)
// Construct the abstract PSR
Fχ ⇐ KrylovBasis(u, {Tχ(ao)})

// Construct the shadow PSR
Fη ⇐ KrylovBasis(e, {Tη(ao)})

Ic ⇐ psrCompatibilityMatrix(M, Fχ, Fη)
U ⇐ an empty set of state pairs (implemented as a queue)
∼κ: S × S → { true, false}
initialize∼κ so thatκ(oi) = κ(oj) ⇐⇒ oi ∼κ oj

∼κ⇐ observationConditionalSplits(M, κ,∼κ) // Procedure 3.11.2
makeDistributionsCompatible(M, bλ, bλ, Ic, U) // Procedure??
while U not emptydo
〈i, j〉 ⇐ an element removed fromU
∼κ⇐ makeObservationsCompatible(M, i, j,∼κ) // Procedure 3.11.3
makeStateDistributionsCompatible(i, j, Ic, U) // Procedure 3.11.4
// mark the two states as compatible
Ic(〈i, j〉, 〈i, j〉)⇐ 1

return κ

and therefore the two matricesFχF ′
χ andFξF

′
ξ with core testsQ̄ andQ̃ satisfy the PSR

shadow model test requirements, and the pair(M, κ) would be accepted under the PSR

constraints.

3.11 Observation Splitting

Thus far this chapter has focused on the PSR and OC-POMDP acceptance tests. This

section outlines a corresponding abstract model search algorithm.

If Procedure 3.7.1 fails, it must be the case that Procedure 3.7.3 failed for the initial

belief state. If all states were compatible (Ic = an identity matrix), Procedure 3.7.3 would

succeed, therefore, there must be some setU of pairs of states where if every pair inU

were compatible, Procedure 3.7.3 would succeed. Procedure 3.11.1 proceeds in the same

manner as Procedure 2.7.2. Starting with the initial belief state, it generates a list of state

pairs that must be compatible to make Procedure 3.7.3 succeed, under the currentFχ and

132

Procedure 3.11.2observationConditionalSplits(M, κ,∼κ)
for all sk ∈ S, a ∈ A do

for all ō ∈ Ō do
for all oi, oj ∈ ō do

if (P (oi | sk, a) > 0) ∧ (P (oj | sk, a) > 0) then
if Taoi

Fχ(k, ·) · Taoj
uT (k) 6= Taoj

Fχ(k, ·) · Taoi
uT (k) then

oi ∼κ oj ⇐ false
if Tξ(aoi)Fη(k, ·) · Tξ(aoj)e

T (k) 6= Tξ(aoi)Fη(k, ·) · Tξ(aoj)e
T (k) then

oi ∼κ oj ⇐ false
return ∼κ

Procedure 3.11.3makeObservationsCompatible(M, i, j,∼κ)
for all si, sj ∈ S do

for all a ∈ A do
if Taok

uT (i) · Tξ(aol)e
T (j) 6= Taok

uT (i) · Tξ(aol)e
T (j) then

oi ∼κ oj ⇐ false
return ∼κ

Fη matrices. These changes require certain changes in the observation mapping function.

As with Procedure 2.7.2, there may be multiple observation mapping functions that pro-

duce the desired changes in the state compatibility function. Procedure 3.11.1 therefore

constructs an observation compatibility relation∼κ: O × O → {true, false} rather than

an equivalence relation over observations that could be used to constructκ directly. Any

grouping of observations into abstract observations that does not group any incompatible

observation pairs is acceptable.

Compatibility of any pair of statessi adnsj is determined by the ability to construct

the rowWao(〈i, j〉, ·) for every actiona and observationo. It is important to be able to

determine why the construction of this vector failed for a particular row〈i, j〉. There are

two possible reasons:

1. Incompatible state pairs inIc. If this is the cause, then settingIc = I will produce

a solution. Procedure 3.11.4 addresses this issue, by adding state pairs to the merge

list U .

133

2. Inability to solve both Equation 3.25 and Equation 3.26 using the same solution.

Procedures 3.11.1 and 3.11.2 address this issue by marking observation pairs incom-

patible.

In order to correct the observation mapping function, the factors due to the immediate

observations (item2) must be separated from the factors due to the next state distribution

(item 1). This section focuses on developing a set of observation constraints, such that if

these constraints are satisfied, andIc = I, then it must be possible to solve forWao(〈i, j〉, ·)

for statessi andsj.

Procedure 3.11.2 implements the first separate piece of the observation constraints. As

a constraint over states, this method seeks to find an observation compatibility function that

will satisfy the following rule. Any statesk has consistent next state predictions if, for all

actionsa and observationso:

Tχ(ao)Fχ(k, ·) · Taou
T (k) = TaoFχ(k, ·) · Tχ(ao)u

T (k) (3.44)

Tη(ao)Fη(k, ·) · Tξ(ao)e
T (k) = Tξ(ao)Fη(k, ·) · Tη(ao)e

T (k) (3.45)

In the observation improvement method, all states must have consistent next state predic-

tions. Turning this into a constraint on the binary observation compatibility relation, two

observations should only be compatibleol ∼κ ok if for all actionsa and statessk:

Taoi
Fχ(k, ·) · Taoj

uT (k) = Taoj
Fχ(k, ·) · Taoi

uT (k)

Tξ(aoi)Fη(k, ·) · Tξ(aoj)e
T (k) = Tξ(aoi)Fη(k, ·) · Tξ(aoj)e

T (k)

If the new observation mapping functionκ conforms to the observation compatibility func-

tion, then summing overoi ∈ κ(oj) on both sides of each equation yields the desired

constraints, Equations 3.44 and 3.45, for all states and actions. This constraint on the ob-

servation compatibility function is implemented in Procedure 3.11.2.

134

In the PSR case, Equation 3.44 can be reduced to:

P (q̄, o | s, a) = P (q̄, κ(o) | s, a)

and Equation 3.45 becomes:

P (q̄η, o | sj, 〈a, κ(o)〉) = P (q̄η, κ(o) | sj, 〈a, κ(o)〉)

for everys in S, a in A, q̄ in Q̄ andq̄η ∈ Q̄η. This constraint amounts to a requirement that

the abstract next state vector not depend on the observation label, if the abstract observation

label is given.

The next portion of the observation split criteria more closely resembles Equation 2.54,

from the previous chapter. Two statessi andsj can only be compatible if their observation

ratios are compatible at the next time step, for every actiona and observationo:

Taou
T (i) · Tη(ao)e

T (j) = Tχ(ao)u
T (i) · Tξ(ao)e

T (j) (3.46)

In the observation splitting algorithm, if two statessi andsj are required to become com-

patible, the observation compatibility function should be constructed such that two obser-

vations are only compatible (ol ∼κ ok) if:

Taol
uT (i) · Tξ(aok)e

T (j) = Taok
uT (i) · Tξ(aol)e

T (j)

this implies that ifκ respects the observation compatibility constraints, then summing

over ol ∈ κ(ok) yields the desired constraint, Equation 3.46. In the specific case of an

observation-directed abstract PSR, in whichu = e, two statessi and sj are observa-

135

Procedure 3.11.4makeStateDistributionsCompatible(i, j, Ic, U)
// Abstract projection matrix (from Equation 3.25)
abstractProjection⇐ I(Fχ ⊗ I)
// Availability projection matrix (from Equation 3.26)
availabilityProjection⇐ I(I ⊗ Fη)
A⇐ [abstractProjection : availabilityProjection]

for all a ∈ A, o ∈ O do
// Abstract prediction matrix (from Equation 3.25)
abstractPrediction⇐ (Tao ⊗ Tao)(Fχ ⊗ I)
// Availability prediction matrix (from Equation 3.26)
availabilityPrediction⇐ (Tao ⊗ Tao)(I ⊗ Fη)
Y ⇐ [abstractPrediction : availabilityPrediction]

// Solve the system of equations for the〈i, j〉th row of Wao

y ⇐ Y (〈i, j〉, ·) // The〈i, j〉th row
// Given Procedures 3.11.2 and 3.11.3, the solutionx to AT x = yT should exist.
Wao(〈i, j〉, ·) = x
for all k, l ∈ S do

if x(〈k, l〉) > 0 then
U ⇐ U ∪ {〈k, l〉)

tion ratio compatible (Equation 3.46) if, for all observationso and actionsa, whenever

η(κ(o), sj, a) 6= 0 :

P (o | si, a)

P (κ(o) | si, a)
=
∑
s′∈S

P (o | s′, a)

P (κ(o) | s′, a)
· P (s′ | sj, a)

The reward-directed case differs slightly. Two statessi andsj are observation compatible

(Equation 3.46) if, for all observationso and actionsa:

E(r | si, a, o) · P (o | si, a)

E(r | si, a, κ(o)) · P (κ(o) | si, a)
=
∑
s′∈S

P (o | s′, a)

P (κ(o) | s′, a)
· P (s′ | sj, a)

Equations 3.44, 3.45 and 3.46 are the constraints that directly concern the observation

function. If these constraints are satisfied, then there is a solution forWao(〈i, j〉, ·) that

satisfies both Equation 3.25 and 3.26:

136

Procedure 3.11.5fixInitialBelief(bλ, Ic, Fχ, Fη, U)

A⇐ [I(I ⊗ Fη) : Ic(Fχ ⊗ I)]
y ⇐ [bλ ⊗ b̄η(λ) : bχ(λ) ⊗ bξ(λ)]
Solve forxA = y
for all i, j ∈ S do

if x(〈i, j〉) > 0 then
U ⇐ U ∪ 〈i, j〉

xI(I ⊗ Fη)(〈i, j〉, ·) = (Tao ⊗ Tη(ao))(I ⊗ Fη)(〈i, j〉, ·)

xI(Fχ ⊗ I)(〈i, j〉, ·) = (Tχ(ao) ⊗ Tξ(ao))(Fχ ⊗ I)(〈i, j〉, ·)

Theorem 3.16. If all states are compatible (Ic = I), and Equations 3.44, 3.45 and 3.46

are satisfied, then the vectorcr(Tao ⊗ Tξ(ao))(〈i, j〉, ·) where:

cr =
Tχ(ao)u

T (i)

TaouT (i)

is a solution forWao(〈i, j〉, ·).

Proof. By Equation 3.46:

cr =
Tχ(ao)u

T (i)

TaouT (i)

=
Tη(ao)e

T (j)

Tξ(ao)eT (j)

By Equation 3.44:

Tχ(ao)Fχ(i, ·) · Taou
T (i) = TaoFχ(i, ·) · Tχ(ao)u

T (i)

Tχ(ao)Fχ(i, ·) = TaoFχ(i, ·) ·
Tχ(ao)u

T (i)

TaouT (i)

= TaoFχ(i, ·) · cr

137

By Equation 3.45:

Tη(ao)Fη(j, ·) · Tξ(ao)e
T (k) = Tξ(ao)Fη(j, ·) · Tη(ao)e

T (k)

Tη(ao)Fη(j, ·) = Tξ(ao)Fη(j, ·) ·
Tη(ao)e

T (k)

Tξ(ao)eT (k)

= Tξ(ao)Fη(j, ·) · cr

Therefore:

TaoFχ(i, ·) · cr ⊗ Tξ(ao)(j, ·) = Tχ(ao)Fχ(i, ·)⊗ Tξ(ao)(j, ·)

cr · (Tao ⊗ Tξ(ao))(Fχ ⊗ I)(〈i, j〉, ·) = (Tχ(ao) ⊗ Tξ(ao))(Fχ ⊗ I)(〈i, j〉,

Wao(Fχ ⊗ I)(〈i, j〉, ·) = (Tχ(ao) ⊗ Tξ(ao))(Fχ ⊗ I)(〈i, j〉, ·)

and

Tao(i, ·)⊗ Tξ(ao)Fη(j, ·) · cr = Tao(i, ·)⊗ Tη(ao)Fη(j, ·)

cr · (Tao ⊗ Tξ(ao))(I ⊗ Fη)(〈i, j〉, ·) = (Tao ⊗ Tη(ao))(I ⊗ Fη)(〈i, j〉, ·)

Wao(I ⊗ Fη)(〈i, j〉, ·) = (Tao ⊗ Tη(ao))(I ⊗ Fη)(〈i, j〉, ·)

Therefore Equations 3.25 and 3.26 have at least one solution (cr(Tao ⊗ Tξ(ao))(〈i, j〉, ·)) in

common for row〈i, j〉 under these conditions.

Similarly, there is at least one solution for Equations 3.27 and 3.28, if all states are

assumed to be compatible. This solution isbλ⊗ bλ. However,bλ⊗ bλ andcr · (Tao⊗Tξ(ao))

are not necessarily the optimal solutions, in terms of producing a more compact observation

function or model.

The problem with this approach is that this algorithm does not prioritize links between

states that are already compatible, as the graph flow matching algorithm did (Procedure

138

2.7.4). In the POMDP of Figure 2.8, usingbλ ⊗ bλ as the initial belief distribution match-

ing matrix while searching for the abstract model in Figure 2.8(b) results in an observation

compatibility relation in which no two observations are compatible. The graph flow algo-

rithm, when initialized using links between already compatible state pairs, produces the

observation compatibility relation illustrated in Figure 2.15.

3.11.1 Graph Based Matching algorithm

Rather than working directly with the transition matrices, the graph-flow algorithm in

Procedure 2.7.2 can be adapted for use with the OC-POMDP or PSR observation map

acceptance constraints. It requires a state to abstract state mapping function, however, this

can be constructed from the abstract and availability PSR matrices. If the OC-POMDP

acceptance constraints are being used,f andfη should be defined as in Equations 3.34 and

3.35.

If the PSR acceptance constraints are being used, define a state mapping functionf :

S → S̄χ according to the abstract PSR projection matrix:

f(si) = f(sj) ⇐⇒ Fχ(i, ·) = Fχ(j, ·)

Also define a state mapping functionfη : S → S̄η according to the abstract availabiltyPSR

projection matrix:

fη(si) = fη(sj) ⇐⇒ Fη(i, ·) = Fη(j, ·)

Substituting the state mapping function forFχ andFη may restrict the set of observation

maps, however, the graph flow matching algorithm has the advantage of being faster and

more accurate in general, so in many cases this trade-off may be worth it.

The graph matching algorithm remains largely unchanged from Procedure 2.7.2. Pro-

cedures 3.11.2 and 3.11.3 must be applied to ensure that Equations 3.44, 3.45 and 3.46 are

satisfied before the graph matching step may be performed.

139

For each state pair(i, j) to be merged, rather than one graph matching per actiona,

there must be one set of matching graphs for each matrixTao. The vertices of the flow

graph fors̄l ands̄r are:

• s (source node)

• L = {lm | m ∈ s̄l} (state nodes in̄sl)

• t (sink node)

• R = {rn | n ∈ s̄r} (state nodes in̄sr)

and edge capacities:

• cap(s, lm) = P (sm,o|si,a)
P (f(sm),κ(o)|si,a)

• cap(ln, rm) =

 1 if sn ∼c sm

0 otherwise

• cap(rn, t) =
P (sn,o|sj ,〈aκ(o)〉)

P (fη(sn),κ(o)|sj ,〈aκ(o)〉)

when calculating the compatibility matrix initially, andcap(ln, rm) = 1 in the augmented

graph when merging statesi andj.

The graph flow algorithm for these graphs is unchanged. Equations 3.44, 3.45 and 3.46

ensure that when all states are assumed to be compatible (cap(ln, rm) = 1), this graph flow

problem has a solution.

Theorem 3.17.If Equations 3.44, 3.45 and 3.46 are satisfied for statesi andj, then a flow

matching exists. This is due to the fact that the total outgoing capacity for the source, and

the total incoming capacity for the sink are equivalent.

140

Proof. By Equations 3.44, 3.45 and 3.46, for any pairs̄l ∈ S̄ ands̄r ∈ S̄η:

∑
sm∈s̄r

cap(s, lm) =
∑

sm∈s̄r

P (sm, o | si, a)

P (f(sm), κ(o) | si, a)

=
P (o | si, a)

P (κ(o) | si, a)

=
P (o | sj, 〈aκ(o)〉)

P (κ(o) | sj, 〈aκ(o)〉)

=
∑
sn∈s̄l

P (sn, o | sj, 〈aκ(o)〉)
P (fη(sn), κ(o) | sj, 〈aκ(o)〉)

=
∑
sn∈s̄l

cap(rn, t)

Since the graph between the source and the sink is fully connected when all states are

assumed to be compatible, the graph flow problem has a solution.

3.12 Time Experiments: Comparison to Existing Work

This section compares the performance of the OC-POMDP acceptance criteria, with

the graph flow search algorithm, to an existing history-based abstraction search algorithms

by Talvitie et al. (2008). This existing algorithm can be applied to an existing model. In

this form, it:

• takes as input a pair(M, κ) whereM is a PSR andκ is an observation mapping

function

• generates an observation compatibility function∼κ: O × O → {true, false} as

output

It solves the same problem as a single execution of Procedure 2.7.2. These experiments

therefore compare a single application of Procedure 2.7.2 to the performance of the history-

based algorithm.

The history-based algorithm examines pairs of histories. If two histories have different

abstract predictions, then any history mapping functionχ that gives them the same label

141

(a) (b)

(c)

Figure 3.6. Hallway domains in which the distance to the distinct states varies.

142

must be invalid. Talvitie et al. (2008) use two useful results to search over the set of history

pair for observation incompatibilities:

• only history pairs that differ by one observation (and no actions) must be compared.

If the outcomes of the two histories differ, these two differing observations are not

compatible.

• only history pairs of length less than or equal to the size ofQ, the core tests for the

original system, need be examined.

The maximum number of history pairs of lengthn is (|A| · |O|n), so, while the result is

useful in that it shows that a finite number of history pairs need to be examined, the number

of histories examined may still be exponential in the size ofQ. They demonstrate that in

some cases, the correct observation compatibility relation is constructed at a much shorter

history length, however.

7.50 1 2 3 4 5 6 7

160

0

20

40

60

80

100

120

140

Length of Shortest Path to Observation Pair

Ru
n

Ti
m

e
in

 S
ec

on
ds

Obs. Cond. POMDP

History Method

Figure 3.7. Comparison of the History Method and OC-POMDP method.

143

7.50 1 2 3 4 5 6 7

18,000

0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

History Length (n)

N
um

be
r o

f L
en

gt
h

n
H

is
to

rie
s

in
 H

M

Figure 3.8. The number of histories of lengthn for n from 1 to 7.

7.50 1 2 3 4 5 6 7

160

0

20

40

60

80

100

120

140

Length of Shortest Path to Observation Pair

Ru
n

Ti
m

e
in

 S
ec

on
ds

History Method

Figure 3.9. Comparison of the time and history length curves for the history based algo-
rithm.

144

Figure 3.7 shows the run time of the OC-POMDP observation splitting algorithm vs the

history based observation splitting algorithm. These results were gathered from domains

like the one shown in Figures 3.6(a), 3.6(b) and 3.6(c). In these experiments,7 POMDPs

were constructed. The first POMDP has the distinct observation states located one time step

from the starting states in each hall (Figure 3.6(a)). The second POMDP has the distinct

observation states located two steps from the starting states (Figure 3.6(b)), etc. The final,

seventh POMDP (Figure 3.6(c)) has distinct observations at7 steps from the starting states.

The initial observation mapping functionκ given to both algorithms was:

ō0 = {cheese}ō1 = {cat}ō2 = {white, lightgrey, grey, black}

And the observation compatibility function∼κ returned by both algorithms was the one

illustrated in Figure 2.15.

In these domains the determining factor in how long the histories must be in the history-

based algorithm of Talvitie et al. (2008) is the distance between the starting states and the

three states with distinct observations. The history method does well when the observation

distinction is close to the initial states (the left of the hallways), but eventually the growth

in the number of histories to examine causes the run time to increase far above the run time

of the OC-POMDP algorithm.

In these experiments, the history method was run to a fixed history length of1 for the

first POMDP,2 for the second, and so on. Figure 3.8 is a graph of the number of histories

of lengthn, for n = 1 to 7. In Figure 3.9, this curve is normalized to fit the range of

the curve of running times, demonstrating that the shape of the two curves is similar. In

general, the depth of search needed would not be known, and the algorithm could not verify

that the observation compatibility function is complete at the point at which it halts in these

experiments.

The OC-POMDP algorithm, on the other hand, was run to completion, and verifies

that the observation compatibility function it finds is complete. The number of states pairs

145

7.50 1 2 3 4 5 6 7

360

100

150

200

250

300

350

Length of Shortest Path to Observation Pair

St
at

e
Pa

irs
 E

xa
m

in
ed

Obs. Cond. POMDP

Figure 3.10. The number of state pairs examined for each POMDP, from1 to 7 states
between the initial belief and the state distinctions.

7.50 1 2 3 4 5 6 7

28

6

8

10

12

14

16

18

20

22

24

26

Length of Shortest Path to Observation Pair

Ru
n

Ti
m

e
in

 S
ec

on
ds

Obs. Cond. POMDP

Figure 3.11. Comparison of the shape of the curve representing the number of state pairs
examined by OC-POMDP, and the number of second to completion of the algorithm.

146

the algorithm must merge in order to find the desired observation distinction increases

automatically as the observation distinction moves further from the start of the hallways.

Figure 3.10 is a graph of the number of state pair merges performed by the algorithm for

each domain, from1 to 7. Figure 3.11 fits this curve to the range of run times for the

algorithm, and shows that the run time and number of state pairs examined have similar

curves as the domain complexity increases.

3.13 Conclusion

This chapter developed algorithms that construct the abstract shadow model and ab-

stract availability models as PSRs. This adds the option of constructing reward-directed

abstract models, which may be more compact than output-directed models for the same

target function. When the abstract PSR model is output-directed, the observation abstrac-

tions accepted by the shadow model and compatibility tests have been shown to be better

than those accepted by the abstract POMDP approach covered in Chapter 2. In some cases,

this is due not to the fact that the abstract PSR is built using basis vectors, but due to the

structure of the PSR model. In fact, a reasonable change to the abstract POMDP structure

to an OC-POMDP structure can remedy this difference.

147

CHAPTER 4

CONCLUSION

This dissertation focused on the case where the objective is to form an abstract model

based on a specific output function. Some examples of output functions include features

of objects, like size, position, color, etc. as well as features like “Is it raining?” or “Am I

tired?”. This type of model strikes a balance between abstract model compactness and re-

usability. Output function based abstract models can be re-used for families of tasks based

on their output function (“Move object to location x”), but they are not general purpose

models. Tasks where the definition of the goal of the task depends on other variables are

outside the scope of an output function specific model. So, for example, while the model

for agent location can be used for general navigation tasks, it cannot be used, for example,

to learn how to open a jar.

This tension between model size and re-usability may become more of an issue as

agents become less specialized. It may be practical currently to build a fixed abstraction into

the agent’s internal structure, however, this will not be practical for more general purpose

agents. A general purpose warehouse loading agent should be capable of adapting to new

materials in the warehouse, a general purpose housekeeping agent should be able to adapt

to new tasks as objects are added to its environment and need to be cleaned. However, this

does not necessarily mean that the agents must have a fully general purpose model of their

entire environment. In these examples the tasks for the agents were drawn from a family of

related tasks.

One of the main open questions this type of framework raises is the problem of choosing

a good set of output functions for an agent. Take the example of a mail delivery agent in

148

an office building. The same agent might construct many smaller abstract models, one

for each destination it must reach, or it can build a more general purpose “agent location”

abstraction for navigation. The overall learning efficiency of the agent over its lifetime will

depend on the time needed to construct the abstract models, the time needed to plan or

learn policies for each task in the abstract models, and the number of times each abstract

model is re-used.

This dissertation addressed a more basic problem, however. Agents such as the ones

described briefly above would occupy complex domains, where the state is not fully ob-

servable. Finding appropriate output function specific abstractions under these conditions

is quite difficult. Wingate et al. (2007) have demonstrated that when the state is relational,

consisting of objects and their relations to each other, abstractions like this can be useful.

However, they hand-craft the abstract models, and do not therefore include the time needed

to construct the abstract model in their calculations. Talvitie et al. (2008) provide a worst

case exponential time algorithm for finding such abstractions under these conditions.

This dissertation defined several alternative polynomial time search algorithms for find-

ing output function based abstractions. These algorithms address the idealized in that:

• they accept only perfectly accurate models

• they must be provided with an accurate original model.

However, they also relax the search problem in two ways:

• they sometimes reject accurate models in favor of larger abstractions

• even with the set of acceptable abstract models, the search strategy may not find the

smallest possible abstract model.

These approximations allow the algorithms to operate by examining local characteristics

of the original model. For example, the shadow model tests examine the abstract next state

distributions for individual (state, action) pairs. This avoids the problem of examining the

149

properties of either histories or belief state vectors directly, as the sets of histories and belief

state vectors can both be quite large.

However, this does not change the fact that these algorithms are designed for an ideal

that rarely exists. Take the example of the chess player, concentrating on the board and

ignoring the surroundings. While it would be hard to detect the affect that a nearby pigeon

has on the game, it is possible that there are some small details (the expression of a specta-

tor, observing the board or the way that the weather affects the mood of the opponent) that

would assist the player in making predictions in some small way. Approximate algorithms

that take this into account, ranking the observation distinctions by the amount to which they

affect predictions, can handle this case more appropriately.

Approximate algorithms can in many cases also perform faster than the idealized algo-

rithms outlined here. An approximate solution to the linear equations in Procedure 3.7.2

or the graph flow algorithm of Procedure 2.7.2 may produce a model that has good perfor-

mance more quickly.

Technically, the hardest part of the algorithms outlined here is the choice between mul-

tiple observation mapping functions in the observation map improvement step of Procedure

2.7.6. A measure of the cost of distinguishing between particular pairs of observations in

terms of the increase in the complexity of the abstract model would lead to better heuristics

for this step.

The algorithms outlined here solve an important problem: finding abstract models for

specific output functions when the state is partially observable. They should serve only as

a starting point for developing more practical approximate algorithms, however.

150

BIBLIOGRAPHY

Craig Boutilier, Ray Reiter, and Bob Price. Symbolic dynamic programming for first-order
mdps. InProceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI), pages 690–697, 2001.

Michael Bowling, Ali Ghodsi, and Dana Wilkinson. Action respecting embedding. InPro-
ceedings of the Twenty-Second International Conference on Machine Learning, pages
65–72, 2005.

A. Carlin and S. Zilberstein. Value-based observation compression for dec-pomdps. In
Proceedings of the Seventh International Conference on Autonomous Systems and Mul-
tiagent Systems (AAMAS), pages 501–508, 2008.

Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein.Introduction to
Algorithms. MIT Press, 2009.

Thomas Dean and Robert Givan. Model minimization in markov decision processes. In
Proceedings of AAAI, 1997.

Richard Dearden and Craig Boutilier. Abstraction and approximate decision theoretic plan-
ning. Artificial Intelligence, 89(1):219–283, 1997.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model mini-
mization in markov decision processes.Journal of Artificial Intelligence Research, 2003.

J. Hartmanis and R. E. Stearns.Algebraic Structure Theory of Sequential Machines.
Prentice-Hall, Englewood Cliffs, N.J., 1966.

Michael P. Holmes and Charles Lee Isbell, Jr. Looping suffix tree-based inference of par-
tially observable hidden state. InProceedings of the 23rd International Conference on
Machine Learning, 2006.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable stochastic domains.Artificial Intelligence, 1998.

J. G. Kemeny and J. L. Snell.Finite Markov Chains. D. Van Nostrand, New York, 1960.

Michael L. Littman, Richard S. Sutton, and Satinder P. Singh. Predictive representations
of state. InAdvances In Neural Information Processing Systems, volume 14, 2001.

Sridhar Mahadevan. Samuel meets amarel: Automating value function approximation us-
ing global state space analysis. InProceedings of the 20th National Conference on
Artificial Intelligence, 2005.

151

Andrew K. McCallum. Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis, Rochester University, 1995.

Ann Nicholson and Leslie Pack Kaelbling. Toward approximate planning
in very large stochastic domains. InProceedings of the AAAI Spring
Symposium on Decision Theoretic Planning, Stanford, CA, 1994. URL
citeseer.ist.psu.edu/nicholson94toward.html .

D.M. Park. Concurrency on automata and infinite sequences. In P. Deussen, editor,Con-
ference on Theoretical Computer Science, volume 104 ofLecture Notes in Computer
Science. Springer Verlag, 1981.

Avi Pfeffer. Sufficiency, separability and temporal probabilistic models. InUAI ’01: Pro-
ceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pages 421–428,
San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-800-
1.

Pascal Poupart and Craig Boutilier. Value-directed compression of pomdps. InAdvances in
Neural Information Processing Systems 15 (NIPS), pages 1547 –1554, Vancouver, BC,
2002.

B Ravindran. An Algebraic Approach to Abstraction in Reinforcement Learning. PhD
thesis, University of Massachusetts, 2004.

Yousef Saad. Iterative methods for sparse linear systems.SIAM, 2nd Edition, 2003.

Vishal Soni and Satinder Singh. Abstraction in predictive state representations. InPro-
ceedings of the 22nd Conference on Artificial Intelligence, 2007.

Richard Sutton and Andrew G. Barto.Reinforcement Learning. MIT Press, 1998.

Erik Talvitie, Britton Wolfe, and Satinder Singh. Building incomplete but accurate models.
In Proceedings of ISAIM, 2008.

David Wingate, Vishal Soni, Britton Wolfe, and Satinder Singh. Relational knowledge with
predictive state representations. InProceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, 2007.

Alicia Peregrin Wolfe and Andrew G. Barto. Decision tree methods for finding reuseable
mdp homomorphisms. InProceedings of the 21st National Conference on Artificial
Intelligence, 2006.

152

