PAYING ATTENTION TO WHAT MATTERS: OBSERVATION
ABSTRACTION IN PARTIALLY OBSERVABLE ENVIRONMENTS

A Dissertation Presented

by
ALICIA PEREGRIN WOLFE

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
February 2010

Computer Science

(© Copyright by Alicia Peregrin Wolfe 2010
All Rights Reserved

PAYING ATTENTION TO WHAT MATTERS: OBSERVATION
ABSTRACTION IN PARTIALLY OBSERVABLE ENVIRONMENTS

A Dissertation Presented

by
ALICIA PEREGRIN WOLFE

Approved as to style and content by:

Andrew G. Barto, Chair

Sridhar Mahadevan, Member

Shlomo Zilberstein, Member

Leslie Kaelbling, Member

Bruce Turkington, Member

Andrew G. Barto, Department Chair
Computer Science

To my mother, Mary Anne Schweitzer, for her time and patience.

ACKNOWLEDGMENTS

Thanks firstly to my committee, in particular for bearing with me through several sched-
ule changes. Also to the members of the Autonomous Learning Laboratory for many inter-
esting discussions, including but not limited to Ozgur Simsek, Amy McGovern, Balaraman
Ravindran, Sarah Osentoski and Ashvin Shah. Other members of the UMass Computer
Science community I've enjoyed many long discussions with include Victoria Manfredi,
Jen Neville, Lisa Friedland, Emily Horrell and TJ Brunette. Prof. David Jensen, while
not on the committee for my dissertation, was a helpful mentor and collaborator on earlier
projects.

Supportive friends and family include: Martin Walkow, providing the linguist’s per-
spective; my sister Rachel Wolfe who can always make me see the humor in any situation;
my father John Wolfe; who taught me to always question, question, question; and my
mother Mary Anne Schweitzer, who, in addition to probably hundreds of long phone calls
pitched in at the last minute to transport my shoes into town from Connecticut.

Also thanks to the many helpful staff members in the department, including but not

limited to Leeanne Leclerc, Barb Sutherland and Gwyn Mitchell.

ABSTRACT

PAYING ATTENTION TO WHAT MATTERS: OBSERVATION
ABSTRACTION IN PARTIALLY OBSERVABLE ENVIRONMENTS

FEBRUARY 2010

ALICIA PEREGRIN WOLFE
Combined B.A./B.Sc., BROWN UNIVERSITY
M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

Autonomous agents may not have access to complete information about the state of the
environment. For example, a robot soccer player may only be able to estimate the locations
of other players not in the scope of its sensors. However, even though all the information
needed for ideal decision making cannot be sensed, all that is sensed is usually not needed.
The noise and motion of spectators, for example, can be ignored in order to focus on the
game field. Standard formulations do not consider this situation, assuming that all the can
be sensed must be included in any useful abstraction.

This dissertation extends the Markov Decision Process Homomorphism framework
(Ravindran, 2004) to partially observable domains, focusing specically on reducing Par-
tially Observable Markov Decision Processes (POMDPs) when the model is known. This

involves ignoring aspects of the observation function which are irrelevant to a particular

Vi

task. Abstraction is particularly important in partially observable domains, as it enables the

formation of a smaller domain model and thus more efficient use of the observed features.

Vil

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ... e et e e el V..
AB ST RACT o Vi.
LIST OF TABLES . . .o e e e e e X. .
LISTOF FIGURES ... e e e e e Xi.
CHAPTER
1. INTRODUCTION . e e e e 1.
1.1 Background: Model Minimization 5
1.1.1 Controlled Markov Process Homomorphisms 9
1.1.2 Model Minimization in Partially Observable Domains 10
2. POMDP HOMOMORPHISMS: POMDP TO POMDP
ABSTRACTION .. e e 15.
2.1 INtrodUCHION . .o 15
2.2 Partial Observability 15
2.3 POMDP HOmMOMOIphisSmMS e e 17
2.4 Evaluatingan Observation Map., 25
2.4.1 AbstractModel 27
2.4.2 Abstract and Shadow Models: Two Examples 30
243 ShadowModel 33
2.4.4 Abstract Shadow Model i 36
2.4.5 Independence of Shadow and Abstract Models 38
246 TiMe ANalysis 42
2.4.7 Shortcomings of the Shadow Model 43
2.5 Compatible Shadow States e 47

viii

251 Composite Model 54

2.5.2 Compatibility Algorithm 64
253 TiMe ANalYSISt 71
2.6 Comparison of Shadow Model and Compatibility Tests. 72
2.7 Improving the Observation Mapt 73
2.7.1 Merging Distributions 76
2.7.2 Observation Splitst 77
2.8 Time Complexity. e 89
2.9 CONCIUSION . .o 89
3. THE KRYLOV BASIS: POMDP TO PSR ABSTRACTION 91
.l OVBIVIBW . oottt e 91
3.2 Background: Predictive State. 92
3.21 POMDP to PSR COmMPressionouiiiniinininnennn. 95
3.3 PSR HOMOMOIPNISMS e 99
34 OULINE .. 101
3.5 Shadow Model Test. 102
3.6 Compatibility Test.o e 111
3.7 Compatibility Algorithm 118
3.7.1 Time ANnalysSiSt e 120
3.8 Comparison of PSR and POMDP Methods 121
3.9 Observation and Value-directed Models 121
3.10 PSR vs. POMDP: One Step and Two Step Update Models 123
3.11 Observation Splittingot e 132
3.11.1 Graph Based Matching algorithm 139
3.12 Time Experiments: Comparison to ExistingWork 141
3.13 CONCIUSION . . . e e 147
4. CONCLUSION ... e e e e e e e 148
BIBLIOGRAPHY . 151

LIST OF TABLES

Table Page

2.1 Comparison of Procedures 2.4.1 and 2.5.1, and a direct simulation of
10,000 belief states (“Sim” column). In the observation map column,
observations are identified by their first letter, except in the case of
lightgrey (lg) andcat (a). Each set of observation symbols represents

a single abstract observation. 72
3.1 Comparison of Observation and Value-directed models. 123
3.2 Comparison of observation-directed POMDP and PSR algorithms. 125

3.3 Comparison of observation-directed OC-POMDP, POMDP and PSR
algorithms for the POMDP of Figure 3.4., 130

LIST OF FIGURES

Figure Page

1.1 Classes of abstraction methods, ordered in terms of both the specificity of

1.2

13

2.1

2.2

2.3

the models they create (from general purpose models to task specific
models) and the size of the abstract models they typically create.

General purpose models must generally include more information than

task specific models, while output function models occupy a middle

ground between the two extremes.co it iiinenannnnn 3

Action mappings would enable a reduction (b) of this simple gridworld
(a). This is a simpler example of the symmetric gridworld from
(Ravindran, 2004). The marked square in the upper right corner is the
“goal” and has positive reward, all other states have small negative
reward. Both starred states map to the same abstract state, and the
actions marked by arrows map to the same abstract action. Note that
depending on which actual state the agent is in, the abstract action may
correspond to either the action “right” or “up”. 7

The model acceptance sets for the range of algorithms presented in this
dissertation. e 13

Diagram illustrating the overlap between the accept sets for the two
approaches outlined in this chapter. The Compatibility Model
approach is more likely to find a smaller abstract model than the
Shadow Model since its accept set is a superset of the Shadow Model
ACCEPL SBL. . .ot e 25

The abstract model and the abstract shadow model (see Section 2.4.4),
illustrated as Baysian Networks. Three “rolled out” time steps are
shown. Action nodes are not shown. Shaded nodes are observed
variables. 28

In this gridworld (2.3(a)), there are two features. The cheese locations are
predicted by the column of the state, and the color of the location is
predicted by the row of the state. Abstract models for each feature are
shownin2.3(b) and 2.3(C).o oo 32

Xi

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

In this gridworld (2.4(a)), there are two features. The cheese locations are
predicted by the column of the state. The color of the state in this case
is also predicted by the column of the state. Abstract models for each
feature are shownin 2.4(b)and 2.4(C). ... 33

Abstract and shadow model interactions, shown as a Bayesian Network.
Three time steps are shown. Shaded nodes are observed. Action nodes
are not shown. The states of the two models are independent if the
observations, o, 0, etc, can be accurately predicted without
dependency edges between the state nodes of the two models. 38

Independence test for the initial belief state test, domain from Figure 2.3.
Black circles represent probability mass. The abstract shadow model
is shown to the right of the gridworld, and the abstract model is shown
DElOW It. . 41

Independence test for the initial belief state test, domain from Figure 2.4.
Black circles represent probability mass. The abstract shadow model
is shown above the gridworld, and the abstract model is shown below
L e e 41

Three corridor gridworld POMDP. The initial state distribution places the
agent in the leftmost state of each corridor with equal probability. The
colors of the states labeled “x”, “y” and“z” signal whether the agent
must go straight or turn right at the end of the corridor to choose
between the cheeseandthecat. i i, 44

Three corridor gridworld POMDP from Figure 2.8, with starting state
labels. The initial state distribution places the agentirs;, ands4

with equal probability. 51
The functionu, for the domain of Figure 2.9 for the abstraction shown in

Figure 2.8(b), illustrated asagraph............. 53
Matching graph for the belief state, 58

Matching algorithm graph for the abstract statd the left side

distribution) ands,. (in the right side distribution). See the text for

edge weightdefinitions. i 67
Summing over all pairs of abstract states to get the weight funetian. ... 67

Two hypothetical belief states for which tightgrey/greyfeature
distinctionwouldbe useful. 74

xii

2.15 Observation compatibility graph for the POMDP of Figure 2.8.
Compatible observations are linked by edges. 83

2.16 Three corridor gridworld POMDP with two noisy observation markers in
each hallway. In this case there are two color markings in each
hallway, which signal the type of hallway the agent is in, as well as the
location within that hallway. However, the observation of these
markers is noisy (see POMDP definition in text for details). 84

2.17 Observation compatibility graph for the POMDP of Figure 2.16.
Compatible observations are linked by edges. 86

3.1 The tree of tests for a POMDP. The bolded vectors correspond to the tests
A, a;04, a0y, anda,0,,a;0; Which are chosen to form the core set if
testsQ in this hypothetical example. Other tests are not expanded. 96

3.2 POMDP Krylov Subspace Projection Matrix................ccoviieinn .. 97

3.3 Three Hallway domain. Each hallway ends with a transition which has a
different reward distribution, but the same mean expected reward. 122

3.4 Integer Counter Domain. Three states are shown, representing three
numbers of 7 digits each. The “add 1” action increases the counter by
one, with noisy transitions, and the action “subtract 1” decreases the
counter by one, again with noisy transitions. Every other bit is hidden,
so that observations include only every otherbit. 124

3.5 The bayesian model from which the POMDP test is derived (Figure
3.5(a)) and the bayesian model from which the OC-POMDP test is

derived (Figure 3.5(D)). 126
3.6 Hallway domains in which the distance to the distinct states varies. 142
3.7 Comparison of the History Method and OC-POMDP method. 143
3.8 The number of histories of lengthfor n from1to7. 144

3.9 Comparison of the time and history length curves for the history based
algorithm. 144

3.10 The number of state pairs examined for each POMDP, framY states
between the initial belief and the state distinctions. 146

Xiii

3.11 Comparison of the shape of the curve representing the number of state
pairs examined by OC-POMDP, and the number of second to
completion of the algorithm. i 146

Xiv

CHAPTER 1
INTRODUCTION

One of the most important tasks an independent learning agent faces is to separate
what is important and relevant from what is not — to separate the wheat from the chaff.
Focusing on essential details can make a task possible: for example, when driving it is not
advised that one take in all of the scenery — focusing on the road and road signs improves
performance on the task (and safety). Separating what is relevant from what is not can
turn an intractable learning problem into a solvable one by reducing the complexity of the
problem. In humans, this is most obvious in competitive situations: the chess player whose
focus on the board is absolute, the basketball player who ignores the fans in the bleachers
to focus only on the basket. This is even more important when the state is only partially
observable.

The agent must solve two problems in order to construct a useful representation for a
task when state is partially observable. First, some information may be missing, and must
be inferred from the available observations: for example, the location of cars on the road
behind a driver, or hidden by other cars ahead of the driver. Typically it is assumed that all
of the information that is observed will be useful in making inferences about the missing
information. For example, the behavior of the other visible cars on the road can alert the
driver to hidden obstacles ahead. However, not all information is necessarily useful: paying
attention to details of the scenery, or cloud patterns overhead, is likely to distract the driver,
making the task more difficult. The second problem an agent must solve in order to find a

good representation is the problem of deciding which information to ignore.

Existing literature on abstraction for learning and planning in both partially and fully

observable problems can largely be grouped into two catagories:

e Specific task abstraction methods

e General purpose abstract representations

One example of the task-specific abstraction approach is the the UTree algorithm (Mc-
Callum, 1995). UTree is a decision-tree based abstraction algorithm, in which relevant fea-
tures are chosen to fit a specific task. Methods like value-directed compression for PSRs
(Poupart and Boutilier, 2002) and DEC-POMDPs (Carlin and Zilberstein, 2008) also fall
in this category. The advantage of taking a task-specific approach is that the abstract model
can ignore as much information as possible, leading to faster learning and planning.

Methods like Proto-Value Functions (PVFs) (Mahadevan, 2005) and Action Respecting
Embeddings (ARESs) (Bowling et al., 2005) fall at the other end of this specttufiney
create general purpose abstractions by transforming the agent’s representation of the envi-
ronment to more closely mimic the structure of that environment. In the case of PVFs, this
structure is the graph structure of the transitions between states of the environment, while
in the case of AREs, the structure is the local action transition behavior. Methods from
this catagory have two advantages: first, the abstract models may be constructed before the
agent knows what task it will need to perform, and second, the abstract models may be
used for multiple tasks. However, this generality means that in some cases the models may
be larger than a task-specific model would be, resulting in lower savings when planning or
learning.

This dissertation chiefly addresses an intermediate type of abstraction, one that falls
between the single task and general purpose abstract representations (see Figure 1.1). This
type of abstraction is built to predict a specific aspect of the environment, represented via an

output function. The output function could be anything from a boolean variable indicating

INeither of these examples have yet been adapted to accommodate partial observability.

)

=}
Q
=)
S I
2 5
& @
& Output Function \ =
1<)
3 Model a
g (<)
o
()
= &
(0]
General Purpose Model
()

Figure 1.1. Classes of abstraction methods, ordered in terms of both the specificity of the
models they create (from general purpose models to task specific models) and the size of
the abstract models they typically create. General purpose models must generally include
more information than task specific models, while output function models occupy a middle
ground between the two extremes.

whether some test is currently true (“is the glass on the table?”) to a feature of a specific
object in the agent’s environment (*how much water is in the glass?”). An abstract output-
function model must support planning and learning for any task that depends only on the
output function. In the first example, supported tasks could achieve each possible setting:
glass on or off the table. In the second example, any task that controls the level of water in
the glass (fill the glass, empty the glass, etc.) would be supported.

An abstract model is only useful if the savings garnered from using the model out-
weigh the cost of constructing it. Unlike the single task learning models, output-drected
models are not single-use abstractions, to be discarded once their target policy has been
constructed. In Wolfe and Barto (2006) we show that if the output function is chosen
wisely, an output-directed abstract model can be reused for multiple related tasks, amor-
tizing the cost of constructing the abstract model over multiple uses. However, learning
and planning only become more efficient if there is information that can be ignored by the
abstract model. Focusing on a single output function, rather than every possible task, can

also allow more information to be ignored than in general purpose abstract representations.

Algorithms like UTree can be adapted to build output-directed models. Wolfe and Barto
(2006) uses an adapted UTree algorithm to find output-directed abstractions when the state
is fully observed, but UTree was originally designed for situations with partially observable
state, and thus the same algorithm could be applied to partially observable situations. This
dissertation does not take quite that direction. UTree is a fast, approximate algorithm, with
several drawbacks, relating both to the fact that it is based on a Decision Tree algorithm,
and the fact that features are constructed over the entire history of the agent. Holmes and
Isbell (2006) address some of the issues with history-based features.

However, rather than focussing on a specific approximation algorithm, this dissertation

examines a more idealized case, in which:
e an accurate model is given
e an exact (accurate) abstraction of this model is required
e the observations have not been factored into features

It is unlikely that there are many cases in which an exact solution of this nature would be
practical. In practice, some approximate algorithm is likely to be the best option when
an agent’s computational time is limited. Nonetheless, the abstraction definitions and al-
gorithms that will be presented here serve several purposes. First, they will demonstrate
that polynomial time algorithms for abstraction construction are possible, even in this most
strict case (although it may not always be possible to find the smallest possible abstract
model in polynomial time). This is a step forward, as existing exact methods are exponen-
tial time in the worst case. Approximation methods will presumably further improve on the
run time. Second, when forming approximate abstract models it is important to understand
what is being approximated: a good approximation is not as useful if it is an approximation
of a poor target. Since the algorithms in this dissertation all find accurate models, the main
trade off the speed of the algorithm and the quality in terms of size of the abstract models it

finds. Each of the algorithms outlined in this dissertation includes two components: an ac-

ceptance criteria for abstract models, and a search strategy for finding an acceptable model.
Stricter acceptance criteria generally allow for faster evaluation, but may reject the small-
est abstract models in some cases. Several acceptance criteria and search strategies will be
evaluated relative to one another according to their speed and abstract model acceptance

sets.

1.1 Background: Model Minimization

This section covers definitions and methods developed for abstraction when the state
is fully observed, in particular Model Minimization in Markov Decision Processes. Model
Minimization was originally developed as a single-task abstraction approach, however, the
abstract models this approach produces are powerful enough to be used as output-directed
abstractions. These methods will be adapted throughout the remainder of the dissertation to
extend to cases where the state is not fully observed. This section first outlines the single-
task fully-observed Model Minimization definition, then reviews the modifications needed
to adapt this approach to more general output functions.

A Markov Decision Process (MDP) consists of a tuple A, T, R). S is a set of states
and A a set of actions. The transition functidh: S x A x S — [0, 1] represents the
probability of transitioning to each possible next state, given the previous state and action.
The reward function® : S x A — IR) represents the expected reward the agent receives
for being in a particular state and executing an action.

One of the earliest Model Minimization frameworks was based on methods used for de-
terministic planning with logical propositions (Dearden and Boutilier, 1997). In this type
of model, each action is defined as set of logical pre and post conditions. As initially sug-
gested in Nicholson and Kaelbling (1994), each action may have multiple non-overlapping
logical pre-conditions, each of which corresponds to a different distribution over post con-
ditions. The preconditions partition the state space into blocks: in each block the same

action has the same effect on the post-condition variables. For example, in a gridworld the

action of going forward might change the agent’s location when the proposition “in front
of a wall” is false, but not when this proposition is true. By examining the pre and post
conditions of possible chained sequences of actions, all propositions relevant to a particu-
lar reward function can be found in time linear in the the number of actions and number
of propositions used to represent the state (Dearden and Boutilier, 1997). Later versions
of this work added situation calculus and first-order axioms with objects (Boutilier et al.,
2001).

Dean and Givan (1997) and Givan et al. (2003) take a similar approach but base their
method explicitly on partitioning the state space according to the principles of stochastic
bisimulation, based on work on concurrent processes (Park, 1981), automata theory (Hart-
manis and Stearns, 1966) and stochastic processes (Kemeny and Snell, 1960). An initial
partition based on the reward function is constructed first. This is then refined by split-
ting the states into “stable” blocks: blocks in which the prediction of the next block which
will be encountered by the agent is uniform over all states in the same block. Givan et al.
(2003) also added a notion of “action-equivalence”, in which different actions which have
the same effect map to the same abstract action. A simple example of this might be the two
alternate methods of tying one’s shoelaces: both “actions” have the same ultimate effect of
creating a bow shape that holds the shoe closed.

Ravindran (2004) moves from the stochastic bisimulation notion to the notion of a
mathematical homomorphism between the true MDP and the abstract model (also an MDP),
again drawing on literature on automata theory and stochastic processes. A homomor-
phism, in general, is a mapping, possibly many to one, that preserves some important
aspects of the original system. In the case of MDP homomorphisms, this mapping is from
the states and actions of an MDP to the states and actions of an abstract MDP, and preserves
both the reward function, and the abstract transition function. The reward function is task
specific — an agent that must drive would have a different reward function from an agent

that must climb trees, for example. By focusing only on state and action distinctions in the

(a) (b)

Figure 1.2. Action mappings would enable a reduction (b) of this simple gridworld (a).
This is a simpler example of the symmetric gridworld from (Ravindran, 2004). The marked
square in the upper right corner is the “goal” and has positive reward, all other states have
small negative reward. Both starred states map to the same abstract state, and the actions
marked by arrows map to the same abstract action. Note that depending on which actual
state the agent is in, the abstract action may correspond to either the action “right” or “up”.

domain that are relevant to this specific function, homomorphic reduction can reduce the
complexity of learning the task.

An MDP homomorphism (Ravindran, 2004) is a mappihg; S x A — S x A,
from the states and actions of an MDRP = (S, A, T, R), to an abstract model MDP
M = (S,A,T,R). The mappingh must preserve both the reward function and some
properties of the transition probabilities df. Specifically, consists of a set of mappings:
f:S — S, and for eachs € S a mappingy, : A — A’ that recodes actions in a possibly
state-dependent way. The following properties must hold for all state and actiors pairs

and each next staté:

R(f(8)7gs(a)) = R(S’a) (11)
P(f(s') | f(s),g5(a)) = > P(s"]s.a). (1.2)
s'"els!]

where[s']; = {s|f(s) = f(s')}.

When a state mapping can be found that is many-to-one, the abstract MDFhas
fewer states tha/. The gridworld shown in figure 1.2a, for example, can be reduced to
the model shown in 1.2b. The homomorphism conditions ensure\fhatcurately tracks

the transitions and rewards &f but at the resolution of blocks of states and actions.

A reward function specifies positive or negative feedback for being in certain states
and performing certain actions. This can be translated into a policy for achieving optimal
reward over time. This optimal policy can be calculated Wwake functionv/* : S — IR.

For any state, the optimal value functior*(s) is defined as (Sutton and Barto, 1998):

* _ . / X x(!
V*(s) = max R(s,a) +~ ZP(S | s,a) - V*(s)| . (1.3)
s'eS
where~ is a discount factor betweénand1 that causes events further in the future to be
given less weight. The optimal policy chooses the action with the highest expected value.

The optimal action in stateis:

/ * /
arg max R(s,a) + - ZP(S | s,a) - V*(s)
s'eS
Let V* : S — IR be the optimal value function in the abstract MDP. It has been
shown (Ravindran, 2004) that the abstract and true value functions are the same for any

given states:

Vi(f(5)) = V7 (s). (1.4)

This property guarantees that policies optimalfércan bdifted to produce optimal poli-
cies of the larger MDRV/ (Ravindran, 2004; Givan et al., 2003). That is, for any state
the optimal action ins can be calculated by examining the abstract model and the value
function for the abstract MDR/ can be used to produce a policy for the MDP

The MDP Homomorphism framework can be used to construct task-specific abstract
models for MDPs. The framework lends itself to output function abstraction as well, how-

ever, as the next section will show.

1.1.1 Controlled Markov Process Homomorphisms

The MDP homomorphism definition was designed to focus on a single reward function.
Contolled Markov Process Homomorphisms Wolfe and Barto (2006) extend the framework
to more general output functions.

A Controlled Markov Process (CMP) is an MDP without the latter’s reward function:
(S, A, T). Reward functions make up one possible subcategory of functions over the states
and actions of a CMP. However, other more general classes of functions are also possible.
For example, given a set of symbdfs an output functiorl’ : S x A x Y — [0, 1] could
represent the probability of observing each output symbol after each state and action pair,

so that:
Y(s,a.y) = P(y | s,a).

The same basic principles and algorithms used to define MDP Homomorphisms can be
used to create homomorphisms which preserve predictions dabout

A CMP Homomorphism is defined as a mappihdgrom a CMP with outputC' =
(S,A,T,Y,T) to an abstract CMP with outpd = (S, A, T,Y,Y). The homomorphism
h is again made up of two parts: a state mapping funcfions — S and a state-specific
action mapping functiong, : A — A. The following constraints must be satisfied, for all

statess, s’ and actions::

P(y | f(s>7gs(a>> = P(y | S,CL) (1.5)

P(f(s) | f(s),9:(a)) = P(f(5') | 5, a), (1.6)

where:

P(f(s') | s,a) = Z P(s" | s,a).

5”6[5’}/‘

If these constraints are satisfied predictions and control strategi®sdaiculated inC'
can be accurately lifted t6'. For anysupportedreward function- : Y — IR defined over

the output function, the value of a state(ins given by:

Vi(s) =max | Y r(y)- Plyls,a)+v- Y P(s |as)- V(5|

a€A
yey s'eS

where~ is a discount factor betweeénand1.

The CMP Homomorphism constraints ensure that:

and thus, the value function can be calculated using the abstract model in order to find the

associated policy in the original model.

1.1.2 Model Minimization in Partially Observable Domains

There are two popular approaches to modeling partial observability. Partially Observ-

able MDPs (POMDPSs) (Kaelbling et al., 1998) model use “hidden” state to model the

unobservable portions of the state, while Predictive State Representations (PSRs) (Littman

et al., 2001) model the hidden aspects of the environment using predictions about future

observations.

According to Givan et al. (2003) :

The simplest way of using model-reduction techniques to solve partially ob-
servable MDPs (POMDPSs) is to apply the model-minimization algorithm to the
underlying fully observable MDP using an initial partition that distinguishes on

the basis oboth reward and observation moddihe reduced model can then

be solved using a standard POMDP algorithm. (emphasis mine)

10

This implies that every observation distinction observed by the agent must be modeled,
predicted and used by the abstract model. And yet it is often the case that some aspects of
the observations should not be included.

The simplest way to adapt the MDP Homomorphism framework for partial observ-
ability if abstraction over observations is desired is to transform the partially observable
problem into an MDP. This is the approach taken by Soni and Singh (2007) in their work
on Predictive State Representations (PSRs). There are three ways to construct a fully ob-
servable state set from a partially observable environment. The first possibility is to treat
the entire history of actions and observations at any given point as a state. The set of possi-
ble histories the agent might encounter is quite large — if there aessible observations,
andm actions the agent might take, there can be umta)’ histories in the set of histories
of lengtht, and there is no upper bound on the length of the history collected.

In a PSR or POMDP, “state” is maintained as a real-valued vector, which serves as
a sufficient statistic for history. These vectors can be treated as the states of an MDP.
However, the number of reachable real-valued state vectors can again be quite large —
in the worst case, the number of reachable state vector differs by a small constant from
the number of histories. Applying the CMP Homomorphism or MDP Homomorphism
constraints to any of these “meta” MDPs is therefore not a practical approach, though it
does represent the ideal homomorphism definition.

Even in this dissertation, the algorithms presented will not perfectly achieve this ideal.
The goal of any abstraction algorithm is to find a small abstract model (for example, one
in which the size of the abstract state space is minimized), but the algorithm must do so
within a reasonable amount of time.

In order to discuss this trade-off between abstract model size and algorithm run time, it

will be helpful to discuss two distinct aspects of the search for an abstract model:

1. The acceptance and rejection criteria that distinguishes between accurate and inac-

curate abstractions.

11

2. The search algorithm that generates candidate abstractions.

Applying the MDP or CMP Homomaorphism constraints to any of the three meta-MDPs de-
fined above produces perfect acceptance and rejection criteria for abstract models Search al-
gorithms designed to find MDP or CMP Homomorphisms find the minimal abstract mode.
However, the time complexity of these search algorithms is polynomial in the size of the
state space, which in this case corresponds to the number of reachable histories or state
vectors. Therefore, both of these criteria will need to be relaxed to achieve polynomial
time abstraction search algorithms.

Talvitie et al. (2008) present a search algorithm with exponential worst case run time
This is at least a bounded worst case run time. The algorithm examines pairs of histories in
order to test the abstraction for correctness. Rather than examining all histories, however,
they show that the length of the histories that must be examined is limitegvitherek
is the dimensionality of the state vector. There are no more thar)* histories of this
length, and in some cases, the required history length may be quite a bit shorter (although
the algorithm cannot detect this). However, the algorithm is not guaranteed to find the
smallest possible model. Instead, it identifies a family of accurate abstractions for the
desired output function, and uses heuristics to choose among them.

The algorithms presented in the next several chapters also relax the first property, the
acceptance and rejection criteria by which abstractions are accepted or discarded by the
search algorithm. Each algorithm presented here has the following property: whenever
the history-based homomorphism definition would reject a particular model, they reject it,
though they accept some subset of the accurate abstract models.

In general, stricter abstraction acceptance criteria imply that smaller abstract models
may be rejected in favor of larger abstract models that satisfy the criteria. Figure 1.3 illus-
trates the abstract model acceptance sets for the history based acceptance criteria, as well
as the three types of abstraction criteria that will be presented in this dissertation. Each

acceptance criteria is based on and defined in terms of a different type of abstract partially

12

Abstract
POMDP

Abstract
Conditional
POMDP

Abstract Predictive State
Representation (PSR)

Figure 1.3. The model acceptance sets for the range of algorithms presented in this disser-
tation.

observable model. The algorithms avoid the exponential running time of the existing algo-
rithms by examining local characteristics of the abstract model. In the abstract POMDP,
these local characteristics are abstract state predictions for individual state/action pairs. The
abstract conditional POMDP uses similar local characteristics to test each model, though
the model itself has a different form. In the case of the abstract PSR, the local characteris-
tics are the probabilities of abstract tests.

In the case of this family of abstract models, the size of the acceptance set is directly
related to the worst case running time of the corresponding abstraction search algorithm.
The algorithm that searches for an accurate abstract POMDP is faster than both the abstract
conditional POMDP search algorithm and the abstract PSR search algorithm. However, it
also has the smallest acceptance set, and this may add complexity to the abstract model
found.

The following chapters define each of these types of abstract models, along with their

associated acceptance and rejection tests and search algorithms. The acceptance set rela-

13

tionships shown in Figure 1.3 will be proven, and examples of the types of environments

that cannot be accurately reduced by each algorithm will be presented.

14

CHAPTER 2

POMDP HOMOMORPHISMS: POMDP TO POMDP
ABSTRACTION

2.1 Introduction

This chapter focuses on the most restrictive abstract model acceptance criteria in this
dissertation: the abstract Partially Observable MDP (POMDP) criteria. POMDPs are a
widely used model for partial observability. This chapter outlines methods that find a
mapping from a POMDP to an abstract POMDP, using the MDP/CMP Homomorphism

definitions outlined in the previous chapter as a starting point.

2.2 Partial Observability

In an MDP or CMP, the full model state is observed. A Partially Observable MDP
(POMDP), on the other hand, does not include fully observed state. Instead, a set of obser-
vations are used to make inferences about the state, which is hidden.

A POMDP (Kaelbling et al., 1998) is defined as tupte A, 7', O, 2), whereS, A and
T form an underlying CMPO is the observation set, afd: S x A x O — [0,1] is the
observation function, which gives the probability of each observation after each state and
action: Q(s,a,0) = P(ols,a). Over time, action/observation sequences accumulate into
histories. The history sdl contains the empty history and inductively, for any, € H,
o€ O,anda € A, H containshao.

Predictions about the future, planning and learning in a POMDP can be calculated using
belief state. A belief state encodes the probability of being in each state, in the form of a

history-specific functio, : S — [0, 1]. Each element,(s) is the probability of being in

15

states € S after observing history. The initial belief statep,, for the empty history must
be specified as an auxiliary portion of the POMDP definition. This belief is updated over

time over time using the following formula, for each state

P(ols',a) - 3 s P(5ls, @) - bi(s)

. 2.1
S s P(0]57,a) - ocq P(5"]5,0) - bu(s) @1

bhao(sl) -

This update rule can be separated into two steps, the action update and the observation

update:

bra(s') = P(s']s,a) - bu(s) (2.2)

ses
P(ols';a) - bya(s')
> wres Pols”,a) - ba(s”)

bhao(s') = (2.3)

For a particular POMDP and initial belief state pairing, some histories can be generated
by the transition and observation functions, and some cannotHletlenote the set of

valid histories for the POMDR/;
Hy = A{h| th(s) > 0}. (2.4)
ses

Often multiple histories have the same belief state. The set
By = {bn | h € Hy} (2.5)

contains all unique belief states reachable via some history.
The value function in a POMDP can be defined in terms of belief states. For a reward

functionr : S x A — IR:

V*(by) = max Zr(s, a) - bp(s) + VZ V*(bhao):

seS oeO

> " Po|s.a) - bua(s) (2.6)

s'eS

16

2.3 POMDP Homomorphisms

A POMDP Homomorphism is a mapping from a POMDP = (S, A, T,0,) to an
f: S — S, action mapping; : A — A and observation mapping: O — O. The action
mapping functiory is not state specific, since state specific action mapping functions (the
set of functionsy,, with one function per state) could create conflicts in the policy for
some belief states.

The abstract initial belief functioh, for M is defined in terms of,, the initial belief

function for M ;

ha(f(s) =D b(s) (2.7)

s'€[s]y

The set of abstract histories for the abstract POMDPs H. A history mapping
x : H — H from histories ofM to abstract histories af/can be defined using the action

mapg and observation mag:

A=A (2.8)

The abstract belief state after histdryvill be denoted,).

Soni and Singh (2007) use a similar abstract history mapping function to define homo-
morphisms for Predictive State Representations (PSRs), which are an alternative represen-
tation for partially observable domains, as discussed in Section 1.1.2.

As with CMP Homomorphisms, rather than focusing on a specific reward function,
POMDP Homomorphisms are defined with respect to an output function, which might
be some feature like position, color, etc. The POMDP output funatiedefined over

observations and output symbols in the outputBet¢ : Z x O — [0,1]. The first

17

constraint that a valid POMDP homomorphism must obey is that the abstract observations

must predict the output symbols, by preserving the output function:

¢(0,2) = ((k(0), 2) (2.9)

This is the first POMDP Homomorphism constraiht.

The abstract observation functiéhis defined over abstract states, actions and obser-
vations:Q : S x A x O — [0, 1]. It must also be consistent with the original observation
function2. This leads to the second POMDP Homomorphism constraint. For all states

actionsa, and observations

Q(f(s),g(a),/{(o)) = Z Q(S,CL,O,).

o'€lo]x

Written in probability notation the constraint is:

P(r(0) | f(s),g(a)) = Y P(d|s,a) (2.10)

This constraint implies that all states which map to the same abstract state must have the
same abstract observation probabilities«(o) | s,a), for all a,o. Note the similarity
between this equation and Equation 1.5, which is the output constraint in a CMP.

The abstract transition functidfi must also be consistent with the original transition
functionT'. This leads to the third POMDP Homomorphism constraint. For all states

actionsa, and next states:

litis also possible to define the output function over states and actions, rather than observations. We have
chosen to use this definition as it simplifies the notation slightly.

18

T(f(s),9(a), f(s') = D T(s,a,5").

S"E[S’]f
written in probability notation this is:
P(f(s')] f(s).9(a) =) P(s"|sa) (2.11)
SHE[SIL“
= P(f(s') | 5,a).

Note the similarity between this equation and Equation 1.6, which is the transition con-

straint in a CMP.

Belief state updates in the abstract POMDP proceed according to the definitidns of
and().

The constraints in Equations 2.9 - 2.11 are not sufficient without one additional con-

straint over the belief states 8f and, for each history: in H,;:

by (F(s) = Y bu(s) (2.12)

s'€[s]f

This last constraint is difficult to verify directly, since naively it requires the analysis of
every history inH,,;. However, several similar but more restrictive constraints can be used
in its place. Most of this dissertation will be dedicated to defining alternative constraints

which:

1. Can be evaluated in polynomial time in the size of the POMDP state, action and

observation sets.
2. Always reject candidate homomorphisms that Equation 2.12 rejects.

3. Accept many of the candidate homomorphisms that Equation 2.12 accepts.

19

The trade off will be between the speed of the evaluation time and the number of candidate
mappings accepted. Rejecting acceptable mappings generally means accepting a possibly
larger abstract POMDP which fits more stringent constraints.

The POMDP Homomorphism constraints specified by Equations 2.9 - 2.12 entail a
number of useful properties, the most important of which is that the POMDP value function
is preserved if they are satisfied.

Before delving into these properties, it is useful to give a few notational details. For any
abstract observatianec O, the labeb will be used as shorthand for the set of observations
which map to the abstract observati@nparticularly in the ternv € o, which should be
read a® € {o|x(0) = 0}. This means, for example, that the statemé&fts o, x(0) = o,
and{o € x(0')} = [0]. are both true. Similarly, for an abstract state S, the notation

s € §is shorthand fos € {s|f(s) = s}. The shorthand,(s) refers to)_ __b.(s) for

s€s
s5€8.

An abstract observation sét is self-sufficient(Pfeffer, 2001) if it predicts itself —
that is, for any historyh and actiorz, the history mapping functiog and action mapping

functiong must preserve accurate predictions about each abstract observation

P(o|h,a) = P(o]x(h),g(a))

Lemma 2.1. If a POMDP homomorphism satisfying Equations 2.10, 2.11 and 2.12 exists

for the observation mapping, O is self-sufficient.

Proof.

20

Vh € Hy,P(0| h,a) = th ZP(O[S,@)

seSs 0€0

= by(s)- P(o]s,a) Definition of P(| s, a)
seS

= ZP(@ | f(s),g9(a)) - by(s) Equation 2.10
ses

— Z Z P(o| f(s),g(a)) - bn(s) f partitionsS
5€8 s€s

_ Z P(o Z bu(s Definition of f
seS s€s

=> P(0]35,9(a)) by(s) Equation 2.12
o

= P(o] x(h), 9(a))

]

As previously mentioned, any POMDP can be transformed into a “history” CMP (though
the state set of the CMP is possibly infinite in size). The CMP uses the set of reachable
histories {,,) as the state setC'y = (Hy;, A, Ty). The transition functior?y; for two

historiesh andhao is defined as follows:

Ty (h,a, hao) = P(o|h,a)

in all other case§y (h, a,h’) = 0.

Lemma 2.2.If f, g andx form a POMDP homomorphism satisfying Equations 2.9 -2.12,
theny andg form a CMP homomorphism over the history CKIF;, with output set” = 7
and output functiol'(h,a, z) = Y ., P(o | h,a) - ((o, 2).

Proof. Output distribution:

21

Vh € Hy, Y (h,a,z) = ZP(O | hya) - ((o,2)

0e0

=Y {(k(0),2)- Y P(o]| h,a) Equation 2.9
€0 0€0

= > C((0),2) - P((0) | h,a)
€0

= C(k(0),2) - P(0] x(h), g(a)) Lemma 2.1
6€0

=T(x(h),9(a),z)

Transitions:

Tu(x(h), g(a), x(hao)) = P(k(o) | x(h), g(a))

= P(k(0o) | h,a) Lemma2.1

= Y P |ha)

o'€lo]k

= Z Ty (h,a, hao')

hao' €[haoly

]

A similar CMP Cs = {By, A, T} can be constructed using belief states as the state
set. The same result can be proven for this belief state CMP, using much the same proof.
One of the most important properties of a homomorphism is that it preserves the optimal

value function, and thus the optimal policy.

Lemma 2.3. A POMDP homomorphism preserves the optimal value function for any re-

ward functionr : Z — IR which is a function of the POMDP output set.

22

Proof. Sincey, g is a homomorphism for the CM@y:

Vh € Hy, V(h) =V (x(h)) Lemma 2.2

WhereV is the value function of in the history CMPCy, andV is the value function
of r in the abstract history CMP'z; which results from the application of the history state
mappingy and action mapping.

In any POMDP, the value of a belief state is the value of the history corresponding to

that belief state:

Vh € Hyr, V(h) =V (by). POMDP definition

This is true in the abstract POMDP as well:

Vh € Hu,V(x(h)) = V(byn)- POMDP definition

Putting these facts together:

V(bn) =V (h)
=V(x(h))
= V(b))
And thus the value function fat/ can be lifted from)/. O]

The general outline of the entire POMDP Homomorphism finding algorithm is shown
in Procedure 2.3.1. The next several sections will build up this algorithm in stages, start-
ing with the problem of evaluating a given observation mappingnd presenting two
reasonable alternatives to Equation 2.12. The problems addressed, in order of appearance

are:

23

Procedure 2.3.1Find POMDP Homomorphim{/ = (S, A, T, 0, Q), output = (Z,())

calculateO to predictZ

calculatef andg to supportO

while «, f, g is not a homomorphisrdo
improve/evaluate:
calculatef andg to supportO

return x, f, g

e Evaluatex when for all observation/state/action combinatiof§p | s,a) > 0

(Shadow Model test).

e Evaluatex when there are some observation probabilities whicti #8hadow Com-

patibility test).
e Improvex based on its evaluation (using either algorithm)

Both of the algorithms for evaluating a giverconstruct the state and action magpandg
in the process of evaluation. Both algorithms also construct data structures which will be
used to refine:. Both of these evaluation algorithms run in polynomial time in the worst
case, though the assumption ti#b | s, a) > 0 allows the first algorithm to be somewhat
faster in the worst case than the second.

Figure 2.1 illustrates accept sets for these two algorithms. The Shadow Model test
accepts a smaller set of abstractions, particularly where the requiremeRtthat, a) > 0
is not met. In fact, in many cases where this requirement is not met, this test rejects all
possible abstractions — up to and including the abstraction formed by the identity mapping.
The Shadow Compatibility test has a larger accept set, indicating that in some cases it may
accept smaller abstract models. This test is also more complete in that it will accept at
least one mapping function for any given POMDP, since the identity mapping is always
accepted.

The problem of finding an optimal refinement:otinder this framework will be shown
to be NP-hard in the worst case, whB(v | s,a) > 0 is not satisfied for all state, actions

and observations. However, the data structures used in evaluating be used to narrow

24

Shadow
Model

Shadow
Compatibility

History Tests

Figure 2.1. Diagram illustrating the overlap between the accept sets for the two approaches
outlined in this chapter. The Compatibility Model approach is more likely to find a smaller
abstract model than the Shadow Model since its accept set is a superset of the Shadow
Model accept set.

the search for better observation maps by pinpointing aspects of the abstract model that
should be improved. As with the observation mapping function refinement algorithm in
Talvitie et al. (2008) (discussed in Section 1.1.2), theefinement algorithm identifies a

set of acceptable observation mapping functions. Using the Shadow Model and Shadow
Compatibility test data structures, this set can be found in polynomial time (rather than
exponential). However, the problem of choosing the specific observation mapping function
in this set for which the smallest abstract state and action sets would be required is still
NP-complete in the worst case. Any heuristic that chooses an element from the set of
acceptable observation mapping functions will produce an accurate model, but it may not
be the smallest model satisfying the acceptance criteria. Nevertheless, identifying this set

in polynomial time is an improvement over the existing literature.

2.4 Evaluating an Observation Map
Evaluating a given observation map to determine whether it corresponds to a valid

POMDP homomorphism is central to the task of building an abstract observation function.

25

In this section it will be assumed that every observation occurs in every state with some

probability. That is, for all stateg actionse and observations:

P(o|s,a) > 0. (2.13)

Section 2.5 will relax this assumption.

The algorithm for evaluating the observation majs shown in Procedure 2.4.1. If
Procedure 2.4.1 succeeds, g andx form a valid homomorphic reduction df/. This
test is practical: it does not require the examination of every histo/ jn as a naive
examination of constraint Equation 2.12 might. However, if the test fails, it is still possible
that Equations 2.12 could be satisfied, and that examining every histéfy, iwould have
verified this fact.

At a high level, the algorithm has 3 parts:

e construct the abstract model

e construct ashadowmodel

¢ determine whether the shadow and abstract models are independent.

The full observation set consists of two types of information: information that is used by
the abstract model, and information that is not. The shadow model keeps track of all of
the information that is ignored by the abstract model (see Figure 2.5 for an illustration of
the relationship). The belief states of the shadow model form a sufficient statistic for the
observation information that is ignored by the abstract model. If the shadow belief state
cannot be used to improve abstract belief state predictions, then the unused observation
information also cannot be used to improve abstract state predictions.

The shadow model (Figure 2.2(c)) treats the abstract observation as a node with no par-
ents, similar to an action, and observes the true observa@acording to the conditional

probability P(o | s,a,0).

26

Procedure 2.4.1Evaluate observation mapping(= (S, A,7,0,Q),0,x : O — O)
verify ((o, z) = ((k(0), z) directly

/I Construct an abstract CMP model for
C—(S,AT)

Q,:Sx AxO—[0,1]

Q,(s,a,0) = P(5 | s,a)

f, g < findCMPHomomorphisnt(, output = (O, ,))

/l Construct an abstract “shadow” CMP fer
C—(S,AT)

Qe: S xAx 0O —[0,1]

Qe(s,a,0) & g5

fe, ge — findCMPHomomorphisnt{, output = (O, €))

/I determine whether the two CMP models operate independently of one another
forall s€ S,a e A, s € Sdo

PUF() A S5, @) = Sy, P 15,0)
it~ (PU(s) A fe(s)ls,a) = PUF(S)IF(5), 9(a)) - PUfels))| fe(s). g¢(a))) then

return false
forall s € Sdo

OA(f(s) A fels)) < Zs"e[s]fn[s]fg ba(s")
i~ (02 (F(5) A Je(5) = ba(F(5)) - b)) then

return false

/] Test passes
return f, g,k

If the abstract and shadow states are independent over time, then the true observation

does not add any information that would help predict the abstract observations.

2.4.1 Abstract Model

The second step of Procedure 2.4.1 constructs a candidate abstract madel Ra-
call that Equations 2.10 and 2.11 resemble Equations 1.5 and 1.6, the constraints of a CMP
Homomorphism. Procedure 2.4.1 constructs an abstract POMDP via a CMP Homomor-
phism, with one caveat: no state specific action mapping functions. Rather than a set of

functionsg, : A — A for each state, there must be a single, global action mapping func-

27

f(s) :@
(b) Abstract Model (c) Abstract Shadow Model

Figure 2.2. The abstract model and the abstract shadow model (see Section 2.4.4), illus-
trated as Baysian Networks. Three “rolled out” time steps are shown. Action nodes are not
shown. Shaded nodes are observed variables.

tiong : A — A. State-specific action maps cannot be used in this context because they
could introduce conflicts in the policy when the state is uncertain. Procedure 2.4.2 outlines
the algorithm for finding a CMP Homomorphism, when state-specific action maps are not

used. Define:

The state and action mappingsand g constructed in Procedure 2.4.1 form a CMP ho-
momorphism for the CMPS, A, T') with output(O,). This CMP Homomorphism pre-

serves the following constraints in the abstract model:

P(o| f(s),g9(a)) = P(o] s,a) Equation 2.10 (from Equation 1.5
P(f(s;) | f(s0), = Y P(s|sia) Equation 2.11 (from Equation 1.6
s€[s;]f

Let M, be a POMDP with abstract observations, but the original state and action sets:

28

Procedure 2.4.2indCMPHomomorphisn{ = (S, A, T), output = (Y, Y))

// PartitionS to createf, and.S, such that

fO(Si) = fO(Sj) — P(y | Siva) - P(y ’ Sjaa) (VCL € Aavy € Y)

T=0

repeat)
// Partition A to createy, . ; and A, such that)
gri1(ai) = gria(a;) <= P(5|s,a;) = P(5]s,a) (Vse S,s€8;)
// Partition S to createf,,; and.S,,; such that B B
f7—+1<8i) = f7—_|_1(8j> < P(§ | Sud) = P(§ | Sj,d) (\V/d S A7—+1,§ € ST>
/l and
fr1(s:) = fria(sj) <= Py |sia) = P(y| s, a) (Va€ A,Vy €Y)
T—T1+1

until S, = S,_;

return f,g

MX = (S>A7T> OX>QX)' (214)

The belief state for abstract histogyfh) (defined in Equation 2.8) in/, will be denoted
by(n),» and the initial belief state i,y = b,.

If f: S — Sandg: A— A, let M, denote the candidate abstract POMDP:

M, = (5, A,T,0,,9,). (2.15)

whereT is consistent with Equation 2.11 afit], is consistent with Equation 2.10. The
belief state for abstract history(k) in M, will be denotedb, ;). The initial belief state

by(n Is defined:

by (5) =Y ba(s). (2.16)

SES

At this point in the algorithm, it is not yet possible to determine whether the candidate
abstract moded/,, is a homomorphic abstraction faf. However,)M, can be shown to be
a homomorphic abstraction fdr,. The Lemma 2.4 shows that the mapping fraf) to

M, satisfies Equation 2.12, in addition to Equations 2.10 and 2.11.

29

Lemma 2.4. For anyh € Hy; ands € S:

Proof. By Structural Induction orf ;.

Base caseX): By definition, for anys € S:

by (8) =D ba(s) = Y by (s).

SES SES

Inductive step & to hao):

O]

This Lemma shows that the abstract POMDP maintains its abstract belief state as accu-
rately as the abstract observations allow. Ny must be tested to determine whether its
state estimates are as accurate as they would be if the full observation set were accessible.

This requires the construction of tseadowmodel (Figure 2.2(c)).

2.4.2 Abstract and Shadow Models: Two Examples
The shadow model is somewhat easier to understand when the observations are factored
into features. Consider the gridworld shown in Figure 2.3(a). The POMDP for this domain

is defined as follows:

30

States: Each square in Figure 2.3(a) represents a location. State is the agent’s location.
Actions: up, down, left, right

Transitions: Actions fail with a small probability,. Failure results in no change to the

state.
Observations: Factored, with two features:

e booleancheese or —cheese feature

e color feature:lightgrey, grey, black

Observation Function: In each state, the agent observes only the features of the square
it currently occupies. Each feature takes on a random noise value with some small

probabilitye,.
Initial Belief State: Uniform probability of being in each state.

Take(to be the booleanheese indicator feature. Other observation features may be
relevant to predicting or not relevant. Consider the following observation map, directly

determined frona:

e Abstract observation 1: all observations wifkeese

o Abstract observation 2: all observations withheese.

Figure 2.3(b) is a candidate abstract POMDP model for the this observation function, con-
structed via a CMP Homomorphism fo$, A, T'), with output functioncheese/—cheese.
Each abstract state represents a cluster of three states, grouped according to column. The
row coordinate of the state is not helpful in predicting the output function, and is ignored
in the abstract model.

Figure 2.3(c), on the other hand, is the “shadow” model left behind by the abstract
model forcheese. Without thecheese feature the only remaining feature is color, so that

the shadow observations are:

31

HVW

(a) Domain

]

(b) Abstract Model: Cheese Feature (c) AbstractModel: Color Feature

Figure 2.3. In this gridworld (2.3(a)), there are two features. The cheese locations are
predicted by the column of the state, and the color of the location is predicted by the row
of the state. Abstract models for each feature are shown in 2.3(b) and 2.3(c).

e Shadow observation 1: all observations Witv.tgrey
e Shadow observation 2: all observations wjitey
e Shadow observation 3: all observations withck.

The abstract shadow model is shown in Figure 2.3(c), and is formed by a CMP Homomor-
phism for the CMR(S, A, T'), with output functioncolor. In this case, the abstract model
only retains row information in the abstract state and ignores column information.

Since Figure 2.3(b) (the abstract model#beese) uses column information and Figure
2.3(c) (the shadow model fehcese) uses row information, and the row and column state
features do not affect one another in this gridworld, the abstract and shadow models should
be verifiably independent in the final test.

In Figure 2.4, on the other hand, the color of the locations varies with column, not row.

This implies that color information could be used to improve estimated column location,

32

(a) Domain

N

(b) Abtract Model: Cheese (c) Abstract Model: Color
Feature Feature

Figure 2.4. In this gridworld (2.4(a)), there are two features. The cheese locations are
predicted by the column of the state. The color of the state in this case is also predicted by
the column of the state. Abstract models for each feature are shown in 2.4(b) and 2.4(c).

and thus predictions about cheese. A test ofdhese/—cheese observation abstraction
should reveal the fact that something useful has been left out of the abstract observation
function.

The abstract model for théieese/—cheese observation abstraction for this domain is
shown in Figure 2.4(b), and the shadow model for this abstraction is shown in Figure 2.4(c).
In this case the states of the abstract and shadow models are perfectly correlated (i.e. not

independent).

2.4.3 Shadow Model

In the examples of Figures 2.3 and 2.4, observations are defined by observation features,
and in addition these features are independent of each other given the state and action.
Under these conditions, the shadow observation set can be defined via the set of unused
observation features. However, in general this may not be the case.

Consider some arbitrary belief state Each update”(s’ | b, a, o) for the next state

s', actiona and observatiom can be calculated in stages. The POMDP update rule has

33

two stages: firstP(s’ | b,a) is calculated (Equation 2.2), theP(s’ | b, a,0) (Equation
2.3). To construct the shadow observation function, notice that the update can be further

deconstructed into three stages using
1. calculate:P(s'|b,a) forall s € S
2. use the results of 1 to calculatB(s'|b, a, (o))

3. use the results of 2 to calculate(s'|b, a, o)

Separating the POMDP update rule into these 3 component parts yields:

k(o) update o update
a update N p N <
) =" P(k(o)|s',a) P(o]|s';a) P(k(o)]|b,a)
Pllba0) = P10 B Tha) Plolha) Pino) | oa)

The model)/, uses updates 1 and 2, but not update 3:

k(o) update
——N—_—
P(x(o) | s’ a)
P(k(0) [b,a)
__ P(9)[5,a)3., P(s"[s,a) - b(s)
2o P(r(0) [8',a) 32, P(s" | s,a) - b(s)

a update
———
P(s | b,a, k(o)) = P(s'| b.a)-

which is just the POMDP update rule (Equation 2.1) for a POMDP that has abstract obser-
vations (\/,,, defined in Equation 2.14).

The shadow model, on the other hand, is defined by updates 1 and 3, but ignores update
2. The shadow model update rule treats the abstract observdtipas an action, rather
than an observation to be predicted (see Figure 2.2(c)). The action set is thetefore
O, and individual “actions” can be writtefu, 6), wherea is an action and an abstract

observation. The shadow model update rule is:

o update
a update N -
: =77 Plo]s,a) P(ko)|ba)
P(S ’ b7 <CL, 5(0»70) X P(S | b7 a) P(O | b, CL) P(FL(O) | 8',@)

34

Since the ter }f((o‘l’yz;) does not vary with¥’, this simplifies to:

o update
P(o] s a)
P(k(0) | §',a)

a update
——
P<S/ ‘ b, <Cl, ’%(0)>70) X P(S/ ’ b, a) ’

Normalizing to get a probability distribution over statés

P(ols’,a
P(s'1b.0) - piorirg

- P(o|s’,a)
2y P(s"10,0) - 550 0a

P(ols’,a
P(n(((|))|s’,)a) > P(s' | s,a) - b(s)

P(ols’,a
ZS’ P(n(((l)|s’,)a) Zs P(S, | 8, CL) ’ b(S)

P(s"| b, (a, 1(0)), 0)

This is similar to the POMDP update rule (Equation 2.1), with observation probability
function %. The shadow model is a POMDP with this observation probability
function.

In the special case represented by Figures 2.3 and 2.4 the observation set is factored
into independent features. Under these conditions, the observatio%’f,%ﬁ% reduces
to the probability of the unused feature set. Take, for example, the two observatiens
lightgrey A\ cheese ando, = lightgrey A —cheese. When the abstract observation includes

only cheese/—cheese information, the observation ratios for boh ando, reduce to the

probability of thelightgrey feature. For any stateand actionu:

P(oy | s,a) P(lightgrey,cheese | s,a)
P(k(01)] 8,0) D cceotors P(C; cheese | s,a)
P(lightgrey | s,a) - P(cheese | s,a)

P(cheese | s,a)

= P(lightgrey | s,a)

and

35

P(oy | s,a) P(lightgrey, —cheese | s,a)

P(k(02) | $,a) D cootorns P(C: Cheese | s, a)
P(lightgrey | s,a) - P(—cheese | s,a)

P(—cheese | s,a)

= P(lightgrey | s,a).

wherecolors = {lightgrey, grey, black}.

However, if appropriate observation features are not provided, or if the observation
features are not conditionally independent given, the ratio may not simplify in this

: P(o|s’,a) :

manner and the rati (o) Tray MUSt be used directly.
2.4.4 Abstract Shadow Model

The abstract shadow model should be independent of the abstract model if possible,
while preserving the observation probability ratio accurately. In this chapter, the abstract
shadow model is constructed via a CMP Homomorphism (later sections will explore other

definitions). Define the shadow observation set and observation function:

O = O

Qe(s, (a,5(0)),0) = P(o]s,a)

P(r(0) | 5, a)

Recall that in this section it is assumed that all observations occur with some non-zero
probability in every state. This implies thgf% is always well defined.

The state and action mappings: S — S andge : A — A constructed in Procedure
2.4.1 form a CMP homomorphism for the CMP, A, T") with output(Og, €2¢). This CMP

Homomorphism preserves the following constraints in the abstract model:

P(o| s,a)
P(x(0) | s,a)

P(fe(s;) | si,0) (2.18)

P(o] fe(s), 9¢(a)) (2.17)

P(fe(si) | fe(si), gela))

36

Define the shadow POMDR!/; as:
Me = (S, Ae, Te, O¢, Q) (2.19)
where

AgZAXO

Te(s,{a,0),s") =T(s,a,s).
Let the shadow history mapping functign H,, — H),, be defined as:

(A=A (2.20)

The belief states, ;) for the shadow POMDP are defined according to the standard belief
state definition, with initial belieb,.
The state and action mapping functiofisand g, can be used to build an abstract

shadow model:
M: = (S,A,T,0,0). (2.21)

whereT is consistent with Equation 2.18 ari@l is consistent with Equation 2.17. The
abstract shadow belief sta&gh) is maintained according to the standard POMDP update

rules on this POMDP, with initial belief state definition:

beoy (8) =D ba(s). (2.22)

SES
for anysin S.

37

Figure 2.5. Abstract and shadow model interactions, shown as a Bayesian Network. Three
time steps are shown. Shaded nodes are observed. Action nodes are not shown. The
states of the two models are independent if the observatianso”, etc, can be accurately
predicted without dependency edges between the state nodes of the two models.

2.4.5 Independence of Shadow and Abstract Models

The final stage of Procedure 2.4.1 verifies that the states of the abstract pdat
abstract shadow modé]fg are independent, as shown in Figure 2.5. There are two steps
to this test: checking the next state distribution for each state and action pair, and checking
the initial belief distribution. If the following equation is satisfied for all pairs S and

e S
>~ ba(s) = Ba(3) - ba(8) (2:23)

wheres € 5N § includes all states for which f(s) = s and f¢(s) = 3, then the initial
belief state passes the independence test.

If following equation must be satisfied for every staf@ctiona and next state’:

Y. P(s'Is,a)=P(5'| f(s),9(a)) - P(3' | fels). ge(a)) (2.24)
s'es’'ns’
then the transition function passes the test. The final steps of Procedure 2.4.1 implement
these two tests.
These two properties (Equations 2.23 and 2.24) imply that the belief state factors into

abstract and shadow components after every higtany ;.

38

Theorem 2.5.Equations 2.23 and 2.24 imply that for any histérin Hy;, > .- bu(s) =

Dy (8') + beany ().

Proof. Proof by Structural Induction off,.

Basis stepX): By Equation 2.23.

The Inductive step is in two parts. First, the step frgnto b, then, the step from,,,
t0 by40-

Inductive Step/(to ha): Assume thal" ... bu(s) = by (5) - beny(3'). For any

5 c Sandi ¢ S,

> bals) = D Y P(ss,a)bi(s) Equation 2.2
s'es’'ng’ s’es'ns’ ses
=Y bul(s)- > P(s']s,a)
seS s'es'ns’
= 5" tu(s) - P(F1£(5), 9(a)) - P(3|fe(s). ge(a)) Equation 2.24
ses
=Y) P(515,9(a)) - P(5']5,g¢(a)) - Y ba(s) fandfe partitions
5€S €8 s€EEN3
= 3 P15 (@) (5) - 3 P35, gela)) - Bn(d) Assumption
5e8 5es
= Z)X(ha)(gl) . Bg(h(l)(gl) Equation 2.2

Inductive Step/{a to hao): For anys’ € S and3’ € S,

39

P(o| s a)-bpa(s)
2 hael) = D s B) b ®)
_ 25’65’05’ P(o| s a) - bpa(s)
D o5es 2uwes Dsesny L0] 8'5a) - bra(s)
_ P(r(0) | §,9(a)) - P(o| &, ge(a)) - D yeyns brals)
Doves 2uwes P(r(0)[5, g(a)) - P(0l§', ge(a)) - Yoy esns bra(s')
_ P(r(0) | §',9(a) - P(0] &', ge(@)) - by (5) - ey (3')
Yses Lowes P(#(0)|57,g(a)) - P(0]3', ge(a)) - byny(5') - beny (3')
_ P(s(0) |5, 9(a) by (5) Pl ¥, 9¢(a) - beeny ()
Ywes P(R(0)]5',9(a)) - by (5) Y55 P(0]3', ge(a)) - begny (3')

= l_)x(hao) (5/) : B{(huo) (gl)

]

With this theorem in hand, it is straightforward to prove that Equation 2.12 is satisfied

if Equations 2.23 and 2.24 are satisfied.

Theorem 2.6.1f Vh € Hyr, Y cons n(8) = by (') - bg r)(8), then Equation 2.12 is true
(for all historiesh, by (f(s)) = Xy, ba(s).

Proof.

D) =D > buls)

s'es’ 5'e8 s'es’ns’

]

This concludes the proof that Procedure 2.4.1 succeeds onlyfiindg form a valid

POMDP Homomorphism.

40

oloao0o @ o000 O
o oneoe @ = B
lels @

o090 e , 0@ o0 o0
(a) Initial Belief State (b) Belief conditioned o

Figure 2.6. Independence test for the initial belief state test, domain from Figure 2.3. Black
circles represent probability mass. The abstract shadow model is shown to the right of the
gridworld, and the abstract model is shown below it.

000 2
° o> o
=2 ® &
o o> @ &
oeode . O | W
(&) Initial Belief (b) Belief condi-
State tioned ons

Figure 2.7. Independence test for the initial belief state test, domain from Figure 2.4.
Black circles represent probability mass. The abstract shadow model is shown above the
gridworld, and the abstract model is shown below it.

Figure 2.6 illustrates the first step of the independence test for the domain in Figure
2.3, in which the initial belief state is tested. The illustration, rather than looking at the
marginals for the abstract and shadow states, examines the conditional for the abstract
state given the shadow state. Expanding the notation, défige| b)) = > . ba(s)
andP(5 N5 | by) = > c.n: a(5), etc. Since we know from probability theory that the

following are equivalent tests:

P(5NA5|by)=P(5|by)-P(5]by) < P(5|5Nby) =P(5]|0by)

41

either test can be used to verify Equation 2.23.

Figure 2.6(a) illustrates the initial belief state in the mo#le(center), abstract model
M,, (below M) and abstract shadow mod@lg (to the right of M). The probability masses
for abstract and shadow states are calculated from the marginals of the belief state of
Figure 2.6(b) illustrates the updated initial belief in all three models, conditioned on a
specific abstract shadow state,Observation of the shadow state label narrows the belief
distribution in the POMDR\V/. However, notice that the abstract state distribution does not
change from Figure 2.6(a) to Figure 2.6(b). This indicates that for this shadow state in the
initial belief distribution, the abstract model is independent. In order to provelthatnd
Mg are independent, the full set of tests in Equations 2.23 and 2.24 must be verified.

Figure 2.7 illustrates one step of the initial belief state test in the domain from Figure
2.4. In this case, the states of the abstract and abstract shadow model are not independent.
Figure 2.7(b) again illustrates the initial belief distributionif, 1/, andMg. Figure 2.7(b)
illustrates the updated belief state after conditioning on a particular abstract shadosu state,

In this case, revealing the abstract shadow state label improves the estimate of the abstract

state label, and thus the abstract shadow model and abstract model are not independent.

2.4.6 Time Analysis

Procedure 2.4.1 is dominated by the time needed to construct the abstract model and
abstract shadow model.

The CMP Homomorphism finding algorithm of Procedure 2.4.2, which is executed
once to find the abstract model and once to find the abstract shadow model, has a worst case
running time ofO(|S|?-| A]). The outer while loop executes at mgSt iterations, since the
state mapping functiofi must change by at least one state on each iteratio. A tighter bound
on the number of iterations would €| or | S|, the size of the abstract or abstract shadow
state space, since each iteration must introduce at least one new abstract state. However,

this is upper bounded by the number of state§ inWithin each iteration, the algorithm

42

examines the abstract next state distribution for each state, action pair. The inner for loops
iterate for|.S| and|A| steps, respectively. One method of calculating the abstract next state

distribution for a specific state, action pair is to iterate over the possible next states, adding
the probability mass for each state to the probability mass of its abstract label. This process
involves|S| steps, as it examines each possible next state. The total worst case running time

of the CMP Homomorphism finding algorithm is thGg|S|-|S| - |A|-|S]), or O(]S|?- | A]).

The final independence test loop must calculate the joint distribution of the next ab-
stract and shadow state labels. These calculations must be performed once for each state,
action pair. The time needed to do one such calculatiagn(i$|) (to examine the labels
for each possible next state and add its probability to the proper term). The entire loop
therefore take®(|.S|-|A|-|S|) in the worst case, and is dominated in this case by the CMP

Homomorphism construction step.

2.4.7 Shortcomings of the Shadow Model
When every observation does not occur in every state, the shadow model algorithm does

not perform well. Consider the gridworld in Figure 2.8, defined as the following POMDP:
States: Each square in Figure 2.8 represents a state.
Actions: up, down, left, right

Transitions: Actions fail with a small probabilitye. Failure results in no change to the

State.
Observations: white, lightgrey, grey, black, cheese, cat

Observation Function: In each state, the agedeterministicallyobserves only the fea-

tures of the current square.

Initial Belief State: Equal probability mass on the leftmost state in each corridor.

43

x/z

\

=
i

L
o] W] e

g || |

&

(a) Three Hallway POMDP (b) Abstract Model

Figure 2.8. Three corridor gridworld POMDP. The initial state distribution places the agent
in the leftmost state of each corridor with equal probability. The colors of the states labeled
“x”, "y” and“z” signal whether the agent must go straight or turn right at the end of the
corridor to choose between the cheese and the cat.

The problem arises whegf.- is undefined, due to the fact th&t (o) | s, a) = 0.
There are a few ways working around this by defining this term under these circumstances:
e treatundefinedas a unique symboll()
o replaceundefinedvith a small reak probability
e replaceundefinedwith 0.

However, none of these approaches really addresses the problem.

44

DefineO as the set containing the following abstract observations:

The abstract model for this abstract observation function is shown in Figure 2.8(b). The
shadow model state mapping functignis the identity function, so that the states of the
abstract shadow model are the states of the original model, Figure 2.8(a). The two models
do not pass the independence tests (Equations 2.23 and 2.24). However, this abstract ob-
servation function is in fact self sufficient. Part of the problem with the shadow model test

for this domain lies in states andy from Figure 2.8. State has the following shadow

o1 = {cheese}
0y = {cat}

03 = {grey}

def

04 = {black, lightgrey}

def

o5 = {white}

observation distribution, for any actien

while statey has:

cheese : L
cat : L
lightgrey : 1.0
grey : L
black : L

white : L

45

cheese : L
cat : L
lightgrey : L
grey : 1.0
black : L

white : L

Since these two shadow observation distributions are not the same,izstatdg cannot

have the same abstract shadow state label. Replacwgh ¢ or 0 does not change this

fact. In general, this should indicate that there is some discriminative power left in the
observation distributions of andy, but that is not the case here. Every distinction that

can be made between these two states has been made, and the abstract observation function
perfectly discriminates between these two states. The shadow model does not reflect this
fact.

Even the observation map:

01 = {cheese}
0y = {cat}

o3 = {lightgrey}
01 = {grey}

05 = {black}

o6 = {white}

in which all observations distinctions available are used, does not pass the shadow model
test. Similarly, if the domain in Figure 2.4 were altered to have deterministic observations,

there would be no observation abstraction that passed the shadow model test.

46

It is to be expected that any approximation of Equation 2.12 would reject some valid
abstractions. However, there is a large class of POMDPs for which the shadow model test
. . a) .
does not accept any abstraction. The problem is that when theﬁ%g?m is undefined,
it should be treated as potentially equivalent to any other probability. The next algorithm
treats undefined shadow observation probabilitiescespatiblewith any other fixed ob-

servation probability.

2.5 Compatible Shadow States

Equations 2.23 and 2.24 require exact equivalence among the shadow states. In this
section these requirements will be relaxed, armbmpatibility relation over the shadow
states will be constructed. The compatibility function is not an equivalence relation over
the states, and cannot be used to construct a state mapping function.

The compatibility function takes advantage of the fact tha}gﬁﬁ‘g;—j}@ is not defined,
(o) will never be observed immediately after statnd actioru. The ratio could therefore
be reassigned any arbitrary value without affecting predictions. In other words, it does not
matter what the conditional probability of given (o) is if (o) will not occur. It is
possible to find better abstractions if these values are treated as undefined in the sense that
they could take on any value without affecting the model.

The state compatibility function is a boolean functiep: S x S — {true, false}.
Two stateg and; are compatible if and only if their observation functions are compatible,

and their next state distributions are compatible:
ivej = (o) A~)

where~,: S x S — {true, false} is an observation functions compatibility function, and

~p: S x S — {true, false} is a next state distribution compatibility function.

a7

The two states and;j have compatible observations (ie~, j) if and only if, for all

a € Aando € O:

P(o|i,a) _ P(o| j,a)
P(k(o) [i,a) P(x(0) | j, a)

((P(k(0) | i,a) > 0) A (P(k(0) | j,a) > 0)) — (2.25)

This means that the two states must have the same observation ratios, but only(when
is possible in both states. This relation is not an equivalence relation. Take states x, y and
z in the domain from Figure 2.8, under the abstraction shown in Figure 2.8(b). The states
x andy have compatible observation distributions{, y), andy andz are compatible
(y ~, 2z), however,x andz are not compatible. The observation compatibility function is
not transitive, and therefore not an equivalence relation.

The next state distribution compatibility relation is defined recursively, in terms of
the compatibility of the states in the two next state distributions. Two abstract POMDPs
will be important in defining the relatiorn;. One has already been defined: the candidate
abstract POMDRV/, (Equation 2.15) with belief staté§(h). The second abstract model is

an abstracavailabily POMDP. Define the availability function: O x S x A — {0, 1} as:

1 if P(o|s,a)>0
n(0,5,0) = (2.26)
0 otherwise
This function indicates whether each abstract observation is available for a particular state

and action.

The availability POMDP),, is defined as the tuple

M, = (5,A,T,0,n), (2.27)

This is not precisely a POMDP, as the observation probabilities do not sum to one in each
state. Nonetheless, the usual POMDP update rule can be used to maintain a belief vec-

tor over the states. Define the state and action mfgps S — S, andg, : A — A,

48

as a CMP Homomorphism off, A, T'), with output function(O, ©,). The usual CMP

Homomorphism properties apply, so that for any S, a € A ando € O:

1(0, fy(s), gy(a)) =n(o, s, a) from Equation 1.5 (2.28)
P(fy(s") | f(s) = Y P(|sa) from Equation 1.6 (2.29)
"E]fn

Define the abstract availability mod#l, as:

Mn = (777A777T77707ﬁ)7 (230)

whereT is consistent with Equation 2.29 amds consistent with Equation 2.28. Belief

states forl/,, will be written b, .
The next state distributions for two stateandj are compatiblei(~, 7) if and only
if there exists a function for each actiom,;, : S x S — IR that has the following three

properties. If a paik, [of next states are incompatible, they have zero weight:

_'(k ~e l) - (wijCL(kv l) = 0) (231)

For all abstract statesin S, and any next state € S:

> wijalk, 1) = P(k | i,a) - P(5 | j,a). (2.32)

les

Finally, for all abstract availability statesin S, for any next staté € S:

Zwm (k,l) =P(5|1,a)- P(l] j,a). (2.33)

kes

Reflexivity and symmetry may be violated by the constraints in Equations 2.31 - 2.33.

It is possible that for some stat¢here is no weight function;;,, therefore the function is

49

not reflexive. As for symmetry, Equations 2.32 and 2.33 are similar, however, the abstract
mapping for staté is f and the abstract mapping for stais f, and the existence af;;,
does not imply the existence af;;,. The next state compatibility function is thus not an
equivalence relation.

However the compatibility function-. can be used to inspest,, for correctness. For
the compatibility test to pass, the initial state distributigmust be compatible with itself.

That is, there must be a weight functien : S x S — IR such that for ali, j € S:

(i ~e) = (wali, j) = 0) (2.34)
For all abstract statesin S,;:

Z wy (7,) = ba(4) - bn()\)(g) (2.35)

JES

And for all abstract availability statesin S:

Y wali,5) = by (5) - ba()) (2.36)

1€5

For example, if the states of Figure 2.8 are labeled as shown in Figure 2.9, then the state

compatibility function for the three states in the initial state distributigng; ands,) is:

50

So

s7

adllad IR AL

S14 .

&

Figure 2.9. Three corridor gridworld POMDP from Figure 2.8, with starting state labels.
The initial state distribution places the agentins,, ands;4 with equal probability.

51

S ~¢ So = true
Sog ~ St = true

So ~¢ S14 = false

S7 ~. Sog = true
S7 ~. St = true

S7 ~. S14 = true

S14 ~e So = false
S14 ~e S7 = 1lrue

S14 ~e S14 = true

and the initial belief matching function is:

2

UJ,\(SO, 80) = 5
1

w/\(So, 37) = §
1

w)\(577 80) = 5
1

wy(s7,87) = 5
1

TU,\(S77514) = 5
2

w)\(3147314) = §
1

UJ,\(814, 57) = 5

with all state pairs not listed havirtgweight.

52

4 -~ 4 -~

p p

. .
© S © S

.......... ,
: :
. 3 . 3

.-l .
.
.

@4

%

(a) Compatible Edges (b) out(i)

(©)in(j) (d) Abstract i-j graph

Lo J
, . R .
. .
© S ¢S
. .
, 0 K O
. .
. .
N o8
AN -

0,

(e) Abstract out(i) (f) Abstract in(j)

Figure 2.10. The functionw, for the domain of Figure 2.9 for the abstraction shown in
Figure 2.8(b), illustrated as a graph

53

The initial belief matching function can be visualized as a set of edges in a weighted
graph, illustrated in Figure 2.10. Figure 2.10(a) includes two nodes for each stateain
left and right node. Left to right edges are present only between pairs where the left node
state is compatible with the right node state. So, for example, there is no edge between
so and sy4, sincesy and s;4 are not compatible. Each edge between two nadasd j
is weighted according ta, (7, j), and these weights have several useful properties. The
sum of the out edges on any left node, like the no@eFigure 2.10(b), is equal tb, (7).
Similarly, the sum of the weights of the incoming edges for any right nogeequal to
by(x) (9)-

Consider the subgraph consisting of left nodes that share the abstract (abeind
right nodes that share the abstract lafigli), highlighted in Figure 2.10(d). Equations
2.35 and 2.36 also imply that the in and out weight totals in this subgraph have interesting
properties. The sum of the outgoing edges friamthis subgraph (Figure 2.10(e)) is given
in Equation 2.35, and the sum of the ingoing edgesitothis subgraph (Figure 2.10(f)) is
given in Equation 2.36.

Equations 2.34 - 2.36 are the compatibility test constraints. The next section consists of
a proof that if the compatibility test constraints are satisfied,~anid a compatibility func-
tion satisfying Equations 2.25 and 2.31 - 2.33, thfen, x is a POMDP Homomorphism.
The following section details an algorithm for calculating the compatibility function and

wy, Implementing a polynomial time algorithm for checking these constraints.

2.5.1 Composite Model

This section proves that when Equations 2.34 - 2.36 are satisfleds a valid ho-
momorphic reduction of\/. The proof examines a composite POMDP dendtéd This
section will outline the structure df/, show that it could be constructed if the compatibil-

ity properties hold, and show that the fact of its existence implies the correctnéss lof

54

should be noted that/ never needs to actually be constructed. Its theoretical existence,
given Equations 2.34 - 2.36, is sufficient to prove the correctness.of

The states oft/ each consist of a pair of state labels fraih for exampleJi, j), where
i,j € S. M will be structured such that only compatible state pairs are used.

The left hand state labels i emit abstract observations, and the right hand state labels

emit “shadow” observations. That is:

shadow observation

‘M. k(0 'a‘
Pln(o) | joa) 1O Fa) (237)

abstract observation
P(o| (i,j)) = P(x(o) | 4,a)

Recall that the functiom : O x S x A — {0,1} (Equation 2.26) indicates whether the

abstract observation is available for a particular state and action. This has the effect of

setting the shadow observation probabilitie® Whenever%

The transition functiorf” for any compatible state p&fi, j) and actior: is defined via

is undefined.

the weight of their next state transition compatibility matching,, and the abstract state

predictions fori andj:

Pk, 1) | (i,7), a) = wija(k, 1) (2.38)

The initial belief state fof\/ is defined by the compatibility weights féy:

~

oA((i, 7)) = wa(i,) (2.39)
Sincew;;, andw, are alwayd) for pairs of incompatible states, neither the initial belief

vector nor the transition function will introduce incompatible state pairs into the belief

vector.

55

The belief state update rule is:

P(o] (i,), a) - bra(((i, 5))

Bao Z” . = b
h (<])) Z@j P(O ’ <Z"j>7a) -bha<<i,j>)

Strictly speaking) is not a POMDP, as the observation output probabilities defined
in Equation 2.37 do not necessarily sum to one after each belief state update. This can be

remedied by introducing an additional normalization constant at each hisiory
Chao = Z ﬁ(K(O% §7 gﬁ(a’>> ’ Eﬂ(ha) (5)
S

which must be applied to recover the correct observation probabilities for the belief state

bra. The probability ofo givenby, is:

>y Plo] (i), a) - bha((i,)

Chao

P(o | bpa) =

There are several elemental identities that will be used as building blocks for most of

the main proofs in this section. 4fand; are two compatible states:

P(o]j,a)
P(k(o) | j, a)
P(o|i,a)
P(k(o) | i,a)

= P(o|i,a)-n(k(0), 4, a) (2.40)

Po|(i,j)) = P(k(o) | i,a) - -1)(r(0), 7, a)

— P(x(0) | i,a) - -n(k(0), 4, a)

Similarly, due to the properties af;;, for two compatible states (Equations 2.32 and 2.33),

if 5, € S,gr S gﬁ:

> PUk,0) | Girg)a) = Plk i,a) - P(5, | j,a) (2.41)
>_ Pk | G),a) = PG| i) - P(L| ja) (2.42)

56

9

M is well defined, and it will be shown to accurately simulafe This can be used to

show thatM is a homomorphic reduction dff, by showing that:
e M and) are output-equivalent.
e M is a homomorphic reduction off .

Taken together, these two properties imply thais a homomorphic reduction aff.

In order to analyze\/, the shadow POMDRY/, (Equations 2.19) will be useful, with
one modification. The shadow observation function for any statetiona and observation
oIS now:

Qe(s,a,0) = Plo]s a)] -n(k(0), s,a) (2.43)

P(k(0) | s,a

where the availability function has the effect of setting the shadow observation probabil-

P(o|s,a)
P e(o)]s.a)

ities to0 wheneve is undefined.

The next theorem (Theorem 2.7) is the central theorem abbut

Theorem 2.7.Given Equations 2.31 - 2.36, for dllin H,,, the weight functionu,,:

V]

defined by, corresponds to a compatibility matching for the two state distributigrend

bg(h). That is:

(i ~e §) = bali) = 0 (2.45)
D Bn((i: 7)) = bn) - by (51) (2.46)
D ({5, 3)) = by (51) - bey () (2.47)

1ES;
for everys, € S, ands; € S.

57

s
A wy(i)

i o /////L/’;C_)":\/\

_/i' i /// fr](J)

Figure 2.11.Matching graph for the belief statg.

Before addressing the proof of Theorem 2.7, a high level overview of its implications
and an outline of the proof.

Theorem 2.7 states that for evellyc H,,, there is a weight matching for the two
distributionsb,, andbe), and this weight function,, can be derived from the belief state
of M, by,. Figure 2.11 illustrates the structurelgfas a matching graph, where each edge
corresponds to a state pair, weighted according,to

Define the left hand state distributid}nof a belief statéh, for any state € S as:

hG) = 3 b0,))

jes

and the right hand state distributiopfor any statej € S as:

(i) =Y (i,).

€S

One of the implications of Theorem 2.7 is that the left state labels, afack the belief

state of M, so thatl, = by, (see Lemma 2.9). This fact implies thaf is equivalent to

58

M in terms of its observation predictions (see Lemma 2.10). Theorem 2.7 further implies
that the abstract belief stalig;,, accurately tracks the left hand belief stateat the level
of abstract state labels. Siné,eis equivalent ta,,, Bx(h) is then shown to be an accurate
abstraction ob;, as well (see Theorem 2.11).

Theorem 2.7 also implies that the right hand distributiorb,oficcurately tracks the
shadow stater{, = b)), and thath, ;) is an accurate abstract compressiomgf. Al-
though this fact is tangential to the main point of this section and the proof is not included

here, it can be helpful in understanding the proofs.

Lemma 2.8. Given Equations 2.31 - 2.36, for agyc S ands, € S,: The action update

belief statéh, is also a weight matching:

(i ~e §) = bra(i,j) =0 (2.48)
tha i,5)) = bra(i) - bygay(5,) (2.49)
> bra(i,3)) = bgran (52) - begnay () (2.50)

1€
for everys, € S, ands; € S.

Proof. The proof of both Theorem 2.7 and Lemma 2.8 consists of a structural induction
proof on historiesind,,, with two interlocking inductive steps: one for the action update,
and one for the observation update.

Partl: The base caséi =).

For the initial history)\, the due to the form ofv, (Equations 2.35 and 2.36), for

5. € 5,ands, € S:

59

Part Il: A to ha inductive step

Proof of Equation 2.49 assuming Equation 2.46. £o€ S,):

> bnal(i) =D Y P)k, 1), a) - bu((k, D)

JE5, JESr kleS
= > P(ilk,a) - P(5,]l,a) - by ((k, 1))
k,leS
> Plilk.a)- 37 P35, g(a) - > bu((k. 1))
kes seS, les
=" P(ilk,a) - bu(k) 3 P(5:15,9(a)) - by ()
keS €5y

Proof of Equation 2.50 assuming Equation 2.47. &af S:

Y bna((i) =D Y P)k, D, a) - bu((k, 1)

i€5, i€s; kleS
=Y P(ill.a)- P(5i[k.a) - bu({k. 1))
k€S
E:: (71, a) j{:}’sﬂs g(a j{:bh ((k,1))
les se8 kes
= _P(ill.a) - ba(1) Y P(5il5,9(a) - by (5)
les seS

= bha(j) : Bx(ha)(gl)

60

Equation 2.41

Equation 1.6

Equation 2.46

Equation 2.42

Equation 2.11

Equation 2.47

Part Ill: ha to hao inductive step

Proof of Equation 2.46 assuming Equation 2.49:

. P(o] (i,), a) - ba({i, j))

bhao 1, - v}

jezsr (7))]GZ;T Zi,jeS P(o | (i, 7) : '
Yjes, Ploli,a) -n(k(o),j,a) - bha ({1, 7))

= E Equation 2.40
ZiGS P(O | i,a) : Z Z]es 77(“(0),]761 : bha(<i’j>)

Equation 2.28

) e
ZiES P(O | é7a> : ZEGS ’r_](/i(O), 579((1) '
:)

(0]i,a)-7(k(0),3,9(a)) - bra(?) - byhay(3) :
T s P 15:0) - Soncs, T5(0), 5 9(0)) - brald) - by (3) —on 249
_ (0]i.a) - buali) - 1(x(0). 5. 9(a)) - By (5)
Zies P(O | (2 CL)) bha()) degn 77(/4:(0), S, 9 a)) : bn(ha)<'§)
= Dhao() * by(hao) (5)
Proof of Equation 2.50 assuming Equation 2:47

Zz;hao(@aj)) X ZP(O | <iaj>’a) ' 5ha(<i7j>)

o %n(/{(o),j, a) - P(k(0)|s, g(tha (1,7))

X o n(0).4.6) - P(s(0) | 5.9(@) b () B (5)

P(o| j,a)

X Wﬁ(ﬁ(O)aj, CL) . bg(m(j) . P(R(O) | 5[,9(&)) . Bx(h)<§l)

X be(hao) (7) * Dy(hao) (51)

This ends the proof of Lemma 2.8 and Theorem 2.7.

2] am showing just the numerator in this proof due to the length of the equations. The transformation for
the denominator is similar, and factors ifX0; be (nao) (7) - 25, by (hao) (51)-

61

The next several Lemmas show that given Theorem 2.7 and Lemma/2a8d M are

output equivalent, and that is a homomorphic reduction af .

Lemma 2.9. If M satisfies Theorem 2.7, the state distribution of the left side label&for

is the same as the state distribution of the belief stat&/inThat is:

Yh € Hyy, In(i) = by (3)

Proof.

(i) =Y bu((i,j)) by definition
jes
ErES JESr
=bu(i) - > byy(50) Equation 2.46
5.€8
= by (1) b, belief state distribution sums to 1

]

Lemma 2.10. If M satisfies Lemma 2.8, the observation distribution at every history
is identical to the observation distribution for the left side state labels, and thus for the

corresponding belief state i/ .

Proof. Forallo € O,a € Aandh € Hy,,

62

>ijes Plo] (i4),a) - bra((i, 1))

P(0 | bra) = . by definition
hao
P(oli,a) - y 5 (] .
_ Tijes Plolia) - n(x(0). 5. a) - bra((i.) Equation 2.40
Chao
B > ies Ploli,a) - degn 7(k(0), 5, gn(a)) - Zjeg bra((i, 7))
B Chao
i P .7 'ba.' seg. 1 777 B a) (S
_ D PO) i) T, 105, 0(0) Br®) (o
Chao
- Z P(0li,a) - bpa(i) Cancel terms
icS
= P(O | bha)~

]

This concludes the proof that’ simulates)/ accurately. Now this fact can be used to
show thatf, ¢ andx satisfy the homomorphism constraints faf: Equations 2.9 - 2.12.
Equation 2.9 is checked directly in Procedure 2.5.1. Equations 2.10 and 2.11 are satisfied
becausef and g form a CMP Homomorphism fo€. All that remains is to show that

Equation 2.12 is satisfied.

Theorem 2.11.1f M satisfies Theorem 2.7, then for ang S, forall h € H,, Y oiesbn(i) =
by (5) (Equation 2.12).

Proof.

D (i) =Y (i) Lemma 2.9
1€ES 1€5
= > bul(i.)
€5 jES
= by (5) - Z beny(J) Theorem 2.7
jes
= Bx(h)(g) bg(h) sumsto 1.

63

Procedure 2.5.1State Compatibility ChecR({,)

/I Check thats satisfies Equation 2.9 (o, 2) = ((x(0), 2))
/I Construct the abstract modé, and state and action mapping functighsg;
f, g <= findCMPHomomorphisn{, A, T', output = O, ()

/I Construct availability modelZ, and state and action mapping functiofysg,
fn» gy <= findCMPHomomorphisnt{, A, T', output = O, (2,)

Il Construct the compatibility function
compatibleStates= constructCompatibilityFunctiod(, «, f, f,)

// Do final check, given compatibility among shadow states
if compatibleDistribution®,, by, f, f,,, compatibleStateghen
return true
else
return false

This concludes the proof that the state compatibility algorithm (Procedure 2.5.1) suc-
ceeds only ifM is a homomorphic reduction af/. The algorithm accurately detects
correct and invalid homomorphisms in the examples in the next section, however, it has not
been proven to be complete. There are cases in which this algorithm would reject a valid

homomorphism.

2.5.2 Compatibility Algorithm

This section will show that the compatibility test can be computed in polynomial time.
The state compatibility algorithm (Procedure 2.5.1) first constriiftsand M,, with their
associated state and action mapping functions. Next, the algorithm constructs the compati-
bility function (Procedure 2.5.2), and checks the initial belief stat®r compatibility.*

Procedure 2.5.2, which calculates the compatibility function, first initializes the com-
patibility function based on the immediate observation compatibility of the states. Thisis a
direct check of Equation 2.25. Then the main loop of the procedure repeatedly refines the
compatibility function to ensure that the transition constraints, Equations 2.31 - 2.33 are

satisfied. In the worst case, this loop halts when all states have been declared incompatible.

64

Procedure 2.5.2constructCompatibilityFunctio(, «, f, f,,)

compatibleStatgs< |S| x |S| boolean matrix
/I Initialize the compatibility function using the observation function
forall 7,7 € Sdo
compatibleStatés, j) < observationsCompatike j) // Check Equation 2.25

/I Refine the compatibility function until compatible states have compatible next state
distributions

repeat
compatibleStatesOle= compatibleStates
forall i,j € S;a € Ado
if —.compatibleDistributionsf(S|i, a), P(S|j,a), f, f,, compatibleStateshen
compatibleStatés, j) « false
until compatibleStatesOld = compatibleStates

return compatibleStates

Procedure 2.5.3compatibleDistributionsf,, (S), Pr(S5), f, f,, compatibleStates)
for 5, € S do
for 5, € S, do
graph<«= constructDistributionGrapli{,, s;, Pg, 5, compatibleStates)
flow <= maxFlow(graph)
if flow(graph.sourcex 1 then
return false
return true

Procedure 2.5.3 is key to the implementation of both Procedure 2.5.1 and 2.5.2. This
subroutine checks two state distributions to determine whether they are compatible given

f, f, and the current compatibility function. The two state distributiéhsand Pr may

be:

¢ the next state distributions for two stateandj under actionz, in which case the

procedure must construct;, or return failure.

e two copies of the initial state distributidn, in which case the procedure must con-

structw, or return failure.

In both cases, the weight functian;, or w, can be constructed as the sum of a set of

graph flow weights. The set consists of a flow graph for each pair of abstractsthten

65

Procedure 2.5.4constructDistributionGrapli(, (5), s, Pr(S), 5., compatibleStates)

V < {s,t} Il new set of vertices, source and sink vertex
capacity - V x V — IR [l Edge capacity function

// Fill in the nodes and edges of the graph
forall 7 € 5, do

capacity(s,l;) = #@L(i’)
forall j € 5, do
V<=Vui{r}
Pr(j)

capacity(r;,t) = e PG
forall i € 5,5 € 5, do
if compatibleStates(i, j) then
capacity(l;,rj) =1
else
capacity(l;,rj) =0

return graph = (V, capacity)

S ands, from S,.. A flow graph fors; ands, is shown in Figure 2.12. The vertices of the

graph are:
e s (source node)
o L ={l;| 7€ 5} (state nodes ig;)
e ¢ (sink node)
o R={r;|j€s,.} (state nodes ig,)

If cap(u,v) is the edge capacity between nadand nodev:

_Pu(d)
cap(s,l;) = S Po) (2.51)
1 if i~
cap(l;,rj) = (2.52)
0 otherwise

)= —
cap(ij) Zj/egr PR(j/)

66

right state
nodes (R)

left state
nodes (L)

Figure 2.12. Matching algorithm graph for the abstract state@in the left side distribu-
tion) ands, (in the right side distribution). See the text for edge weight definitions.

O3 O 1

OO

(@) Edges used for (b) Edges used for (c) Sum of Edges (w)
50, S0 S1, S0

Figure 2.13.Summing over all pairs of abstract states to get the weight funetion

67

where Py (i) is the probability of staté in the left (first) distribution, andPg(5) is the
probability of statej in the right (second) distribution.

If there is a flow between andt with weight 1.0, then the matching for the abstract
state pairs;, 5, succeeds. If every pair of abtsract states succeeds, the two distributions are
compatible, and the weight functian (whether it isw, or w;j,) is defined by the weight

of the flow over the edges. For any paij € S:

w(i, j) = flow(l;,r;) - Z Pr(i') - Z Pr(5")
'€l 3"€llsy

where the flow fori, j is the flow taken the graph for the left and right abstract states (see
Figure 2.13).

This weight function obeys Equations 2.31 - 2.33, in the case Qf or Equations 2.34
- 2.36, in the case o). Equations 2.31 and 2.34 follow from the fact that there is no
available capacity between incompatible left and right vertices, therefarg) is 0 when
1 andj are incompatible.

Equations 2.32 - 2.33 or 2.35 - 2.36 can be shown to be true by examining the total in

and out flow at each node ihand R.

Lemma 2.12. When the matching algorithm succeeds for the abstract statespair S,

ands; € S, for anyi € 5;:

S w(i g) = Pr(i)- > Pr(j)

jegr j€§r

Proof. When the matching algorithm succeeds for the pais;, the flow out of the source

node isl. However, the total available capacity of the edges leaving the source ik also

68

This means that the full capacity of each edge leaving the source node must be used to
achieve a flow ofl.0. This in turn implies that the total incoming or outgoing flow through

any left nodd; wherei € 5, is equivalent to the full capacity from the source to that node,

cap(s, l;):
> flow(ly,) = cap(s, ;) total in/out flow at nodé;

JESr

Thus, for anys, € S,:

S wli,g) =Y flow(li,r) - | Y Pu(@)- Y Pa(j)
i'Eli]

jE5, jE3y J'€lilsy,

=" flow(li,r;) - > Pu(i)- Y Pr(j) fad) = 5,
jegr ile[i]f j’€,§1,

= cap(s,1;) - Y Pr(i’)- Y Pr(j") replace in flow with out flow

ielily j'Esr

= % Y P) Pr(j) Equation 2.51
ZZ/E[’L]f L(Z) i E[’L]f j/GSr

= P.(i) Z Pr(j Cancel terms

j' €5y
[

A similar proof yields the analogous lemma for the right hand distribution.

69

Lemma 2.13. When the matching algorithm succeeds fore S, ands; € S, for any

J € 5,

S wig) = Y Puli) - P

i€5 i€5

Proof. The flow at any right side node is cap(r;, t) when the algorithm succeeds, so that:

> flow(ly,) = cap(r;,) total in/out flow at node;.

JESI

Therefore, for any;, € S

> wing) =3 flowllsyrs) - > Pu(i) 3 Pali)

i€5; 1€8; i'€ld]y i'€lil gy
= Z flow(li, ;) - Z Pr(i') - Z Pr(j") f@) =35
i€s; €5 7€l
= cap(r,t) - > Pr(i)- Y Pr(j) total out flow at node;
i'es J'€lilsy,
> 52 Buld): 30 Pald)
j’dﬂfn i'es J'€lil

7(7) > Pu(i)

V'€
0

These two lemmas can be used to show that Equations 2.32, 2.33, 2.35 and 2.36 are

satisfied. All four proofs all follow the same basic outline, shown below for Equation 2.32.

Lemma 2.14.If w;;, is a weight matching found by Procedure 2.5.3 for the next state
distributionsP(S | i,a) and P(S | j,a), wherei, j € S anda € A then Equation 2.35 is

satisfied. That is, for any abstract statec S,,:

> wijalk, 1) = P(k | i,a) - P(5, | j,a).

l€8'r

70

Proof. If P is P(S |i,a),andPgris P(S | j,a):

Zwija(ka 1) = Pr(k) - Z Pr(l')

€5, l'es,

= P(k|i,a)- Y P('| j,a)

l'es,

:P(k|Z7G)P('§T’ |j7a)‘

]

Procedure 2.5.1 determines whether or not Equations 2.34 - 2.36 can be satisfied by

andM,,.

2.5.3 Time Analysis
The run time needed to compute the compatibility function dominates the computa-

tional complexity of Procedure 2.5.1. In the worst case:

e All state pairs are incompatible, and one pair is marked as incompatible in each

iteration of the outer “repeat” loop of Procedure 2.5.2. The outer loop then executes

O(|S|?) times.
e The inner “for” loop of Procedure 2.5.2 héX|S|* - | A|) iterations.

Within the inner for loop, two distributions over next states are checked for compatibil-
ity. In this section, this check was described in terms of a set of small graph flow problems.
However, these can be transformed into a multi-source multi-sink Maximum Flow problem
with O(|S|) vertices and up t®(|S|?) edges (in the worst case, when all states are com-
patible). There are many different ways of finding solving the maximum flow problem. In
the experiments for this work, the Edmons-Karp algorithm was used (Cormen et al., 2009),
with running timeO (V' - E?), whereV is the number of vertices arfdthe number of edges.

This implies that each flow graph takes|.S|°) in the worst case.

71

The total running time is therefore polynomial, though the exponent is quite high:

O(ISI* - 1S]* - 1Al -1S]°) = O(|A] - |S[°)

In practice, the running time of the graph flow algorithm decreases as more states are found
to be incompatible, so that all of the worst case assumptions are unlikely to be true at the
same time on any single iteration of the outer repeat loop. Nonetheless, while this algorithm

is technically polynomial time, it has a very high exponent.

2.6 Comparison of Shadow Model and Compatibility Tests

Shadow Compat.

Domain Observation Mapx| Proc2.4.1 Proc25.1 Sim

Figure 2.3 {cAl,cANg,cANb},{=cANl,=c A g,—cAb} pass pass pass

Figure2.4 {cAl,cANg,cANb},{=cANl,=cNg,—cAb} fall fail fall

Figure2.4 {cAl}, {cAg} {cAb}, {mcAl}, {=cAg}, pass pass pass
{=c b}

Three halls {w}, {lg, g,b}, {c}, {a} fail fail fail

(Figure 2.8) {w}, {lg,b}, {9}, {c}, {a} fail pass pass
{w}, {1g}, {0}, {9}, {c}, {a} fail pass pass

Table 2.1. Comparison of Procedures 2.4.1 and 2.5.1, and a direct simulation of 10,000
belief states (“Sim” column). In the observation map column, observations are identified
by their first letter, except in the caselofhtgrey (Ig) andcat (a). Each set of observation
symbols represents a single abstract observation.

Table 2.1 compares the shadow model and compatibility function tests when applied
to the POMDPs defined thus far (Figures 2.3, 2.4 and 2.8). In each case, the outcomes of
the two tests are compared to a direct verification of the accuracy of the abstract model.
The “Sim” column reports the result af), 000 steps of random exploration in the speci-
fied POMDP. At each step, both andl_)x(h) were calculated. The abstract state mapping
function f was then applied té;,, and the results compared &g;. If at every step the

results matched, the abstract model was reported as passing the simulation test, otherwise

72

the abstract model was reported to be inadequate in simulation. For the size of POMDP in
each of these examples, this should provide a reasonable approximation of a direct test of

Equation 2.12 for alh, although onlyl0, 000 histories were tested.

2.7 Improving the Observation Map

With an evaluation procedure like Procedure 2.4.1 or 2.5.1, it may be possible in some
cases to exhaustively search and test all possible candidate observation mapping functions.
However, this approach can be expensive, and directed search methods for finding candi-
dates are generally preferred. Procedure 2.3.1 is the outline of a directed search method.
It begins with the observation functioninduced by(. The remainder of the algorithm
is a loop that iteratively improves the observation map. This section defines the iterative
improvement step of the search algorithm.

None of the algorithms in this section are guaranteed to find the most compact obser-
vation map possible. Each algorithm presented here uses the information about how the
observation mapping functios fails the tests outlined in Section 2.4 and Section 2.5 to
determine what portions of must change, however, they all use heuristics to determine
how to enforce those changes by updating

Procedure 2.7.1, as one example, is the simplest algorithm for observation improvement
in this Section. It refines the abstract observation clusters whenever doing so would help
to distinguish between any two abstract states. Take, for example, the domain in Figure

2.4(a), when the abstract observation function is:
e Abstract observation 1: all observations wifkeese
e Abstract observation 2: all observations withheese.

with abstract model shown in Figure 2.4(b). The fact thattgrey is observed only in
the two leftmost abstract states, whilecy is only observed in the middle abstract state

indicates that these two observations distinguish between these groups of states. In other

73

W

(a) Vertical Stripes (b) Horizontal Stripes

Figure 2.14.Two hypothetical belief states for which thghtgreygreyfeature distinction
would be useful.

Procedure 2.7.1simplerimproveObservationMapAlgorithi, f,)
forall 7,7 € Sdo
it £(i) # £(j) then
r < distinguishBetweenStatés(,)
return s

words, if the agent had a belief distribution like the one shown in Figure 2.14(a), observing
lightgrey or grey would refine the belief distribution, and would improve the agent’s esti-
mate of its abstract state. Procedure 2.7.1 outlines a method that implements this principle
in the simplest manner possible.

Note that Procedure 2.7.1 does not reference the shadow model, or the state compatibil-
ity function. It examines each pair of stateg in S, and distinguishes between each pair
of states with different abstract labels. Procedure 2.7.5 will address in more detail exactly
how the methodiistinguish BetweenStates refines the observation map, as this will be
an important step of the final observation splitting algorithm. However, there is a problem

with the way that Procedure 2.7.1 chooses pairs of states to examine.

74

The simplicity of Procedure 2.7.1 method is appealing. However, it fails on some fairly
simple test cases, such as Figure 2.3. Take, for example, the twoistaieg in Figure

2.14(b). These states
(a) have different abstract labels in the abstract model shown
(b) have different observation distributions

This seems to indicate that the observation distinction that helps to distinguish between
these two states, namely thehtgreyl/grey feature distinction, is important, and it would

be — if all belief state$: S — [0, 1] were reachable from the initial belief distribution.
However, in general, this assumption is not trug;, (the set of reachable belief states,
Equation 2.5) is often a smaller subset of the set of valid belief distributiBrsis con-
strained by the initial belief state, and the transition structure of the POMDP. It is this fact
that the shadow model and compatibility function approaches exploit. Given the specific
b, and transition function described for Figure 2.3, the belief distribution shown in Figure
2.14(b) can never occur, and in fact there is no belief statg,jrfor which the distinction
betweenlightgrey and grey improves the abstract belief estimate. This is not to say that
no belief state places probability mass on bo#indj. The initial belief state (see Figure
2.6(a)) is one such example.

What is required is a more precise method of searching for pairs of states where the
distinction between the two states has an effect on the abstract projection of some belief
state inB),. It is these pairs of states that should be distinguished from one another on
the basis of their observation functions. The compatibility function provides one tool for
identifying these states.

The observation mapping function evaluation methods in Procedures 2.4.1 and 2.5.1
construct data structures (the shadow model and compatibility function) that can be used to
pinpoint pairs of states like this. The algorithm for observation map improvement has two

essential components:

75

Procedure 2.7.2mproveObservationMag(, ~)
compatibleStates < constructCompatibilityFunctiod(, «, f,,, f) // Procedure 2.5.2
@ < an empty set of state pairs (implemented as a queue)
makeDistributionsCompatible(, by, compatibleStates, Q) I/ Procedure 2.7.3
while @) not emptydo
(i, j) <= an element removed froM
k < makeObservationsCompatiblgf,) // Procedure 2.7.5
forall a € Ado
/l This step may add state pairs@
makeDistributionsCompatiblé(S | i,a), P(S | j,a),compatibleStates, Q) Il
Procedure 2.7.3
/I mark the two states as compatible
compatibleStates(i, j) < true
return «

e Searching for pairs of states that should be made compatible (Procedures 2.7.2 and

2.7.3).
e Splitting observations so that states become compatible (Procedure 2.7.5).

Both of these steps are part of a recursive process that forces pairs of states to become

compatible, and in the process refines the observation map.

2.7.1 Merging Distributions

If Procedure 2.5.1 fails and returrialse, it must be the case that Procedure 2.5.3 failed
for the initial belief distribution. Therefore, repair of an observation map begins at the
initial belief distribution (see Procedure 2.7.2). Failure can depend on observations in states
that are several steps removed from the initial belief distribution (see Figure 2.8). Procedure
2.7.3 locates these dependencies by iterating through state pairs, working forward from the
initial belief distributionb,,.

There must be some set of pairs of stafes. S x S that would make, compatible
with itself. Procedure 2.7.3 creates one such(sett starts with the best possible graph
flow found using the existing state compatibility functiofi¢w). Next, Procedure 2.7.3

adds pairs of states 19, using three steps:

76

Procedure 2.7.3makeDistributionsCompatibléy (S), Pg(.S), compatibleStates, Q)

forall 5,5, € Sdo
graph <constructDistributionGrapli((S), 5;, Pr(S), §,, compatibleStates)
flow <= maxFlow(raph)
if >, flow(s,l;) < 1then
// Add edges as necessary between incompatible states
augmentedGraph < augmentedMatching,(5), s;, Pr(S), 5,)
new Flow < maxFlow(nital Flow = flow, augmentedGraph)

/I 1f an edge was added between two states, make the paired states compatible
for all edgeg/;, ;) where newFlow, ;) > flow(;, ;) do
/[add the pait, j to the merge queue

Q<= QU(,j)

e Assume all states are compatible, and add edges of cafdaétween all states in

the left and right distributions of the matching graph accordingly.

¢ Initialize the flow in this augmented graph usifi(pw. This ensures that existing
edges between compatible state pair edges are used before edges between other pairs

of states.
e Calculate a maximum capacity flow from the source to sink.

e For each new edge in the augmented flow that was n¢tdn, add the two states

corresponding to the nodes it connectgXo

The method assumes that any pair of states could become compatible. In this implementa-
tion, there is no preference given to which pairs of states are forced to become compatible.
This means that the matching found is somewhat arbitrary. This is one of the reasons that

this method cannot be guaranteed to find the optikmalfinement.

2.7.2 Observation Splits
There are numerous supervised learning methods that search for features with discrim-
inative power, and in practice implementing some variation on one of these algorithms is

probably the best solution for implementing Procedure 2.7.5. However, in keeping with the

77

Procedure 2.7.4augmentedMatchingGraph((.5), 5;, Pr(S), 5,)

V < {s,t} Il new set of vertices
capacity - V x V — IR Il capacity of the edges

// Fill in the nodes and edges of the graph
forall 7 € 5, do

capacity(s, ;) = g
forall j € 5, do
V< Vuir}
. P]
capaCZty(ij t) = PR(RfT(IJ(;))

forall i € 5,5 € 5, do
capacity(l;,r;) =1

return graph = (V, capacity)

Procedure 2.7.5distinguishBetweenStatés(, ~)

/I Construct a new observation mapping function such that:
_ P(oyli,a) _ P(oynlj,a)
f(on) = K(0m) = Plonlra) = Plonlja)

goal of treating each observation as a discrete entity, in this section we’ll discuss the ex-
act solution to the problem of finding discriminative observation splits. The main purpose
of this exercise is to clarify the difficulty of finding an exact solution, and to categorize
the problem, in hopes of finding good approximation algorithms. We will consider two

scenarios:

1. Equation 2.13 is satisfied, so that for all statestionse and observations, P(o |

s,a) > 0.
2. Equation 2.13 is not satisfied.

The first scenario is straightforward, while the second actually results in a NP-complete
problem. This is not surprising, given the difficulty of learning problems in general.

For two states to become compatible, their observation functions must be made com-
patible, in Procedure 2.7.5. This procedure splits the observations into new groups such

that:

78

Ploali,a) _ P(ouj.a)
Plonli,a) P(on]j.a)

k(on) = k(0op) — (2.54)
for the two states andj in S, and all actions:.

This procedure is simplest whef(o | s,a) > 0 for all states, actions and observa-
tions (as in Section 2.4). In this case, Equation 2.54 induces an equivalence relation over
observations. Two observations are equivalent, and can thus share the same abstract label,
exactly when the ratios for the two observations are equivalent for the two s&atds in

S. Rewriting Equation 2.54 to make the equivalence relation a bit clearer yields:

P(ouli,a) P(omli,a)

k(o) = Kk(oy,) < Vi,]J,a, - = -
(00) = lom) 2 Blo,lja) ~ Plowlj.a)

The ratio ﬁ((fj";ji is a real valued key for the observationAll observations with the same

key are equivalent, and clustered under the same abstract label.

Lemma 2.15. Equation 2.54 implies that statésnd j have the same shadow observation

functions (Equation 2.17).

Proof. We must show that Equation 2.54 implies that for all observationg), IDI(D(E’& =

k(0)|i,a)

—Pfé(og'g‘j)a) indicating that as far as the observation function is conceriretl ; are obser-

vation compatiblei~, 7, Equation 2.25).

79

P(oli,a) P(o|i,a)
P((o) [i,a) 32, . Plom|ia)
1
T Sy, POl Both num. and denom. are not
P(oli,a)

1

om\z a)
P(oli,a)

by Equation 2.54

(0|J>)
Omelo P(oy, | j,a)
_ P(Ol a)
P(”()!J, a)

Both num. and denom. are not

Z

Om\J a)
Zome P(olj,a)
DY

]

The problem becomes more complicated when observation probabilities candequal
Any observation which is never observed from either siabe state; is not useful for
distinguishing between the two states, and should not be affected by the observation splits
incurred when distinguishing betweeandj. LetO;;, be the set of observations that could

be observed in either stat@r statej after actiona:
Oija={0€ O | P(o|i,a) >0V P(o]|j,a)>0)}. (2.55)

Any observation map which satisfies Equation 2.54 for the observation®jp, is suffi-
cient. The abstract labels of observations n@®jy, are not specified (thus this is obviously

not an equivalence relation).

Lemma 2.16. If Equation 2.54 holds for all observations= O,;,, then state$ andj have

compatible observation functions (Equation 2.25).

Proof. We must show that if Equation 2.54 is true for all observation pai@;ip, then

wheneverP(x(o) | i, a) is greater thad andP(x (o) | 7, a) is greater than, it follows that

Plofia) _ oua
Fln(o)lia) — Plr(o)ja) (EQUALION 2.25).

80

There are three cases: the observatiaman have zero probability in both statand

statej, in either one of the states, or in neither state.

1. Case 1P(o | i,a) = 0andP(o | j,a) = 0. In this caseg is not inO,;,and Equation
2.54 does not apply. Since the probabilitycos zero in both states, the equality is
trivially true:

P(o|i,a)

P(ao) | i)

Plo]j,a)
P(r(0) | j,a)

2. Case 2: Without loss of generality, assume @t | i,a) = 0 andP(o | j,a) # 0.

In this case is in O,;,, and Equation 2.54 applies.

For allo,, € [0]:

by Equation 2.54

This can only be true if(o,, | 7,a) = 0. Since this is true for ab,,, € [0],:

P(k(o0) |i,a) = > P(om | i,a)

omeE [0] K

=0.

Therefore,P(k(0) | i,a) = 0 and the implication in Equation 2.25 is true due to the

fact that the preconditions are false.

3. Case 3P(o0 | i,a) # 0 andP(o | j,a) # 0. In this case is in O,j,, and Equation

2.54 applies.

This case follows the same proof as Lemma 2.15.

81

Procedure 2.7.60bservationCompatibilityFunction(j, x, ~,)
~.: O x O — {true, false} // Initiailize all to true
forall « € Ado
for all o, 0, € O do
if [P(ox | si,a) > 0]V [P(og | sj,a) > 0] then
if [P(oy] si,a) > 0]V [P(o | sj,a) > 0] then
P(oglsi,a orlsi,a
if [o:||sg bz of‘lswa))] then

o, ~, 0 < false

]

Procedure 2.7.6 constructs an observation compatibility funetiorO xO — {true, false}
that satisfies the preconditions for Lemma 2.16. Any observation mapping furatibith
clusters the observations into compatible groups, sodhal = x(0;) — 0; ~, o; will
provide the desired changes in the state compatibility function, required by Procedure 2.7.2.

Consider the domain from Figure 2.8, with output function:

C({cheese}) = +5

(({cat}) = -
(({lightgrey}) =0
¢({grey}) €0
C({black}) £ 0

C({white}) £ 0

Applying Procedure 2.7.2 implemented using with Procedure 2.7.5 to this domain (as
though it satisfied Equation 2.13) yields the identity observation mapping function, with

no grouped obsevatiohs

3Undefined ratios were treated asin this experiment.

82

Figure 2.15. Observation compatibility graph for the POMDP of Figure 2.8. Compatible
observations are linked by edges.

However, the following(respecting mapping function passes the compatibility test

(Procedure 2.5.1), as shown in Table 2.1:

01 = {cheese}

0y = {cat}

03 = {grey}

o4 = {black,lightgrey}

05 = {white}

and yields a smaller abstract state set than the original observation set. This mapping func-
tion would satisfy the prerequisites for Lemma 2.16. The observation splitting algorithm

starts with the following observation map (split according o

o1 = {cheese}
def

09 = {cat}

03 = {grey, black, lightgrey, white}

Given this initial observation split, and its associated state compatibility function, Proce-

dure 2.7.6 can be applied to find an observation compatibility function. This observation

83

W e es] [Ty (e

g O W] e

(a) POMDP (b) Abstract Model

Figure 2.16. Three corridor gridworld POMDP with two noisy observation markers in
each hallway. In this case there are two color markings in each hallway, which signal the
type of hallway the agent is in, as well as the location within that hallway. However, the
observation of these markers is noisy (see POMDP definition in text for details).

compatibility function is shown in Figure 2.15. Observatidngtgrey andblack (the only
two compatible observations) can remain clustered into one abstract observation, resulting
in the correct observation mapping function.

In this particular example, it is clear which observations should be clustered, however,
in general this is not the case. Take the case of the POMDP illustrated in Figure 2.16,

defined as follows:
States: Each square in Figure 2.16 represents a state.
Actions: up, down, left, right

Transitions: Actions fail with a small probabilitye. Failure results in no change to the

State.

84

Observations: white, lightgrey, grey, top, bottom, middle, sides, cheese, cat

Observation Function: The obserationshite, cheese andcat are deterministically ob-
served. In the marked states in each corridor, the signaling observations may be
confused with one another:

e grey may be mistaken falightgrey with probabilitye, and vice versa.
e top may be mistaken fdsottom with probabilitye, and vice versa.

e middle may be mistaken fasides with probabilitye, and vice versa.
Initial Belief State: Equal probability mass on the leftmost state in each corridor.

Given the initial obsevation split:

01 = {cheese}

def

09 = {cat}

o5 = {grey, lightgrey, top, bottom, middle, sides, white}

Procedure 2.7.6 yields the observation compatibility relation shown in Figure 2.17. There

are at least two ways of clustering the observations to respect this compatibility relation:
o {white}, {top}, {bottom}, {middle, grey}, {sides, lightgrey}, {cheese},{cat}
o {white}, {top}, {bottom}, {middle,lightgrey}, {sides, grey},{cheese}, {cat}.

While both observation groupings obey the observation compatibility constraints, only the
first one results in the abstract model shown in Figure 2.16(b). The other choice results in

a larger abstract state set, in which all three corridors separate. This is easy to detect in
this case: there are only two choices to test, and the first option allows states which had the
same abstract state label before Procedure 2.7.5 was called to keep the same abstract label,

while the second option does not.

85

X 2%

Figure 2.17.Observation compatibility graph for the POMDP of Figure 2.16. Compatible
observations are linked by edges.

The basic problem is determining a compatible observation mapping functibat
wherever possible allows abstract states to remain intact, rather than splitting them. In this
particular case, a simple heuristic can be applied to mend the abstract states. However, in

general the following question is computationally complex, even for a single pair of states:

Given two states andj, where at the last iteratiofi(i) = f(j), and an obser-
vation compatibility function~,, is there an observation mapping functien
that satisfies Lemma 2.16 fer,, and allows; andj to remain part of the same

abstract state?

Answering this question is NP-hard. This can be shown by reducing the NP-hard deci-
sion version of the Knapsack problem Cormen et al. (2009) to this question. The decision
version of the Knapsack Problem is as follows: given a knapsack of fixed sa®&d vari-

ous objects of weightV = {wy, w;...w, }, determine if there is a sét, U C W, such that
ZwieU Ww; = k?

Theorem 2.17. The Knapsack Problem can be reduced to the problem of determining
whether, given a particular set of observation constraints, the observation mapping func-

tion can be constructed such that two statemnd j; can have the same abstract label

Proof. Construct a POMDR/ with states and; such that and; can only have the same

abstract label if it is possible to exactly fill the knapsack.

86

The POMDP must have two states; corresponds to the items to be placed in the
knapsack, and; corresponds to the knapsack. The observation function for these states

under some specific actianwill be as follows:
e s,. One observation; corresponding to each; € W
— P(oi | 80,a) = %
wheret = ZMGW w;.
e s; emits two observations:

— ox: P(oy | s1,a) = k/t (knapsack)
— 0. P(o; | s1,a) =1 — P(og | s1,a) (all remaining probability).
Both s, ands; should have the same next state distribution, so that for all stat€&$s’ |
sp,a) = P(s' | s1,a). This means that the only distinction between the two states lies in
their observation functions. If the abstract observation functions for the two states is the
same, it will be the case thgts,) = f(s1).
Assume that the other states and observations of the POMDP, and the output fgnction

can be constructed so that the observation compatibility function for the observatigns of

ands is:

Ok *k Og

and for allo; corresponding ta; € W

0; ~y Ok

0; ~y Og.

87

For all pairso;, o; corresponding to pairs;, w; € W:
0; ~y Oj.

Sinceoy », o,, s; must emit two abstract observationg, = x(o;) ando; = x(o,). If

f(s0) = f(s1), then it must be the case that for alE O:
P(o| sg,a) = P(0] s1,a)
therefore:

P(50 | So,a) = P(50 | Sl,CL)

P(o | so,a) = Z P(o; | s1,a)

0; €00

Let U be the se{w; € W | k(0;) = 00}. Then:

Ejt=> " w/t

w; eU

andU is the set of weights needed to fill the knapsack. This indicates that wheneaer
be found such thatand; have the same abstract observation function, the corresponding
knapsack problem has a solution.

Similarly, if the knapsack problem has a solutibi) then the observation mapping
function should be constructed such that foregivherew; is in U, k(o;) = 0,. All other
observation emitted from, should have abstract labelo;) = 6,. With this observation
mapping function definitionf (so) = f(s1).

Thus, the knapsack problem has a solution if and ontyaén be constructed such that

f(s0) = f(s1). u

88

2.8 Time Complexity

Procedure 2.7.2 has several parts.

e The outer repeat loop may iterate for ugdd steps, as the abstract observation map

must change on each iteration.

e The time to construct the compatibility function. This is dominated by the time

needed to merge state pairs, in the worst case.
The remainder of each iteration is devoted to merging state pairs.

e At most|S|? state pairs may be merged (all state pairs), Withactions to be exam-

ined per state pair.

e Each observation distribution merge requires at lé@st - | A| steps to construct
~.. For the purposes of this analysis, the heuristic that chooses among the possible

observation maps will be assume to require tite).

e Each next state distribution merge requires two steps of graph flow construction.

Each step i$)(|S|°), as shown in Section 2.5.3.

The overall complexity of the algorithm is therefore:

O (10]-18*- 1Al - [(I0 - |A] + n) +|SI°]) -

Depending on the ratio between the number of states, actions and observations, different
elements of this formula will dominate the running time. The most variable portion of this

term is the number of state pairs to be merged.

2.9 Conclusion
This chapter defined two acceptance criteria for output-directed abstract POMDP mod-

els. Each of these criteria can be evaluated in polynomial time, but both may reject some

89

valid abstract models. The first acceptance criteria, the Shadow Model test, works under
the assumption that Equation 2.13 is satisfied. It is somewhat faster than the second ac-
ceptance criteria, the Shadow Compatibility test. The Shadow Compatibility test accepts a
wider range of abstract models, particularly when the Shadow Model assumptions do not
hold.

This chapter also defined an algorithm that searches for the smallest abstract models
that satisfy these acceptance criteria Section 2.7 specified such an algorithm, although the
search strategy is not guaranteed to find the smallest possible satisfying abstraction. The
algorithm includes two steps implemented using heuristics: the step that chooses one of
several possible sets of state pairs to merge, and the step that chooses one of several im-
proved observation mapping functions. Both of these steps could be improved using better
heuristics.

The next chapter will define observation map testing algorithms using Predictive State
Representations (PSRs), and examine the reasons that the PSR abstraction approach ex-
pands the set of accepted observation maps, improving on the POMDP abstraction ap-

proach.

90

CHAPTER 3
THE KRYLOV BASIS: POMDP TO PSR ABSTRACTION

3.1 Overview

POMDPs are not the only way of modeling partially observable domains. Predictive
State Representations (PSRs) (Littman et al., 2001) are an alternative method of modeling
partial-observability. Rather than modeling hidden states, PSRs represent state as a set
of predictions about future observations. PSRs represent a fully functional alternative to
POMDPs.

The last chapter discussed solutions the to he problem of finding an abstract POMDP
model from a known POMDP. The known model provided to the algorithm will be termed
the “original” model. This chapter examines two questions, in the context of the Shadow

Model and Shadow Compatibility tests developed in the previous chapter:
e Can the original POMDP be replaced with a PSR?
e Can the abstract model be constructed as a PSR rather than a POMDP?

The first question is unfortunately not true: at least in their current form, PSRs cannot
supply enough information to serve as the original model for these abstraction techniques.
PSRs can, however, serve as the abstract model. This chapter adapts both the Shadow
Model and Shadow Compatibility tests and search algorithm for the case when the original
model is a POMDP, and the abstract model is a PSR.
Finally, the chapter compares the abstract PSR model acceptance set to the acceptance
set for the abstract POMDP. As a result, we define an intermediate type of model, which

will be termed an Observation Conditional POMDP.

91

3.2 Background: Predictive State

Predictive State Representations (PSRs) (Littman et al., 2001) represent partially ob-
servable domains through a set of tests and their outcomes. As in a POMDP, a PSR has
an action setd and observation sé€d. A test, much like a history, is a sequence of action
observation pairs. I® is the set of all possible tests, then the empty kastin ©, and for
everytest € ©,Va € A,o € O,aot € O.

Tests can succeed, or fail depending on whether the expected observation sequence is
observed. Test success is defined as observation of the specified test observations upon ex-
ecution of the test actions, test failure is defined as the observation of any other observation
sequence.

For a given set of historief, letwy : H x © — IR be a history specific function
mapping each history, test pair, ¢) to the outcome of tegtafter historyh. Test outcomes
can be defined in a variety of ways. Existing research has defined two types of &G
directedandobservation-directedPSR methods differ in how the outcomes of the empty
test \ is defined. The outcome of every testt longer than the empty testis defined

recursively, in terms of the shorter test
wy(h,aot) = P(o] ha)-wy(hao,t),
so that all longer test outcomes are defined in terms of the spegibaettomes.
There are several ways of defining the base eagéh, \) for each history. Littman
et al. (2001) defines the outcome of the empty testfasevery history, so thaty (h, \) =
1forall hin H. In this casewy (h, t) is the probability that the testwould succeed given

history h:

wy(h,t) = P(t| h)

92

PSRs with this initialization will be termeabservation-directe@SRs. Poupart and Boutilier
(2002) define the outcome of the empty tesds the expected immediate reward received
after historyh: wg(h,\) = E(r | h). In this casewp (h, t) is the probability that the test

would succeed given history, multiplied by the expected reward after the sequénce
wy(h,t) = P(t|h)-E(r|h,t).

Poupart and Boutilier (2002) term thisralue-directedSR.
Let) be a set of test§ C © which has the following property, for al ¢ H and

t € 0O:

wH(h7 t) = Z U)Q(q, t) ’ wH<h7 q)

q€Q

wherewg is a weight functionwg : @@ x © — IR, encoding the weight of eache ©
giveng € (). The set) is known as the set of “core” tests. PSRs that are represented using
this type of linear set of basis tests are known as “linear” PSRs.

A linear PSR can be defined as a tuplg A, O, {T.,}, b)), where:
e () is the core set of tests,

A is the set of actions,

O is the set of observations,

{T,,} is a set of transition matrices, and

by : @ — IR is the initial belief overy.

93

For each actiom and observation, the@ x () transition matrix7,, is defined as follows:

Tao(ia]) - wQ(QZa CLO(]]‘)

and the PSR belief update rule can be written:

bhao = thao (31)

This yields the following belief states:

whereg; € Q.

If the PSR isobservation-directedhen the belief update can be normalized:

o thao
B bh €ao

(3.2)

hao

wheree,, is a vector defined by:

6ao(i) = wQ(QM ao)

This yields belief states with the following entries:

bn(1) = wr (h, ¢:)

whereg; € (). Observation probabilities can be derived from these belief states:

P(o| h,a) = bpeqo

Thus far, the PSR model has been described as a stand-alone model. PSRs are also related

to POMDPs, however: any known POMDP can be transformed into either an observation-

94

directed or value-directed PSR, where the siz€)ahay be equal to or smaller than the

size of the POMDP state sét

3.2.1 POMDP to PSR Compression

Poupart and Boutilier (2002) and Littman et al. (2001) use the Krylov Basis (Saad,
2003) to construct a core set of te§térom a POMDP. Given a POMDPR! = (S, A, T, 0, Q)
with initial belief by, these algorithms calculate a PSR = (Q, A, O, {T,,},b,) that
is equivalent toM in its predictions. The resulting PSR may have fewer tests than the
POMDP has states, compressing the original POMDP into an equivalent, but more com-
pact model.

Given a POMDPM = (S, A, T, O,), define POMDP transition matricés, for each

paira € A ando € O, as:

Too(i,7) = P(o| sj,a) - P(s; | si,a).

Define a set of prediction vectors corresponding to the set of téstg:¢ € ©} such

that:

‘ 1 in Littman et al. (2001)
ux(i) =
r(s;) in Poupart and Boutilier (2002)

Ugot = Taout

Each entryu, (i) corresponds to a prediction abdugiven states;. Combining this vector

with the POMDP belief vectas;,:

’LUH(hﬂf) = bh . u?

The core set of test9 corresponds to a linearly independent subset of the vectdrs in

te B}

95

3000 """"""""""""""""" aIAIOIOI

T, u.....T, T, u..... T, ~ T, u T, T, U....... u

8009 aioj amon 301 aIAIOIOI aOJ aooo ak0| aIAIOIOI akol
T T T U oo T T T,.,U
8900 @m0 ~ A;0; 2a1010 @m0 ~ A;0;

Figure 3.1. The tree of tests for a POMDP. The bolded vectors correspond to the\fests
a;04, axo;, anda,0,,a,0; Which are chosen to form the core set if tagts this hypothetical
example. Other tests are not expanded.

Both Littman et al. (2001) and Poupart and Boutilier (2002) use the Krylov Basis
Kr({T.},u) to calculate), whereu = u,. The two algorithms differ in their defini-
tion of w,.

The set of operator§7,, | a € A,o € O} combine to form a branching tree of
possible tests, as shown in Figure 3.1. Each node in this tree corresponds to an element of
{u; | t € ©}. The search for a Krylov Basis starts with a single veatorhich forms the
root of the test tree shown in Figure 3.1. The full set of t€st®rms a tree rooted at.

The set() of core tests form a subtree also rooted.afhe rooted subtree corresponding

to () can be found through breadth first or depth first search of the test tree. If the test at a
particular node is not added @, the search on that branch terminates, as all children of
the node can be eliminated from consideration.

The projection matrix” : S x Q — IR, shown in Figure 3.2, where:

F(i, j) = ug(si)

maps POMDP belief vectors over states to PSR belief vectors over t>s in

96

|l o |efesl| 6 |

So || ug(0) | ... Ug, (0)
S1 : '

52

Sis) || Ua: (IS])

Figure 3.2. POMDP Krylov Subspace Projection Matrix

The PSR transition matricds,, and\ weight vectorz are solutions to the formulas:

T,,F = FT,, (3.3)

u=Fu (3.4)

The normalized belief state update rule for a POMDP can be written:

bhjbo
bhao = ——— 3.5
oo = 3T (3.5)

wheree is vector of ones. The value-directed PSR does not preserve this update rule.

However, the following belief update rule can be used to calculate the un-normalized belief

vector:

bhao = 0n 1o (3.6)

From this point forward, the notatidp will indicate the belief state as calculated using this

update rule, without normalization. The normalized version will be denptéd). Thus

we will have:

bhao

b a) — 7 1
11(bhao) b T

in the POMDP.

97

The value-directed PSR algorithms take advantage of the fact that the value function
for both the normalized and non-normalized belief states are identical. Thatiss &
vector which maps belief states to values, then the value function for normalized belief

states (Equation 3.5) is:

p(bn)v = p(bn)r 47+ (1(bn) Tuo€) - 1(Bhao)v-

If the value function for un-normalized belief vectors is defined as:

th = th + - Z bhaov,

thenv is the same in the normalized and non-normalized cases (Poupart and Boutilier,

2002):

bpv = bpr + v - thuov <

p(bn)v = p(bn)r + 7+ (1(bn) Tuo€) - 1(Bao)v-

The Poupart and Boutilier (2002) algorithm preserves updaties tbthe PSR update rule

is:
Bhao = BhTao'

thenVh € Hy;, by)F = by, if by is initialized tob, F.
If v = e, as in Littman et al. (2001), the normalized update rule for the vector of test
probabilities which make up the belief state is:
$0(0n) Tuo

Bpao) = 0100
Iu(") M(bh)TaaﬂT

Littman et al. (2001) have shown that the updated test probabilities are accurate, that is

Vh € Hy, ,u(()bh)F = [L(Z)h), if B,\ is initialized tob, F.

98

In the case in which: is based on the reward function (Poupart and Boutilier, 2002),
the value function for the POMDP is preserved, although it may not be possible to properly
normalize the test probabilities at each step.

While both of these methods can be used to compress the belief state of the POMDP

M, neither takes advantage of observation abstraction.

3.3 PSR Homomorphisms

This section addresses the following question:

¢ If the input modelM were a PSR, could the krylov basis be used to form an abstract

shadow model?

In fact, the shadow model derived from a PSR, has a non-linear transition update equation.
Unfortunately, both the Shadow Model and Shadow Compatibility abstraction tests rely on
the linearity of the shadow model update equation.

To understand how one would construct a shadow PSR from an original PSR, we’ll
look in a little more depth at how the shadow model transition function/matrix is defined.
Take some test € @ for the original PSRV. Each update from one histofyto the
next (P(q | h) to P(¢’ | hao)) can be broken down into stages. A POMDP has a two
stage update: firsP(s’' | ha), thenP(s" | hao). A PSR lumps both of these steps into
a single update operation. The abstract and shadow models instead break the update into

three stages:
1. calculate:P(¢'|ha)
2. update 1 to getP(¢'|har(0))
3. update 2 to getP(q'|hao)

The abstract model includes update 2, but not update 3. The shadow model, on the other

hand, must include update 3, but not update 2. This means we must be able to explicitly

99

separate the update due to the abstract observation label from the update due to the full

observation label.

a update _ r(0) gpdate » 0 uedate g
P(q'r(0) | ha) P(q'o| ha) P(k(o) | ha)

PAd [hao) = P L 1) 50y Plnlo)) Plo| ha) ~ P(gr(o) | ha)

The abstract model updates leave off the last update:

k(o) Epdate
P(q | har(0)) = P<q’ ha) By ﬁ%ﬁ.@(;ﬁ?g‘ ha)
< (o) | ha)

a update

The shadow model updates use the other part of the observation function:

o update

P(q | h{ak(0))o) m'];E?; |hf;0)t) ' Pié?é?z)’ |h];2)

a update

o update
a update
/_/\H P / h

P(q's(0) | ha)’

since% does not depend an

If the historyh is replaced with the PSR state vectgifrom the original PSR:

P(q'| h{ar(o))o) = P(q" | ha) %

_ /)) qu(oq’ | q,a) - bn(q)
— (;;w(Oq | q7a) bh(Q)) (Zq Zo’e[o]m w(oq’ | q7a) . bh(Q))

Unfortunately, there is no way to cancel out the sums qver the ratio portion of this

update rule. This means that the update rule does not reduce to a linear transformation.

100

That is, whenM is a PSR} (140) Cannot be calculated via a linear transformation.of,.
Since the Krylov basis techniques are only applicable to linear transformation functions,
the shadow model of a PSR is not a good candidate for Krylov basis reduction, though it

may be possible to adapt the PSR representation in some way to avoid this problem.

3.4 Outline
The remainder of this chapter is organized to parallel the last chapteis E mapping
functions : O — O mapping the observations of a POMDP to abstract observations.,

the next several sections will present algorithms that:
e Evaluatex when for all states, actionsa and observations, P(o | s,a) > 0.
e Evaluatex when there are some observation probabilities whiclbare

The difference is that rather than using CMP Homomorphisms to achieve all of these
tasks, this section uses the Krylov Basis to construct an abstraclRSR the algorithms
acceptx, then the abstract PSR should make the same predictions about abstract tests that
the POMDP does. Since the abstract PSR models may be value-directed, the proofs in this
chapter will focus on showing that the value function is preserved, rather than the abstract
belief state updates.

The switch to an abstract PSR representation results in two differences in the set of
abstract observation mapping functions accepted. The first difference is that abstract PSRs
may be value-directed, where the abstract POMDP approach can only accept observation-
directed models. However, even when restricted to the observation-directed case, the ab-
stract PSR test can in some cases accept observation mapping functions that the abstract
POMDP approach would reject. This appears to be at least partly due to the fact that the
POMDP update rule can be divided into two steps (Equations 2.2 and 2.3), whereas the

PSR update rule combines both the action and observation updates (Equation 3.1). Mod-

101

ifying the POMDP abstraction algorithm to combine the action and observation updates
results in a closer match between the acceptance patterns of the two algorithms.
The final sections of this Chapter will compare the acceptance sets and experimental

running time of the both POMDP and PSR abstraction finding algorithms.

3.5 Shadow Model Test

In this section it is assumed that for all statesctionse and observations.
P(o]| s,a) >0 (3.7)
Given a POMDPM = (S, A, T, 0, Q) and observation mapping functian: O — O,
Procedure 3.5.1 tests by constructing abstract and shadow PSRskfoilf the abstract
PSR is independent of the shadow PSR, the test succeedsisiadcepted. Otherwise,
is rejected. In order to define the shadow and abstract model transition matridés thoe
transition matrice§7,,} must be separated into their action and observation portions. For
any actiornu and observation, observation matrix’,, is a diagonal matrix, where:
Puoli. i) = P(o| si,a). (3.8)
The separate action update maffixhas entries:
T,(i,j) = P(sj | si,a). (3.9)

The combined update matrix is then:

Tao = TaPao

102

Recall that the POMDRV/, (Equation 2.14) is defined g, A, T, 0,,). The set

{T\(a0) } Of transition matrices for this POMDP can be defined:
Tx(ao) = Tan(ao)‘

where

Px(ao) = Z Pro-

o'€lo]w

Recall that the shadow POMDH; (Equation 2.19) is defined &§, A, T, O, Q). The

set{T¢(.0)} of transition matrices for this POMDP can be defined:

P,
Tetao) = Ta - 55—
P (ao)

. i N N ()
where the division symbol indicates entry-wise division (so tf)f?(ii—)(z, i) = Px(a0>(i,i))'
Non-diagonal entries afe

Given the assumption in Equation 3.7, for ang A ando € O:
P,
W=7 3.10
5 (3.10)

where! is an identity matrix. Procedure 3.5.1 evaluates a given observation mapping
under this assumption.

The first step that Procedure 3.5.1 takes is the construction of the starting vector for the
Krylov Basis. The start vectar for the abstract model can be a reward veetgvalue-
directed) ore (observation-directed). If the model is to be observation-directed, the obser-

vations must first be tested so thdk (o)) = (o). The next step of the algorithm is to

103

Procedure 3.5.1PSR Shadow Model Test
/I Initialize the start vector

if value-directed modehen

u=r
else ifoutput-directed modehen
u=_

else ifobservation-directed mod#ien
if 3o € O, ((k(0)) # (o) then
return false
u =-e

/I Construct the abstract PSR
F, < KrylovBasis(, {1y (o) })

/I Construct the shadow PSR
F¢ <= KrylovBasise, {T¢(0)})

/I Construct joint projection matrig’

/I Test the independence of the abstract and shadow PSRs
if byF" = by(n) ® be(n) Equation 3.18hen
f TooF = (Ty(ao) © Tao)) F Equation 3.1ahen

return £,
return false

construct krylov basis projection matrix for the abstract PBR, The abstract PSR/, is

defined as:

MX = (Q? Aa Oa {Tx(ao)}a b/\) (311)

where() is the set of tests corresponding to the columnF,Qfandl_aA = b\F). For each

actiona and observation, Tx(ao) is the solution to:

F\Ty(ao) = Ty(ao) Fx (3.12)

from Equation 3.3. From Equation 3.4:

104

Fi=u (3.13)

Theorem 3.1 will show thad/, is an accurate compressed model 6y, although it

has not yet been shown to be an accurate abstractiaW for

Theorem 3.1.Vh € Hyy, bypny = by Fy, Whereb, () is the un-normalized belief state for

M, (Equation 3.6).

Proof. Structural Induction.

Base caseb = \. By definition:

by = by Fx

Inductive step? to hao. Assume thab, ;) = by) Fy.

by (hao) Fx = by(n)T(a0) Fy Equation 3.6
= by Fy Ty (ao) Equation 3.12
= by Ty(ao) Inductive Assumption
= by (hao)

]

The next step that Procedure 3.5.1 takes is the construction of the abstract shadow PSR.
The start vector for the shadow PSR must filne shadow model PSR must be observation-
directed). If the krylov basis projection matrix for the abstract PSR is dergteitien the

abstract PSRV, is defined as:

M§ = (@7 A? Ou {Tf(ao)}y [;)\)

105

where(Q is the set of tests corresponding to the columngofandb, = by F. For each

actiona and observation, T;(,,) is the solution to:

FeTeao) = Te(ao)Fe (3.14)

from Equation 3.3. From Equation 3.4:

Fe=e (3.15)

Theorem 3.2.Vh € Hyy, by = beqny Fe

Proof. Structural Induction.

Base caseb =). By definition:

ben) = beoy L

Inductive step? to hao. Assume thabe) = ben) Fr.

be(hao) Fe = e(n) Te(ao) Fe

= bﬁ(h)Fffg(ao) Equation 3.14
= be(n) Te(ao) Inductive Assumption
= bﬁ(hao)

]

After constructing the abstract PSR and shadow PSR, Procedure 3.5.1 tests the two
PSRs to determine whether they are independent. This require the construction of a matrix

that projects states ifi onto the joint predictions of pairs of testsGhand(). Define the

106

matrix F' as a projection matrix from belief vectors onto the joint abstract & shadow core

tests:
F(i, (k1)) = F\(i, k) - Fe(i, 1) (3.16)

where(i, j) is an index into the columns @. If F), is ann xm matrix, then(i, j) = i-n+j.

Theorem 3.3.In order to convert betweeR and F, :
FI®e")=F, (3.17)

wherel is an appropriately sized identity matrix, anddenotes the Kronecker Product of

two matrices.

Proof.

F(I®e")(i,j) = %F(@} (k.0)) - (I @ e")((k, 1), j)
= P (i k) Fe(i 1) - I(k, §) - &(1) Kronecker Product
= ;qu,j) CFe(i,0) - 10, 5)-e(t) I(k,j) =0if k #
= F\(i,) - Zl:Fg(z’,l) -e(l)

= (i, 7) - (Fee) (i)

= F\(i,7) - e(q) Equation 3.15

= FX(ZLY)

107

The following tests are the shadow model constraints:

DAF = by ® e (3.18)

T..FF=F <Tx(ao) & Tg(ao)> (319)

if these test fail, then the shadow and abstract models may be correlated, and the test fails.
The following theorem states that if Equations 3.18 and 3.19 are satisfied, then the

belief state factors into abstract and shadow components for évemhis will be used

to show that these two tests are sufficient to show that the value function(twr() is

preserved, in Theorem 3.7.

Theorem 3.4.1f M is PSR, and\/ and M are abstract and shadow models which satisfy

Equations 3.18 & 3.19, then for all € Hay, Fby, = by @ beqn)-

Proof. By Induction onh.
Base casel(= \): Equation 3.18.

Inductive assumption:
b = by © ben

Inductive stepk to hao):

thaoF = bhF <Tx(ao) & TE(ao))

= (B ® b) (Tatao © Tetan))

= (bxTatan) @ (bt Tetan))

by (hao) © De(hao)

108

The following corollary to this theorem will be helpful in proving that the abstract value

function is accurate (Theorem 3.7).

Corollary 3.5. Theorem 3.4 implies that for adyc Hy;, b, F(I ® é7) = l_)x(h) - ¢, Where

¢y is a scalar constant, and, = (be(x)é”).

Proof.

b F(I @ e") = (byny @ b)) (I @ €7) Theorem 3.4

= by - (Degmye") sincebe e’ is a scalar

]

The following Lemma will also be helpful in proving that the abstract value function
can be lifted back to the original POMDP. It relies on the fact that abstract observations are
treated like actions in the shadow model. Therefore, for each abstract obsetvation

the observations withia are normalized to sum to one. That}s, _. % = 1.

Lemma 3.6. Equation 3.7 implies that for any € Hy, ando € O, 3, be(hao)é’ =

Ef(h)éT. Equivalently,y . crao = C-

Proof.

109

Theorem 3.2

Equation 3.10

each row ofl, sums to one.

Theorem 3.2

]

Theorem 3.7.1f Equations 3.18 and 3.19 are satisfied, and thus Theorem 3.4 is true, then

the value function for can be lifted from the abstract PSR, to the original POMDPM.

Proof. Definev = F, .

byv = bpr + v Z b1, v <—

b F\D = b\ T+ 7 > braoFy0 <= (Definition of v)
0€0
b F(I®e)0=bFIRET+7> bl (I ®E)D <

0e0

(Equation 3.17)

Dy(myChD = by(myChT + 7+ Y Dy(hao)Chaol <= (Corollary 3.5)

<10]
I_)X(h)z_jch - Bx(h)fCh + Z Bx(ha)(ﬂ_} Z Chao (KZ partitionSO)
€0 0€0
Bx(h)ﬁch = Z3><(h)7“0h +- Z Bx(ha)ovch — (Lemma 3.6)
€0
Ex(hﬂ_) = Bx(h)r +- Z Z_?x(ha)av (Cancelcy,)
€0
OJ

110

3.6 Compatibility Test

The proofs of the last section relied on the fact that Equation 3.7 was satisfigd in
However, as the last chapter has shown (Section 2.4.7), this is not always the case. This
section will define state “compatibility” criteria in the PSR framework in a similar manner
to Section 2.5.

As in Section 2.5, there are several important models in the compatibility test.
e)M is the POMDP

e M, is the shadow POMDP, defined in Equation 2.19

e)M, is the abstract PSR, defined in Equation 3.11

e)M, is the availability PSR, from the availability POMDH,, (Equation 2.27)

The POMDP./, has the following observation “availability” matrices, for each action

and observation:

Pyaoy = Y Pe(ao. (3.20)

o'€lo]x
Each diagonal entr, .. (4, 1) is equivalent tot he availability function(o, s, a) (Equation

2.26). The transition matrices far, are:

T,

n

(a0) = La - Pro) (3.21)

The abstract PSR/, can be constructed by finding the Krylov Ba#is: ({7, €},

wheree is a vector of ones. The availability PSR, like the abstract shadow PSR, must be

111

observation-directed. If;, is the projection matrix returned by r({7},,,), e}, then, is

defined as:

Mn = (Q? A7 07 {Tn(ao)}7 6)\) (322)

where@ is the set of tests corresponding to the columnsg,pfandb, = b, F,. For each

actiona and observation, Tn(ao) is the solution to:

TaoyFy = Fi'Ly(ao) (3.23)

from Equation 3.3. From Equation 3.4:

e,F, = e (3.24)

Let I, be a diagonal compatibility function matrix, in whidl((z, j), (i, j)) = 1 if and
only if ¢ and j are compatible, and all other entries &re The compatibility algorithm
(Procedure 3.7.2) construdts but first we will examine the properties it must have.

For eachu € A ando € O, there must exist a weight matri¥/,,, such that:

IWoaoI(Fy & T) = I(Ty(a0) @ Te(ao)) (Fy @ 1) (3.25)

[WooI (I @ F,) = I(Tao @ Tyiao)) (I @ F) (3.26)

where ! is always an appropriately sized identity matrix, anddenotes the Kronecker
product of two matrices.

There must also be a vectar, for the initial belief state such that:

w)\Ic(I ® Fn) =b,® Bﬁ()\) (3.27)

112

Equations 3.25 - 3.28 are the PSR shadow compatibility model acceptance constraints.
Next, these constraints will be shown to imply that the value function is preserved in the
abstract model.

If v is the value function fod/, and the value function fod/ is defined as = F, 7,

then

bpv = bpr + 7y Z bhao? < Bx(h)@ = [_?X(h)77 +7 Z Bx(ha)f?@

0e0 0e0

as Theorem 3.8 will show.

In order to show that Equations 3.25 - 3.28 are sulfficient criteria for correctness, the
hypothetical POMDP model/ will be examined. ! does not actually need to be con-
structed. Its only purpose is to show that the tests in Equations 3.18 and 3.19 are rigorous.

The POMDP)V/ is defined as follows:
M = (5, 4,0,{Tuo}, b)
whereS = S x S, and for each action and observation:
{Too = I.Waol.}. (3.29)

The initial belief for M is by = w1,

Theorem 3.8. From Equations 3.26, 3.25, 3.27 & 3.28, for evérg H,:

v —

br(1 ® Fy) = by, ® by (3.30)

Bh(FX ®I)= Bx(h) ® bg(h) (3.31)

whereb, ((i, j)) = 0 if i andj are incompatible — that igy, I, = by,.

113

Proof. By Structural Induction.

Base caseh =). Equations 3.27 & 3.28. In addition, sinbe= w, L,

byl = w11,

I
g

)\Ic

I
¢
>

Inductive step? to hao.

Equation 3.30:

Ehao(l X Fn) - EhTao(I Y Fn)

Equation 3.31:

= DI Wool (I © F)
= BhIC(Tao ® FnTn(GO))

[;h (Tao ® FnTn(ao))

= Dhao ® Bn(hao)

bhao(Fy @ I) = b To(Fyy @ 1)

- Z;hIc(P’xTY)((ao) 0% Tao)

= Z;h(f?xjﬂx(ao) ® Tao)

Bh(l & Fn)(Tao ® Tn(w))

b @ by)(Tao @ Ty(ao))

o (Fy @ I)(Ty(a0) ® Tao)

= (Bx(h) X bh)(Tx(ao) X Tao)

= Bx(hao) ® bhao

114

Equation 3.29
Equation 3.26
Inductive Assumption
Kronecker Product
Inductive Assumption

Kronecker Product

Equation 3.25
Inductive Assumption
Kronecker Product
Inductive Assumption

Kronecker Product

O]

Now we must show that this implies that the abstract PSR mafiels an accurate

reduction ofM.

First, the belief state and abstract belief state are related through a constant, at each

: _ bee?
historyc, = &+

by(nyen

Lemma 3.9. For everyh in Hyy, b Fy, = by - bee” _ by(h) - Ch

by(ny€n

Proof. Show, equivalently, tha, I, - byn)ér = by - benye” , by showing that both sides
of the equation are equivalent&g)(FX ® el).

Part 1:lv)h(FX &® eT) = bhFX . l_)n(h)é;l;

bi(Fy @ e") = by(I ® F,)(F, ®¢)) Kronecker Product
= (b, ® by (Fy ® &) Theorem 3.8
= b Py @ byye) Kronecker Product

Part Z:Eh(FX ® eT) = by - benye”

V]

bn(Fy®e)) =by(F, @I ®e") Kronecker Product
= (Z;X(h) X bg(h))(f X €T) Theorem 3.8
= by - beme” Kronecker Product

Combined, we have:

There are actually two equivalent ways of defining the congfant

bnFyeT _ benye”

= = wheree is a vector of ones.
by (nyen

Lemma 3.10.¢;, =

by(nye”

Proof.

by = bg(h)ez Dy Lemma 3.9
by(n &,
beme’
bhF GT = = —) (h)eT
* bymyel
bherT . bg(h)eT
bymer bymyed

]

Hereb, Fy e’ is simply the sum of the elementsipF, — it is not equivalent tdye” .
Since the abstract model may start with the reward as the initial vecter:(), there may
not be any vectot that solves:” = F,&”, and thus, no vector that solvegF, e’ = bye’.
Nonetheless, since each elemgnt, (i) is a constant multiple of, (i), the constant,

can be recovered withoat
Lemma 3.11. Given Lemmas 3.9 and 3.10, for ang O, >°, ., Chao = -

Proof.

116

Z Chao = Z M Lemma 3.10

T
0€o 0€o bX(h‘“’)e

. bn Zoeé TaoerT
Do

- thX(aO)erT

- Z_7><(ha0)eT
BTy ao)e”

by(hao) el

Equation

Equation 3.14

_ o ?x(h)Tx(ao)eT Lemma 3.9

by (haoye™

— ¢ Ex(hao) eT
=cp
by(haoy€™

]

Finally, we can show that the value function lifts from the abstract model to the true

model.
Theorem 3.12.

Proof. Definev = F\v.

bpv = byr + Y Z bhaoV <

0€0
b F D = b\ + 7Y braoAD <= Definition of v
0€e0
Cp - l_)x(h)@ =Cp l_)x(h)F + v Z Chao * Bx(hao)q_) <~ Lemma 3.9
[0
Cp * Bx(h)@ =Cp* BX(h)F + Y Z Bx(hzz)577 Z Chao <
oe0 0€0
Ch - bynyT = cn - by T+ Z by (hayoUCn <= Lemma 3.11
0€0
by = by + 7 Y _ by(hay? Cancel constants
0e0

117

Procedure 3.7.1PSR Compatibility Check{/, «)
/I Initialize the start vector
if value-directed moddhen
u=r
else ifobservation-directed mod#ien
if 3o € O,((k(0)) # ((0) then
return false
u=-e

/I Construct the abstract PSR
F, < KrylovBasis(, {7 (a0)})

/I Construct the shadow PSR
F, <= KrylovBasisg, {T}(a0) })

I. <= psrCompatibilityMatrix(//, F, F}))

return checkinitialBelief(,, I, F, F})

3.7 Compatibility Algorithm

Procedure 3.7.1 implements the PSR based compatibility check for the PQN&i
observation mapping function It defines the projection matricé§ andF;, for the PSRs
M, (Equation 3.11) and/, (Equation 3.22). The next step constructs the compatibility
matrix I., using Procedure 3.7.2. Finally, if Procedure 3.7.3 succeeds for the initial belief
vector, the procedure returns true, otherwise, it returns false and rejects

Procedure 3.7.2 constructs the compatibility mafrix/. must be constructed such that
for eacha € A ando € O, there exists a weight matri¥’,,, such that Equations 3.26 and
3.25 are satisfied. This constrains the entriek.off there is no solution that would satisfy
the constraints for a particular row ©f,,, 1. for that row must bé.

Procedure 3.7.2 determines which rowsligf, have solutions. Solvable rows corre-
spond to compatible pairs of states. At the end of each iteration, the diagonal entries of
1. arel for each row ofi¥/,, for which a solution exists, an@for all other rows. This is

achieved by solving a series of linear equations.

118

Procedure 3.7.2psrCompatibilityMatrix{(\/, F, , I,
1. < I [/ identity matrix
repeat
Iold ~ [c

Il Abstract projection matrix (from Equation 3.25)
abstract Projection <= 1.(F, ® I)

/I Availability projection matrix (from Equation 3.26)
availability Projection <= 1.(I ® F,)

A < [abstractProjection : availability Projection]

forall a € A,0 € O do
/I Abstract prediction matrix (from Equation 3.25)
abstract Prediction <= (Tho @ Too)(Fy @ I)
/I Availability prediction matrix (from Equation 3.26)
availability Prediction <= (T4, ® To,)(I ® F))
Y <« [abstract Prediction : availability Prediction)

forall i,5 € Sdo
Il Solve the system of equations for thiej)™ row of 1/,,,
y < Y ((i,5),-) Il The (i, j)" row
if the solutionr to A”x = y” existsthen
Waol(i,),) < T
else
13, 7), (i, 7)) < 0
until Ia=1.
return 1.

The (i, j)** row of I,, can be found, if it exists, by solving the following system of

equations for:

:E[old([& Fn) = (Tao ® Tn(ao))(l ® FT])(<27]>7)

xlold(Fx ® I) = (Tx(fw) ® Tﬁ(CLO)xe ® [)<<iaj>7)
where the terms on the right hand side are row vectors of next time step predictions for the

selected state paii, 7). If the solution for the row o#V,, corresponding tdi, j) exists,

then the diagonal entry df. for this pair remaind. If no suchzx exists, the entry fo(i, ;)

119

Procedure 3.7.3checklnitialBelieff,, I, F, F})
A« [Ic(]@ F,) I.(F, ® I)]
Y <= [bx @ by < byr) @ be(n)]
if the equatiom A = y has a solutiorthen
return x asby
else
return false

in 1. is set to0. Thus,!,. picks out those rows that have solutions (these are the compatible
pairs of states), and sets all rows that do not have solutiofs to
At the end of each iteration of the main repeat loop in Procedure 3.7.2, the following

constraints are true for all actionsand observations:

ICWaolold(I ® Fn) = Ic(Tao ® Tn(ao))(] ® Fn)

IcWaolold(Fx X I) = IC(TX(aO) ® Tf(ao))(FX ® I)

When/,,; = I., these become Equations 3.26 and 3.25.

Finally, Procedure 3.7.3 finds a weight vector to satisfy Equations 3.27 and 3.28 by
solving forw,. If there is a real valued solution, Procedure 3.7.1 succeeds and accepts
the abstract model/, with compression matri¥’, and observation mapping functien

Otherwise, the method fails and rejects the observation mapping function.

3.7.1 Time Analysis

In the worst case, the state compatibility test run time is dominated by the time needed
to construct the compatibility function. Procedure 3.7.2 has a total of 5 nested loops. The
outer “repeat” loop could execute up (6| times, if each iteration marks only one pairs
of states as incompatible, and all pairs of states are incompatible in the end. The nested for
loops executéA| - |O| - |S|* times.

Within these for loops, the system of equatiofisr = y* must be solved, wherg is
a|S|? x |S|* matrix. This operation has a run time©fn?), wheren is the dimensionality

of the matrix (Cormen et al., 2009), for a total time complexityxf|.S|?)?) or O(|S1%).

120

The total worst case time complexity is th0$| A| - |O| - |S|'°). This differs by a factor
of |O] - |S| from the POMDP compatibility algorithm of Section 2.5.3.

3.8 Comparison of PSR and POMDP Methods

This next few sections compare the POMDP compatibility and PSR compatibility ap-
proaches, and demonstrate that the PSR compatibility approach accepts some valid models
that the POMDP compatibility approach does not. There are three sources of the difference

between the two tests, and each will be examined in turn:

1. Abstract PSR models may be value-directed or observation-directed, whereas ab-

stract POMDP models must be observation-directed.

2. The abstract POMDP state predictions must be consistent at two points: after the
action update, and after the observation update. The abstract PSR belief vector is

only required to be consistent after both updates have been completed.

3. The PSR uses a set of basis tests, rather than state.

The next several sections will focus on explaining these differences between the two tests.

3.9 Observation and Value-directed Models
One of the two differences between the POMDP and PSR tests is that the PSR tests
support both value-directed and observation-directed models. Figure 3.3 represents the

following POMDP:

States: Each square in Figure 3.3 represents a state.
Actions: up, down, left, right

Transitions: Actions fail with a small probabilitye. Failure results in no change to the
state. The actionight is noisy when transitioning to the states with cheese in them,

ending in each cheese state with the designated probability.

121

s
w

right ¥

right ¥

W

i,

¢
right

<&

&

Figure 3.3. Three Hallway domain. Each hallway ends with a transition which has a
different reward distribution, but the same mean expected reward.

Observations: white, lightgrey, grey, black, smallCheese, mediumCheese, largeC'heese,

hugeCheese

Observation Function: In each state, the agent deterministically observes the features of

the current square.
Initial Belief State: Uniform probability of being in each of the three leftmost states.

Reward Function:

smallCheese : 4
mediumCheese : 6
largeCheese : 8
hugeCheese : 12

all other obserations0

122

Consider the output functiofcorresponding to the reward function for this domain.

While each of the states labeléd andk transitions has a different pattern of next state
transitions for the actionight, the expected reward received in each state under this ac-
tion is6 in each of these states. The value-directed PSR model predicts only this expected
reward value, where the POMDP test and observation-directed PSR test predict the exact
distribution of { at the next time step. This means that the observation distinctions be-
tweenlightgrey, grey andblack are necessary for accurate predictions in the observation-
directed models. In the value-directed model, these three observations may be clustered
into a single abstract observation (see Table 3.1 for test results).

Despite the fact that observation-directed abstract models are often larger than their
value-directed counterparts, in some cases, observation-directed models may nonetheless

be preferable, as they may be reused over multiple tasks (Wolfe and Barto, 2006).

Domain Observation Maps{ POMDP PSR-Obs PSR-Val
Figure 3.3 {lg,g,b}, {w}, {sC,mC,IC,hC} pass
{lg, g, b}, {w}, {sC},{mC},{IC}, {hC} fail fail

{lg}, {9}, {0} {w}, {sC},{mC},{IC},{hC} pass pass

Table 3.1.Comparison of Observation and Value-directed models.

3.10 PSR vs. POMDP: One Step and Two Step Update Models

Even when the PSR abstraction is constrained to be observation-directed, the two tests
differ in the set of observation maps they accept, with the PSR test accepting more obser-
vation maps than the POMDP test. The Integer Counter domain (Figure 3.4) represents
a binary integer counter. The counter can be advanced by adding one to the integer, or

decreased by subtracting one from the integer. The POMDP definition is as follows:

States: A counter withn bits ha2" states. In the figure, there dréits. The experiments

shown use a counter withbits.

123

1001100 = Q‘\\\\1“1001101‘////‘7 » 1001110
l subtract 1 l add 1 l

1.0_1.0 1.0_1_1 1.0_1.0

Figure 3.4. Integer Counter Domain. Three states are shown, representing three numbers
of 7 digits each. The “add 1” action increases the counter by one, with noisy transitions, and
the action “subtract 1” decreases the counter by one, again with noisy transitions. Every
other bit is hidden, so that observations include only every other bit.

Actions: +1, —1

Transitions: Actions fail with a small probability. Failure results in no change to the

state.
Observations: Every other bit is observed, beginning with the lowest order bit.
Observation Function: Observation probabilities are deterministic.
Initial Belief State: Uniform probability on all states.

Consider the output function where each stateitputs the value mod 22 — s mod 22,
or the value of the3™ bit location. Higher order bits are not useful for predicting the
value of this output function, but any lower order bits are. Since only alternate bits are
observed, this implies that the observation mapping functien = o mod 22 should
be self-sufficient. However, the POMDP test rejects this observation map, while the OC-
POMDP and PSR tests accept this observation map, as shown in Table 3.2.

In this particular case the difference between the two algorithms does not stem from the
difference between using the basis vector vs a belief state vector to represent state. Instead,
it stems from the point at which the state vector is calculated. Figure 3.5 illustrates two

different bayesian networks that could be used to model a partially observable domain. The

124

Domain Observation Mapsj POMDP PSR

Binary Integer (o) =0 mod 4 fail pass
Figure 3.4
with 5 bits

Table 3.2.Comparison of observation-directed POMDP and PSR algorithms.

POMDP tests described in Chapter 2 were designed based on the type of model shown in
Figure 3.5(a). This section defines a modified model and acceptance test, the Observation
Conditional POMDP model and test, based on the Bayesian Network shown in Figure
3.5(b).

Let A(POM DP) denote the set af/, « pairs accepted by the POMDP test, and simi-
larly let A(OC' — POM DP) and A(PSR) be the accept sets corresponding to the Obser-

vation Conditional POMDP and PSR tests. This section will show that:
e A(POMDP) C A(OC — POMDP)

— The success of the POMDP test implies the success of the OC-POMDP test

— There is at least on&/, « pair for which OC-POMDP returngue and POMDP

returnsfalse.
e A(OC — POMDP) C A(PSR)

— The success of the OC-POMDP test implies the success of the PSR test
— There is at least oné/, « pair for which the PSR test returnsue and OC-

POMDP returnsgfalse.

Figure 3.5(a), illustrates the usual POMDP representation, with update equations:

brao(s') < P(o | s',a) Y P(s' | s,a) - bu(s) (3.32)

seS

In Figure 3.5(b), the link between each state and its corresponding observation has been

reversed, with added dependency links as necessary to preserve the probability distribution

125

(@) @) @ @
I

(@) (b)

Figure 3.5. The bayesian model from which the POMDP test is derived (Figure 3.5(a)) and
the bayesian model from which the OC-POMDP test is derived (Figure 3.5(b)).

represented by the Bayesian network. This is the type of model by which the OC-POMCP

tests are defined. The update equations for this model are:

Dhao(8') ox ZP(SI, o|s,a)-bu(s) (3.33)

sES

and the homomorphism constraints for the OC-POMDP tests are as follows. Abstract state

constraints:
P(f(s"),1(0) | s,a) = P(f(s),5(0) | f(s), 9(a)) (3.34)
Shadow state constraints:
P(fe(s'),01s,(ar(0))) = P(fe(s), 0 | f(s), g¢({ar(0)))) (3.35)
and independence constraints:
P(f(s), fe(s'), 0] s,a) = P(f(s'),5(0) | s,a) - P(fe(s),0] s,{ar(0))) (3.36)

The equations given are for the shadow model test for the model of Figure 3.5(b).

Rather than redefining the compatibility test constraints, and repeating the shadow test and

126

Procedure 3.10.1abstactOC-POMDRY {7,,})

I/ Initialize f : S — S so that:
. 1 if f(s;) =5;
Fi.5) = 0 otht(arvslise ’
@) =10) = Toouli) = Toou(j)
while F has changedo
forall a € A,0 € O do
/l constructf such that:
) = £(G) <= (TF)(,-) = (TuF)(j,)
/[updateF’ to matchf if f has changed
return F

compatibility test proofs for this model, these tests for the OC-POMDP will be defined in
terms of the PSR test algorithms from Procedure 3.5.1 and Procedure 3.7.1. State mapping

matricesF, andF or F,, should be construced using Procedure 3.10.1:

F, < abstractOC-POMDR:, {7 (40)}) (3.37)
F¢ < abstractOC-POMDR, {T¢(40) }) (3.38)
F, < abstractOC-POMDR, {7},(40)}) (3.39)

rather than PSR projection matrices. The Shadow Model and Shadow Compatibility test
for the PSR case can be applied directly at this point, using Procedure 3.5.1 and Procedure
3.7.1, but with the state based definitionsFQfand F; or F;,.

Procedure 3.10.1 constructs the state mapping matrier the given parameters
and{T,,}. Corresponding abstract transition matrices can be calculated according to the

following rule:

Tao(f@)?) = TaoF(i7) (340)

These transition matrices have the following property:

FT,, =T,F

127

much like a PSR (Equation 3.3).

The next theorem shows that whenever the POMDP test accepts, the OC-POMDP test
accepts. The proof is shown for the shadow model test, but the same theorem holds for the
compatibility test.

Recall that the POMDP Shadow Model test homomorphism constraints are as follows,

for every actioru, observatiorv, states and next state’. Abstract state constraints:

P(f(s') [s,a) = P(f(s) | £(5), 9(a)) (3.41)
P(k(0) | s, a) = P(k(o) | f(5), g(a))

The shadow model constraints are:

P(fe(s') | s, {ar(0))) = P(fe(s') | f(s), g¢({ar(0)))) (3.42)
P(o s, {ak(0))) = P(o| fe(s), ge((ar(0)))))

and the independence constraints are:

P(f(s), fe(s) | s,a) = P(f(s) | s,a) - P(fe(s) | 5,a) (3.43)
P(f(s), fe(s") | 03) = P(f(s') [bA) - P(fe(s') | bx)-

Theorem 3.13.Any pair M, x that satisfies the POMDP constraints also satisfies the OC-
POMDP constraints.

Proof. Although only the proof for the Shadow Model case is included, the results can be

extended to the Shadow Compatibility test.

128

To derive constraint Equation 3.34 from Equation 3.41:

P(f(s'),k(0) | s,a) = Y P(x(o) | s",a)- P(s" | 5,a)

s'"els']y
= P(x(0) | f(s),9(a)) - P(f(s") | f(s),9(a))
= P(f(s),x(0) | f(s),9(a)

The derivation from Equation 3.42 to Equation 3.35 is similar.

To derive Equation 3.36 from Equation 3.43:

P(5,5,0]s,a)= Z P(o|s',a)- P(s'|s,a)

= 3 D plalo) [1) P | 20)
—P(o| &, ge({ar(0)))) - (()&, gy(a)) - Z P(s' | s,a)

=P(o| &, g¢({ar(0)) P (5| fe(s), g¢(a))-

P(k(0) | &, 9x(a)) - P(5"| fi(s), gx(a))
=P(5,01 fe(s), g¢({ar(0)))) - P(5',k(0) | fi(s), gx(a))
=P (5,0 s,{ak(0))) - P(3,k(0) | s,a)

O]

The converse is not true, however. As Table 3.3 shows, the POMDP of Figure 3.4, with
the observation mapping functietio) = o mod 4 provides a samplél/, x) pair which

the OC-POMDP test accepts, while the POMDP test rejects.

Lemma 3.14.The OC-POMDP test accept set is a superset of the POMDP test accept set:
A(POMDP) C A(OC — POMDP,).

Proof. Theorem 3.13 shows that(POM DP) C A(OC — POM DP) and the POMDP

example in Table 3.3 demonstrates that the sets are not equivalent. O

129

Domain Observation Mapsj POMDP OC-POMDP PSR

Binary Integer k(o) =0 mod 4 fail pass pass
Figure 3.4
with 5 bits

Table 3.3.Comparison of observation-directed OC-POMDP, POMDP and PSR algorithms
for the POMDP of Figure 3.4.

The next theorem proves tha{lOC — POMDP) C A(PSR) by proving that every
pair accepted by OC-POMDRP is also accepted by the PSR test.

Theorem 3.15.Any pair M, « that satisfies the OC-POMDP constraints (Equations 3.34 -
3.36) also satisfies the PSR constraints (Equations 3.18 and 3.19) for some pair of abstract

and shadow PSRs.

Proof. This proof assumes that an abstract OC-POMDP that passes the shadow model
tests is given. From this, we show that a PSR that passes the PSR shadow model test can
be constructed.

Assume thatf, and F; have been calculated according to Equations 3.37 and 3.38,
and that they have associated abstract transition matriX $ets, } and {7} defined
according to Equation 3.40. Further, assume that these two matrices obey the Shadow
Model test constraints. That is, if the joint mapping matrixs defined from/, andF; as

in Equation 3.16, then Equations 3.18 and 3.19 are satisfied:

DAF = by ® ben)

TwF = F (Tyao) ® Te(ao)) »
whereb,) = byF, andbe(yy = byFy.

We can define a further mapping from the abstract states of the abstract OC-POMDP to

a set of abstract PSR testsulfs the target vector on whicR, was built, define:

130

F, < krylovBasis(u, {Tyo)})

F{ < krylovBasis(e,{Te(ao)})
Define the abstract PSR transition matrie§é§(ao)} as the solutions to:
T)Ic(ao)F F Tx(ao)
and the shadow transition matricéﬁg’(ao)} as the solutions to :
Titao Fé = FiTtao

The two matriced’, andF;, can be combined to construct a matrix mapping statés in
to abstract tests ify: F\ F}. This composite matrix is the PSR mapping matrix that must
be shown to satisfy the shadow model test constraints.

The two matrices’; and F{ can also be combined to construct a matrix mapping states
in S to tests in the shadow bagix F¢F¢. Together, the abstract and shadow projection
matrices have a joint projection matrix(F;, @ Fy), and they satisfy Equations 3.18 and

3.19. With the joint projection matri¥'(F} @ F;):

Too(F(F, ® F{)) = (F(F, ® F{)) (T’(ao) ® T’(ao))

The initial belief state constraint is straightforward to verify. For the transition constraint:

TaoF(F;(® Fé) (T (a0) ® Tf(ao)) (F, X Fg)

ja
F (Tx(ao) Fy, @ Te(ao))
= F (FT o) ® FT(a0)

= F(F, @ F{) (Ty(a0) © T (a0))

131

Procedure 3.11.lobservationMapCompatibiliy{,)
/I Construct the abstract PSR
F, <= KrylovBasis(, {1y () })

/I Construct the shadow PSR
F, < KrylovBasise, {1)(a0)})

I. <= psrCompatibilityMatrix(//, F, , F}))

U < an empty set of state pairs (implemented as a queue)
~e: S x S — {true, false}

initialize ~,; so thatx(o;) = k(0;) <= 0; ~; 0;

~ <= observationConditionalSplitd(, ~, ~,.) // Procedure 3.11.2
makeDistributionsCompatible(, b, by, 1., U) I/ Procedure&?
while U not emptydo
(i,j) < an element removed frof
~ <= makeObservationsCompatibM(i, j, ~,.) // Procedure 3.11.3
makeStateDistributionsCompatiblef, ., U) // Procedure 3.11.4
/l mark the two states as compatible
L((i,5). (i, 4)) < 1
return «

and therefore the two matricds, F, and F¢ Fy with core testg) and () satisfy the PSR
shadow model test requirements, and the pair x) would be accepted under the PSR

constraints. N

3.11 Observation Splitting

Thus far this chapter has focused on the PSR and OC-POMDP acceptance tests. This
section outlines a corresponding abstract model search algorithm.

If Procedure 3.7.1 fails, it must be the case that Procedure 3.7.3 failed for the initial
belief state. If all states were compatible & an identity matrix), Procedure 3.7.3 would
succeed, therefore, there must be somed/sef pairs of states where if every pair lh
were compatible, Procedure 3.7.3 would succeed. Procedure 3.11.1 proceeds in the same
manner as Procedure 2.7.2. Starting with the initial belief state, it generates a list of state

pairs that must be compatible to make Procedure 3.7.3 succeed, under the Eyradt

132

Procedure 3.11.20bservationConditionalSplits{, x, ~,)
forall s, € S,a € Ado
forall 6 € O do
forall o;,0; € 6do
if (P(o; | sk,a)>0)A(P(oj | sg,a) > 0) then
if Too, Fx (K, +) - Tao,u (k) # Tao, Fr (K, -) - Tuo,u” (k) then
0; ~, 0; < false
if TE(GOi)Fﬁ<k7)) Tﬁ(aoj)eT(k> e TE(GOi)Fﬁ<k>)) T&((wj)eT(k) then
0; ~, 0; < false
return ~,

Procedure 3.11.3nakeObservationsCompatibld(i, j, ~..)
forall s;,s; € Sdo
forall a € Ado
if Too, " (4) - Te(aop€” (7) # Tuopu” (i) - Te(aope™ (7) then
0; ~, 0; < false
return ~,

F,, matrices. These changes require certain changes in the observation mapping function.
As with Procedure 2.7.2, there may be multiple observation mapping functions that pro-
duce the desired changes in the state compatibility function. Procedure 3.11.1 therefore
constructs an observation compatibility relation: O x O — {true, false} rather than
an equivalence relation over observations that could be used to consulirectly. Any
grouping of observations into abstract observations that does not group any incompatible
observation pairs is acceptable.

Compatibility of any pair of states; adns; is determined by the ability to construct
the row W,,((4, j), -) for every actiona and observatiom. It is important to be able to
determine why the construction of this vector failed for a particular tow). There are

two possible reasons:

1. Incompatible state pairs if. If this is the cause, then setting = I will produce
a solution. Procedure 3.11.4 addresses this issue, by adding state pairs to the merge

list U.

133

2. Inability to solve both Equation 3.25 and Equation 3.26 using the same solution.
Procedures 3.11.1 and 3.11.2 address this issue by marking observation pairs incom-

patible.

In order to correct the observation mapping function, the factors due to the immediate
observations (item@) must be separated from the factors due to the next state distribution
(item 1). This section focuses on developing a set of observation constraints, such that if
these constraints are satisfied, dpe- 7, then it must be possible to solve fdf,, ({7, j), -)
for statess; ands;.

Procedure 3.11.2 implements the first separate piece of the observation constraints. As
a constraint over states, this method seeks to find an observation compatibility function that
will satisfy the following rule. Any state, has consistent next state predictions if, for all

actionsa and observations:

T.

X

(o) Fy (K,) - Toou™ (k) = Tuo By (K,) - Tygaoytt” (k) (3.44)

Tn(ao)Fn(k’,) . Tg(ao)eT(k‘) = Tf(ao)Fn(l{,) . Tn(ao)eT(k‘) (345)

In the observation improvement method, all states must have consistent next state predic-
tions. Turning this into a constraint on the binary observation compatibility relation, two

observations should only be compatible~,. o, if for all actionsa and statesy:

Tooi Fx (k) - Too,u” (k) = Too, Fy(k,*) - Tuoiu” (k)

Tetaon Fn(k,) - Teaope” (k) = Teaoy Fy(k, -) - Te(aoyye” ()

If the new observation mapping functiarconforms to the observation compatibility func-
tion, then summing oves; € r(o;) on both sides of each equation yields the desired
constraints, Equations 3.44 and 3.45, for all states and actions. This constraint on the ob-

servation compatibility function is implemented in Procedure 3.11.2.

134

In the PSR case, Equation 3.44 can be reduced to:

P(g, 0| s,a) = P(q,£(0) | 5,a)

and Equation 3.45 becomes:

P(qy, 0 s, (a,k(0))) = P(@y, 5(0) | 85, (a, £(0)))

for everysin S, ain A, gin Q andg, € Q,,. This constraint amounts to a requirement that
the abstract next state vector not depend on the observation label, if the abstract observation
label is given.

The next portion of the observation split criteria more closely resembles Equation 2.54,
from the previous chapter. Two statesands; can only be compatible if their observation

ratios are compatible at the next time step, for every actiand observation:
TaouT<i) ’ Tn(ao)eT(j> = Tx(ao)uT<i> ’ TE(ao)eT(j) (346)
In the observation splitting algorithm, if two statgsands; are required to become com-

patible, the observation compatibility function should be constructed such that two obser-

vations are only compatible,(~,. o) if:
Taot” (i) - Tetaopye” (7) = Taou” (1) + Teqaape” (J)
this implies that ifx respects the observation compatibility constraints, then summing

overo; € k(o) yields the desired constraint, Equation 3.46. In the specific case of an

observation-directed abstract PSR, in which= e, two statess; and s; are observa-

135

Procedure 3.11.4makeStateDistributionsCompatiblef, I.., U)
/I Abstract projection matrix (from Equation 3.25)
abstractProjection <= I(F, ® I)

/I Availability projection matrix (from Equation 3.26)
availability Projection <= I(I ® F,)
A < [abstractProjection : availability Projection]

forall a € A,0 € O do
/I Abstract prediction matrix (from Equation 3.25)
abstract Prediction <= (T, @ Tpo)(Fy @ 1)
Il Availability prediction matrix (from Equation 3.26)
availability Prediction <= (Ty, ® To,) (I ® F))
Y < [abstract Prediction : availability Prediction)

/I Solve the system of equations for thie;)" row of W,
y <= Y ((i,7),)/l The (i, j)t" row
/Il Given Procedures 3.11.2 and 3.11.3, the solutibm A” = = y” should exist.
Wao(<i7j>’) =7
forall k.1 € Sdo
if 2((k,1)) > 0then
U< UU{{k1))

tion ratio compatible (Equation 3.46) if, for all observatianand actions:, whenever

n(r(0),55,0) # 0

P(o| s;,a) _ Plo|s,a)
P(k(o) | si,a) s% P(k(o) | ¢',a)

P(S/ ’ Sjva)

The reward-directed case differs slightly. Two stateands; are observation compatible

(Equation 3.46) if, for all observationsand actions::

E<T|Si’a’0>'P(0|Sw 0|S a /
B ass) P o) = S P o P 10

Equations 3.44, 3.45 and 3.46 are the constraints that directly concern the observation
function. If these constraints are satisfied, then there is a solutioWfgf(i, j), -) that

satisfies both Equation 3.25 and 3.26:

136

Procedure 3.11.SixInitialBelief(b,, I, F, F;,, U)
A=I(I®F,): I(F,®1)]
Y <= [0a ® by 2 by @ g
Solve forzA =y
forall i,5 € Sdo
if ((,7)) > 0then
U<=UU(i,j)

(L’I([@P;ﬂ((l,j%) = (Tao®Tn(ao))(I®Fn)(<ZaJ>’)

2I(Fy @ 1)((1,7),) = (Tyao) @ Te(ao)) (Fx © 1)((: 7))

Theorem 3.16.If all states are compatible/{ = I), and Equations 3.44, 3.45 and 3.46

are satisfied, then the vector(T,, ® T¢(a0)) ({7, 7), -) Where:

Tx(ao)UT (’L)

A

is a solution forlV,,((i, j), -).

Proof. By Equation 3.46:

By Equation 3.44:

T(ao) Fx (i) - Toou™ (i) = TooFy (i, +) - Tyaoyu” (4)

TX(aO)UT (Z)
Toou™ ()

137

By Equation 3.45:

Tyao)Fy(4:) - Tetaoye” (k) = Teao) Fy (4) - Toaoye” ()
Tyao) I3,) = Teao) Fn(3:7) - 777

= T&(ao)Fn<j7) * Cp

Therefore:

TaoFx(ia) CCr T&(ao)(jv) = Tx(ao)Fx(ia) X T&(ao)(ja)
Cr - (Tao ® TS(aO))(Fx ®])(<iaj>7) = (Tx(aO) ® Tf(cw))(Fx ® [)((i,j>,

Wao(Fy @ 1)((2, 7)) = (Tx(ao) @ Teao)) (Fx @ 1)((7,), ")

and

Tao(iv) ® TE(‘IO)Fﬁ(jv) “Cr = Ttw(i?) ® Tn(ao)FW(j>)
Cr - (Tao X T§(‘10))(I ® Fn)(<i7j>v) = (Tao ® Tn(w))([® Fn)(<i7j>7)

Wao(I®Fn)<<i7j>a) = (Tao®Tn(a0)>(I® FT])(@:])?)

Therefore Equations 3.25 and 3.26 have at least one solutith,{ ® T¢(.0))((7,),) in

common for row(s, j) under these conditions. O

Similarly, there is at least one solution for Equations 3.27 and 3.28, if all states are
assumed to be compatible. This solutioh,iso b,. However,b, ® by andc, - (1,0 ® Te(a0))
are not necessarily the optimal solutions, in terms of producing a more compact observation
function or model.

The problem with this approach is that this algorithm does not prioritize links between

states that are already compatible, as the graph flow matching algorithm did (Procedure

138

2.7.4). In the POMDP of Figure 2.8, usihg ® b, as the initial belief distribution match-

ing matrix while searching for the abstract model in Figure 2.8(b) results in an observation
compatibility relation in which no two observations are compatible. The graph flow algo-
rithm, when initialized using links between already compatible state pairs, produces the

observation compatibility relation illustrated in Figure 2.15.

3.11.1 Graph Based Matching algorithm

Rather than working directly with the transition matrices, the graph-flow algorithm in
Procedure 2.7.2 can be adapted for use with the OC-POMDP or PSR observation map
acceptance constraints. It requires a state to abstract state mapping function, however, this
can be constructed from the abstract and availability PSR matrices. If the OC-POMDP
acceptance constraints are being ugeahd f, should be defined as in Equations 3.34 and
3.35.

If the PSR acceptance constraints are being used, define a state mapping finction

S — S, according to the abstract PSR projection matrix:

f(si) = f(s5) = F\(i,-) = F\(4,)

Also define a state mapping functign: S — S, according to the abstract availabiltyPSR

projection matrix:

falsi) = fols;) = F(i,") = F,(5,)

Substituting the state mapping function By and F;, may restrict the set of observation
maps, however, the graph flow matching algorithm has the advantage of being faster and
more accurate in general, so in many cases this trade-off may be worth it.

The graph matching algorithm remains largely unchanged from Procedure 2.7.2. Pro-
cedures 3.11.2 and 3.11.3 must be applied to ensure that Equations 3.44, 3.45 and 3.46 are

satisfied before the graph matching step may be performed.

139

For each state paifi, j) to be merged, rather than one graph matching per aation
there must be one set of matching graphs for each majyix The vertices of the flow

graph fors; ands, are:
e s (source node)
o L ={l, | me 5} (state nodes ig,)
e ¢ (sink node)
e R={r,|ne€ s} (state nodes in,)

and edge capacities:

P(sm,0|s,a)

° Cap(svlm) = P(f(sm),x(0)|si,a)

1 if s, ~.5m
o cap(ly,) =
0 otherwise

P(sn,0[s;,(ar(0)))

® cap(rn,) = B, (o) m()lsss(an@))

when calculating the compatibility matrix initially, andp(l,,, r,,) = 1 in the augmented
graph when merging statésnd;.

The graph flow algorithm for these graphs is unchanged. Equations 3.44, 3.45 and 3.46
ensure that when all states are assumed to be compatiblé,(, r,,,) = 1), this graph flow

problem has a solution.

Theorem 3.17.1f Equations 3.44, 3.45 and 3.46 are satisfied for stat@sd j, then a flow
matching exists. This is due to the fact that the total outgoing capacity for the source, and

the total incoming capacity for the sink are equivalent.

140

Proof. By Equations 3.44, 3.45 and 3.46, for any paie S ands, € S,

anpsl ZP 5m70|<§w’837)

_ Plo] sia)
P(r(0) | s1.a)
__Plo] 5, (ar(0))
P(r(0) | sj,<om<o>>>

SmO | 5, (ar(0)))
Z P(fy(sn), £(0) | 8, (ar(0)))

Since the graph between the source and the sink is fully connected when all states are

assumed to be compatible, the graph flow problem has a solution. O

3.12 Time Experiments: Comparison to Existing Work

This section compares the performance of the OC-POMDP acceptance criteria, with
the graph flow search algorithm, to an existing history-based abstraction search algorithms
by Talvitie et al. (2008). This existing algorithm can be applied to an existing model. In

this form, it:

e takes as input a paif)M,) where M is a PSR andk is an observation mapping

function

e generates an observation compatibility functiep: O x O — {true, false} as

output

It solves the same problem as a single execution of Procedure 2.7.2. These experiments
therefore compare a single application of Procedure 2.7.2 to the performance of the history-
based algorithm.

The history-based algorithm examines pairs of histories. If two histories have different

abstract predictions, then any history mapping funcgiothat gives them the same label

141

W e W] e W] (e
W e W] e Ty (e

(@) (b)

B I R

(©

Figure 3.6. Hallway domains in which the distance to the distinct states varies.

142

must be invalid. Talvitie et al. (2008) use two useful results to search over the set of history

pair for observation incompatibilities:

e only history pairs that differ by one observation (and no actions) must be compared.
If the outcomes of the two histories differ, these two differing observations are not

compatible.

e only history pairs of length less than or equal to the siz& pthe core tests for the

original system, need be examined.

The maximum number of history pairs of lengths (|A] - |O]"), so, while the result is
useful in that it shows that a finite number of history pairs need to be examined, the number
of histories examined may still be exponential in the siz€)ofThey demonstrate that in
some cases, the correct observation compatibility relation is constructed at a much shorter

history length, however.

1607
1401 /
120t i

100+ History Method !

80T i

60 1]

Run Time in Seconds

40t !

207t Obs. Cond. POMDP '.’
4
o

o ')
0 1 2 3 4 5 6 7 7.5

Length of Shortest Path to Observation Pair

Figure 3.7. Comparison of the History Method and OC-POMDP method.

143

18,000 1

16,000 1

14,000 1

12,000 1

10,000 1

8000 1

6000 1

4000 1

Number of Length n Histories in Hy,

2000 1

0 1 2 3 4 5 6 7 7.5

History Length (n)

Figure 3.8. The number of histories of lengihfor n from 1 to 7.

1601
140 1
1201
100} History Method ..i

80T

601

Run Time in Seconds

40t

201

Fot 7 4 4)
0 1 2 3 4 5 6 7 7.5

Length of Shortest Path to Observation Pair

Figure 3.9. Comparison of the time and history length curves for the history based algo-
rithm.

144

Figure 3.7 shows the run time of the OC-POMDP observation splitting algorithm vs the
history based observation splitting algorithm. These results were gathered from domains
like the one shown in Figures 3.6(a), 3.6(b) and 3.6(c). In these experimid@\DPs
were constructed. The first POMDP has the distinct observation states located one time step
from the starting states in each hall (Figure 3.6(a)). The second POMDP has the distinct
observation states located two steps from the starting states (Figure 3.6(b)), etc. The final,
seventh POMDP (Figure 3.6(c)) has distinct observatiofistgps from the starting states.

The initial observation mapping functiengiven to both algorithms was:

0o = {cheese}o, = {cat}os = {white, lightgrey, grey, black}

And the observation compatibility function, returned by both algorithms was the one
illustrated in Figure 2.15.

In these domains the determining factor in how long the histories must be in the history-
based algorithm of Talvitie et al. (2008) is the distance between the starting states and the
three states with distinct observations. The history method does well when the observation
distinction is close to the initial states (the left of the hallways), but eventually the growth
in the number of histories to examine causes the run time to increase far above the run time
of the OC-POMDP algorithm.

In these experiments, the history method was run to a fixed history lendtfootthe
first POMDP,2 for the second, and so on. Figure 3.8 is a graph of the number of histories
of lengthn, for n = 1 to 7. In Figure 3.9, this curve is normalized to fit the range of
the curve of running times, demonstrating that the shape of the two curves is similar. In
general, the depth of search needed would not be known, and the algorithm could not verify
that the observation compatibility function is complete at the point at which it halts in these
experiments.

The OC-POMDP algorithm, on the other hand, was run to completion, and verifies

that the observation compatibility function it finds is complete. The number of states pairs

145

3601
3501

3001

Obs. Cond. POMDP

2001

State Pairs Examined

1501

100

0 1 2 3 4 5 6 7 7.5

Length of Shortest Path to Observation Pair

Figure 3.10. The number of state pairs examined for each POMDP, ftoim 7 states
between the initial belief and the state distinctions.

281
261
241
221

201

Obs. Cond. POMDP

Run Time in Seconds

7.5

~

0 1 2 3 4 5 6

Length of Shortest Path to Observation Pair

Figure 3.11. Comparison of the shape of the curve representing the number of state pairs
examined by OC-POMDP, and the number of second to completion of the algorithm.

146

the algorithm must merge in order to find the desired observation distinction increases
automatically as the observation distinction moves further from the start of the hallways.
Figure 3.10 is a graph of the number of state pair merges performed by the algorithm for
each domain, from to 7. Figure 3.11 fits this curve to the range of run times for the
algorithm, and shows that the run time and number of state pairs examined have similar

curves as the domain complexity increases.

3.13 Conclusion

This chapter developed algorithms that construct the abstract shadow model and ab-
stract availability models as PSRs. This adds the option of constructing reward-directed
abstract models, which may be more compact than output-directed models for the same
target function. When the abstract PSR model is output-directed, the observation abstrac-
tions accepted by the shadow model and compatibility tests have been shown to be better
than those accepted by the abstract POMDP approach covered in Chapter 2. In some cases,
this is due not to the fact that the abstract PSR is built using basis vectors, but due to the
structure of the PSR model. In fact, a reasonable change to the abstract POMDP structure

to an OC-POMDP structure can remedy this difference.

147

CHAPTER 4
CONCLUSION

This dissertation focused on the case where the objective is to form an abstract model
based on a specific output function. Some examples of output functions include features
of objects, like size, position, color, etc. as well as features like “Is it raining?” or “Am |
tired?”. This type of model strikes a balance between abstract model compactness and re-
usability. Output function based abstract models can be re-used for families of tasks based
on their output function (“Move object to location x”), but they are not general purpose
models. Tasks where the definition of the goal of the task depends on other variables are
outside the scope of an output function specific model. So, for example, while the model
for agent location can be used for general navigation tasks, it cannot be used, for example,
to learn how to open a jar.

This tension between model size and re-usability may become more of an issue as
agents become less specialized. It may be practical currently to build a fixed abstraction into
the agent’s internal structure, however, this will not be practical for more general purpose
agents. A general purpose warehouse loading agent should be capable of adapting to new
materials in the warehouse, a general purpose housekeeping agent should be able to adapt
to new tasks as objects are added to its environment and need to be cleaned. However, this
does not necessarily mean that the agents must have a fully general purpose model of their
entire environment. In these examples the tasks for the agents were drawn from a family of
related tasks.

One of the main open questions this type of framework raises is the problem of choosing

a good set of output functions for an agent. Take the example of a mail delivery agent in

148

an office building. The same agent might construct many smaller abstract models, one
for each destination it must reach, or it can build a more general purpose “agent location”
abstraction for navigation. The overall learning efficiency of the agent over its lifetime will
depend on the time needed to construct the abstract models, the time needed to plan or
learn policies for each task in the abstract models, and the number of times each abstract
model is re-used.

This dissertation addressed a more basic problem, however. Agents such as the ones
described briefly above would occupy complex domains, where the state is not fully ob-
servable. Finding appropriate output function specific abstractions under these conditions
is quite difficult. Wingate et al. (2007) have demonstrated that when the state is relational,
consisting of objects and their relations to each other, abstractions like this can be useful.
However, they hand-craft the abstract models, and do not therefore include the time needed
to construct the abstract model in their calculations. Talvitie et al. (2008) provide a worst
case exponential time algorithm for finding such abstractions under these conditions.

This dissertation defined several alternative polynomial time search algorithms for find-

ing output function based abstractions. These algorithms address the idealized in that:
e they accept only perfectly accurate models
e they must be provided with an accurate original model.

However, they also relax the search problem in two ways:
e they sometimes reject accurate models in favor of larger abstractions

e even with the set of acceptable abstract models, the search strategy may not find the

smallest possible abstract model.

These approximations allow the algorithms to operate by examining local characteristics
of the original model. For example, the shadow model tests examine the abstract next state

distributions for individual (state, action) pairs. This avoids the problem of examining the

149

properties of either histories or belief state vectors directly, as the sets of histories and belief
state vectors can both be quite large.

However, this does not change the fact that these algorithms are designed for an ideal
that rarely exists. Take the example of the chess player, concentrating on the board and
ignoring the surroundings. While it would be hard to detect the affect that a nearby pigeon
has on the game, it is possible that there are some small details (the expression of a specta-
tor, observing the board or the way that the weather affects the mood of the opponent) that
would assist the player in making predictions in some small way. Approximate algorithms
that take this into account, ranking the observation distinctions by the amount to which they
affect predictions, can handle this case more appropriately.

Approximate algorithms can in many cases also perform faster than the idealized algo-
rithms outlined here. An approximate solution to the linear equations in Procedure 3.7.2
or the graph flow algorithm of Procedure 2.7.2 may produce a model that has good perfor-
mance more quickly.

Technically, the hardest part of the algorithms outlined here is the choice between mul-
tiple observation mapping functions in the observation map improvement step of Procedure
2.7.6. A measure of the cost of distinguishing between particular pairs of observations in
terms of the increase in the complexity of the abstract model would lead to better heuristics
for this step.

The algorithms outlined here solve an important problem: finding abstract models for
specific output functions when the state is partially observable. They should serve only as

a starting point for developing more practical approximate algorithms, however.

150

BIBLIOGRAPHY

Craig Boutilier, Ray Reiter, and Bob Price. Symbolic dynamic programming for first-order
mdps. InProceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI) pages 690-697, 2001.

Michael Bowling, Ali Ghodsi, and Dana Wilkinson. Action respecting embeddingrn
ceedings of the Twenty-Second International Conference on Machine Leapaiges
65-72, 2005.

A. Carlin and S. Zilberstein. Value-based observation compression for dec-pomdps. In
Proceedings of the Seventh International Conference on Autonomous Systems and Mul-
tiagent Systems (A AMASrges 501-508, 2008.

Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Statroduction to
Algorithms MIT Press, 2009.

Thomas Dean and Robert Givan. Model minimization in markov decision processes. In
Proceedings of AAAL997.

Richard Dearden and Craig Boutilier. Abstraction and approximate decision theoretic plan-
ning. Artificial Intelligence 89(1):219-283, 1997.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model mini-
mization in markov decision processdeurnal of Artificial Intelligence ResearcR003.

J. Hartmanis and R. E. StearnsAlgebraic Structure Theory of Sequential Machines
Prentice-Hall, Englewood Cliffs, N.J., 1966.

Michael P. Holmes and Charles Lee Isbell, Jr. Looping suffix tree-based inference of par-
tially observable hidden state. Rroceedings of the 23rd International Conference on
Machine Learning2006.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable stochastic domaiadificial Intelligence 1998.

J. G. Kemeny and J. L. Snekinite Markov Chains D. Van Nostrand, New York, 1960.

Michael L. Littman, Richard S. Sutton, and Satinder P. Singh. Predictive representations
of state. InAdvances In Neural Information Processing Systemkime 14, 2001.

Sridhar Mahadevan. Samuel meets amarel: Automating value function approximation us-
ing global state space analysis. BRmoceedings of the 20th National Conference on
Artificial Intelligence 2005.

151

Andrew K. McCallum. Reinforcement Learning with Selective Perception and Hidden
State PhD thesis, Rochester University, 1995.

Ann Nicholson and Leslie Pack Kaelbling. Toward approximate planning
in very large stochastic domains. IfProceedings of the AAAI Spring
Symposium on Decision Theoretic Plannindgstanford, CA, 1994. URL
citeseer.ist.psu.edu/nicholson94toward.html

D.M. Park. Concurrency on automata and infinite sequences. In P. Deussen,Galitor,
ference on Theoretical Computer Sciengelume 104 ofLecture Notes in Computer
ScienceSpringer Verlag, 1981.

Avi Pfeffer. Sufficiency, separability and temporal probabilistic modeldJAn '01: Pro-
ceedings of the 17th Conference in Uncertainty in Artificial Intelligepeges 421-428,
San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-800-
1.

Pascal Poupart and Craig Boutilier. Value-directed compression of pomdfdvémces in
Neural Information Processing Systems 15 (NIRBges 1547 —1554, Vancouver, BC,
2002.

B Ravindran. An Algebraic Approach to Abstraction in Reinforcement Learni®thD
thesis, University of Massachusetts, 2004.

Yousef Saad. Iterative methods for sparse linear syst&idgvl, 2nd Edition2003.

Vishal Soni and Satinder Singh. Abstraction in predictive state representatio®3o-In
ceedings of the 22nd Conference on Atrtificial Intelliger&@o7.

Richard Sutton and Andrew G. BartBeinforcement LearningVlIT Press, 1998.

Erik Talvitie, Britton Wolfe, and Satinder Singh. Building incomplete but accurate models.
In Proceedings of ISAIVR008.

David Wingate, Vishal Soni, Britton Wolfe, and Satinder Singh. Relational knowledge with
predictive state representations. Rroceedings of the 20th International Joint Confer-
ence on Artificial Intelligence2007.

Alicia Peregrin Wolfe and Andrew G. Barto. Decision tree methods for finding reuseable
mdp homomorphisms. [RProceedings of the 21st National Conference on Artificial
Intelligence 2006.

152

