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Chapter 5

Manifold Alignment

Manifold alignment, the topic of this chapter, is simultaneously a solution to the problem
of alignment and a framework for discovering a unifying representation of multiple datasets.
The fundamental ideas of manifold alignment are to utilize the relationships of instances
within each dataset to strengthen knowledge of the relationships between the datasets and
ultimately to map initially disparate datasets to a joint latent space. At the algorithmic
level, the approaches described in this chapter assume that the disparate datasets being
aligned have the same underlying manifold structure. The underlying low-dimensional rep-
resentation is extracted by modeling the local geometry using a graph Laplacian associated
with each dataset. After constructing each of these Laplacians, standard manifold learning
algorithms are then invoked on a joint Laplacian matrix constructed by concatenating the
various Laplacians to obtain a joint latent representation of the original datasets. Manifold
alignment can therefore be viewed as a form of constrained joint dimensionality reduction
where the goal is to find a low-dimensional embedding of multiple datasets that preserves
any known correspondences across them.

5.1 Introduction

As the availability and size of digital information repositories continues to burgeon — from
bioinformatics and robotics to sensor and surveillance networks and Internet archives — the
problem of extracting deep semantic structure from high-dimensional data becomes more
critical. This chapter addresses the fundamental problem of aligning multiple data sets to
extract shared latent semantic structure. Specifically, the goal of the methods described
here is to create a more meaningful representation by aligning multiple data sets. Domains
of applicability range across the field of engineering, humanities, and science. Examples
include automatic machine translation, bioinformatics, cross-lingual information retrieval,
perceptual learning, robotic control, and sensor-based activity modeling. What makes the
data alignment problem challenging is that the multiple data streams that need to be co-
ordinated are represented using disjoint features. For example, in cross-lingual information
retrieval, it is often desirable to search for documents in a target language (e.g., Italian or
Arabic) by typing in queries in English. In activity modeling, the motions of humans en-
gaged in everyday indoor or outdoor activities, such as cooking or walking, is recorded using
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diverse sensors including audio, video, and wearable devices. Furthermore, as real-world
data sets often lie in a high-dimensional space, the challenge is to construct a common se-
mantic representation across heterogeneous data sets by automatically discovering a shared
latent space. This chapter describes a geometric framework for data alignment, building on
recent advances in manifold learning and nonlinear dimensionality reduction using spectral
graph-theoretic methods.

The problem of alignment can be formalized as dimensionality reduction with constraints
induced by the correspondences among data sets. In many application domains of inter-
est, data appears high-dimensional, but often lies on low-dimensional structures, such as a
manifold, which can be discretely approximated by a graph [1]. Nonlinear dimensionality
reduction methods have recently emerged that empirically model and recover the underlying
manifold, including diffusion maps [2], ISOMAP [3], Laplacian eigenmaps [4], LLE [5], Lo-
cality Preserving Projections (LPP) [6], and semi-definite embedding (SDE) [7]. When data
lies on a manifold, these nonlinear techniques are much more effective than traditional linear
methods, such as principal components analysis (PCA) [8]. This chapter describes a novel
geometric framework for transfer using manifold alignment [9, 10]. Rather than construct-
ing mappings on surface features, which may be difficult due to the high dimensionality of
the data, manifold alignment constructs lower-dimensional mappings between two or more
disparate data sets by aligning their underlying learned manifolds.

Many practical problems, ranging from bioinformatics to information retrieval and robotics,
involve modeling multiple datasets that contain significant shared underlying structure. For
example, in protein alignment, a set of proteins from a shared family are clustered together
by finding correspondences between their three-dimensional structures. In information re-
trieval, it is often desirable to search documents in a target language, say Italian, given
queries in a source language such as English. In robotics, activities can be modeled using
parallel data streams such as visual input, audio input, and body posture. Even individual
datasets can often be represented using multiple points of view. One example familiar to any
calculus student is whether to represent a point in the plane with Cartesian coordinates or
polar coordinates. This choice can be the difference between being able to solve a problem
and not being able to solve that problem.

The opposite situation also commonly occurs, where multiple apparently different datasets
have a single underlying meaning or structure. In this case, finding the “original dataset,”
the underlying meaning that all of the observed datasets share, may be challenging. Mani-
fold alignment solves this problem by finding a common set of features for those disparate
datasets. These features provide coordinates in a single space for the instances in all the
related datasets. In other words, manifold alignment discovers a unifying representation of
all the initially separate datasets that preserves the qualities of each individual dataset and
highlights the similarities between the datasets. Though this new representation may not
be the actual “original dataset,” if such an entity exists, it should reflect the structure that
the original dataset would have.

For example, the Europarl corpus [11] contains a set of documents translated into eleven
languages. A researcher may be interested in finding a language-invariant representation of
these parallel corpora, for instance, as preprocessing for information retrieval, where different
translations of corresponding documents should be close to one another in the joint repre-
sentation. Using this joint representation, the researcher could easily identify identical or



5.1. INTRODUCTION 7

Figure 5.1: A simple example of alignment involving finding correspondences across protein
tertiary structures. Here two related structures are aligned. The smaller blue structure is a
scaling and rotation of the larger red structure in the original space shown on the left, but
the structures are equated in the new coordinate frame shown on the right.

similar documents across languages. Section 5.4.2 describes how manifold alignment solves
this problem using a small subset of the languages.

In the less extreme case, the multiple datasets do not have exactly the same underlying
meaning but have related underlying structures. For example, two proteins may have related
but slightly different tertiary structures, whether from measurement error or because the
proteins are actually different but are evolutionarily related (see Figure 5.1). The initial
representations of these two datasets, the locations of some points along each protein’s
structure, may be different, but comparing the local similarities within each dataset reveals
that they lie on the same underlying manifold, that is, the relationships between the instances
in each dataset are the same. In this case, if the proteins are actually different, there may be
no “original dataset” that both observed datasets represent, there may only be a structural
similarity between the two datasets which allows them to be represented in similar locations
in a new coordinate frame.

Manifold alignment is useful in both of these cases. Manifold alignment preserves simi-
larities within each dataset being aligned and correspondences between the datasets being
aligned by giving each dataset a new coordinate frame that reflects that dataset’s underlying
manifold structure. As such, the main assumption of manifold alignment is that any datasets
being aligned must lie on the same low dimensional manifold. Furthermore, the algorithm
requires a similarity function that returns the similarity of any two instances within the same
dataset with respect to the geodesic distance along that manifold. If these assumptions are
met, the new coordinate frames for the aligned manifolds will be consistent with each other
and will give a unifying representation.

In some situations, such as the Europarl example, the required similarity function may
reflect semantic similarity. In this case, the unifying representation discovered by manifold
alignment represents the semantic space of the input datasets. Instances that are close with
respect to Euclidean distance in the latent space will be semantically similar, regardless
of their original dataset. In other situations, such as the protein example, the underlying
manifold is simply a common structure to the datasets, such as related covariance matrices
or related local similarity graphs. In this case, the latent space simply represents a new
coordinate system for all the instances that is consistent with geodesic similarity along the
manifold.
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Figure 5.2: Given two datasets X and Y with two instances from both dataset that are
known to be in correspondence, manifold alignment embeds all of the instances from each
dataset in a new space where the corresponding instances are constrained to be equal (or at
least close to each other) and the internal structures of each dataset are preserved.

From an algorithmic perspective, manifold alignment is closely related to other manifold
learning techniques for dimensionality reduction such as Isomap [12], locally linear embed-
dings [13], and Laplacian eigenmaps [14]. Given a dataset, these algorithms attempt to
identify the low dimensional manifold structure of that dataset and preserve that struc-
ture in a low dimensional embedding of the dataset. Manifold alignment follows the same
paradigm but embeds multiple datasets simultaneously. Without any correspondence infor-
mation (given or inferred), manifold alignment finds independent embeddings of each given
dataset, but with some given or inferred correspondence information, manifold alignment
includes additional constraints on these embeddings that encourage corresponding instances
across datasets to have similar locations in the embedding. Figure 5.2 shows the high level
idea of constrained joint embedding.

The remainder of this section provides a more detailed overview of the problem of align-
ment and the algorithm of manifold alignment. Following these informal descriptions, Section
5.2 develops the formal loss functions for manifold alignment and proves the optimality of
the manifold alignment algorithm. Section 5.3 describes four variants of the basic manifold
alignment framework. Then, Section 5.4 explores three applications of manifold alignment
that illustrate how manifold alignment and its extensions are useful for identifying new corre-
spondences between datasets, performing cross-dataset information retrieval, and performing
exploratory data analysis; though, of course, manifold alignment’s utility is not limited to
these situations. Finally, Section 5.5 summarizes the chapter and discusses some limita-
tions of manifold alignment and Section 5.6 reviews various approaches related to manifold
alignment.

5.1.1 Problem Statement

The problem of alignment is to identify a transformation of one dataset that “matches it
up” with a transformation another dataset. That is, given two datasets!, X and Y, whose
instances lie on the same manifold, Z, but who may be represented by different features, the
problem of alignment is to find two functions f and g, such that f(z;) is close to g(y;) in

!There is an analogous definition for alignment of multiple datasets. This statement only considers two
datasets for simplicity of notation.
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Figure 5.3: An illustration of the problem of manifold alignment. The two datasets X and
Y are embedded into a single space where the corresponding instances are equal and local
similarities within each dataset are preserved.

terms of Euclidean distance if x; and y; are close with respect to geodesic distance along Z.
Here, X is an n x p matrix containing n data instances in p-dimensional space, Y is an m X q
matrix containing m data instances in g-dimensional space, f : R? — R* and g : R? — RF
for some k called the latent dimensionality.

The instances z; and y; are in exact correspondence if and only if f(x;) = ¢g(y;). On the
other hand, prior correspondence information includes any information about the similarity
of the instances in X and Y, not just exact correspondence information. The union of the

range of f and the range of g is the joint latent space, and the concatenation of the new
F(X)
g(Y)
containing the result f applied to each row of X, and ¢g(Y') an m X k matrix containing the
result of g applied to each row of Y. f(X) and g(Y') are the new coordinates of X and Y in

the joint latent space.

coordinates ( ) is the unified representation of X and Y, where f(X) is an n x k matrix

5.1.2 Overview of the Algorithm

Manifold alignment is one solution to the problem of alignment. There are two key ideas
to manifold alignment: considering local geometry as as well as correspondence informa-
tion and viewing multiple datasets as being samples on the same manifold. First, instead
of only preserving correspondences across datasets, manifold alignment also preserves the
individual structures within each dataset by mapping similar instances in each dataset to
similar locations in Euclidean space. In other words, manifold alignment maps each dataset
to a new joint latent space where locally similar instances within each dataset and given
corresponding instances across datasets are close or identical in that space (see Figure 5.3).

This algorithm can be supervised, semi-supervised, or unsupervised. With complete
correspondence information, the algorithm is supervised, and it simply finds a unifying rep-
resentation of all the instances. With incomplete correspondence information, the algorithm
is semi-supervised, and it relies only on the known correspondences and the datasets’ intrin-
sic structures to form the embedding. With no correspondence information, the algorithm is
unsupervised, and some correspondences must be inferred. Section 5.3.4 discusses one way
to infer correspondences.

Second, manifold alignment views each individual dataset as belonging to one larger
dataset. Since all the datasets have the same manifold structure, the graph Laplacians
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associated with each dataset are all discrete approximations of the same manifold, and
thus, the diagonal concatenation of these Laplacians, along with the off-diagonal matrices
filled with correspondence information, is still an approximation of that manifold. The
idea is simple but elegant—by viewing two or more samples as actually being one large
sample, making inferences about multiple datasets reduces to making inferences about a
single dataset.

Embedding this joint Laplacian combines these ideas. By using a graph embedding al-
gorithm, manifold alignment preserves the local similarities and correspondence information
encoded by the joint Laplacian. Thus, by combining these ideas together, the problem of
manifold alignment can be reduced to a variant of the standard manifold learning problem.

5.2 Formalization and Analysis

Figure 5.4 summarizes the notation used in this section.

5.2.1 Loss Functions

This section develops the intuition behind the loss function for manifold alignment in two
ways, each analogous to one of the two key ideas from Section 5.1.2. The first way illus-
trates that the loss function captures the idea that manifold alignment should preserve local
similarity and correspondence information. The second way illustrates the idea that after
forming the joint Laplacian, manifold alignment is equivalent to Laplacian eigenmaps [14].
Subsequent sections use the second approach because it greatly simplifies the notation and
the proofs of optimality.

The First Derivation of Manifold Alignment: Preserving Similarities

The first loss function has two parts: one part to preserve local similarity within each dataset
and one part to preserve correspondence information about instances across datasets. With
¢ datasets, X ... X for each dataset the loss function includes a term of the following
form:

F) ZIIF = FO3,)IPW G, ),

where F(@ is the embedding of the ath dataset and the sum is taken over all pairs of instances
in that dataset. Cy(F®) is the cost of preserving the local similarities within X(@. This
equation says that if two data instances from X@ X () (j .), and X(@(j,-) are similar, which
happens when W (@ (4, j) is larger, their locations in the latent space, F(@(i,-) and F(® (5, -),
should be closer together.

Additionally, to preserve correspondence information, for each pair of datasets the loss
function includes

Cu(F @, FO ZHF(“) — FO3)IPWeI (i, ).
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For any n x p matrix, M, M(i, j) is the i, jth entry of M, M(i,-) is ith row and M (-, j) is
the jth column. (M)™T denotes the Moore-Penrose pseudoinverse. ||M(i,-)| denotes the
lo norm. M’ denotes the transpose of M.

X@ is an, x p, data matrix with n, observations and p, features.

W is an ng X ng matrix, where W(® (4, j) is the similarity of X (@ (4,-) and X()(j,.)
(could be defined by heat kernel).

D@ is an n, x n, diagonal matrix: D@ (i,7) = > W@ (i, 5).

L@ = D@ _ (@) ig the Laplacian associated with X (@),

Wiap) is an ng X ny, matrix, where W@ (i §) # 0, when X(@(i,-) and X®)(j,.) are in
correspondence and 0 otherwise. W () (i,7) is the similarity, or the strength of corre-
spondence, of the two instances. Typically, W () (i, j) = 1 if the instances X (% (i,-) and
X®(j,.) are in correspondence.

If ¢ is the number of manifolds being aligned, X is the joint dataset, a (>, n;) x (3, pi)
matrix, and W is the (>, n;) x (3, n) joint adjacency matrix,

x@ ... 0 oW ® w2 o (e
0 . X(C) /,LW(C’l) /.LW(C’Q) e VW(C)

v and p are scalars that control how much the alignment should try to respect local
similarity versus correspondence information. Typically, v = p = 1. Equivalently, W is
a (D, mi) x (D_; n;) matrix with zeros on the diagonal and for all i and j,

v (@) (i,7) if X(7,-) and X(j,) are both from X (a)
,uW(a’b)(i,j) if X(i,-) and X(j,) are corresponding instances from
X @ and X®) respectively
0 otherwise,

where the W@ (i, ) and W(@) (4, j) here are an abuse of notation with i and j being
the row and column that W (i, j) came from. The precise notation would be W@ (iayJa)
and W () (i,, j,), where &, is the index such that X(k,-) =[0 ... 0 X9 (k,,-) 0 ... 0],
kg =k — Zf;olnl, no = 0.

Disan ), n; X ), n; diagonal matrix with D(i,i) = >, W(i, j).
L =D — W is the joint graph Laplacian

If the dimension of the new space is d, the embedded coordinates are given by
1. in the nonlinear case, F, a (3, n;) x d matrix representing the new coordinates.
2. in the linear case, F, a (), p;) xd matrix, where XF represents the new coordinates.

F@ or X(@F(@) 16 the new coordinates of the dataset X (@),

Figure 5.4: Notation used in this chapter.

11
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C(F@, F®) is the cost of preserving correspondence information between F(® and F(©®)
This equation says that if two data points, X (¥ (i, -) and X®)(j, ), are in stronger correspon-
dence, which happens when W (Y (j, 5) is larger, their locations in the latent space, F() (4, -)
and F®)(j,-), should be closer together.

The complete loss function is thus

CLFD, . FO) —VZC,\ F@)+ 1y Co(F@, F®)
a;ﬁb
=v Y D [FW30,) = FOGDPWO 6, 5) +p ) Y [FO®, ) = FOG )P e (i, )
a i, a#b i,j

The Second Derivation of Manifold Alignment: Embedding the Joint Laplacian

The second loss function is simply the loss function for Laplacian eigenmaps using the joint
adjacency matrix:

Z IF G, ) = F (G, )W, ),

where the sum is taken over all pairs of instances from all datasets. Here F is the unified
representation of all the datasets and W is the joint adjacency matrix. This equation says
that if two data instances, X(@(¢',-) and X®)(5',.), are similar, regardless of whether they
are in the same dataset (a = b) or from different datasets (a # b), which happens when
W(i, j) is larger in either case, their locations in the latent space, F(i,-) and F(j,-), should
be closer together.

Equivalently, making use of the facts that ||[M(z,-)||* = >_, M (i, k)? and that the Lapla-
cian is a quadratic difference operator,

- Z > [F(i, k) — F(j, k)]*W(, j)
=> Y [F(i.k) — F(G.k)PW(i, )

k 1j

where L is the joint Laplacian of all the datasets.

Overall, this formulation of the loss function says that, given the joint Laplacian, aligning
all the datasets of interest is equivalent to embedding the joint dataset according to the
Laplacian eigenmap loss function.
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Equivalence of the Two Loss Functions

The equivalence of the two loss functions follows directly from the definition of the joint
Laplacian, L. Note that for all + and 7,

vW@(i,5) if X(i,-) and X(7,-) are both from X(®
pW @b (G 5) if X(i,-) and X(4,-) are corresponding instances from
X@ and X® respectively
0 otherwise.

W(i,j) =

Then, the terms of Cy(F) containing instances from the same dataset are exactly the
C\(F@) terms, and the terms of containing instances from different datasets are exactly the
Co(F@ F®) terms. Since all other terms are 0,

Cy(FW, ... F) = Cy(F) = C(F).

This equivalence means that embedding the joint Laplacian is equivalent to preserving
local similarity within each dataset and correspondence information between all pairs of
datasets.

Although this loss function captures the intuition of manifold alignment, for it to work
mathematically it needs an additional constraint,

F'DF = I,

where [ is the d x d identity matrix. Without this constraint, the trivial solution of mapping
all instances to zero would minimize the loss function.
Thus, the final optimization equation for manifold alignment is

argmin C(F) = argmin tr(F'LF).
FF DF=I F.F/ DF=I

5.2.2 Optimal Solutions

This section derives the optimal solution to optimization problem posed in the previous sec-
tion using the method of Lagrange multipliers. The technique is well-known in the literature
(see for example Bishop’s derivation of PCA [15]), and the solution is equivalent to that of
Laplacian eigenmaps.

Consider the case when d = 1. Then F is just a vector, f, and

argmin C(f) = argmin f'Lf + A(1 — f'Df)
ff'Df=1 f

Differentiating with respect to f and A and setting equal to zero gives
Lf=)Df

and

FDf =1.
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The first equation shows that the optimal f is a solution of the generalized eigenvector

problem, Lf = ADf. Multiplying both sides of this equation by f” and using f'Df =1

gives f'Lf = A, which means that minimizing f'L f requires the smallest nonzero eigenvector.
For d > 1, F = [f1, f2, ..., fa], and the optimization problem becomes

arg min C'(F) = arg min Zfi/sz' + X1 = fIDf),
F:F'DF=1 frrenfa

i
and the solution is the d smallest nonzero eigenvectors. In this case, the total cost is Z?Zl Y
if the eigenvalues, A1, ..., \,, are sorted in ascending order and exclude the zero eigenvalues.

5.2.3 The Joint Laplacian Manifold Alignment Algorithm

Using the optimal solution derived in the last section, this section describes the algorithm
for manifold alignment using Laplacian eigenmaps on the joint Laplacian.

Given ¢ datasets, X, ... X all lying on the same manifold, a similarity function
(or a distance function), S, that returns the similarity of any two instances from the same
dataset with respect to geodesic distance along the manifold (perhaps S = e ll*=¥Il) and
some given correspondence information in the form of pairs of similarities of instances from
different datasets, the algorithm is as follows:

1. Find the adjacency matrices, WO, ... W, of each dataset using S, possibly only
including a weight between two instances if one is in the k-nearest neighbors of
the other.

2. Construct the joint Laplacian, L.
3. Compute the d smallest nonzero eigenvectors of Lf = ADf.

4. The rows 1+ E?;ol ny, 2+ Zzg:_ol N,y ..o Mg+ Z‘;}:_Ol n; of F are the new coordinates of
x(9),

5.3 Variants of Manifold Alignment

There are a number of extensions to the basic joint Laplacian manifold alignment framework.
This section explores four important variants: restricted the embedding functions to be
linear, enforcing hard constraints on corresponding pairs of instances, finding alignments at
multiple scales, and performing alignment with no given correspondence information.

5.3.1 Linear Restriction

In nonlinear manifold alignment, the eigenvectors of the Laplacian are exactly the new
coordinates of the embedded instances—there is no simple closed form for the mapping
function from the original data to the latent space. Linear manifold alignment, however,
enforces an explicit, linear functional form for the embedding function. Besides being useful
for making out-of-sample estimates, linear alignment helps diminish the problem of missing
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correspondence information, finds relationships between the features of multiple datasets
instead of just between instances, and attempts to identify a common linear subspace of the
original datasets.

This section develops linear alignment in steps analogous to the development of nonlin-
ear alignment with many of the details omitted because of the similarity between the two
approaches.

Problem Statement

The problem of linear alignment is slightly different from the general problem of alignment;
it is to identify a linear transformation, instead of an arbitrary transformation, of one dataset
that best “matches that dataset up” with a linear transformation of another dataset. That
is, given two datasets?, X and Y, whose instances lie on the same manifold, Z, but who may
be represented by different features, the problem of linear alignment is to find two matrices
F and G, such that z;F' is close to ;G in terms of Euclidean distance if x; and y; are close
with respect to geodesic distance along Z.

The Linear Loss Function

The motivation and intuition for linear manifold alignment are the same as for nonlinear
alignment. The loss function is thus similar, only requiring an additional term for the linear
constraint on the mapping function. The new loss function is

C(F) =) IX(i,)F - X(j,-)FIPW(i, j) = tr(F'X'LXF),
i

where the sum is taken over all pairs of instances from all datasets. Once again, the constraint
F'X'DXF = [ allows for nontrivial solutions to the optimization problem. This equation
captures the same intuitions as the nonlinear loss function, namely that if X (¢, -) is similar to
X(j,), which occurs when W (4, j) is large, the embedded coordinates, X (i, -)F and X(j, -)F,
will be closer together, but it restricts the embedding of the X to being a linear embedding.

Optimal Solutions

Much like nonlinear alignment reduces to Laplacian eigenmaps on the joint Laplacian of the
datasets, linear alignment reduces to locality preserving projections [6] on the joint Laplacian
of the datasets. The solution to the optimization problem is the minimum eigenvectors of
the generalized eigenvector problem:

X'LXf = \XX'DX/.

The proof of this fact is similar to the nonlinear case (just replace the matrix L in that proof
with the matrix X'LX, and the matrix D with X'DX).

20Once again this definition could include more than two datasets.
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Comparison to Nonlinear Alignment

The most immediate practical benefit of using linear alignment is that the explicit functional
forms of the alignment functions allow for embedding new instances from any of the datasets
into the latent space without having to use an interpolation method. This functional form is
also useful for mapping instances from one dataset directly to the space of another dataset.
Given some point X (i,.), the function F@(F")* maps that point to the coordinate
system of X" This direct mapping function is useful for transfer. Given some function,
f trained on X® but which is inconsistent with the coordinate system of X9 (perhaps f
takes input from R3 but the instances from X are in R*), f(X©(4,-)F9(F®M)*) is an
estimate of the value of what f(X ) (i,-)) would be.

Linear alignment is also often more efficient than nonlinear alignment. If . p; < > n,
linear alignment will be much faster than nonlinear alignment, since the matrices X'LX and
X'DX are (3, pi) x (O, pi) instead of (3, n;) x (3, ni). Of course, these benefits come at a
heavy cost if the manifold structure of the original datasets cannot be expressed by a linear
function of the original dataset. Linear alignment sacrifices the ability to align arbtitarily
warped manifolds. However, as in any linear regression, including nonlinear transformation
of the original features of the datasets is one way to circumvent this problem in some cases.

At the theoretical level, linear alignment is interesting because, letting X be a variable,
the linear loss function is a generalization of the simpler, nonlinear loss function. Setting X
to the identity matrix, linear alignment reduces to the nonlinear formulation. This obser-
vation highlights the fact that even in the nonlinear case the embedded coordinates, F, are
functions—they are functions of the indices of the original datasets.

Other Interpretations

Since each mapping function is linear, the features of the embedded datasets (the projected
coordinate systems) are linear combinations of the features of the original datas, which
means that another way to view linear alignment and its associated loss function is as
a joint feature selection algorithm. Linear alignment thus tries to select the features of
the original datasets that are shared across datasets; it tries select a combination of the
original features that best respects similarities within and between each dataset. Because
of this, examining the coefficients in F is informative about which features of the original
datasets are most important for respecting local similarity and correspondence information.
In applications where the underlying manifold of each dataset has a semantic interpretation,
linear alignment attempts to filter out the features that are dataset-specific and defines a set
of invariant features of the datasets.

Another related interpretation of linear alignment is as feature-level alignment. The func-
tion F@(FM)* that maps the instances of one datasets to the coordinate frame of another
dataset also represents the relationship between the features of each of those datasets. For
example, if X@ is a rotation of XM, F&)(FM)* should ideally be that rotation matrix (it
may not be if there is not enough correspondence information or if the dimensionality of
the latent space is different from that of the datasets, for example). From a more abstract
perspective, each column of the embedded coordinates XF is composed of a set linear com-
binations of the columns from each of the original datasets. That is, the columns F9)(3,-)
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and F(® (i, .), which define the ith feature of the latent space, combine some number of the
columns from X9 (i,-) and X (i,.). They unify the features from X@ (i, -) and X" (s, .)
into a feature in the latent space. Thus linear alignment defines an alignment of the features
of each dataset.

5.3.2 Hard Constraints

In nonlinear alignment, hard constraints can replace some of the soft constraints specified
by the loss function. Two instances that should be exactly equal in the latent space can be
constrained to be the same by merging them in the joint Laplacian. This merging action
forms a new row by combining the individual edge weights in each row of the instances that
are equal and removing the original rows of those instances from the joint Laplacian [9].
The eigenvectors of the joint Laplacian will then have one less entry. To recover the full
embedding, the final coordinates must include two copies of the embedded merged row, each
in the appropriate locations.

5.3.3 Multiscale Alignment

Many real-world data sets exhibit non-trivial regularities at multiple levels. For example, for
the data set involving abstracts of NIPS conference papers 3, at the most abstract level, the
set of all papers can be categorized into two main topics: machine learning and neuroscience.
At the next level, the papers can be categorized into a number of areas, such as cognitive
science, computer vision, dimensionality reduction, reinforcement learning, etc. To transfer
knowledge across domains taking consideration of their intrinsic multilevel structures, we
need to develop algorithms for multiscale manifold alignment. All previously studied ap-
proaches to manifold alignment are restricted to a single scale. In this section, we discuss
how to extend multiscale algorithms such as diffusion wavelets [17] to yield hierarchical solu-
tions to the alignment problem. The goal of this multiscale approach is to produce alignment
results that preserve local geometry of each manifold and match instances in correspondence
at every scale. Compared to “flat” methods, multiscale alignment automatically generates
alignment results at different scales by exploring the intrinsic structures (in common) of the
two data sets, avoiding the need to specify the dimensionality of the new space.

Finding multiscale alignments using diffusion wavelets enables a natural multiscale in-
terpretation and give a sparse solution. Multiscale alignment offers additional advantages
in transfer learning and in exploratory data analysis. Most manifold alignment methods
must be modified to deal with asymmetric similarity relations, which occur when construct-
ing graphs using k-nearest neighbor relationships, in directed citation and web graphs, in
Markov decision processes, and in many other applications. In contrast to most manifold
alignment methods, multiscale alignment using diffusion wavelets can be used without mod-
ification, although there is no optimality guarantee in that case. Furthermore, multiscale
alignment is useful to exploratory data analysis because it generates a hierarchy of alignments
that reflects a hierarchical structure common to the datasets of interest.

3 Available at www.cs.toronto.edu/~roweis/data.html.
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Intuitively, multiscale alignment is appealing because many datasets show regularity at
multiple scales. For example, in the NIPS conference paper dataset?, there are two main
topics at the most abstract level: machine learning and neuroscience. At the next level, the
papers fall into a number of categories, such as dimensionality reduction or reinforcement
learning. Another dataset with a similar topic structure should be able to be aligned at each
of these scales. Multiscale manifold alignment simultaneously extracts this type of structure
across all datasets of interest.

This section formulates the problem of multiscale alignment using the framework of
multiresolution wavelet analysis [17]. In contrast to “flat” alignment methods which result
in a single latent space for alignment in a pre-selected dimension, multiscale alignment using
diffusion wavelets automatically generates alignment results at different levels by discovering
the shared intrinsic multilevel structures of the given datasets. This multilevel approach
results in multiple alignments in spaces of different dimension, where the dimensions are
automatically decided according to a precision term.

Problem Statement

Given a fixed sequence of dimensions, d; > dy > ... > dj, as well as two datasets, X
and Y, and some partial correspondence information, x; € X; «— y; € Y}, the multiscale
manifold alignment problem is to compute mapping functions, A; and By, at each level k
(k =1,2,...,h) that project X and Y to a new space, preserving local geometry of each
dataset and matching instances in correspondence. Furthermore, the associated sequence of
mapping functions should satisfy span(A;) 2 span(Az) D ... D span(Ap) and span(B;) 2
span(Bz) 2 ... D span(By,), where span(A;) (or span(B;)) represents the subspace spanned
by the columns of A; (or B;).

This view of multiscale manifold alignment consists of two parts: (1) determining a
hierarchy in terms of number of levels and the dimensionality at each level and (2) finding
alignments to minimize the cost function at each level. Our approach solves both of these
problems simultaneously while satisfying the subspace hierarchy constraint.

Optimal Solutions

There is one key property of diffusion wavelets that needs to be emphasized. Given a
diffusion operator T', such as a random walk on a graph or manifold, the diffusion wavelet
(DWT) algorithm produces a subspace hierarchy associated with the eigenvectors of T (if
T is symmetric). Letting \; be the eigenvalue associated with the ith eigenvector of T', the
kth level of the DW'T hiearchy is spanned by the eigenvectors of T with )\fk > ¢, for some
precision parameter, €. Although each level of the hierarchy is spanned by a certain set of
eigenvectors, the DW'T algorithm returns a set of scaling functions, ¢y, at each level, which
span the same space as the eigenvectors but have some desirable properties.

To apply diffusion wavelets to multiscale alignment problem, the algorithm must address
the following challenge: the regular diffusion wavelets algorithm can only handle regular
eigenvalue decomposition in the form of Ay = Ay, where A is the given matrix, ~ is an
eigenvector and A is the corresponding eigenvalue. However, the problem we are interested

4www.cs.toronto.edu/~roweis/data.html
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in is a generalized eigenvalue decomposition, Ay = AB~, where we have two input matrices
A and B. This multiple manifold alignment algorithm overcomes this challenge.

The Main Algorithm

Using the notation defined in Figure 5.4, the algorithm is as follows:
1. Construct a matrix representing the joint manifold, L.
2. Find an (3 p;) x r matrix, G, such that G'G = X'X using SVD.
3. Define T = ((G)*X'LXG™)".

4. Use diffusion wavelets to explore the intrinsic structure of the joint manifold:
[Pk]py = DWT (T, €), where DWT () is the diffusion wavelets implementation described

in [17] with extraneous parameters omitted. [¢y]s, are the scaling function bases at level k
represented as an r X dp matrix, k=1,...,h.

5. Compute mapping functions for manifold alignment (at level k): Fy, = (G)" [¢y]4,-

Benefits

As discussed in [17], the benefits of using diffusion wavelets are:

e Wavelet analysis generalizes to asymmetric matrices.

e Diffusion wavelets result in sets of mapping functions that capture different spectral
bands of the relevant operator.

e The basis vectors in ¢, are localized (sparse).

5.3.4 Unsupervised Alignment

Performing unsupervised alignment requires generating the portions of the joint Laplacian
that represent the between-dataset similarities. One way to do this is by local pattern match-
ing. With no given correspondence information, if the datasets X(® and X® are represented
by different features, there is no easy way to directly compare X (i,-) and X®(5,-). One
way to build connections between them is to use the relations between X(@(i,.) and its
neighbors to characterize X (@ (i, -)’s local geometry. Using relations rather than features to
represent local geometry makes the direct comparison of X (@ (i, -) and X®(j, -) possible. Af-
ter generating correspondence information using this approach, any of the previous manifold
alignment algorithms work. This section shows how to compute local patterns representing
local geometry, and shows that these patterns are valid for comparison across datasets.
Given X (@ pattern matching first constructs an n, X n, distance matrix Distance,,
where Distance,(i, j) is Euclidean distance between X () (i, -) and X (@ (j,-). The algorithm
then decomposes this matrix into elementary contact patterns of fixed size k + 1. Ry ;.

is a (k+ 1) x (k + 1) matrix representing the local geometry of X (i, ).

Ry i (u,v) = distance(zy, ),
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where z; = X(@(4,-) and 2, . .., zx1 are X(¥(i,-)’s k nearest neighbors. Similarly, Rx(b) () 18
a (k+1) x (k+1) matrix representing the local geometry of X®)(j,-). The order of X®(j,-)’s
k nearest neighbors have k! permutations, so R X (j has k! variants. Let { Ry ) ) }h denote
its h'" variant.
Each local contact pattern Ry ;. is represented by a submatrix, which contains all

pairwise distances between local neighbors around X(®(4,-). Such a submatrix is a 2D rep-
resentation of a high dimensional substructure. It is independent of the coordinate frame and
contains enough information to reconstruct the whole manifold. X® is processed similarly
and distance between RX(@(Z-’,) and Rxw) () 18 defined as follows:

dist(Rx .y, Rxo(j.)) = min min(dist,(h), dista(h)),

1<h<k!

where

dist1(h) = [[{Rxe)(.)h — k1Rx@ ol Fs
disty(h) = || Ry, — k2{ Rxo }h”Fa
ke = tr(Ryw ) {Bx0 9 1n) /(R Bxo 6,
ko = tr({Rxw () r xw ) /r({ Bxo, }h{Rx<b>(J tn)-

Finally, W@ is computed as follows:

. 2
W@ (i, j) = e M@ Fx® )07

Theorem: Given two (k + 1) x (k + 1) distance matrices R; and Ry, ky =
tr(RLR,)/tr(R,Ry) minimizes ||R; — ko Rs||r and k; = tr(R|Ry)/tr(R]R;) minimizes
| Ry — k1 Ry
Proof:

Finding k, is formalized as
ko = arg H]iin |R1 — koRa||p,
2

where || - || represents Frobenius norm.
It is easy to verify that

|R1 — ko Ry||p = tr(R|Ry) — 2kotr(RyRy) + kitr(RyRy).
Since tr(R} R;) is a constant, the minimization problem is equal to

ko = arg min kstr(RyRy) — 2kotr( Ry Ry).

Differentiating with respect to ko gives
2k2tr(R/2R2) - QtF(RIQRl),

which implies
]{72 == tI‘(R/QRl)/tI‘<R,2R2).

Similarly,
k’l = tl“(Rlle)/tl"(RllRl).
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]

To compute matrix W@ the algorithm needs to compare all pairs of local patterns.
When comparing local pattern Ry )(; .y and Rxe)(;.), the algorithm assumes X(@)(3,.) matches
X®(4,.). However, the algorithm does not know how X (9 (4, -)’s k neighbors match X®(j, -)’s
k neighbors. To find the best possible match, it considers all k! possible permutations, which
is tractable since k is always small.

R X(@) (i) and Ry w (j,) are from different manifolds, so their sizes could be quite different.
The previous theorem shows how to find the best re-scaler to enlarge or shrink one of them
to match the other. Showing that dist(RX(@(i,,), Rx(b)(j7,)) considers all the possible matches
between two local patterns and returns the distance computed from the best possible match
is straightforward.

5.4 Application Examples

5.4.1 Protein Alignment

One simple application of alignment is aligning the three-dimensional structures of proteins.
This example shows how alignment can identify the corresponding parts of datasets.
Protein 3D structure reconstruction is an important step in Nuclear Magnetic Resonance
(NMR) protein structure determination. Basically, it finds a map from distances to coordi-
nates. A protein 3D structure is a chain of amino acids. Let n be the number of amino acids
in a given protein and C(1,-),---,C(n,-) be the coordinate vectors for the amino acids,
where C(i,-) = (C(i,1),C(4,2),C(7,3)) and C;1,C;o, and C; 3 are the z, y, z coordinates
of amino acid 4 (in biology, one usually uses atom but not amino acid as the basic element
in determining protein structure. Since the number of atoms is huge, for simplicity, we use
amino acid as the basic element). Then the distance d(i,j) between amino acids i and j
can be defined as d(i,j) = ||C(i,-) — C(4,-)||. Define A = {d(i,5) | i,7 = 1,--- ,n}, and
C={C(,-) | i1=1,---,n}. It is easy to see that if C' is given, then we can immediately
compute A. However, if A is given, it is non-trivial to compute C. The latter problem is
called Protein 3D structure reconstruction. In fact, the problem is even more tricky, since
only the distances between neighbors are reliable, and this makes A an incomplete distance
matrix. The problem has been proved to be NP-complete for general sparse distance matri-
ces [18]. In the real world, other techniques such as angle constraints and human experience
are used together with the partial distance matrix to determine protein structures. With the
information available to us, NMR techniques might find multiple estimations (models), since
more than one configuration can be consistent with the distance matrix and the constraints.
Thus, the result is an ensemble of models, rather than a single structure. Most usually, the
ensemble of structures, with perhaps 10 - 50 members, all of which fit the NMR data and
retain good stereochemistry is deposited with the Protein Data Bank (PDB) [19]. Models
related to the same protein should be similar and comparisons between the models in this
ensemble provides some information on how well the protein conformation was determined
by NMR. In this test, we study a Glutaredoxin protein PDB-1G70 (this protein has 215
amino acids in total), whose 3D structure has 21 models. We pick up Model 1, Model 21 and
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Model 10 for test. These models are related to the same protein, so it makes sense to treat
them as manifolds to test our techniques. We denote the data matrices X, X and X©).
XM which are all 215 x 3 matrices. To evaluate how manifold alignment can re-scale man-
ifolds, we multiply two of the datasets by a constant, X(1) = 4X® and X®) = 2X®) The
comparison of XM and X® (row vectors of X(!) and X @ represent points in the 3D space)
is shown in Figure 5.5(A). The comparison of all three manifolds are shown in Figure 5.6(A).
In biology, such chains are called protein backbones. These pictures show that the rescaled
protein represented by X is larger than that of X® which is larger than that of X®.
The orientations of these proteins are also different. To simulate pairwise correspondence
information, we uniformly selected a fourth of the amino acids as correspondence resulting
in three 54 x 3 matrices. We compare the results of five alignment approaches on these
datasets.

Procrustes Manifold Alignment

One of the simplest alignment algorithm is Procrustes alignment [10]. Since such models
are already low dimensional (3D) embeddings of the distance matrices, we skip Step 1 and 2
in Procrustes alignment algorithm, which are normally used to get an initial low dimension
embedding of the datasets. We run the algorithm from Step 3, which attempts to find a
rotation matrix that best aligns two datasets X and X®). Procrustes alignment removes
the translational, rotational and scaling components so that the optimal alignment between
the instances in correspondence is achieved. The algorithm identifies the re-scale factor £k as
4.2971, and the rotation matrix @) as

0.65793  0.75154 0.048172

0.56151 —0.53218 0.63363
Q= :
—0.50183 0.38983  0.77214

Y the new representation of X @, is computed as Y® = kX® Q. We plot Y® and XV
in the same graph (Figure 5.5(B)). The plot shows that after the second protein is rotated
and rescaled to be the similar size as the first protein, the two proteins are aligned well.

Semi-supervised Manifold Alignment

Next we compare the result of nonlinear alignment, also called semi-supervised alignment [9],
using the same data and correspondence. The alignment result is shown in Figure 5.5(C).
From the figure, we can see that semi-supervised alignment can map data instances in
correspondence to the similar location in the new space, but the instances outside of the
correspondence are not aligned well.

Manifold Projections

Next we show the results for linear alignment, also called manifold projections. The 3D
(Figure 5.5(C)), 2D (Figure 5.5(D)) and 1D (Figure 5.5(E)) alignment results are shown
in Figure 5.5. These figures clearly show that the alignment of two different manifolds is
achieved by projecting the data (represented by the original features) onto a new space
using our carefully generated mapping functions. Compared to the 3D alignment result of
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Procrustes alignment, 3D alignment from manifold projection changes the topologies of both
manifolds to make them match. Recall that Procrustes alignment does not change the shapes
of the given manifolds. The real mapping functions F and F® to compute the alignment

are
—0.1589 —0.0181 —-0.2178 —0.6555 —0.7379 —0.3007
F = 0.1471  0.0398 —0.1073 |, F® = 0.0329  0.0011 —-0.8933 | .

0.0398 —0.2368 —0.0126 0.7216 —0.6305 0.2289

Manifold Alignment without Correspondence

We also tested the unsupervised manifold alignment approach assuming no given pairwise
correspondence information. We plot 3D (Figure 5.5(G)), 2D (Figure 5.5H) and 1D (Fig-
ure 5.5(I)) alignment results in Figure 5.5. These figures show that alignment can still be
achieved using local geometry matching algorithm when no pairwise correspondence infor-
mation is given.

Multiple Manifold Alignment

Finally, we show the algorithm with all three datasets (using feature-level alignment, ¢ = 3)
is also tested using all three manifolds. The alignment results are shown in Figure 5.6. From
these figures, we can see that all three manifolds are projected to one space, where alignment
is achieved. The mapping functions F", F® and F® to compute alignment are as follows:

—0.0518 0.2133  0.0810 0.3808  0.2649  0.6860
FO = —02098 0.0816 0.0046 |, F® = —0.7349 0.7547 0.2871 |,

—0.0073 —0.0175 0.2093 —0.2862 —0.3352 0.4509

0.1733  0.2354 —0.0043
F® = —0.3785 0.3301 —0.0787 | .

—0.1136 0.1763 0.4325

5.4.2 Parallel Corpora

Assuming that similar documents have similar word usage within each language, we can
generate eleven graphs, one for each language, that reflect the semantic similarity of the
documents.

The data we use in this test is a collection of the proceedings of the European Parlia-
ment [11], dating from 04/1996 to 10/2006. The corpus includes versions in 11 European
languages: French, Italian, Spanish, Portuguese, English, Dutch, German, Danish, Swedish,
Greek and Finnish. Altogether, the corpus comprises of about 30 million words for each
language.

The data for our experiments came from the English-Italian parallel corpora, each of
which has more than 36,000,000 words. The data set has many files, each file contains
the utterances of one speaker in turn. We treat an utterance as a document. We first
extracted English-Italian document pairs where both documents have at least 100 words.
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Figure 5.5: (a): Comparison of proteins X! (red) and X® (blue) before alignment; (b):
Procrustes manifold alignment; (c): Semi-supervised manifold alignment; (d): 3D alignment
using manifold projections; (e): 2D alignment using manifold projections; (f): 1D alignment
using manifold projections; (g): 3D alignment using manifold projections without corre-
spondence; (h): 2D alignment using manifold projections without correspondence; (i): 1D
alignment using manifold projections without correspondence.
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Figure 5.6: (a): Comparison of the proteins X (red), X® (blue) and X® (green) before
alignment; (b): 3D alignment using multiple manifold alignment; (c): 2D alignment using
multiple manifold alignment; (d): 1D alignment using multiple manifold alignment.

This resulted in 59,708 document pairs. We then represented each English document with the
most commonly used 4,000 English words, each Italian document with the most commonly
used 4,000 Italian words. The documents are represented as bags of words, and no tag
information is included. 10,000 resulting document pairs are used for training and the
remaining 49,708 document pairs are held for testing. To our knowledge, no one has ever
used a data set at this scale to test manifold alignment approaches.

We first tested our algorithmic framework using this data set. In this test, the only
parameter we need to set is d = 200, i.e. we map two manifolds to the same 200 dimensional
space. In The other parameters directly come with the input data sets XY (for English) and
X@ (for Ttalian): p; = py = 4000; n; = ny = 10,000; ¢ = 2; W and W are constructed
using heat kernels, where ¢ = 1; W12 is given by the training correspondence information.
Since the number of documents is huge, we only do feature-level alignment, which results in
mapping functions F) (for English) and F® (for Italian). These two mapping functions
map documents from the original English language/ Italian language spaces to the new
latent 200 dimensional space. The procedure for the test is as follows: for each given English
document, we retrieve its top k£ most similar Italian documents in the new latent space. The
probability that the true match is among the top & documents is used to show the goodness
of the method. The results are summarized in Table 5.7. If we retrieve the most relevant
Italian document, then the true match has a 86% probability of being retrieved. If we
retrieve 10, this probability jumps to 90%. Different from most approaches in cross-lingual
knowledge transfer, we are not using any method from informational retrieval area to tune
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Figure 5.7: EU parallel corpus alignment test.

our framework to this task. For the purpose of comparison, we also used linear transform F
to directly align two corpora, where XM F is used to approximate X ). This is a regular
least square problem and the solution is given by F = (X (1))+X ) which is a 4,000 x
4,000 matrix for our case. The result of this approach is roughly 35% worse than manifold
alignment approach. The true match has a 52% probability of being the first retrieved
document. We also applied LSI [20] to preprocess the data and mapped the documents to
a 200 dimensional LSI space. Procrustes alignment and Linear transform were then applied
to align the corpora in the 200 dimensional spaces. The result of Procrustes alignment
(Figure 5.7) is roughly 6% percent worse than manifold projections. Performance of linear
transform in LSI space is almost the same as the linear transform result in the original
space. There are two reasons why manifold alignment approaches perform much better
than the regular linear transform approaches: (1) manifold alignment approach preserves
the topologies of the given manifolds in the computation of alignment. This lowers the
chance of getting into “overfitting” problems. (2) manifold alignment maps the data to a
lower dimensional space, getting rid of the information that does not model the common
underlying structure of the given manifolds. In manifold projections, each column of F(1)
is a 4,000 x 1 vector. Each entry on this vector corresponds to a word. To illustrate how
the alignment is achieved using our approach, we show 5 selected corresponding columns of
F® and F® in Table 5.1 and 5.2. From these tables, we can see that our approach can
automatically map the words with similar meanings from different language spaces to similar
locations in the new space.

5.4.3 Aligning Topic Models

Next, we applied the diffusions wavelet-based multiscale alignment algorithm to align corpora
represented in different topic spaces. We show that the alignment is useful for finding topics
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Top 10 Terms
ahern tuberculosis eta watts dublin wogau october september yielded structural

lakes vienna a4 wednesday chirac lebanon fischler ahern vaccines keys

scotland oostlander london tuberculosis finns chirac vaccines finland lisbon prosper

hiv jarzembowski tuberculosis mergers virus adjourned march chirac merger parents

QY | W N~

corruption jarzembowski wednesday mayor parents thursday rio oostlander ruijten vienna

Table 5.1: 5 selected mapping functions for English Corpus

Top 10 Terms

ahern tubercolosi eta watts dublino ottobre settembre wogau carbonica dicembre

laghi vienna mercoledi a4 chirac ahern vaccini libano fischler svedese

tubercolosi scozia oostlander londra finlandesi finlandia chirac lisbona vaccini svezia

hiv jarzembowski fusioni tubercolosi marzo chirac latina genitori vizioso venerdi

Y| W N~

corruzione mercoledi jarzembowski statistici sindaco rio oostlander limitiamo concentrati vienna

Table 5.2: 5 selected mapping functions for Italian Corpus

shared by the different topic extraction methods, which suggests that alignment may be
useful for integrating multiple topic spaces. Since we align the topic spaces at multiple
levels, the alignment results are also useful for exploring the hierarchical topic structure of
the data.

Given two collections, X1 (a n; x p; matrix) and X@ (a ny x p, matrix), where p; is the
size of the vocabulary set and n; is the number of the documents in collection X assume
the topics learned from the two collections are given by S; and Sy, where S; is a p; X r;
matrix and r; is the number of the topics in X®. Then the representations of X in the
topic space is X®S;. Following our main algorithm, X™S; and XS, can be aligned in
the latent space at level k£ by using mapping functions F; k(l) and F; ,52). The representations of
X® and X@ after alignment become X(l)Sle(l) and X(Q)SQF,S). The document contents
(XM and X)) are not changed. The only thing that has been changed is S;, the topic
matrix. Recall that the columns of S; are topics of X®. The alignment algorithm changes
S to Sle(l) and S to SQF,EQ). The columns of SlF,gl) and SQF,EQ) are still of length p;. Such
columns are in fact the new “aligned” topics.

In this application, we used the NIPS (1-12) full paper dataset, which includes 1,740
papers and 2,301,375 tokens in total. We first represented this dataset using two different
topic spaces: LSI space [20] and LDA space [21]. In other words, X(") = X® but S; # S,
for this set. The reasons for aligning these two datasets is that while they define different
features, they are constructed from the same data, and hence admit a correspondence un-
der which the resulting datasets should be aligned well. Also, LSI and LDA topics can be
mapped back to the English words, so the mapping functions are semantically interpretable.
This helps us understand how the alignment of two collections is achieved (by aligning their
underlying topics). We extracted 400 topics from the dataset with both LDA and LSI models
(ry = ro = 400). The top eight words of the first five topics from each model are shown in
Figure 5.8a and Figure 5.8b. It is clear that none of those topics are similar across the two
sets. We ran the main algorithm (@ = v = 1) using 20% uniformly selected documents as
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Top 8 Terms

generalization function generalize shown performance theory size shepard

hebbian hebb plasticity activity neuronal synaptic anti hippocampal

grid moore methods atkeson steps weighted start interpolation

measure standard data dataset datasets results experiments measures

energy minimum yuille minima shown local university physics

(a) Topic 1-5 (LDA) before alignment.

Top 8 Terms

fish terminals gaps arbor magnetic die insect cone

learning algorithm data model state function models distribution

model cells neurons cell visual figure time neuron

data training set model recognition image models gaussian

state neural network model time networks control system

(b) Topic 1-5 (LSI) before alignment.

Top 8 Terms

road car vehicle autonomous lane driving range unit

processor processors brain ring computation update parallel activation

hopfield epochs learned synapses category modulation initial pulse

brain loop constraints color scene fig conditions transfer

speech capacity peak adaptive device transition type connections

(c) 5 LDA topics at level 2 after alignment.

Top 8 Terms

road autonomous vehicle range navigation driving unit video

processors processor parallel approach connection update brain activation

hopfield pulse firing learned synapses stable states network

brain color visible maps fig loop elements constrained

speech connections capacity charge type matching depth signal

(d) 5 LSI topics at level 2 after alignment.

Top 8 Terms

recurrent direct events pages oscillator user hmm oscillators

false chain protein region mouse human proteins roc

(e) 2 LDA topics at level 3 after alignment.

Top 8 Terms

recurrent belief hmm filter user head obs routing

chain mouse region human receptor domains proteins heavy

(f) 2 LST topics at level 3 after alignment.

Figure 5.8
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correspondences. This identified a 3 level hierarchy of mapping functions. The number of
basis functions spanning each level was: 800, 91, and 2. These numbers correspond to the
structure of the latent space at each scale. At the finest scale, the space is spanned by 800
vectors because the joint manifold is spanned by 400 LSI topics + 400 LDA topics. At level
2, the joint manifold is spanned by 91 vectors, which we now examine more closely. Looking
at how the original topics were changed can help us better understand the alignment algo-
rithm. In Figures 5.8c and 5.8d, we show 5 corresponding topics (corresponding columns of
Siag and Spf;) at level 2. From these figures, we can see that the new topics in correspon-
dence are very similar to each other across the datasets, and interestingly the new aligned
topics are semantically meaningful—they represent some areas in either machine learning or
neuroscience. At level 3, there are only two aligned topics (Figure 5.8e and 5.8f). Clearly,
one of them is about machine learning and another is about neuroscience, which are the
most abstract topics of the papers submitted to the NIPS conference. From these results,
we can see that our algorithm can automatically align the given data sets at different scales
following the intrinsic structure of the datasets. Also, the multiscale alignment algorithm
was useful for finding the common topics shared by the given collections, and thus it is useful
for finding more robust topic spaces.

5.5 Summary

Manifold alignment is useful in applications where the utility of a dataset depends only on
the relative geodesic distances between its instances, which lie on some manifold. In these
cases, embedding the instances in a space of the same dimensionality as the original manifold
while preserving the geodesic similarity maintains the utility of the dataset. Alignment of
multiple such datasets allows for simple a simple framework for transfer learning between
the datasets.

The fundamental idea of manifold alignment is to view all datasets of interest as lying
on the same manifold. To capture this idea mathematically, the alignment algorithm con-
catenates the graph Laplacians of each dataset, forming a joint Laplacian. A within-dataset
similarity function gives all of the edge weights of this joint Laplacian between the instances
within each dataset, and correspondence information fills in the edge weights between the
instances in separate datasets. The manifold alignment algorithm then embeds this joint
Laplacian in a new latent space.

A corollary of this algorithm is that any embedding technique that depends on the sim-
ilarities (or distances) between data instances can also find a unifying representation of
disparate datasets. To perform this extension, the embedding algorithm must use both
the regular similarities within each datasets and must treat correspondence information as
an additional set of similarities for instances from different datasets, thus viewing multiple
datasets as all belonging to one joint dataset. Running the embedding algorithm on this
joint dataset results in a unified set of features for the initially disparate datasets.

In practice, the difficulties of manifold alignment are identifying whether the datasets
are actually sampled from a single underlying manifold, defining a similarity function that
captures the appropriate structures of the datasets, inferring any reliable correspondence
information, and finding the true dimensionality of this underlying manifold. Nevertheless,
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Figure 5.9: Two types of manifold alignment (this figure only shows two manifolds, but the same
idea also applies to multiple manifold alignment). X and Y are both sampled from the manifold Z,
which the latent space estimates. The red regions represent the subsets that are in correspondence.
f and ¢ are functions to compute lower dimensional embedding of X and Y. Type A is two-step
alignment, which includes diffusion map-based alignment and procrustes alignment; Type B is
one-step alignment, which includes semi-supervised alignment, manifold projections, semi-definite
alignment.

once an appropriate representation and an effective similarity metric are available, manifold
alignment is optimal with respect to its loss function and efficient, requiring only the order
of complexity of an eigenvalue decomposition.

5.6 Bibliographical and Historical Remarks

The problem of alignment occurs in a variety of fields. Often the alignment methods used
in these fields are specialized for particular applications. Some notable field-specific prob-
lems are image alignment, protein sequence alignment, and protein structure alignment.
Researchers also study the more general problem of alignment under the name informa-
tion fusion or data fusion. Canonical correlation analysis [22], which has many of its own
extensions, is a well-known method for alignment from the statistics community.

Manifold alignment is essentially a graph-based algorithm, but there is also a vast litera-
ture on graph-based methods for alignment that are unrelated manifold learning. The graph
theoretic formulation of alignment is typically called graph matching, graph isomorphism,
or approximate graph isomorphism.

This section focuses on the smaller but still substantial body of literature on methods
for manifold alignment. There are two general types of manifold alignment algorithm. The
first type (illustrated in Figure 5.9(A)) includes diffusion map-based alignment [23] and Pro-
crustes alignment [10]. These approaches first map the original datasets to low dimensional
spaces reflecting their intrinsic geometries using a standard manifold learning algorithm for
dimensionality reduction (linear like LPP [24] or nonlinear like Laplacian eigenmaps [14]).
After this initial embedding, the algorithms rotate or scale one of the embedded datatsets to
achieve alignment with the other dataset. In this type of alignment, the computation of the
initial embedding is unrelated to the actual alignment, so the algorithms do not guarantee
that corresponding instances will be close to one another in the final alignment. Even if
the second step includes some consideration of correspondence information, the embeddings
are independent of this new constraint, so they may not be suited for optimal alignment of
corresponding instances.

The second type of manifold alignment algorithm (illustrated in Figure 5.9(B)) includes
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semi-supervised alignment [9], manifold projections [25] and semi-definite alignment [26].
Semi-supervised alignment first creates a joint manifold representing the union of the given
manifolds then maps that joint manifold to a lower dimensional latent space preserving lo-
cal geometry of each manifold, and matching instances in correspondence. Semi-supervised
alignment is based on eigenvalue decomposition. Semi-definite alignment solves a similar
problem using a semi-definite programming framework. Manifold projections is a linear ap-
proximation of semi-supervised alignment that directly builds connections between features
rather than instances and can naturally handle new test instances. The manifold alignment
algorithm discussed in this chapter is a one-step approach.
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