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Abstract—We present a new Bayesian policy search algorithm
suitable for problems with policy-dependent cost variance, a
property present in many robot control tasks. We extend recent
work on variational heteroscedastic Gaussian processes to the
optimization case to achieve efficient minimization of very noisy
cost signals. In contrast to most policy search algorithms, our
method explicitly models the cost variance in regions of low
expected cost and permits runtime adjustment of risk sensitivity
without relearning. Our experiments with artificial systems and
a real mobile manipulator demonstrate that flexible risk-sensitive
policies can be learned in very few trials.

I. I NTRODUCTION

Experiments on physical robot systems are typically asso-
ciated with significant practical costs, such as experimenter
time, money, and robot wear and tear. However, such ex-
periments are often necessary due to the extreme difficulty
associated with constructing simulated systems of sufficiently
high fidelity that behaviors translate to hardware without
performance loss. For many nonlinear systems, it can even
be infeasible to perform simulations or construct a reasonable
model.

For this reason, model-free policy search methods have
become one of the standard tools for constructing controllers
for robot systems [27, 23, 12, 29, 17, 11]. These algorithms
are designed to minimize the expected value of a noisy cost
signal, Ĵ(θ), by adjusting policy parameters,θ, for a fixed
class of policies. By considering only the expected cost of
a policy and ignoring cost variance, the solutions found by
these algorithms are by definitionrisk-neutral, where the term
risk is equivalent tocost variance. However, for systems that
operate in a variety of contexts, it can be advantageous to have
a more flexible attitude toward risk. For example, a humanoid
otherwise capable of a fast and energy efficient gait might
adopt a more predictable, possibly less energy efficient gait
when operating near a large crater. Indeed, studies in human
motor control and animal behavior suggest that variable risk
sensitivity may be pervasive in nature [2, 1].

Recently there has been increased interest in applying
Bayesian optimization algorithms to solve model-free policy
search problems [17, 19, 20, 33, 28, 13]. In contrast to well-
studied policy gradient methods [23], Bayesian optimization
algorithms perform policy search by building a distribution
of cost in policy parameter space and applying a selection
criterion to globally select the next policy. Selection criteria

are typically designed to balance exploration and exploitation
with the intention of minimizing the total number of policy
evaluations. These properties make Bayesian optimization
attractive for robotics since cost functions often have multiple
local minima and policy evaluations are typically expensive.
It is also straightforward to incorporate approximate prior
knowledge about the distribution of cost (such as could be
obtained from simulation) and enforce hard constraints on the
policy parameters.

Previous implementations of Bayesian optimization have
assumed the variance of the cost signal is the same for all
policies in the search space, which is not true in general. In
this work, we propose a new type of Bayesian optimization
algorithm that relaxes this assumption and efficiently captures
both the expected cost and cost variance in regions of low cost.
Specifically, we extend recent work developing a variational
Gaussian process model for problems with input-dependent
noise (or heteroscedasticity) [15] to the optimization case
by deriving an expression for expected improvement [22], a
commonly used criterion for selecting the next policy, and
incorporating log priors into the optimization to improve
numerical performance. We also consider the use of confidence
bounds to produceruntime changes to risk sensitivity and
derive a generalized expected risk improvement criteria that
balance exploration and exploitation in risk-sensitive setting.
We evaluate the algorithm in experiments with synthetic
systems and a dynamic stabilization task using a real mobile
manipulator.

II. BACKGROUND

A. Bayesian Optimization

Bayesian optimization algorithms are a family of general
stochastic optimization techniques that are well suited to
problems where noisy samples of a cost function,Ĵ(θ), are
expensive to obtain [17, 6, 3, 28, 13]. In the control context,
Bayesian optimization methods use data from previous policy
evaluations to compute a nonparameteric distribution of cost
in policy parameter space. Given this distribution, a decision-
theoreticselection criterionis used to globally select policy
parameter values,θ, that, e.g., have a high probability of
having low cost or have high cost uncertainty.

Most Bayesian optimization implementations represent the
prior over cost functions as aGaussian process(GP). To fully



specify the GP prior,J(θ) ∼ GP(m(θ), kf (θ,θ
′)), one must

define a mean function and a covariance (kernel) function,
m(θ) = E[J(θ)] andkf (θ,θ′) = E[(J(θ) −m(θ′))(J(θ) −
m(θ′))]. Typically, we setm(θ) = 0 and letkf (θ,θ′) take
on one of several standard forms. A common choice is the
anisotropic squared exponential kernel,

kf (θ,θ
′) = σ2

f exp(−
1

2
(θ − θ′)⊤M(θ − θ′)), (1)

where σ2
f is the signal variance andM = diag(ℓ−2

f ) is a
diagonal matrix of length scale hyperparameters. Intuitively,
the signal variance captures the overall magnitude of the cost
function variation and the length scales capture the sensitivity
of the cost with respect to changes in each policy parameter.If
prior information regarding the shape of the cost distribution
is available, e.g., from simulation experiments, the mean func-
tion and kernel hyperparameters can be set accordingly [17].
However, in many cases such information is not available, so
these quantities are optimized using maximum likelihood or
maximum a posteriori techniques [24].

Samples of the latent cost function are assumed to have
additive i.i.d. noise:

Ĵ(θ) = J(θ) + ε, ε ∼ N (0, σ2
n). (2)

Given a GP prior and data,Θ = [θ1,θ2, . . . ,θN ]⊤ ∈ R
N×|θ|,

y = [Ĵ(θ1), Ĵ(θ2), . . . , Ĵ(θN )]⊤ ∈ R
N , one can compute the

posterior (predictive) cost distribution for a policy parameter-
ized byθ∗ as Ĵ∗ ≡ Ĵ(θ∗) ∼ N (E[Ĵ∗], s

2
∗),

E[Ĵ∗] = k⊤
f∗(Kf + σ2

nI)
−1y (3)

s2∗ = kf (θ∗,θ∗)− k⊤
f∗(Kf + σ2

nI)
−1kf∗, (4)

where kf∗ = [kf (θ1,θ∗), kf (θ2,θ∗), . . . , kf (θN ,θ∗)]
⊤ and

Kf is the positive-definite kernel matrix,[Kf ]ij = kf (θi,θj).
When the hyperparameters are unknown, the log marginal
likelihood, log p(y|Θ, σf , ℓf ), is commonly used to perform
an optimization before computing the posterior [24]. It is
straightforward to computelog p(y|Θ, σf , ℓf ) and its gra-
dients, so we are free to choose from existing nonlinear
optimization methods to perform the optimization.

To select the(N+1)th policy parameters, we optimize a se-
lection criterion computed on the posterior. A common choice
is expected improvement(EI) [22, 3], which is defined as the
expected value of the improvement,I, over the expected cost
of the best policy previously evaluated. Since the predictive
distribution under the GP model is Gaussian, the improvement
for policy, θ∗, is also Gaussian,I∗ ∼ N (µbest − E[Ĵ∗], s

2
∗),

whereµbest = mini=1,...,N E[Ĵ(θi)]. Considering only non-
negative improvements, the expected improvement is

EI(θ∗) =

∫ ∞

0

I∗p(I∗)dI∗

= s∗(u∗Φ(u∗) + φ(u∗)), (5)

whereu∗ = (µbest−E[Ĵ∗])/s∗, andΦ(·) andφ(·) are the CDF
and PDF of the normal distribution, respectively. Ifs∗ = 0,
the expected improvement is defined to be0. Both (5) and its

gradient,∂EI(θ)/∂θ, are efficiently computable, so we can
apply standard nonlinear optimization methods to maximizeEI
to select the next policy. In practice, a parameterξ is often used
to adjust the balance of exploration and exploitation,u∗ =
(µbest − E[Ĵ∗] + ξ)/s∗, whereξ > 0 leads to an optimistic
estimate of improvement and tends to encourage exploration
of regions of high uncertainty. Cost scale invariance can be
achieved by multiplyingξ by the signal standard deviation,
σf [18].

B. Variational Heteroscedastic Gaussian Process Regression

One limitation of the standard regression model is the
assumption of i.i.d. noise over the input space (see equa-
tion (2)). Many data do not adhere to this simplification and
models capable of capturing heteroscedasticity are required.
The heteroscedastic regression model takes the form

Ĵ(θ) = J(θ) + ε(θ), ε(θ) ∼ N (0, r(θ)), (6)

where the noise variance,r(θ), is dependent on the in-
put. In the Bayesian setting, a second GP prior,g(θ) ∼
GP(µ0, kg(θ,θ

′)), is placed over the unknown log variance
function, g(θ) ≡ log r(θ) [7, 10, 15]. This heteroscedastic
Gaussian process (HGP) model has the unfortunate property
that the computations of the posterior distribution and the
marginal likelihood are intractable, thus making hyperparam-
eter optimization and prediction difficult.

In the variational heteroscedastic Gaussian process (VHGP)
model [15], a variational lower bound on the marginal
likelihood of the HGP model serves as a tractable surro-
gate function for optimizing the hyperparameters. Letg =
[g(θ1), g(θ2), . . . , g(θN )]⊤ be the vector of latent log noise
variances for theN data points. By defining a normal vari-
ational probability density,q(g) ∼ N (µ,Σ), the marginal
variational bound can be derived [15],

F (µ,Σ) = logN (y|0,Kf +R)− 1
4 tr(Σ)

− KL(N (g|µ,Σ)||N (g|µ01,Kg)), (7)

where R is a diagonal matrix with elements[R]ii =
e[µ]i−[Σ]ii/2. Intuitively, by maximizing equation (7) with
respect to the variational parameters,µ andΣ, we maximize
the log marginal likelihood under the variational approxima-
tion while minimizing the distance (in the Kullback-Leibler
sense) between the variational distribution and the distribution
implied by the GP prior. By exploiting properties ofF (µ,Σ)
at its maximum, one can writeµ and Σ in terms of N
variational parameters [15]:

µ = Kg(Λ− 1

2
I)1+ µ01, Σ−1 = K−1

g +Λ,

whereΛ is a positive semidefinite diagonal matrix of vari-
ational parameters.F (µ,Σ) can be simultaneously maxi-
mized with respect to the variational parameters and the HGP
model hyperparameters,Ψf and Ψg. If the kernel functions
kf (θ,θ

′) and kg(θ,θ′) are squared exponentials (1), then
Ψf = {σf , ℓf} andΨg = {µ0, σg, ℓg}.



The VHGP model yields a non-Gaussian variational predic-
tive density,

q(Ĵ∗) =

∫

N (Ĵ∗|a∗, c2∗ + eg∗)N (g∗|µ∗, σ
2
∗)dg∗, (8)

where

a∗ = k⊤
f∗(Kf +R)−1y,

c2∗ = kf (θ∗,θ∗)− k⊤
f∗(Kf +R)−1kf∗,

µ∗ = k⊤
g∗(Λ− 1

2
I)1+ µ0,

σ2
∗ = kg(θ∗,θ∗)− k⊤

g∗(Kg +Λ−1)−1kg∗.

Although this predictive density is still intractable, itsmean
and variance can be calculated in closed form [15]:

Eq[Ĵ∗] = a∗, (9)

Vq[Ĵ∗] = c2∗ + exp(µ∗ + σ2
∗/2) ≡ s2∗. (10)

III. VARIATIONAL BAYESIAN OPTIMIZATION

There are two practical motivations for capturing policy-
dependent variance structure during optimization. First,met-
rics computed on the predictive distribution, such as EI and
probability of improvement, will return more meaningful val-
ues for the system under consideration. Second, it creates the
opportunity to employ policy selection criteria that take cost
variance into account, i.e., that are risk-sensitive.

We extend the VHGP model to the optimization case by
deriving the expression for expected improvement and its
gradient and show that both can be efficiently approximated
to several decimal places using Gauss-Hermite quadrature (as
is the case for the predictive distribution itself [15]). Weshow
how efficiently computable confidence bound selection criteria
can be used to select risk-sensitive policies and generalize
the expected improvement criterion. To address numerical
issues that arise whenN is small (i.e. in the early stages
of optimization), we incorporate independent log priors into
the marginal variational bound and identify heuristic sampling
strategies that perform well empirically.

A. Expected Improvement

The improvement,I∗, of a policy,θ∗, under the variational
predictive distribution (8) is

q(I∗) =

∫

N (I∗|µbest − a∗, v
2
∗)N (g∗|µ∗, σ

2
∗)dg∗, (11)

wherev2∗ = c2∗ + eg∗ . The expression for EI then becomes

EI(θ∗) =

∫ ∞

0

I∗q(I∗)dI∗,

=

∫

v∗ [u∗Φ(u∗) + φ(u∗)]N (g∗|µ∗, σ
2
∗)dg∗, (12)

whereu∗ = (µbest − a∗)/v∗. Although this expression is not
analytically tractable, it can be efficiently approximatedusing
Gauss-Hermite quadrature. This can be made clear by setting

w = (g∗ − µ∗)/
√
2σ∗ and replacing all occurrences ofg∗ in

the expressions forv∗ andu∗,

EI(θ∗) =

∫

e−w
2 v∗√

2πσ∗
[u∗Φ(u∗) + φ(u∗)] dw,

≡
∫

e−w
2

h(w)dw. (13)

Similarly, the gradient∂EI(θ)/∂θ can be computed under the
integral (12) and the result is of the desired form:

∂EI(θ∗)

∂θ
=

∫

e−w
2

z(w)dw, (14)

where

z(w) =
1√
2πσ∗

[

1

σ∗
v∗ (u∗Φ(u∗) + φ(u∗))

×
(

−∂σ∗
∂θ

+ 2w2 ∂σ∗
∂θ

+
√
2w

∂µ∗

∂θ

)

+
∂v∗
∂θ

(u∗Φ(u∗) + φ(u∗)) + v∗
∂u∗
∂θ

Φ(u∗)

]

.

As in the standard Bayesian optimization setting, we can
easily incorporate an exploration parameter,ξ, by setting
u∗ = (µbest−a∗+ξ)/v∗. EI can be maximized using standard
nonlinear optimization algorithms. Since flat regions and mul-
tiple local maxima may be present, it is common practice to
perform random restarts during EI optimization to avoid low-
quality solutions. In our experiments, we use the NLOPT [8]
implementation of sequential quadratic programming (SQP)
with 25 random restarts to optimize EI.

B. Confidence Bound Selection

In order to exploit cost variance information for policy
selection, we must consider selection criteria that flexibly take
cost variance into account. Although EI performs well during
learning by balancing exploration and exploitation, it falls
short in this regard since it always favors high variance or high
uncertainty among solutions with equivalent expected cost. In
contrast,confidence bound(CB) selection criteria allow one
to directly specify the sensitivity to cost variance.

The family of confidence bound selection criteria have the
general form

CB(θ∗, κ) = E[Ĵ∗] + b(V[Ĵ∗], κ), (15)

whereb(·, ·) is a function of the cost variance and a constantκ
that controls the system’s sensitivity to risk. Such criteria have
been extensively studied in the context of statistical global
optimization [5, 26] and economic decision making [16].
Favorable regret bounds for sampling with CB criteria of the
form b(V[J∗], κ) = κ

√

V[J∗] ≡ κs∗ have also been derived
for certain types of Bayesian optimization problems [26].

Interestingly, CB criteria have a strong connection to the
exponential utility functions of risk-sensitive optimal control
(RSOC) [32, 31]. Consider the standard RSOC objective
function,

γ(κ) = −2κ−1 logE[e−
1

2
κĴ∗ ]. (16)



Taking the second order Taylor expansion ofe−
1

2
κĴ∗ about

E[Ĵ∗] yields

γ(κ) ≈ E[Ĵ∗]−
1

4
κV[Ĵ∗]. (17)

This approximation exposes the role of the parameterκ in
determining the risk sensitivity of the system:κ < 0 is risk-
averse, κ > 0 is risk-seeking, andκ = 0 is risk-neutral [31].
Thus, policies selected according to a CB criterion with
b(V[Ĵ∗], κ) = − 1

4κV[Ĵ∗] can be viewed as approximate RSOC
solutions. Furthermore, since the selection is performed with
resect to the predictive distribution (8), policies with different
risk characteristics can be selectedon-the-fly, without having
to perform separate optimizations that require additionalpolicy
executions on the system.

We can also apply confidence bound criteria to generalize
EI to anexpected risk improvement(ERI) criterion. We define
risk improvement for a policyθ∗ as Iκ∗ = µbest + κsbest −
Ĵ∗ − κs∗, whereµbest and sbest are found by minimizing

Eq[Ĵθi
] + κ

√

Vq[Ĵθi
] over all previously evaluated policies.

Thus, ERI can be viewed as a generalization of EI where
u∗ = (µbest−a∗+κ(sbest− s∗))/v∗ andERI = EI if κ = 0.

C. Coping with Small Sample Sizes

1) Log Hyperpriors: To avoid numerical instability in the
hyperparameter optimization whenN is small, we augment
F (µ,Σ) with independent log-normal priors [18] for each
hyperparameter in the VHGP model,

F̂ (µ,Σ) = F (µ,Σ) +
∑

ψk∈Ψ

logN (logψk|µk, σ2
k), (18)

whereΨ = Ψf ∪ Ψg is the set of all hyperparameters. In
practice, these priors can be quite vague and thus do not
require significant experimenter insight. For example, in our
experiments we set the log prior on length scales so that the
width of the 95% confidence region is at least 20 times the
actual policy parameter range.

As is the case with standard marginal likelihood maximiza-
tion, F̂ (µ,Σ) may have several local optima. In practice,
performing random restarts helps avoid low-quality solutions
(especially whenN is small). In our experiments, we perform
10 random restarts using SQP for policy selection.

2) Sampling: It is well known [9] that selecting policies
based on distributions fit using very little data can lead to
myopic sampling and premature convergence. Incorporating
external randomization is one way to help alleviate this prob-
lem. For example, it is common to obtain a random sample
of N0 initial policies prior to performing optimization. We
have found that sampling according to EI with probability
1−ǫ and randomly otherwise performs well empirically. In the
standard Bayesian optimization setting with model selection,
ǫ-random EI selection has been shown to yield near-optimal
global convergence rates [4]. Randomized CB selection with,
e.g.,κ ∼ N (0, 1) can also be applied when the policy search is
aimed at identifying a spectrum of policies with different risk
sensitivities. However, since this technique relies completely

on the estimated cost distribution, it is most appropriate to
apply after a reasonable initial estimate of the cost distribution
has been obtained.

The Variational Bayesian Optimization (VBO) algorithm is
outlined in Box 1.

Algorithm 1 Variational Bayesian Optimization
Input : Previous evaluations: Θ,y, Iterations: n

1) for i := 1 : n

a) Maximize equation (18) givenΘ,y
Ψ+
f , Ψ+

g , Λ+ := argmax F̂ (µ,Σ)
b) Optimize selection criterion, EI, ERI, or CB, w.r.t.

optimized model
θ′ := argmaxθ S(θ,Ψ

+
f , Ψ+

g , Λ+)

c) Executeθ′, observe cost, Ĵ(θ′)
d) AppendΘ := [Θ;θ′], y := [y; Ĵ(θ′)]

2) Return Θ,y

IV. EXPERIMENTS

A. Synthetic Data

As an illustrative example, in Figure 1 we compare the
performance of the VBO to standard Bayesian optimization
in a simple 1-dimensional noisy optimization task. For this
task, the true underlying cost distribution (Figure 1(a)) has two
global minima with different cost variances. Both algorithms
begin with the sameN0 = 10 random samples and perform 10
iterations of EI selection (ξ = 1.0, ǫ = 0.25). In Figure 1(b),
we see that Bayesian optimization succeeds in identifying the
regions of low cost, but it cannot capture the policy-dependent
variance characteristics.

In contrast, VBO reliably identifies the minimaandapprox-
imates the local variance characteristics. Figure 1(d) shows the
result of applying two different confidence bound selectioncri-
teria to vary risk sensitivity. Here we maximized−CB(θ∗, κ),
where

CB(θ∗, κ) = Eq[Ĵ∗] + κs∗ (19)

andκ = −1.5 andκ = 1.5 were used to select a risk-seeking
and risk-averse policy parameters, respectively.

B. Noisy Pendulum

As another simple example, we considered a swing-up task
for a noisy pendulum system. In this task, the maximum torque
output of the pendulum actuator is unknown and is drawn from
a normal distribution at the beginning of each episode. As a
rough physical analogy, this might be understood as fluctu-
ations in motor performance that are caused by unmeasured
changes in temperature. The policy space consisted of “bang-
bang” policies in which the maximum torque is applied in the
positive or negative direction, with switching times specified
by two parameters,0 ≤ t1, t2 ≤ 1.5 sec. Thus,θ = [t1, t2].
The cost function was defined as

J(θ) =

∫ T

0

0.01α(t) + 0.0001u(t)2dt, (20)



(a) (b)

(c) (d)

Fig. 1. (a) A noisy cost function sampled during 10 iterations(N0 = 10) of
(b) Bayesian optimization and (c) the VBO algorithm. Bayesianoptimization
succeeded in identifying the minima, but it cannot distinguish between high
and low variance solutions. (d) Confidence bound selection criteria are used
to select risk-seeking and risk-averse policy parameter values.

where0 ≤ α(t) ≤ π is the pendulum angle measured from
upright vertical,T = 3.5 sec, andu(t) = τmax if 0 ≤ t ≤ t1,
u(t) = −τmax if t1 < t ≤ t1 + t2, and u(t) = τmax if
t1 + t2 < t ≤ T . The system always started in the downward
vertical position with zero initial velocity and the episode
terminated if the pendulum came within0.1 radians of the
upright vertical position. The parameters of the system were
l = 1.0 m, m = 1.0 kg, and τmax ∼ N (4, 0.32) Nm.
With these physical parameters, the pendulum must (with
probability≈ 1.0) perform at least two swings to reach vertical
in less thanT seconds.

The cost function (20) suggests that policies that reach
vertical as quickly as possible (i.e., using the fewest swings)
are preferred. However, the success of an aggressive policy
depends on the torque generating capability of the pendulum.
With a noisy actuator, we expect aggressive policies to have
higher variance. An approximation of the cost distribution
obtained via discretization (N = 40000) is shown in Figure 2.
Here we indeed see that regions around policies that attempt
two-swing solutions (θ = [0.0, 1.0], θ = [1.0, 1.5]) have low
expected cost, but high cost variance.

Figure 3 shows the results of25 iterations of VBO using EI
selection (N0 = 15, ξ = 1.0, ǫ = 0.2) in the noisy pendulum
task. AfterN = 40 total evaluations, the expected cost and
cost variance are sensibly represented in regions of low cost.
Figure 4 illustrates two policies selected by minimizing the
CB criterion (19) on the learned distribution withκ = ±2.0.
The risk-seeking policy (θ = [1.03, 1.5]) makes a large initial
swing, attempting to reach the vertical position in two swings.
The risk-averse policy (θ = [0.63, 1.14]) always produces
three swings and exhibits low cost variance, though it has
higher cost than the risk-seeking policy when the maximum
torque is large.

Fig. 2. The cost distribution for the simulated noisy pendulum system
obtained by a 20x20 discretization of the policy space. Eachpolicy was
evaluated 100 times to estimate its mean and variance (N = 40000).

Fig. 3. Estimated cost distribution after 25 iterations of VBO (N = 40).
The optimization algorithm focuses modeling effort to regions of low cost.

It is often easy to understand the utility of risk-averse
and risk-neutral policies, but the motivation for selecting
risk-seeking policies may be less clear. The above result
suggests one possibility: the acquisition of specialized,high-
performance policies. For example, in some cases risk-seeking
policies could be chosen in an attempt to identify observable
initial conditions that lead to rare low-cost events. Subsequent
optimizations might then be performed to direct the system
to these initial conditions. One could also imagine situations
where the context might demand performance that lower risk
policies are very unlikely to generate. For example, if the
minimum time to goal was reduced so that only two swing
policies had a reasonable chance of succeeding. In such
instances it may be desirable to select higher risk policies,
even if the probability of succeeding is quite low.

C. Balance Recovery with the uBot-5

The uBot-5 is an 11-DoF mobile manipulator that has two
4-DoF arms, a rotating trunk, and two wheels in a differential
drive configuration. The robot has a mass of19 kg and stands
60 cm from the ground with a torso that is roughly similar to
a small adult human in scale and geometry (Figure 5). The
robot balances using a linear-quadratic regulator (LQR) with
feedback from an onboard inertial measurement unit (IMU).

In our previous experiments [13], the energetic and stabi-
lizing effects of rapid arm motions on the LQR stabilized
system were evaluated in the context of recovery from impact



(a) τmax = 3.4 Nm
J(θ) = 18.2

(b) τmax = 4.0 Nm
J(θ) = 17.0

(c) τmax = 4.6 Nm
J(θ) = 15.9

(d) τmax = 3.4 Nm
J(θ) = 19.9

(e) τmax = 4.0 Nm
J(θ) = 17.7

(f) τmax = 4.6 Nm
J(θ) = 13.0

Fig. 4. Performance of risk-averse (a)-(c) and risk-seeking(d)-(f) policies
as the maximum pendulum torque is varied.

perturbations. One observation we made was that high energy
impacts caused a subset of possible recovery policies to have
high cost variance: successfully stabilizing in some trials,
while failing to stabilize in others. We extend these experi-
ments by considering larger impact perturbations, increasing
the set of arm initial conditions, defining a policy space that
permits more flexible, asymmetric arm motions.

The robot was placed in a balancing configuration with its
upper torso aligned with a3.3 kg mass suspended from the
ceiling (Figure 5). The mass was pulled away from the robot
to a fixed angle and released, producing a controlled impact
between the swinging mass and the robot. The pendulum
momentum prior to impact was9.9±0.8 Ns and the resulting
impact force was approximately equal to the robot’s total mass
in earth gravity. The robot was consistently unable to recover
from this perturbation using only the wheel LQR (see the
rightmost column of Figure 6).

This problem is well suited for model-free policy opti-
mization since there are several physical properties, suchas
joint friction, wheel backlash, and tire slippage, that make
the system difficult to model accurately. In addition, although
the underlying state and action spaces are high dimensional
(22 and 8, respectively), low-dimensional policy spaces that
contain high-quality solutions are relatively straightforward to
identify.

The parameterized policy controlled each arm joint ac-
cording to an exponential trajectory,τi(t) = e−λit, where
0 ≤ τi(t) ≤ 1 is the commanded DC motor power for jointi
at timet. Theλ parameters were paired for the shoulder/elbow
pitch and the shoulder roll/yaw joints. This pairing allowed the
magnitude of dorsal and lateral arm motions to be indepen-
dently specified. We commanded the pitch (dorsal) motions
separately for each arm and mirrored the lateral motions,
which reduced the number of policy parameters to 3. The
range of eachλi was constrained:1 ≤ λi ≤ 15. At time
t, if ∀i τi(t) < 0.25, the arms were retracted to a nominal
configuration (the mean of the initial configurations) usinga

10 Ns

19 kg

60 cm

Fig. 5. The uBot-5 situated in the impact pendulum apparatus.

fixed, low-gain linear position controller.
The cost function was designed to encourage energy effi-

cient solutions that successfully stabilized the system,

J(θ) = h(x(T )) +

∫ T

0

1

10
I(t)V (t)dt, (21)

whereI(t) andV (t) are the total absolute motor current and
voltage at timet, respectively,T = 3.5 sec, andh(x(T )) = 5
if x(T ) ∈ FailureStates, otherwiseh(x(T )) = 0.

After 15 random initial trials, we applied VBO with EI
selection (ξ = 1.0, ǫ = 0.2) for 15 episodes and randomized
CB selection (κ ∼ N (0, 1)) for 15 episodes resulting in a total
of N = 45 policy evaluations. Since the left and right pitch
parameters are symmetric with respect to cost, we imposed
an arbitrary ordering constraint,λleft ≥ λright, during policy
selection.

After training, we evaluated four policies with different risk
sensitivity selected by minimizing the CB criterion (19) with
κ = 2, κ = 0, κ = −1.5, andκ = −2. Each selected policy
was evaluated 10 times and the results are shown in Figure 6.
The sample statistics confirm the algorithmic predictions about
the relative riskiness of each policy. In this case, the risk-averse
and risk-neutral policies were very similar (no statistically
significant difference between the mean or variance), whilethe
two risk-seeking policies had higher variance (forκ = −2,
the differences in both the sample mean and variance were
statistically significant).

For κ = −2, the selected policy produced an upward
laterally-directed arm motion that failed approximately 50%
of the time. In this case, the standard deviation of cost
was sufficiently large that the second term in equation (19)
dominated, producing a policy with high variance and poor
average performance. A slightly less risk-seeking selection
(κ = −1.5) yielded a policy with conservative low-energy
arm movements that was more sensitive to initial conditions
than the lower risk policies. This exertion of minimal effort
could be viewed as a kind of gamble on initial conditions.
Figure 7 shows two successful trials executing risk-averseand
risk-seeking policies.



Fig. 7. Time series (duration: 1 second) showing two successful trials executing low-risk (top,κ = 2) and high-risk (bottom,κ = −2) policies selected using
confidence bound criteria on the learned cost distribution.The low-risk policy produced an asymmetric dorsally-directed arm motion with reliable recovery
performance. The high-risk policy produced an upward laterally-directed arm motion that failed approximately 50% of the time.

Fig. 6. Data collected over 10 trials using policies identified as risk-
averse, risk-neutral, and risk-seeking after performing VBO. The policies were
selected using confidence bound criteria withκ = 2, κ = 0, κ = −1.5, and
κ = −2, from left to right. The sample means and two times sample standard
deviations are shown. The shaded region on the top part of theplot contains
all trials that resulted in failure to stabilize. Ten trialswith a fixed-arm policy
are plotted on the far right to serve as a baseline level of performance for this
impact magnitude.

V. D ISCUSSION ANDFUTURE WORK

In many systems, it may be advantageous to adjust risk
sensitivity based on runtime context. For example, systems
whose environments change in ways that make failures more
or less costly (such as operating around catastrophic obstacles
or in a safety harness) or when the context demands that
the system seek out a low-probability high-performance event.
Perhaps not surprisingly, this variable risk property has been
observed in a variety of animal species, from simple motor
tasks in humans to foraging birds and bees [2, 1].

However, most methods for learning policies by interac-
tion focus on the risk-neutral minimization of expected cost.
Extending Bayesian optimization methods to capture policy-
dependent cost variance creates the opportunity to select
policies with different risk sensitivity. Furthermore, the ability
to change risk sensitivity at runtime offers an advantage
over existing risk-sensitive control techniques, e.g., [21, 30],
that require separate optimizations and policy executionsto
produce policies with different risk.

There are several properties of VBO that should be consid-

ered when determining its suitability for a particular problem.
First, although the computational complexity is the same as
Bayesian optimization,O(N3), the greater flexibility of the
VHGP model means that VBO tends to require more initial
policy evaluations than standard Bayesian optimization. In
addition, many model-free policy search algorithms, such as
Bayesian optimization, VBO, and stochastic gradient descent
[25], are sensitive to the number of policy parameters—high-
dimensional policies can require many trials to optimize. Thus,
these algorithms are most effective in problems where low-
dimensional policy spaces are available, but accurate system
models are not. However, there is evidence policy spaces at
least up to 15 dimensions can be efficiently explored with
Bayesian optimization if estimates of the GP hyperparameters
can be obtaineda priori [17].

In contrast to local methods, such as policy gradient,
Bayesian optimization and VBO can produce large changes
in policy parameters between episodes, which could be unde-
sirable in some situations. One approach to alleviating this
potential problem is to combine VBO with local gradient
methods. For example, one could imagine collecting data by
performing gradient descent, rather than randomly selecting
policies initially. In this case, both the samples obtainedand
the gradient estimates could be used to constrain the posterior
cost distribution. In turn, the learned local cost distribution
could act as a critic structure to reduce the variance of the
policy update. Local offline optimization could be interweaved
with the local policy updates to select greedy policies or
change risk sensitivity using CB criteria. Some of these ideas
have been explored in our recent work [14].

Another important consideration is the choice of kernel
functions in the GP priors. In this work, we used the
anisotropic squared exponential kernel to encode our prior
assumptions regarding the smoothness and regularity of the
underlying cost function. However, for many problems the
underlying cost function is not smooth or regular; it contains
flat regions and sharp discontinuities that can be difficult to
represent. An interesting direction for future work is the use
kernel functions withlocal support, i.e. kernels that are not
invariant to shifts in policy space [24].



VI. CONCLUSION

Varying risk sensitivity based on runtime context is a
potentially powerful way to generate flexible control in robot
systems. We considered this problem in the context of model-
free policy search, where risk-sensitive policies can be selected
based on an efficiently learned cost distribution. Our experi-
mental results suggest that VBO is an efficient and plausible
method for achieving risk-sensitive control.
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