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Abstract—We present a new Bayesian policy search algorithm are typically designed to balance exploration and exloita
suitable for problems with policy-dependent cost variance, a with the intention of minimizing the total number of policy
property present in many robot control tasks. We extend recet o\ qjyations. These properties make Bayesian optimization

work on variational heteroscedastic Gaussian processes to the ttractive f boti . t functi ften havetiplg
optimization case to achieve efficient minimization of very noisy afiractive 10r robotics since CosL IUNCHons oiten havetip

cost signals. In contrast to most policy search algorithms, our local minima and policy evaluations are typically expeasiv
method explicitly models the cost variance in regions of low It is also straightforward to incorporate approximate prio
expected cost and permits runtime adjustment of risk sensitivity knowledge about the distribution of cost (such as could be
without releaming. Our experiments with artificial systems and  gpytained from simulation) and enforce hard constraintshen t
a real mobile manipulator demonstrate that flexible risk-sensitive -
policies can be learned in very few trials. policy parameters. . . L
Previous implementations of Bayesian optimization have
|. INTRODUCTION assumed the variance of the cost signal is the same for all
Experiments on physical robot systems are typically asspslicies in the search space, which is not true in general. In
ciated with significant practical costs, such as experigrenthis work, we propose a new type of Bayesian optimization
time, money, and robot wear and tear. However, such exgorithm that relaxes this assumption and efficiently aegst
periments are often necessary due to the extreme difficultgth the expected cost and cost variance in regions of low cos
associated with constructing simulated systems of suffiisie Specifically, we extend recent work developing a variationa
high fidelity that behaviors translate to hardware withousaussian process model for problems with input-dependent
performance loss. For many nonlinear systems, it can evesise (or heteroscedastici}y [15] to the optimization case
be infeasible to perform simulations or construct a reaslenaby deriving an expression for expected improvement [22], a
model. commonly used criterion for selecting the next policy, and
For this reason, model-free policy search methods haweorporating log priors into the optimization to improve
become one of the standard tools for constructing contsollenumerical performance. We also consider the use of confedenc
for robot systems [27, 23, 12,/29,/17,/ 11]. These algorithnmunds to produceuntime changes to risk sensitivity and
are designed to minimize the expected value of a noisy calsrive a generalized expected risk improvement criteré th
signal, j(e), by adjusting policy parameterg, for a fixed balance exploration and exploitation in risk-sensitiveise.
class of policies. By considering only the expected cost ®ffe evaluate the algorithm in experiments with synthetic
a policy and ignoring cost variance, the solutions found kgystems and a dynamic stabilization task using a real mobile
these algorithms are by definitioisk-neutra] where the term manipulator.
risk is equivalent tocost variance However, for systems that
operate in a variety of contexts, it can be advantageousv® ha ) T
a more flexible attitude toward risk. For example, a humanoftt Bayesian Optimization
otherwise capable of a fast and energy efficient gait mightBayesian optimization algorithms are a family of general
adopt a more predictable, possibly less energy efficiertt gaiochastic optimization techniques that are well suited to
when operating near a large crater. Indeed, studies in hunmnoblems where noisy samples of a cost functié(ﬂ), are
motor control and animal behavior suggest that variable rigxpensive to obtair [17/) 6, 3,128,/13]. In the control context
sensitivity may be pervasive in natute [2, 1]. Bayesian optimization methods use data from previous yolic
Recently there has been increased interest in applyiegaluations to compute a nonparameteric distribution et co
Bayesian optimization algorithms to solve model-free @oli in policy parameter space. Given this distribution, a denis
search problems [17, 19,120,/ 33/ 28} 13]. In contrast to wetheoreticselection criterionis used to globally select policy
studied policy gradient methods [23], Bayesian optim@ati parameter values, that, e.g., have a high probability of
algorithms perform policy search by building a distributio having low cost or have high cost uncertainty.
of cost in policy parameter space and applying a selectionMost Bayesian optimization implementations represent the
criterion to globally select the next policy. Selection criteriaprior over cost functions as@aussian proces&P). To fully

Il. BACKGROUND



specify the GP priorJ(6) ~ GP(m(0),ks(0,6")), one must gradient,0EI(0)/00, are efficiently computable, so we can
define a mean function and a covariance (kernel) functiompply standard nonlinear optimization methods to maxirkize
m(6) = E[J(0)] andks(0,0") = E[(J(8) —m(0'))(J(@) — to select the next policy. In practice, a paramétir often used
m(0"))]. Typically, we setm(0) = 0 and letk;(0,0’) take to adjust the balance of exploration and exploitation, =
on one of several standard forms. A common choice is thigyes — E[J,] + £)/s., where¢ > 0 leads to an optimistic

anisotropic squared exponential kernel, estimate of improvement and tends to encourage exploration
1 of regions of high uncertainty. Cost scale invariance can be
ks (6,0') = o} exp(—5 (6 — 6)" M6 -8), (1) achieved by multiplying¢ by the signal standard deviation,
of [1€].

where aj% is the signal variance and/ = diag(f;Q) is a

diagonal matrix of length scale hyperparameters. Inteligiv B. Variational Heteroscedastic Gaussian Process Regrassi
the signal variance captures the overall magnitude of i8¢ cO e Jimitation of the standard regression model is the
function variation and the length scales capture the Jeitgit assumption of i.i.d. noise over the input space (see equa-
of the cost with respect to changes in each policy paraméter;on @)). Many data do not adhere to this simplification and
prior information regarding the shape of the cost distftnt 1,oqe|s capable of capturing heteroscedasticity are reduir

is available, e.g., from simulation experiments, the mest! T heteroscedastic regression model takes the form
tion and kernel hyperparameters can be set accordingly [17]

However, in many cases such information is not available, so  .J(6) = J(8) + (), =(8) ~ N(0,7(6)), (6)
these quantities are optimized using maximum likelihood or ] ] ] ]
maximum a posteriori techniques [24]. where the noise variance;(0), is dependent on the in-
Samples of the latent cost function are assumed to hadid: In the Bayesian setting, a second GP prigif) ~
additive i.i.d. noise: GP (o, kq(0,0)), is placed over the unknown log variance
A function, ¢(0) = logr(0) [, [10,[15]. This heteroscedastic
J(0)=J(0)+¢e, £~N(0,02). (2) Gaussian process (HGP) model has the unfortunate property

that the computations of the posterior distribution and the
marginal likelihood are intractable, thus making hypeapar
eter optimization and prediction difficult.
In the variational heteroscedastic Gaussian process (WHGP
model [15], a variational lower bound on the marginal
E[j*} - k]l(Kf—irafLI)*ly ©) Iikelih]f)od of t?e HGP modelh ser:ves as a tractable surro-
9 T 21 gate function for optimizing the hyperparameters. lget=
S = k(0,0 —kp (Ky+ o D)7k, (4) [9(61),9(02),...,9(0n)]" be the vector of latent log noise
where ks, = [k;(61,0.),k;(02,0.),...,k(0x,6.)]" and variances for theV data points. By defining a normal vari-
K is the positive-definite kernel matrifi< ;];; = k(6;,0;). ational probability densityg(g) ~ N (u,X), the marginal
When the hyperparameters are unknown, the log margirarriational bound can be derived [15],
likelihood, log p(y|®,0¢,£), is commonly used to perform
an optimizatiorg t|)eforé cg)mputing the posterior|[24]. It is F(p, %) = logN(y|0,K; +R) - itr(z)
straightforward to computéog p(y|®,0;,£;) and its gra- — KL(V(g|p, B)[INV (glmol, Ky)),  (7)

d'em‘cf’ S0 we are free to choose from 'eX|.st|ng nonlmegvrhere R is a diagonal matrix with element$R];; =

optimization methods }Eo pgrform the optlmlzat|0n.. . elbhi—[Z1i:/2, |nwitively, by maximizing equation[{7) with
T_o selept t_he{N+1)t policy parameters, we optimize a S(.a'respect to the variational parametetsand 32, we maximize
lection criterion computed on the posterior. A common cbou:[he log marginal likelihood under the variational approaim

s eXpteC(;ed :mprof"t‘;me.(f') 22, "1;[ Wh'Cht;]S def'”eot' s thettion while minimizing the distance (in the Kullback-Leible
expected value of the improvemeri, over the expected cos sense) between the variational distribution and the Oigion

gf thg kt).ESt ptzjllcytr;])re(\gsuslyde}/filuce;lted. _Smcter: the praﬁ:ﬁ' implied by the GP prior. By exploiting properties &f(p, 32)

IStribution under the model IS L>aussian, e'mpr"g" MeR its maximum, one can writge and X in terms of N
for policy, 6., is also Gaussian, ~ Npvest — E[J], 5), variational parameters [15]:
where pipesy = min;—1 .y E[J(0;)]. Considering only non- Y

negative improvements, the expected improvement is

Given a GP prior and dat® = [0;,0,...,0x]" € RN*I0l,

y = [J(61),J(82),...,J(0x)]T € RN, one can compute the
posterior (predictive) cost distribution for a policy parater-
ized by 6, asJ, = J(6.) ~ N(E[].],s2),

) Ok

1
p=K,A - 51)1 +pol, ETT=K;'+A,

EI(6.) = / Lp(1.)dl. where A is a positive semidefinite diagonal matrix of vari-
_ sf(u*cb(u*)Jrgb(u*)), (5) at?onal parametersF(u, 3) can be simultaneously maxi-
mized with respect to the variational parameters and the HGP
whereu, = (pbesi —E[J+])/s., and®(-) and¢(-) are the CDF model hyperparameterd;; and ¥,. If the kernel functions
and PDF of the normal distribution, respectively.slf = 0, k;(6,6’) and k,(0,0’) are squared exponentialg] (1), then
the expected improvement is defined tobeéBoth (3) and its Wy = {0, £} and ¥, = {0, 04, €4}



The VHGP model yields a non-Gaussian variational predias = (g. — j.)/v/20, and replacing all occurrences ¢f in

tive density, the expressions fow, andu.,
7y 7 2 g 2 EI(0,) = / —w?  Ux JD(u) + I dw,
o) = [Nand + N (gl o?)dg., @) B0 = [ () + o)) d
where = / e~ h(w)dw. (13)
@ = k}*(Kf +R)7y, Similarly, the gradiendEI(8)/06 can be computed under the
2 = kg(0..0.) —k;,(Kf+R) 'ky., integral [12) and the result is of the desired form:
1 2
e = kg (A= D1+ o, ZO) - / e 2(w)dw, (14)
2 T —1\—1
02 = ky(0.,0.) — k], (Ky+ A7) kg, where
Although this predictive density is still intractable, itsean 1 1
and variance can be calculated in closed farm [15]: 2(w) = oo [J*”* (ue®(un) + P(u))
Eq[j*] = Gy, 9) X (—%2* +2w28(;; + ﬁw%‘?)
V] = S+explu+o?/2) =52 (10)
o P ) + () + o 2 0(w)
[1l. VARIATIONAL BAYESIAN OPTIMIZATION gg T U )) T g T |-

There are two practical motivations for capturing policy- As in the standard Bayesian optimization setting, we can
dependent variance structure during optimization. Firstf- easily incorporate an exploration parametgy, by setting
rics computed on the predictive distribution, such as El and = (ubest —a«+&)/v«. El can be maximized using standard
probability of improvement, will return more meaningfullva nonlinear optimization algorithms. Since flat regions and-m
ues for the system under consideration. Second, it crefla¢estiple local maxima may be present, it is common practice to
opportunity to employ policy selection criteria that takest perform random restarts during El optimization to avoid4ow
variance into account, i.e., that are risk-sensitive. quality solutions. In our experiments, we use the NLOET [8]

We extend the VHGP model to the optimization case bgnplementation of sequential quadratic programming (SQP)
deriving the expression for expected improvement and kgth 25 random restarts to optimize El.

radient and show that both can be efficiently approximated . .

tgo several decimal places using Gauss-Hermit)é qﬂgdr&nsre%‘ Confidence Bound Selection

is the case for the predictive distribution itself [15]). \Wleow ~ In order to exploit cost variance information for policy
how efficiently computable confidence bound selection Gate Selection, we must consider selection criteria that flgxiake
can be used to select risk-sensitive policies and generalf©st variance into account. Although EI performs well dgrin
the expected improvement criterion. To address numeri¢@frning by balancing exploration and exploitation, itldal
issues that arise wheV is small (i.e. in the early stagesshortin this regard since it always favors high varianceighh
of optimization), we incorporate independent log priortin uncertainty among solutions with equivalent expected. dost
the marginal variational bound and identify heuristic singp contrast,confidence boundCB) selection criteria allow one

strategies that perform well empirically. to directly specify the sensitivity to cost variance.
The family of confidence bound selection criteria have the
A. Expected Improvement general form
The improvement/,, of a policy, 8., under the variational CB(6,,x) = E[J,] + b(V[].], 5), (15)

predictive distribution[(8) is
whereb(-, -) is a function of the cost variance and a constant

q(I,) = /N(I*\ubest — a4, V)N (gu|pn, 02)dg.,  (11) thatcontrols the system’s sensitivity to risk. Such crit¢rave
been extensively studied in the context of statistical glob
wherev? = ¢2 + e9-. The expression for El then becomes optimization [5,/26] and economic decision making|/[16].
Favorable regret bounds for sampling with CB criteria of the
e = /oo L), form b(V[J.], k) = ky/V[Ji] = ks. have also been derived
0 ' for certain types of Bayesian optimization problems [26].
Interestingly, CB criteria have a strong connection to the
- /U* (e ®(us) + $(u) N (g2l 2, o) dg., (12) exponential utility functions of risk-sensitive optimabrtrol

_ L (RSOC) [32,1.31]. Consider the standard RSOC objective
wherew, = (ubest — a4 ) /v«. Although this expression is Ot nction

analytically tractable, it can be efficiently approximatezing .
Gauss-Hermite quadrature. This can be made clear by setting v(k) = =2k log E[e™2"7+]. (16)



Taking the second order Taylor expansioneoﬁ'”* about on the estimated cost distribution, it is most appropriate t
E[j*] yields apply after a reasonable initial estimate of the cost distidon
. 1 . has been obtained.
(k) = E[J,] — Z’N[J*]' a7 The Variational Bayesian Optimization (VBO) algorithm is

. o . outlined in Box1.
This approximation exposes the role of the parameatén

determining the risk sensitivity of the system:< 0 is risk-  Algorithm 1 Variational Bayesian Optimization

averse x > 0 is risk-seekingand x = 0 is risk-neutral [31]. Input: Previous evaluations®, y, lterations n

Thus, policies selected according to a CB criterion with 1) foriz=1:n

b(V[J.], k) = —1kV[J,] can be viewed as approximate RSOC o i )

solutions. Furthermore, since the selection is performid w a) M_E:lelfe eEuatlor[Cl8) give®, y

resect to the predictive distributiof] (8), policies wittifelient Uy, Wy, AT = argmax F(p, %)

risk characteristics can be selectea-the-fly without having b) Optimize selection criterion, El, ERI, or CB, w.rt.

to perform separate optimizations that require additipodity OPt'm'Zed model ot A4

executions on the system. ¢’ := argmaxe (6, V, Uy, AT)
We can also apply confidence bound criteria to generalize ~ €) Executed’, observe cost/(6')

El to anexpected risk improveme(ERI) criterion. We define d) Append® := [0;0'], y := [y; J(6')]
risk improvement for a policyd.. as I = finest + KSpest — 2) Return ©,y

J« — KSy, Where ppest and spesy are found by minimizing

E,[Jo,] + 11/ V,[Je,] over all previously evaluated policies. V. EXPERIMENTS

Thus, ERI can be viewed as a generalization of El whege synthetic Data

= st — Qs st — Sk ” ERI=EIif x =0. . . . .
e = (Hpest =@ + R{Svest — 54))/v. ANAER =0 As an illustrative example, in Figudgl 1 we compare the

C. Coping with Small Sample Sizes performance of the VBO to standard Bayesian optimization
in a simple 1-dimensional noisy optimization task. For this
task, the true underlying cost distribution (FigQre (a3 two
lobal minima with different cost variances. Both algomiih
egin with the samé/y, = 10 random samples and perform 10
iterations of El selection{(= 1.0, e = 0.25). In Figure[1({D),
F(pu,2) = F(p, X) + Z log NV (log ¢y |k, 03),  (18) Wwe see that Bayesian optimization succeeds in identifyiieg t
YreEw regions of low cost, but it cannot capture the policy-deernd
variance characteristics.

where ¥ = ¥, U ¥, is the set of all hyperparameters. In X . - -
practice, these priors can be quite vague and thus do noln contrast, VBO reliably identifies the mininzand approx-

require significant experimenter insight. For example, um olmates the 'OC?" varian(_:e character_istics. Figure| 1(0")“5*?".6
. ; result of applying two different confidence bound selection

experiments we set the log prior on length scales so that ttré%a {0 vary risk sensitivity. Here we maximizedCB(6,, )
width of the 95% confidence region is at least 20 times the h y Y- e
actual policy parameter range. where

As i§ the case with standard marginal likelihood maximiza- CB(O.,r) = ]Eq[j*} + KS, (19)
tion, F'(u,X) may have several local optima. In practice, _ )
performing random restarts helps avoid low-quality solsi ands = —1.5 andx = 1.5 were used to select a risk-seeking
(especially whenV is small). In our experiments, we perform@nd risk-averse policy parameters, respectively.
10 random restarts using SQP for policy selection.

; . : X .. B. Noisy Pendulum
2) Sampling: It is well known [9] that selecting policies ) ) i
based on distributions fit using very little data can lead to AAS @nother simple example, we considered a swing-up task

myopic sampling and premature convergence. Incorporatiffj @ N0iSy pendulum system. In this task, the maximum torque
external randomization is one way to help alleviate thishproCUtPut of the pendulum actuator is unknown and is drawn from

lem. For example, it is common to obtain a random Sampc’[)enormal distribution at the beginning of each episode. As a
of N, initial policies prior to performing optimization. We "0Ugh physical analogy, this might be understood as fluctu-

have found that sampling according to EI with probabilig®ions in motor performance that are caused by unmeasured
1—e and randomly otherwise performs well empirically. In th&N@Nges in temperature. The policy space consisted of *bang
standard Bayesian optimization setting with model sedecti °22nd" Policies in which the maximum torque is applied in the
e-random EI selection has been shown to yield near-optinfifSitive or negative direction, with switching times sffied
global convergence rates [4]. Randomized CB selection, witly WO parameters) < 1, < 1.5 sec. Thusg = [t o].
e.g.,x ~ N(0,1) can also be applied when the policy search jhe cost function was defined as

aimed at identifying a spectrum of policies with differerskr
sensitivities. However, since this technique relies catghy

1) Log Hyperpriors: To avoid numerical instability in the
hyperparameter optimization wheN is small, we augment
F(p,X) with independent log-normal priors [18] for eacl“ﬁ
hyperparameter in the VHGP model,

T
J(G):/O 0.01c(t) + 0.0001u(t)?dt, (20)
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Fig. 1. [(@ A noisy cost function sampled during 10 iterati¢is = 10) of

Bayesian optimization arjd |c) the VBO algorithm. Bayesiatimization
succeeded in identifying the minima, but it cannot distinguietween high
and low variance solutionf. {d) Confidence bound selectitiaria are used
to select risk-seeking and risk-averse policy parameteregal

where0 < «(t) < 7 is the pendulum angle measured from
upright vertical,T = 3.5 sec, andu(t) = Tax if 0 <t < ¢,
u(t) = —Tmax T t1 < t < t1 + t9, and u(t) = Tmax If
t1 +t2 <t <T. The system always started in the downward
vertical position with zero initial velocity and the episod F9- 3 Estimated cost distribution after 25 iterations of VN = 40).
. . . . The optimization algorithm focuses modeling effort to regiai low cost.

terminated if the pendulum came withihl radians of the
upright vertical position. The parameters of the systemewer It is often easy to understand the utility of risk-averse
[ = 10m m = L0 kg, and 7pax ~ N(4,0.3%) Nm. and risk-neutral policies, but the motivation for selegtin
With these physical parameters, the pendulum must (Wifay _seeking policies may be less clear. The above result
probabilityz 1.0) perform at least two swings to reach Verticaéuggests one possibility: the acquisition of specializeégh-
in less thanl” seconds. . performance policies. For example, in some cases riskirsgek

The cost function [(20) suggests that policies that reagicies could be chosen in an attempt to identify observabl
vertical as quickly as possible (i.e., using the fewest 88)n jpjtial conditions that lead to rare low-cost events. Sajnset
are preferred. However, the success of an aggressive poligimizations might then be performed to direct the system
depends on the torque generating capability of the penduly@ these initial conditions. One could also imagine situai
With a noisy actuator, we expect aggressive policies to hay@ere the context might demand performance that lower risk
higher variance. An approximation of the cost distributioBo”cies are very unlikely to generate. For example, if the
obtained via discretization\| = 40000) is shown in Figur€2. minimum time to goal was reduced so that only two swing
Here we indeeo_l see that regions around policies that atterBlicies had a reasonable chance of succeeding. In such
two-swing solutions § = [0.0,1.0}, 6 = [1.0,1.5]) have low instances it may be desirable to select higher risk policies
expected cost, but high cost variance. even if the probability of succeeding is quite low.

Figure[3 shows the results 86 iterations of VBO using EI )
selection (Vo = 15,¢ = 1.0,¢ = 0.2) in the noisy pendulum C- Balance Recovery with the uBot-5
task. After N = 40 total evaluations, the expected cost and The uBot-5 is an 11-DoF mobile manipulator that has two
cost variance are sensibly represented in regions of low ca&DoF arms, a rotating trunk, and two wheels in a differéntia
Figure[4 illustrates two policies selected by minimizing thdrive configuration. The robot has a massl6fkg and stands
CB criterion [I9) on the learned distribution with= £2.0. 60 cm from the ground with a torso that is roughly similar to
The risk-seeking policy§ = [1.03, 1.5]) makes a large initial a small adult human in scale and geometry (Fiddre 5). The
swing, attempting to reach the vertical position in two sygin robot balances using a linear-quadratic regulator (LQRh wi
The risk-averse policy @ = [0.63,1.14]) always produces feedback from an onboard inertial measurement unit (IMU).
three swings and exhibits low cost variance, though it hasin our previous experiments [13], the energetic and stabi-
higher cost than the risk-seeking policy when the maximuthizing effects of rapid arm motions on the LQR stabilized
torque is large. system were evaluated in the context of recovery from impact




(@) Tmax = 3.4 Nm (b) Tmax = 4.0 Nm (C) Tmax = 4.6 Nm
J(6) =18.2 J(6) =17.0 J(6) = 15.9

(d) Tmax = 3.4 Nm (€) Tmax = 4.0 Nm (f) Tmax = 4.6 Nm
J(0) =19.9 J(0) =17.7 J(0) =13.0 Fig. 5. The uBot-5 situated in the impact pendulum apparatus.

Fig. 4. Performance of risk-averge][@)l(c) and risk-seek@}f) policies o N
as the maximum pendulum torque is varied. fixed, low-gain linear position controller.

The cost function was designed to encourage energy effi-

perturbations. One observation we made was that high enefd§nt solutions that successfully stabilized the system,
impacts caused a subset of possible recovery policies te hav T

high cost variance: successfully stabilizing in some srial J(6) :h(x(T))+/ —I(t)V(t)dt, (21)
while failing to stabilize in others. We extend these experi o 10

ments by considering larger impact perturbations, inGnéas where () and V(t) are the total absolute motor current and
the set of arm initial conditions, defining a policy spacet thgojtage at timet, respectivelyT” = 3.5 sec, andh(x(T)) = 5
permits more flexible, asymmetric arm motions. if x(T) € FailureStates, otherwiseh(x(T)) = 0.

The robot was placed in a balancing configuration with its After 15 random initial trials, we applied VBO with El
upper torso aligned with .3 kg mass suspended from theselection ¢ = 1.0,e = 0.2) for 15 episodes and randomized
ceiling (Figure[). The mass was pulled away from the rob@IB selection £ ~ A/(0, 1)) for 15 episodes resulting in a total
to a fixed angle and released, producing a controlled impagt N = 45 policy evaluations. Since the left and right pitch
between the swinging mass and the robot. The pendulyarameters are symmetric with respect to cost, we imposed
momentum prior to impact was9+ 0.8 Ns and the resulting gn arbitrary ordering constrainkjes, > Aright, during policy
impact force was approximately equal to the robot’s totadsnase|ection.
in earth gravity. The robot was consistently unable to recov after training, we evaluated four policies with differerigk
from this perturbation using only the wheel LQR (see thgensitivity selected by minimizing the CB criteridn [19)thvi
rightmost column of Figurgl6). k=2 k=0,r=—15 andx = —2. Each selected policy

This problem is well suited for model-free policy opti-was evaluated 10 times and the results are shown in Figure 6.
mization since there are several physical properties, sischThe sample statistics confirm the algorithmic predictidnsua
joint friction, wheel backlash, and tire slippage, that makhhe relative riskiness of each policy. In this case, the-aig#rse
the system difficult to model accurately. In addition, althb and risk-neutral policies were very similar (no statidtica
the underlying state and action spaces are high dimensiosigiificant difference between the mean or variance), whie
(22 and 8, respectively), low-dimensional policy spaces thtwo risk-seeking policies had higher variance (for= —2,
contain high-quality solutions are relatively straightfard to the differences in both the sample mean and variance were
identify. statistically significant).

The parameterized policy controlled each arm joint ac- For k = —2, the selected policy produced an upward
cording to an exponential trajectory;(t) = e~ !, where laterally-directed arm motion that failed approximatey
0 < 7;(t) <1 is the commanded DC motor power for joint of the time. In this case, the standard deviation of cost
at timet. The \ parameters were paired for the shoulder/elbowas sufficiently large that the second term in equatfod (19)
pitch and the shoulder roll/yaw joints. This pairing allaide dominated, producing a policy with high variance and poor
magnitude of dorsal and lateral arm motions to be indepeaverage performance. A slightly less risk-seeking salacti
dently specified. We commanded the pitch (dorsal) motiofls = —1.5) yielded a policy with conservative low-energy
separately for each arm and mirrored the lateral motioresm movements that was more sensitive to initial conditions
which reduced the number of policy parameters to 3. Thiean the lower risk policies. This exertion of minimal effor
range of each\; was constrainedl < ); < 15. At time could be viewed as a kind of gamble on initial conditions.
t, if V; 7;(t) < 0.25, the arms were retracted to a nominaFigure[T shows two successful trials executing risk-avarse
configuration (the mean of the initial configurations) usag risk-seeking policies.



Fig. 7. Time series (duration: 1 second) showing two sucaes$dls executing low-risk (topx = 2) and high-risk (bottomsx = —2) policies selected using
confidence bound criteria on the learned cost distributidre low-risk policy produced an asymmetric dorsally-dirdcéem motion with reliable recovery
performance. The high-risk policy produced an upward |#iedirected arm motion that failed approximately 50% of tired.

ered when determining its suitability for a particular desh.
First, although the computational complexity is the same as

25] = ] Bayesian optimization®(N?), the greater flexibility of the
VHGP model means that VBO tends to require more initial
& 1 policy evaluations than standard Bayesian optimization. |
Sl Failure | addition, many model-free policy search algorithms, sush a

i Bayesian optimization, VBO, and stochastic gradient desce
19 [25], are sensitive to the number of policy parameters—high-
E dimensional policies can require many trials to optimizeud,
— these algorithms are most effective in problems where low-
. dimensional policy spaces are available, but accuratesyst
tow-risk  Riskneutral High-isk 1 - High-risk 2 Arms Fixed models are not. However, there is evidence policy spaces at
least up to 15 dimensions can be efficiently explored with

Fig. 6. Data collected over 10 trials using policies ideedfias risk- Bayesian optimization if estimates of the GP hyperpararaete
averse, risk-neutral, and risk-seeking after performing@vBhe policies were cgn be obtainea priori [17‘].
selected using confidence bound criteria with= 2, kK = 0, K = —1.5, and

x = —2, from left to right. The sample means and two times sample stdndar In contrast to local methods, such as policy gradient,

deviations are shown. The shaded region on the top part giltiecontains - g4y esjan optimization and VBO can produce large changes
all trials that resulted in failure to stabilize. Ten triaigth a fixed-arm policy . . . .
are plotted on the far right to serve as a baseline level dbpeance for this 1N Policy parameters between episodes, which could be unde-

impact magnitude. sirable in some situations. One approach to alleviating thi
potential problem is to combine VBO with local gradient
V. DiscussioN ANDFUTURE WORK methods. For example, one could imagine collecting data by

In many systems, it may be advantageous to adjust rRRrforming gradient descent, rather than randomly selgcti
sensitivity based on runtime context. For example, syste@licies initially. In this case, both the samples obtaired
whose environments change in ways that make failures mdpé gradient estimates could be used to constrain the parster
or less costly (such as operating around CatastrophicdbstaCOSt distribution. In turn, the learned local cost _dlstnbn
or in a safety harness) or when the context demands tﬁgy'ld act as a critic structurg tq re'duce the variance of the
the system seek out a low-probability high-performancenevePOlicy update. Local offline optimization could be interwed
Perhaps not surprisingly, this variable risk property haerb With the local policy updates to select greedy policies or
observed in a variety of animal species, from simple mot&hange risk sensmwty using CB criteria. Some of thesasde
tasks in humans to foraging birds and bees [2, 1]. have been explored in our recent work|/[14].

However, most methods for learning policies by interac- Another important consideration is the choice of kernel
tion focus on the risk-neutral minimization of expectedtcosfunctions in the GP priors. In this work, we used the
Extending Bayesian optimization methods to capture pelicgnisotropic squared exponential kernel to encode our prior
dependent cost variance creates the opportunity to selassumptions regarding the smoothness and regularity of the
policies with different risk sensitivity. Furthermore etlability underlying cost function. However, for many problems the
to change risk sensitivity at runtime offers an advantagederlying cost function is not smooth or regular; it consai
over existing risk-sensitive control techniques, elgl, [20], flat regions and sharp discontinuities that can be diffionlt t
that require separate optimizations and policy executions represent. An interesting direction for future work is theeu
produce policies with different risk. kernel functions withlocal supporf i.e. kernels that are not

There are several properties of VBO that should be considvariant to shifts in policy space [24].



VI. CONCLUSION [15]

Varying risk sensitivity based on runtime context is a
potentially powerful way to generate flexible control in odb
systems. We considered this problem in the context of modgis]
free policy search, where risk-sensitive policies can lecsed
based on an efficiently learned cost distribution. Our exper
mental results suggest that VBO is an efficient and plausidﬂg]
method for achieving risk-sensitive control.
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