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Abstract

We present new global and local policy search algorithms suitable for problems with policy-dependent
cost variance (or risk), a property present in many robot control tasks. These algorithms exploit new
techniques in nonparameteric heteroscedastic regression to directly model the policy-dependent distribu-
tion of cost. For local search, the learned cost model can be used as a critic for performing risk-sensitive
gradient descent. Alternatively, decision-theoretic criteria can be applied to globally select policies to
balance exploration and exploitation in a principled way, or to perform greedy minimization with respect
to various risk-sensitive criteria. This separation of learning and policy selection permits variable risk
control, where risk sensitivity can be flexibly adjusted and appropriate policies can be selected at runtime
without relearning. We describe experiments in dynamic stabilization and manipulation with a mobile
manipulator that demonstrate learning of flexible, risk-sensitive policies in very few trials.

1 Introduction

Experiments on physical robot systems are typically associated with significant practical costs, such as
experimenter time, money, and robot wear and tear. However, such experiments are often necessary to
refine controllers that have been hand designed or optimized in simulation. This necessity is a result of
the extreme difficulty associated with constructing model systems of sufficiently high fidelity that behaviors
translate to hardware without performance loss. For many nonlinear systems, it can even be infeasible to
perform simulations or construct a reasonable model (Roberts et al., 2010).

For this reason, model-free policy search methods have become one of the standard tools for constructing
controllers for robot systems (Rosenstein and Barto, 2001; Kohl and Stone, 2004; Tedrake et al., 2004; Peters
and Schaal, 2006; Kolter and Ng, 2010; Theodorou et al., 2010; Lizotte et al., 2007; Kober and Peters, 2009).
These algorithms are designed to minimize the expected value of a noisy cost signal, Ĵ(θ), by adjusting
policy parameters, θ, for a fixed class of policies, u = πθ(x, t). By considering only the expected cost of
a policy and ignoring cost variance, the solutions found by these algorithms are by definition risk-neutral,
where risk corresponds to a monotonic function of the cost variance. However, for systems that operate in
a variety of contexts, it can be advantageous to have a more flexible attitude toward risk.

For example, imagine a humanoid robot that is capable of several dynamic walking gaits that differ based
on their efficiency, speed, and predictability. When operating near a large crater, it might be reasonable
to select a more predictable, possibly less energy-efficient gait over a less predictable, higher performance
gait. Likewise, when far from a power source with low battery charge, it may be necessary to risk a fast and
less predictable policy because alternative gaits have comparatively low probability of achieving the required
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speed or efficiency. To create flexible systems of this kind, it will be necessary to design optimization processes
that produce control policies that differ based on their risk.

Recently there has been increased interest in applying Bayesian optimization algorithms to solve model-
free policy search problems (Lizotte et al., 2007; Martinez-Cantin et al., 2007, 2009; Wilson et al., 2011;
Tesch et al., 2011; Kuindersma et al., 2011). In contrast to well-studied policy gradient methods (Peters
and Schaal, 2006), Bayesian optimization algorithms perform policy search by modeling the distribution of
cost in policy parameter space and applying a selection criterion to globally select the next policy. Selection
criteria are typically designed to balance exploration and exploitation with the intention of minimizing the
total number of policy evaluations. These properties make Bayesian optimization attractive for robotics since
cost functions often have multiple local minima and policy evaluations are typically expensive. It is also
straightforward to incorporate approximate prior knowledge about the distribution of cost (such as could be
obtained from simulation) and enforce hard constraints on the policy parameters.

Previous implementations of Bayesian optimization have assumed that the variance of the cost is the
same for all policies in the search space. This is not true in general. In this work, we propose a new type
of Bayesian optimization algorithm that relaxes this assumption and efficiently captures both the expected
cost and cost variance during the optimization. Specifically, we extend recent work developing a variational
Gaussian process model for problems with input-dependent noise (or heteroscedasticity) (Lázaro-Gredilla
and Titsias, 2011) to the optimization case by deriving an expression for expected improvement (Moc̆kus
et al., 1978), a commonly used criterion for selecting the next policy, and incorporating log priors into the
optimization to improve numerical performance. We also consider the use of confidence bounds to produce
runtime changes to risk sensitivity and derive a generalized expected risk improvement criterion that balances
exploration and exploitation in risk-sensitive setting. Finally, we consider a simple local search procedure
that uses the learned cost model as a critic for performing risk-sensitive stochastic gradient descent. We
evaluate these algorithms in dynamic stabilization and manipulation experiments with the uBot-5 mobile
manipulator.

2 Background

2.1 Bayesian Optimization

Bayesian optimization algorithms are a family of global optimization techniques that are well suited to
problems where noisy samples of an objective function are expensive to obtain (Lizotte et al., 2007; Frean
and Boyle, 2008; Brochu et al., 2009; Martinez-Cantin et al., 2009; Wilson et al., 2011; Tesch et al., 2011).
In describing these algorithms, we use the language of policy search where the inputs are policy parameters
and outputs are costs. However, these algorithms are applicable to general stochastic nonlinear optimization
problems not related to control (Brochu et al., 2009).

2.1.1 Gaussian Processes

Most Bayesian optimization implementations represent the prior over cost functions as a Gaussian process
(GP). A GP is defined as a (possibly infinite) set of random variables, any finite subset of which is jointly
Gaussian distributed (Rasmussen and Williams, 2006). In our case the random variable is the cost, Ĵ(θ),
which is indexed by the set of policy parameters. The GP prior, J(θ) ∼ GP(m(θ), kf (θ,θ′)), is fully specified
by its mean function and covariance (or kernel) function,

m(θ) = E[J(θ)],

kf (θ,θ′) = E[(J(θ)−m(θ′))(J(θ)−m(θ′))].

Typically, we set m(θ) = 0 and let kf (θ,θ′) take on one of several standard forms. A common choice is the
anisotropic squared exponential kernel,

kf (θ,θ′) = σ2
f exp(−1

2
(θ − θ′)>M(θ − θ′)), (1)
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where σ2
f is the signal variance and M = diag(`−2

f ) is a diagonal matrix of length-scale hyperparameters.
Intuitively, the signal variance hyperparameter captures the overall magnitude of the cost function variation
and the length-scales capture the sensitivity of the cost with respect to changes in each policy parameter.
The squared exponential kernel is stationary since it is a function of θ−θ′, i.e., it is invariant to translations
in parameter space. In some applications, the target function will be non-stationary: flat in some regions,
with large changes in others. There are kernel functions appropriate for this case (Rasmussen and Williams,
2006), but in this work we use the squared exponential kernel (1) exclusively.

Samples of the unknown cost function are typically assumed to have additive independent and identically-
distributed (i.i.d.) noise,

Ĵ(θ) = J(θ) + ε, ε ∼ N (0, σ2
n). (2)

Given the GP prior and data,

Θ = [θ1,θ2, . . . ,θN ]> ∈ RN×dim(θ),

y = [Ĵ(θ1), Ĵ(θ2), . . . , Ĵ(θN )]> ∈ RN ,

the posterior (predictive), cost distribution can be computed for a policy parameterized by θ∗ as, Ĵ∗ ≡
Ĵ(θ∗) ∼ N (E[Ĵ∗], s

2
∗),

E[Ĵ∗] = k>f∗(Kf + σ2
nI)−1y,

s2
∗ = kf (θ∗,θ∗)− k>f∗(Kf + σ2

nI)−1kf∗,

where kf∗ = [kf (θ1,θ∗), kf (θ2,θ∗), . . . , kf (θN ,θ∗)]
> and Kf is the positive-definite kernel matrix, [Kf ]ij =

kf (θi,θj).
If prior information regarding the shape of the cost distribution is available, e.g., from simulation experi-

ments, the mean function and kernel hyperparameters can be set accordingly (Lizotte et al., 2007). However,
in many cases such information is not available and model selection must be performed. Typically, when the
hyperparameters, Ψf = {σf , `f , σn}, are unknown, the log marginal likelihood, log p(y|Θ,Ψf ), is used to
optimize their values before computing the posterior (Rasmussen and Williams, 2006). The log marginal like-
lihood and its derivatives can be computed in closed form, so we are free to choose from standard nonlinear
optimization methods to maximize the marginal log likelihood for model selection.

2.1.2 Expected Improvement

To select the (N + 1)th policy parameters, an offline optimization of a selection criterion is performed with
respect to the posterior cost distribution. A commonly used criterion is expected improvement (EI) (Moc̆kus
et al., 1978; Brochu et al., 2009). Expected improvement is defined as the expected reduction in cost, or
improvement, over the the best policy previously evaluated. The improvement of a policy parameter θ∗ is
defined as

I∗ =

{
µbest − Ĵ∗ if Ĵ∗ < µbest,

0 otherwise,
(3)

where µbest = mini=1,...,N E[Ĵ(θi)]. Since the predictive distribution under the GP model is Gaussian, the
expected value of I∗ is

EI(θ∗) =

∫ ∞
0

I∗p(I∗)dI∗,

= s∗(u∗Φ(u∗) + φ(u∗)), (4)

where u∗ = (µbest − E[Ĵ∗])/s∗, and Φ(·) and φ(·) are the CDF and PDF of the normal distribution, respec-
tively. If s∗ = 0, the expected improvement is defined to be 0. Both (4) and its gradient, ∂EI(θ)/∂θ, are
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efficiently computable, so we can apply standard nonlinear optimization methods to maximize EI to select
the next policy. In practice, a parameter ξ is often used to adjust the balance of exploration and exploita-
tion, u∗ = (µbest − E[Ĵ∗] + ξ)/s∗, where ξ > 0 leads to an optimistic estimate of improvement and tends
to encourage exploration. Setting ξ > 0 can be interpreted as increasing the expected cost of θbest by ξ.
Lizotte et al. (2011) showed that cost scale invariance can be achieved by multiplying ξ by the signal standard
deviation, σf . The Bayesian optimization with expected improvement algorithm is shown in Algorithm 1.

Algorithm 1 Bayesian Optimization with Expected Improvement

Input: Previous experience: Θ = [θ1, . . . ,θN ],y = [Ĵ(θ1), . . . , Ĵ(θN )], Iterations: n

1. for i := 1 : n

(a) Perform model selection by optimizing hyperparameters:

Ψ+
f := arg maxΨf

log p(y|Θ,Ψf )

(b) Maximize expected improvement w.r.t. optimized model :

µbest := minj=1,...,|y| E[Ĵ(θj)]

θ′ := arg minθ EI(θ, µbest)

(c) Execute θ′, observe cost, Ĵ(θ′)

(d) Append Θ := [Θ,θ′], y := [y, Ĵ(θ′)]

2. Return Θ,y

From a theoretical perspective, Vazquez and Bect (2010) proved that using EI selection for Bayesian
optimization converges for all cost functions in the reproducing kernel Hilbert space of the GP covariance
function and almost surely for all functions drawn from the GP prior. However, these results rest on the
assumption that the GP hyperparameters remain fixed throughout the optimization. Recently, Bull (2011)
proved convergence rates for EI selection with fixed hyperparameters and the case where model selection is
performed according to a modified maximum marginal likelihood procedure. The general case of applying
Bayesian optimization with maximum marginal likelihood model selection and EI policy selection is not
guaranteed to converge to the global optimum.

Although EI is a commonly used selection criterion, a variety of other criteria have been studied. For
example, early work by Kushner considered the probability of improvement as a criterion for selecting the
next input (Kushner, 1964). Confidence bound criteria (discussed in Section 3.2) have been extensively
studied in the context of global optimization (Cox and John, 1992; Srinivas et al., 2010) and economic
decision making (Levy and Markowitz, 1979). Recent work (Osborne et al., 2009; Garnett et al., 2010) has
considered multi-step lookahead criteria that are less myopic than methods that only consider the next best
input. For an excellent tutorial on Bayesian optimization, see Brochu et al. (2009).

2.2 Variational Heteroscedastic Gaussian Process Regression

One limitation of the standard regression model (2) is the assumption of independent and identically dis-
tributed noise over the input space. Many data do not adhere to this simplification and models capable of
capturing input-dependent noise (or heteroscedasticity) are required. The heteroscedastic regression model
takes the form

Ĵ(θ) = J(θ) + εθ, εθ ∼ N (0, r(θ)2), (5)

where the noise variance, r(θ)2, is dependent on the input, θ. In the Bayesian nonparameteric setting, a
second GP prior,

g(θ) ∼ GP(µ0, kg(θ,θ
′)),
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is placed over the unknown log variance function, g(θ) ≡ log r(θ)2 (Goldberg et al., 1998; Kersting et al.,
2010; Lázaro-Gredilla and Titsias, 2011).1 This prior, when combined with the cost prior (Section 2.1.1),
forms the heteroscedastic Gaussian process (HGP) model. Unfortunately, the HGP model has property that
the computations of the posterior distribution and the marginal log likelihood are intractable, thus making
model selection and prediction difficult.

Stochastic techniques, such as Markov chain Monte Carlo (MCMC) (Goldberg et al., 1998), offer a prin-
cipled way to deal with intractable probabilistic models. However, these methods tend to be computational
demanding. An alternative approach is to analytically define the marginal probability in terms of a vari-
ational density, q(·). By restricting the class of variational densities by, e.g., assuming q(·) is Gaussian or
factored in some way, it is often possible to define tractable bounds on the quantity of interest. In the
Variational Heteroscedastic Gaussian Process (VHGP) model (Lázaro-Gredilla and Titsias, 2011), a varia-
tional lower bound on the marginal log likelihood is used as a tractable surrogate function for optimizing
the hyperparameters.

Let

g = [g(θ1), g(θ2), . . . , g(θN )]>

be the vector of unknown log noise variances for the N data points. By defining a normal variational density,
q(g) ∼ N (µ,Σ), the following marginal variational bound can be derived (Lázaro-Gredilla and Titsias, 2011),

F (µ,Σ) = logN (y|0,Kf + R)− 1

4
tr(Σ)−KL(N (g|µ,Σ)||N (g|µ01,Kg)), (6)

where R is a diagonal matrix with elements [R]ii = e[µ]i−[Σ]ii/2. Intuitively, by maximizing (6) with respect
to µ and Σ, we maximize the log marginal likelihood under the variational approximation while minimizing
the distance (in the Kullback-Leibler sense) between the variational distribution and the distribution implied
by the GP prior. By exploiting properties of F (µ,Σ) at its maximum, it is possible to write µ and Σ in
terms of just N variational parameters,

µ = Kg

(
Λ− 1

2
I

)
1 + µ01,

Σ−1 = K−1
g + Λ,

where Λ is a positive semidefinite diagonal matrix of variational parameters. F (µ,Σ) can be simultane-
ously maximized with respect to the variational parameters and the HGP model hyperparameters, Ψf and
Ψg. If the kernel functions kf (θ,θ′) and kg(θ,θ

′) are squared exponentials (1), then Ψf = {σf , `f} and
Ψg = {µ0, σg, `g}. Notice that the mean function of the cost GP prior is typically set to 0 since the data
can be standardized or the maximum likelihood mean can be calculated and used when performing model
selection (Lizotte et al., 2011). However, a constant hyperparameter, µ0, is included to capture the mean
log variance since setting this value to 0 would be an arbitrary choice that would generally be incorrect.
The gradients of F (µ,Σ) with respect to the parameters can be computed analytically in O(N3) time (see
Lázaro-Gredilla and Titsias (2011) supplementary material), so the maximization problem can be solved
using standard nonlinear optimization algorithms such as sequential quadratic programming (SQP).

The VHGP model yields a non-Gaussian variational predictive density,

q(Ĵ∗) =

∫
N (Ĵ∗|a∗, c2∗ + eg∗)N (g∗|µ∗, σ2

∗)dg∗, (7)

where

a∗ = k>f∗(Kf + R)−1y,

c2∗ = kf (θ∗,θ∗)− k>f∗(Kf + R)−1kf∗,

1The log variance is used is to ensure positivity of the variance function.
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Figure 1: Comparison of fits for the standard Gaussian process model (a) and the VHGP model (b) on a
synthetic heteroscedastic data set.

µ∗ = k>g∗(Λ−
1

2
I)1 + µ0,

σ2
∗ = kg(θ∗,θ∗)− k>g∗(Kg + Λ−1)−1kg∗.

Although this predictive density is intractable, its mean and variance can be calculated in closed form:

Eq[Ĵ∗] = a∗,

Vq[Ĵ∗] = c2∗ + exp(µ∗ + σ2
∗/2) ≡ s2

∗.

2.2.1 Example

Figure 1(a) shows the result of performing model selection given a GP prior with a squared exponential kernel
and unknown constant noise variance on a synthetic heteroscedastic data set. Figure 1(b) shows the result
of optimizing the VHGP model on the same data. Model selection was performed using SQP to maximize
the marginal log likelihood or, in the case of the VHGP model, the marginal variational bound (6). Due
to the constant noise assumption, the GP model overestimates the cost variance in regions of low variance
and underestimates in regions of high variance. In contrast, the VHGP model captures the input-dependent
noise structure.

3 Variational Bayesian Optimization

There are at least two practical motivations for modifying Bayesian optimization to capture policy-dependent
cost variance. The first reason is to enable metrics computed on the predictive distribution, such as EI or
probability of improvement, to return more meaningful values for the problem under consideration. For
example, the GP model in Figure 1 would overestimate the expected improvement for θ = 0.6 and underes-
timate the expected improvement of θ = 0.2. The second reason is that it creates the opportunity to employ
policy selection criteria that take cost variance into account, i.e., that are risk-sensitive.

We extend the VHGP model to the optimization case by deriving the expression for expected improve-
ment and its gradients and show that both can be efficiently approximated to several decimal places using
Gauss-Hermite quadrature (as is the case for the predictive distribution itself (Lázaro-Gredilla and Titsias,
2011)). Efficiently computable confidence bound selection criteria are also considered for selecting greedy
risk-sensitive policies. A generalization of EI, called expected risk improvement, is derived that balances ex-
ploration and exploitation in the risk-sensitive case. Finally, to address numerical issues that arise when N is
small (i.e., in the early stages of optimization), independent log priors are added to the marginal variational
bound and heuristic sampling strategies are identified.
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3.1 Expected Improvement

Recall from Section 2.1.2 that the expected improvement is defined as the expected reduction in cost, or
improvement, over the the average cost of the best policy previously evaluated. The probability of the policy
parameters, θ∗, having improvement, I∗, under the variational predictive distribution (7) is

q(I∗) =

∫
N (I∗|µbest − a∗, v2

∗)N (g∗|µ∗, σ2
∗)dg∗,

where v2
∗ = c2∗ + eg∗ . The expression for expected improvement then becomes

EI(θ∗) =

∫ ∞
0

I∗q(I∗)dI∗

=

∫ ∞
0

∫
I∗N (I∗|µbest − a∗, v2

∗)N (g∗|µ∗, σ2
∗)dg∗dI∗. (8)

To get (8) into a more convenient form, we can define

u∗ =
µbest − a∗

v∗
, x∗ =

Ĵ∗ − a∗
v∗

,

and rewrite the expression for improvement (3) as,

I∗ =

{
v∗(u∗ − x∗) if x∗ < u∗,

0 otherwise.

By using this alternative form of improvement and changing the order of integration, we have

EI(θ∗) =

∫ ∫ u∗

−∞
v∗(u∗ − x∗)φ(x∗)dx∗N (g∗|µ∗, σ2

∗)dg∗.

where φ(·) is the PDF of the normal distribution. Letting f(x∗) = v∗(u∗−x∗) and integrating
∫ u∗
−∞ f(x∗)φ(x∗)dx∗

by parts, we have ∫ u∗

−∞
f(x∗)φ(x∗)dx∗ = [f(x∗)Φ(x∗)]

u∗
−∞ −

∫ u∗

−∞
(−v∗)Φ(x∗)dx∗,

= v∗ [x∗Φ(x∗) + φ(x∗)]
u∗
−∞ ,

= v∗(u∗Φ(u∗) + φ(u∗)),

where we have used the facts that limx∗→−∞ φ(x∗) = 0 and limx∗→−∞ Cx∗Φ(x∗) = 0, where C is an arbitrary
constant. Thus, the expression for expected improvement is

EI(θ∗) =

∫
v∗(u∗Φ(u∗) + φ(u∗))N (g∗|µ∗, σ2

∗)dg∗. (9)

Although this expression is not analytically tractable, it can be efficiently approximated using Gauss-Hermite
quadrature (Abramowitz and Stegun, 1972). This can be made clear by setting ρ = (g∗ − µ∗)/

√
2σ∗ and

replacing all occurrences of g∗ in the expressions for v∗ and u∗,

EI(θ∗) =

∫
e−ρ

2 v∗√
2πσ∗

(u∗Φ(u∗) + φ(u∗)) dρ,

≡
∫
e−ρ

2

h(ρ)dρ ≈
n∑
i=1

wih(ρi),
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where n is the number of sample points, ρi are the roots of the Hermite polynomial,

Hn(ρ) = (−1)neρ
2 dne−ρ

2

dρn
i ∈ {1, 2, . . . , n},

and the weights are computed as wi = 2n−1n!
√
π

n2Hn−1(ρi)2
. In practice, a variety of tools are available for efficiently

computing both wi and ρi for a given n. In all of our experiments, n = 45.
Similarly, the gradient ∂EI(θ)/∂θ can be computed under the integral (9) and the result is of the desired

form:

∂EI(θ∗)

∂θ
=

∫
e−ρ

2

z(ρ)dρ,

where

z(ρ) =
1√

2πσ∗

[
1

σ∗
v∗ (u∗Φ(u∗) + φ(u∗))

×
(
−∂σ∗
∂θ

+ 2ρ2 ∂σ∗
∂θ

+
√

2ρ
∂µ∗
∂θ

)
+

∂v∗
∂θ

(u∗Φ(u∗) + φ(u∗)) + v∗
∂u∗
∂θ

Φ(u∗)

]
.

As in the standard Bayesian optimization setting, one can easily incorporate an exploration parameter, ξ,
by setting u∗ = (µbest−a∗+ξ)/v∗, and maximize EI using standard nonlinear optimization algorithms. Since
flat regions and multiple local maxima may be present, it is common practice to perform random restarts
during EI optimization to avoid low-quality solutions. In our experiments, we used the NLOPT (Johnson,
2011) implementation of SQP with 25 random restarts to optimize EI.

3.2 Confidence Bound Selection

In order to exploit cost variance information for policy selection, we must consider selection criteria that
flexibly take cost variance into account. Although EI performs well during learning by balancing exploration
and exploitation, it falls short in this regard since it always favors high variance (or uncertainty) among
solutions with equivalent expected cost. In contrast, confidence bound (CB) selection criteria allow one to
directly specify the sensitivity to cost variance.

The family of confidence bound selection criteria have the general form

CB(θ∗, κ) = E[Ĵ∗] + b(V[Ĵ∗], κ), (10)

where b(·, ·) is a function of the cost variance and a constant risk factor, κ, that controls the system’s sensitiv-
ity to risk. Such criteria have been extensively studied in the context of statistical global optimization (Cox
and John, 1992; Srinivas et al., 2010) and economic decision making (Levy and Markowitz, 1979). Favorable
regret bounds for sampling with CB criteria with b(V[J∗], κ) = κ

√
V[J∗] ≡ κs∗ have also been derived for

certain types of Bayesian optimization problems (Srinivas et al., 2010).
Interestingly, CB criteria have a strong connection to the exponential utility functions of risk-sensitive

optimal control (Whittle, 1990, 1981). For example, consider the risk-sensitive optimal control objective
function,

γ(θ∗, κ) = −2κ−1 logE[e−
1
2κĴ∗ ]. (11)

By taking the second order Taylor expansion of (11) about E[Ĵ∗], we have

γ(θ∗, κ) ≈ E[Ĵ∗]−
1

4
κV[Ĵ∗].
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Thus, policies selected according to a CB criterion with b(V[Ĵ∗], κ) = − 1
4κV[Ĵ∗] can be viewed as approximate

risk-sensitive optimal control solutions. Furthermore, because the selection is performed with respect to the
predictive distribution, policies with different risk characteristics can be selected on-the-fly, without having
to perform additional policy executions. This is a distinguishing property of this approach compared to
other risk-sensitive control algorithms that must perform separate optimizations that require significant
computation or additional policy executions to produce policies with different risk-sensitivity.

In practice, one typically sets b(V[Ĵ∗], κ) = κ

√
V[Ĵ∗] = κs∗ so that terms of the same units are combined

and the parameter κ has a straightforward interpretation. It is noteworthy that other functions of the mean
and variance can also be used to form useful risk-sensitive criteria. For example, the Sharpe Ratio, SR =
E[Ĵ∗]/s∗, is a commonly used metric in financial analysis (Sharpe, 1966). Since the mean and variance of the
VHGP model are analytically computable, extensions that optimize such criteria would be straightforward
to implement.

3.3 Expected Risk Improvement

The primary advantage CB criteria offer is the ability to flexibly specify sensitivity to risk. However, CB
criteria are greedy with respect to risk-sensitive objectives and therefore do not have the same exploratory
quality as EI does for expected cost minimization. It is therefore natural to consider whether the EI cri-
terion could be extended to perform risk-sensitive policy selection in a way that balances exploration and
exploitation.

Schonlau et al. (1998) considered a generalization of EI where the improvement for θ∗ was defined as

Iρ∗ = max{0, (µbest − Ĵ∗)ρ},

where ρ is an integer-valued parameter that affects the relative importance of large, low probability im-
provements and small, high probability improvements. Interestingly, the authors showed that for ρ = 2,
EI(θ∗, ρ) = E[Ĵ∗]

2 + V[Ĵ∗], which can be interpreted as a risk-seeking policy selection strategy. However, to
perform balanced exploration in systems with more general risk sensitivity, a different generalization of EI
is needed.

To address this problem, we propose an expected risk improvement (ERI) criterion. In this case, the risk
improvement for the policy parameters θ∗ is defined as

Iκ∗ =

{
µbest + κsbest − Ĵ∗ − κs∗ if Ĵ∗ + κs∗ < µbest + κsbest,

0 otherwise,

where

i = arg minj=1,...,N E[Ĵ(θj)] + κs(θj),

µbest = E[Ĵ(θi)],

sbest = s(θi).

Intuitively, the risk improvement captures the reduction in the value of the risk-sensitive objective, E[Ĵ ] +
κs, over the best policy previously evaluated. Following a similar derivation as for EI, the expected risk
improvement under the variational distribution is

ERI(θ∗) =

∫ ∞
0

Iκ∗ q(I
κ
∗ )dIκ∗

=

∫
v∗(u∗Φ(u∗) + φ(u∗))N (g∗|µ∗, σ2

∗)dg∗, (12)

where u∗ = (µbest − a∗ + κ(sbest − s∗))/v∗. Thus, ERI can be viewed as a straightforward generalization of
EI, where ERI = EI if κ = 0.
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3.4 Coping with Small Sample Sizes

3.4.1 Log Hyperpriors

Numerical precision problems are commonly experienced when performing model selection (which requires
kernel matrix inversions and determinant calculations) using small amounts of data. To help improve nu-
merical stability in the VHGP model when N is small, we augment F (µ,Σ) with independent log-normal
priors for each hyperparameter,

F̂ (µ,Σ) = F (µ,Σ) +
∑
ψk∈Ψ

logN (logψk|µk, σ2
k), (13)

where Ψ = Ψf ∪Ψg is the set of all hyperparameters. Lizotte et al. (2011) showed that empirical performance
can be improved in the standard Bayesian optimization setting by incorporating log-normal hyperpriors into
the model selection procedure. In practice, these priors can be quite vague and thus do not require significant
experimenter insight. For example, in our experiments with VBO, we set the log prior on length-scales so
that the width of the 95% confidence region is at least 20 times the actual policy parameter ranges.

As is the case with standard marginal likelihood maximization, F̂ (µ,Σ) may have several local optima.
In practice, performing random restarts helps avoid low-quality solutions (especially when N is small). In
our experiments, SQP was used with 10 random restarts to perform model selection.

3.4.2 Sampling

It is well known that selecting policies based on distributions fit using very little data can lead to myopic
sampling and premature convergence (Jones, 2001). For example, if one were unlucky enough to sample only
the peaks of a periodic cost function, there would be good reason to infer that all policies have approximately
equivalent cost. Incorporating external randomization is one way to help alleviate this problem. For example,
it is common to obtain a random sample of N0 initial policies prior to performing optimization. Sampling
according to EI with probability 1 − ε and randomly otherwise can also perform well empirically. In the
standard Bayesian optimization setting with model selection, ε-random EI selection has been shown to yield
near-optimal global convergence rates (Bull, 2011).

Randomized CB selection with, e.g., κ ∼ N (0, 1) can also be applied when the policy search is aimed
at identifying a spectrum of policies with different risk sensitivities. However, since this technique relies
completely on the estimated cost distribution, it is most appropriate to apply after a reasonable initial
estimate of the cost distribution has been obtained.

The Variational Bayesian Optimization (VBO) algorithm is shown in Algorithm 2.

4 Local Search

Like most standard Bayesian optimization implementations, no general global convergence guarantees exist
for VBO. In addition, performing global selection of policy parameters can produce large jumps in policy
space between trials, which can be undesirable in some physical systems. A straightforward way to ad-
dress this latter concern is to restrict the parameter range to the local neighborhood of the nominal policy
parameters. However, adding constraints in this way does not improve the convergence properties of the
algorithm.

Gradient-based policy search methods make small, incremental changes to the policy parameters and
typically have demonstrable local convergence properties under mild assumptions (Bertsekas and Tsitsiklis,
2000). Thus, in addition to using the learned cost model to perform global policy selection, we consider its
use as a local critic for performing risk-sensitive stochastic gradient descent (RSSGD). It is straightforward
to show that, under certain assumptions, the generalized RSSGD update follows the direction of the gradient
of a confidence bound objective. Additionally, when a minimum variance baseline is used, the algorithm
can be viewed as taking local steps in the direction of the risk improvement (Section 3.3) over the current
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Algorithm 2 Variational Bayesian Optimization

Input: Previous experience: Θ = [θ1, . . . ,θN ],y = [Ĵ(θ1), . . . , Ĵ(θN )], Risk factor : κ, Iterations: n

1. for i := 1 : n

(a) Perform model selection by optimizing hyperparameters and variational parameters using, e.g.,
SQP with random restarts:

Ψ+
f , Ψ+

g , Λ+ := arg max F̂ (µ,Σ)

(b) Maximize policy selection criterion w.r.t. optimized model :

• Confidence Bound :

θ′ := arg minθ Eq[Ĵ(θ)] + κ
√

Vq[Ĵ(θ)]

• Expected Improvement :
µbest := minj=1,...,|y| Eq[Ĵ(θj)]
θ′ := arg minθ EI(θ, µbest)

• Expected Risk Improvement :

b := arg minj=1,...,|y| Eq[Ĵ(θj)] + κ
√

Vq[Ĵ(θj)]

µbest := Eq[Ĵ(θb)]

sbest :=
√
Vq[Ĵ(θb)]

θ′ := arg minθ ERI(θ, κ, µbest, sbest)

(c) Execute θ′, observe cost, Ĵ(θ′)

(d) Append Θ := [Θ,θ′], y := [y, Ĵ(θ′)]

2. Return Θ,y

11



policy parameters. This creates the opportunity to flexibly interweave risk-sensitive gradient descent and
local VBO to, e.g., select local greedy policies or to change risk sensitivity on-the-fly.

4.1 Risk-Sensitive Stochastic Gradient Descent

Stochastic gradient descent methods have had significant practical applicability to solving robot control
problems in the expected cost setting (Tedrake et al., 2004; Kohl and Stone, 2004; Roberts and Tedrake,
2009), so we focus on extending this approach to the risk-sensitive case. The stochastic gradient descent
algorithm, also called the weight perturbation algorithm (Jabri and Flower, 1992), is a simple method for
descending the gradient of a noisy objective function. The algorithm proceeds as follows. Starting with
parameters, θ, execute the policy, πθ, and observe the cost, Ĵ(θ) ≡ Ĵθ. Next, randomly sample a parameter
perturbation, z ∼ N (0, σ2I), execute the perturbed policy, πθ+z, and observe the cost, Ĵ(θ + z) ≡ Ĵθ+z.
Finally, update the policy parameters, θ ← θ + ∆θ, where

∆θ = −η(Ĵθ+z − Ĵθ)z,

and η is a step size parameter. Intuitively, this rule updates the parameters in the direction of z if Ĵθ+z < Ĵθ,
and in the direction of −z if Ĵθ+z > Ĵθ. It can be shown that, in expectation, this update follows the true
(scaled) gradient of the expected cost,

E[∆θ] = −ησ2∇E[Ĵθ],

where ∇fθ ≡ ∂f
∂θ

∣∣∣
θ
.

In contrast, consider the RSSGD update:

∆θ = −η(Ĵθ+z + κr̃θ+z − b(θ))z, (14)

where r̃θ+z is an estimate of the cost standard deviation of πθ+z and b(θ) is an arbitrary baseline func-
tion (Williams, 1992) of the policy parameters.

Substituting (5) into (14) and taking the first order Taylor expansion at θ + z, we have

∆θ = −η (Jθ+z + εθ+z + κr̃θ+z − b(θ)) z,

≈ −η
(
Jθ + z>∇Jθ + εθ + uz>∇rθ + κr̃θ + κz>∇r̃θ − b(θ)

)
z,

≡ ∆̃θ,

where u ∼ N (0, 1). In expectation, this becomes

E[∆̃θ] = −ησ2 (∇Jθ + κ∇r̃θ) , (15)

where the expectation is taken with respect to z, u, and εθ. Thus, the update equation (14) is an estimator
of the gradient of expected cost that is biased in the direction of the estimated gradient of the standard
deviation (to a degree specified by the risk factor κ). If the estimator of the cost standard deviation is
unbiased, we have

E[∆̃θ] = −ησ2∇CB(θ, κ), (16)

a scaled unbiased estimate of the gradient of the confidence bound objective, CB(θ, κ) = Jθ + κrθ. Using a
nonparameteric model, such as VHGP, as a local critic will not, in general, lead to unbiased estimates of the
mean and variance of the cost. However, by introducing bias these methods can potentially produce useful
approximations of the local cost distribution after only a small number of policy evaluations.
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4.1.1 Natural Gradient

From (16) it is clear that the unbiasedness of the update is also dependent on the isotropy of the sampling
distribution, z ∼ N (0, σ2I). However, as was shown by Roberts and Tedrake (2009), learning performance
can be improved in some cases by optimizing the sampling distribution variance independently for each
policy parameter, z ∼ N (0,Σ). In this case, the expected update becomes biased,

E[∆̃θ] = −ηΣ∇CB(θ, κ), (17)

but it is still in the direction of the natural gradient (Amari, 1998). To see this, recall that for probabilistically
sampled policies, the natural gradient is defined as F−1∇f(θ), where F−1 is the inverse Fisher information
matrix (Kakade, 2002). When the policy sampling distribution is mean-zero Gaussian with covariance Σ,
the inverse Fisher information matrix is F−1 = Σ. Thus, (17) is in the direction of the natural gradient.

4.1.2 Baseline Selection

The expected update (15) is unaffected by the choice of the baseline function, b(θ), given that it depends
only on θ. However, the choice of baseline does affect the variance of the update. The variance of the
update (14) can be written as,

V[∆̃θ] = η2σ2(b(θ)2I− 2Jθb(θ)I− 2κr̃θb(θ)I + J2
θI + 2κJθ r̃θI + κ2r̃2

θI + r4
θI

+σ2(∇J>θ ∇JθI +∇Jθ∇J>θ ) + σ2κ(2∇J>θ ∇r̃θI +∇Jθ∇r̃>θ +∇r̃θ∇J>θ )

+σ2r2
θ(∇r>θ ∇rθI + 2∇rθ∇r>θ ) + σ2κ2(∇r̃>θ ∇r̃θI +∇r̃θ∇r̃>θ )). (18)

It is straightforward to show that the baseline that minimizes (18) is b(θ) = Jθ + κr̃θ. However, since Jθ is
unknown, we define the baseline using an estimate of the expected cost, J̃θ. The resulting increase in variance
over the optimal baseline is proportional to the squared error of the expected cost estimate: η2σ2(Jθ − J̃θ)2.
The RSSGD update then becomes

∆θ = −η(Ĵθ+z − J̃θ + κ(r̃θ+z − r̃θ))z. (19)

Intuitively, (19) reduces to the classical stochastic gradient descent update when either the system has a
neutral attitude toward risk (κ = 0) or when the estimate of the cost standard deviation is locally constant:
∇r̃θ = 0 ⇒ r̃θ+z − r̃θ = 0, for small z such that the linearization holds. Note the relationship between
the RSSGD update and the expected risk improvement criterion (12). From this point of view, the update
can be interpreted as taking steps in the direction of risk improvement over the nominal policy parameter
setting.

In implementation, it can be helpful to divide the step size by r̃θ so the update maintains scale invariance
to changing noise magnitude (see Algorithm 3). This way, samples are weighted by the local cost variance
estimate so, e.g., large differences in cost in high variance regions do not cause large fluctuations in the policy
parameter values. On the other hand, large fluctuations in the cost variance estimate could produce unde-
sirably large or small step sizes. We therefore also constrain the scaled step size to stay in some reasonable
range, e.g., η/r̃θ ∈ [0.01, 0.9]. Although this approach is heuristic, it does have practical advantages such as
weighting updates according to their perceived reliability.

As in VBO, the critic is updated after each policy evaluation by recomputing the predictive cost distri-
bution. However, in this case model selection and prediction are performed using only observations near the
current parameterization, θ. A nearest neighbor selection can be performed efficiently around the current
policy parameters by storing observations in a KD-tree data structure and using, e.g., a k-nearest neighbors
or an ε-ball criterion. However, because the number of samples is typically small in the types of robot control
tasks under consideration, the actual computational effort required to find nearest neighbors and perform
model selection is quite modest. Thus, the primary advantage of constructing a local, rather than a global,
model is that cost distributions that are nonstationary with respect to their optimal hyperparameter values
can be handled more easily. The RSSGD algorithm is outlined in Algorithm 3.
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Algorithm 3 Risk-sensitive stochastic gradient descent

Input: Parameters: η, σ, ε, Risk factor : κ, Initial policy : θ

1. Initialize Θ = [ ],y = [ ],

2. while not converged:

(a) Sample perturbation: z ∼ N (0, σ2I)

(b) Execute θ + z, record cost Ĵθ+z

(c) Update data:

Θ,y = [Θ,θ + z], [y, Ĵθ+z]

Θloc,yloc = NearestNeighbors(Θ,y,θ, ε)

(d) Compute posterior mean and variance:

J̃θ = E[Ĵθ | Θloc,yloc]

r̃2
θ = V[Ĵθ | Θloc,yloc]

r̃2
θ+z = V[Ĵθ+z | Θloc,yloc]

(e) Update policy parameters:

∆θ := − η
r̃θ

(
Ĵθ+z − J̃θ + κ(r̃θ+z − r̃θ)

)
z

θ := θ + ∆θ

3. Return Θ,y,θ

5 Experiments

In Sections 5.1 and 5.2 we illustrate the VBO algorithm using simple synthetic domains. In Section 5.3, we
apply VBO to a impact recovery task with the uBot-5 mobile manipulator. Finally, in Section 5.4, we apply
the RSSGD algorithm in a dynamic heavy lifting task with the uBot-5.

5.1 Synthetic Data

As an illustrative example, in Figure 2 we compare the performance of VBO to standard Bayesian optimiza-
tion in a simple 1-dimensional noisy optimization task. For this task, the true underlying cost distribution
(Figure 2(a)) has two global minima (in the expected cost sense) with different cost variances. Both algo-
rithms begin with the same N0 = 10 random samples and perform 10 iterations of EI selection (ξ = 1.0,
ε = 0.25). In Figure 2(b), we see that Bayesian optimization succeeds in identifying the regions of low cost,
but it cannot capture the policy-dependent variance characteristics.

In contrast, VBO reliably identifies the minima and approximates the local variance characteristics. Fig-
ure 2(d) shows the result of applying two different confidence bound selection criteria to vary risk sensitivity.
In this case, −CB(θ∗, κ) was maximized, where

CB(θ∗, κ) = Eq[Ĵ∗] + κs∗. (20)

Risk factors κ = −1.5 and κ = 1.5 were used to select a risk-seeking and risk-averse policy parameters,
respectively.

5.2 Noisy Pendulum

As another simple example, we considered a swing-up task for a noisy pendulum system. In this task, the
maximum torque output of the pendulum actuator is unknown and is drawn from a normal distribution at
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E[Ĵ(θ)]

±2std

EI(scaled)

(b)

0.0 0.2 0.4 0.6 0.8 1.0

θ

0.0

0.2

0.4

0.6

0.8

1.0

Ĵ
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E[Ĵ(θ)]

±2std

κ = 1.5

κ = −1.5

(d)

Figure 2: (a) An example unknown noise distribution with two equivalent expected cost minima with different
cost variance. (b) The distribution learned after 10 iterations of Bayesian optimization with EI selection
and (c) after 10 iterations of VBO with EI selection (using the same initial N0 = 10 random samples for
both cases). Bayesian optimization succeeded in identifying the minima, but it cannot distinguish between
high and low variance solutions. (d) Confidence bound selection criteria are applied to select risk-seeking
and risk-averse policy parameters (indicated by the vertical dotted lines) given the distribution learned using
VBO.

the beginning of each episode. As a rough physical analogy, this might be understood as fluctuations in
motor performance that are caused by unmeasured changes in temperature. The policy space consisted of
“bang-bang” policies in which the maximum torque is applied in the positive or negative direction, with
switching times specified by two parameters, 0 ≤ t1, t2 ≤ 1.5 sec. Thus, θ = [t1, t2]. The cost function was
defined as

J(θ) =

∫ T

0

0.01α(t) + 0.0001u(t)2dt, (21)

where 0 ≤ α(t) ≤ π is the pendulum angle measured from upright vertical, T = 3.5 sec, and u(t) = τmax if
0 ≤ t ≤ θ1, u(t) = −τmax if θ1 < t ≤ θ1 + θ2, and u(t) = τmax if θ1 + θ2 < t ≤ T . The system always started
in the downward vertical position with zero initial velocity and the episode terminated if the pendulum came
within 0.1 radians of the upright vertical position. The parameters of the system were l = 1.0 m, m = 1.0 kg,
and τmax ∼ N (4, 0.32) Nm. With these physical parameters, the pendulum must (with probability ≈ 1.0)
perform at least two swings to reach vertical in less than T seconds.

The cost function (21) suggests that policies that reach vertical as quickly as possible (i.e., using the
fewest swings) are preferred. However, the success of an aggressive policy depends on the torque generating
capability of the pendulum. With a noisy actuator, it is reasonable to expect aggressive policies to have
higher variance. An approximation of the cost distribution obtained via discretization (N = 40000) is shown
in Figure 3(a). It is clear from this figure that regions around policies that attempt two-swing solutions
(θ = [0.0, 1.0], θ = [1.0, 1.5]) have low expected cost, but high cost variance.

Figure 3(b) shows the results of 25 iterations of VBO using EI selection (N0 = 15, ξ = 1.0, ε = 0.2) in
the noisy pendulum task. After N = 40 total evaluations, the expected cost and cost variance are sensibly
represented in regions of low cost. Figure 4 illustrates the behavior of two policies selected by minimizing
the CB criterion (20) on the learned distribution with κ = ±2.0. The risk-seeking policy (θ = [1.03, 1.5])
makes a large initial swing, attempting to reach the vertical position in two swings. In doing so, it only
succeeds in reaching the goal configuration when the unobserved maximum actuator torque is large (roughly
E[τmax] + σ[τmax]). The risk-averse policy (θ = [0.63, 1.14]) always produces three swings and exhibits low
cost variance, though it has higher cost than the risk-seeking policy when the maximum torque is large
(15.93 versus 13.03).

It is often easy to understand the utility of risk-averse and risk-neutral policies, but the motivation for
selecting risk-seeking policies might be less clear. The above result suggests one possibility: the acquisition of
specialized, high-performance policies. For example, in some cases risk-seeking policies could be chosen in an
attempt to identify observable initial conditions that lead to rare low-cost events. Subsequent optimizations
might then be performed to direct the system to these initial conditions. One could also imagine situations
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Figure 3: (a) The cost distribution for the simulated noisy pendulum system obtained by a 20x20 dis-
cretization of the policy space. Each policy was evaluated 100 times to estimate the mean and variance
(N = 40000). (b) Estimated cost distribution after 25 iterations of VBO with 15 initial random samples
(N = 40). Because of the sample bias that results from EI selection, the optimization algorithm tends to
focus modeling effort in regions of low cost.

when the context demands performance that lower risk policies are very unlikely to generate. For example, if
the minimum time to goal was reduced so that only two swing policies had a reasonable chance of succeeding.
In such instances it may be desirable to select higher risk policies, even if the probability of succeeding is
quite low.

5.3 Balance Recovery with the uBot-5

The uBot-5 (Figure 5) is an 11-DoF mobile manipulator developed at the University of Massachusetts
Amherst (Deegan, 2010; Kuindersma et al., 2009). The uBot-5 has two 4-DoF arms, a rotating trunk, and
two wheels in a differential drive configuration. The robot stands approximately 60 cm from the ground and
has a total mass of 19 kg. The robot’s torso is roughly similar to an adult human in terms of geometry and
scale, but instead of legs, it has two wheels attached at the hip. The robot balances using a linear-quadratic
regulator (LQR) with feedback from an onboard inertial measurement unit (IMU) to stabilize around the
vertical fixed point. The LQR controller has proved to be very robust throughout five years of frequent usage
and it remains fixed in our experiments.

In our previous experiments (Kuindersma et al., 2011), the energetic and stabilizing effects of rapid arm
motions on the LQR stabilized system were evaluated in the context of recovery from impact perturbations.
One observation made was that high energy impacts caused a subset of possible recovery policies to have
high cost variance: successfully stabilizing in some trials, while failing to stabilize in others. We extended
these experiments by considering larger impact perturbations, increasing the set of arm initial conditions,
and defining a policy space that permits more flexible, asymmetric arm motions (Kuindersma et al., 2012b).

The robot was placed in a balancing configuration with its upper torso aligned with a 3.3 kg mass
suspended from the ceiling (Figure 6). The mass was pulled away from the robot to a fixed angle and released,
producing a controlled impact between the swinging mass and the robot. The pendulum momentum prior to
impact was 9.9± 0.8 Ns and the resulting impact force was approximately equal to the robot’s total mass in
earth gravity. The robot was consistently unable to recover from this perturbation using only the wheel LQR
(see the rightmost column of Figure 7). The robot was attached to the ceiling with a loose-fitting safety rig
designed to prevent the robot from falling completely to the ground, while not affecting policy performance.

This problem is well suited for model-free policy optimization since there are several physical properties,
such as joint friction, wheel backlash, and tire slippage, that make the system difficult to model accurately.

16



−1 0 1 2 3 4 5 6 7

α
−8

−6

−4

−2

0

2

4

α̇

(a) τmax = 3.4

−1 0 1 2 3 4 5 6 7

α
−8

−6

−4

−2

0

2

4

α̇

(b) τmax = 3.7

−1 0 1 2 3 4 5 6 7

α
−8

−6

−4

−2

0

2

4

α̇

(c) τmax = 4.0

−1 0 1 2 3 4 5 6 7

α
−8

−6

−4

−2

0

2

4

α̇

(d) τmax = 4.3

−1 0 1 2 3 4 5 6 7

α
−8

−6

−4

−2

0

2

4

α̇

(e) τmax = 4.6

−1 0 1 2 3 4 5 6 7

α

−6

−4

−2

0

2

4

α̇

(f) τmax = 4.2

−1 0 1 2 3 4 5 6 7

α

−6

−4

−2

0

2

4

α̇

(g) τmax = 4.3

−1 0 1 2 3 4 5 6 7

α

−6

−4

−2

0

2

4

α̇

(h) τmax = 4.4

−1 0 1 2 3 4 5 6 7

α

−6

−4

−2

0

2

4

α̇

(i) τmax = 4.5

−1 0 1 2 3 4 5 6 7

α

−6

−4

−2

0

2

4

α̇

(j) τmax = 4.6

Figure 4: Performance of risk-averse (a)-(e) and risk-seeking (f)-(j) policies as the maximum pendulum torque
is varied. Shown are phase plots with the goal regions shaded in green. The risk-averse policy always used
three swings and consistently reached the vertical position before the end of the episode. The risk-seeking
policy used longer swing durations, attempting to reach the vertical position in only two swings. However,
this strategy only pays off when the unobserved maximum actuator torque is large.

Figure 5: The uBot-5 demonstrating a whole-body pushing behavior.
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Figure 6: The uBot-5 situated in the impact pendulum apparatus.

In addition, although the underlying state and action spaces are high dimensional (22 and 8, respectively),
low-dimensional policy spaces that contain high-quality solutions are relatively straightforward to identify.

The parameterized policy controlled each arm joint according to an exponential trajectory, τi(t) = e−λit,
where 0 ≤ τi(t) ≤ 1 is the commanded DC motor power for joint i at time t. The λ parameters were paired
for the shoulder/elbow pitch and the shoulder roll/yaw joints. This pairing allowed the magnitude of dorsal
and lateral arm motions to be independently specified. The pitch (dorsal) motions were specified separately
for each arm and the lateral motions were mirrored, which reduced the number of policy parameters to 3.
The range of each λi was constrained: 1 ≤ λi ≤ 15. At time t, if ∀i τi(t) < 0.25, the arms were retracted
to a nominal configuration (the mean of the initial configurations) using a fixed, low-gain linear position
controller.

The cost function was designed to encourage energy efficient solutions that successfully stabilized the
system:

J(θ) = h(x(T )) +

∫ T

0

1

10
I(t)V (t)dt,

where I(t) and V (t) are the total absolute motor current and voltage at time t, respectively, T = 3.5 s, and
h(x(T )) = 5 if x(T ) ∈ FailureStates, otherwise h(x(T )) = 0. After 15 random initial trials, we applied
VBO with EI selection (ξ = 1.0, ε = 0.2) for 15 episodes and randomized CB selection (κ ∼ N (0, 1)) for 15
episodes resulting in a total of N = 45 policy evaluations (approximately 2.5 minutes of total experience).
Since the left and right pitch parameters are symmetric with respect to cost, we imposed an arbitrary
ordering constraint, λleft ≥ λright, during policy selection.

After training, we evaluated four policies with different risk sensitivities selected by minimizing the CB
criterion (20) with κ = 2, κ = 0, κ = −1.5, and κ = −2. Each selected policy was evaluated 10 times and the
results are shown in Figure 7. The sample statistics confirm the algorithmic predictions about the relative
riskiness of each policy. In this case, the risk-averse and risk-neutral policies were very similar (no statistically
significant difference between the mean or variance), while the two risk-seeking policies had higher variance
(for κ = −2, the differences in both the sample mean and variance were statistically significant).
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Figure 7: Data collected over 10 trials using policies identified as risk-averse, risk-neutral, and risk-seeking
after performing VBO. The policies were selected using confidence bound criteria with κ = 2, κ = 0,
κ = −1.5, and κ = −2, from left to right. The sample means and two times sample standard deviations are
shown. The shaded region contains all trials that resulted in failure to stabilize. Ten trials with a fixed-arm
policy are plotted on the far right to serve as a baseline level of performance for this impact magnitude.

For κ = −2, the selected policy produced an upward laterally-directed arm motion that failed approxi-
mately 50% of the time. In this case, the standard deviation of cost was sufficiently large that the second
term in CB objective (20) dominated, producing a policy with high variance and poor average performance.
A slightly less risk-seeking selection (κ = −1.5) yielded a policy with conservative low-energy arm movements
that was more sensitive to initial conditions than the lower risk policies. This exertion of minimal effort
could be viewed as a kind of gamble on initial conditions. Figure 8 shows example runs of the risk-averse
and risk-seeking policies.

5.4 Dynamic Heavy Lifting

We evaluated the RSSGD algorithm in the dynamic control task of lifting a 1 kg, partially-filled laundry
detergent bottle from the ground to a height of 120 cm using the uBot-5 (Kuindersma et al., 2012a). This
problem is challenging for several reasons. First, the bottle is heavy, so most arm trajectories from the
starting configuration to the goal will not succeed because of the limited torque generating capabilities of
the arm motors. Second, the upper body motions act as disturbances to the LQR. Thus, violent lifting
trajectories will cause the robot to destabilize and fall. Finally, the bottle itself has significant dynamics
because the heavy liquid sloshes as the bottle moves. Since the robot had only a simple claw gripper and we
made no modifications to the bottle, the bottle moved freely in the hand, which had a significant effect on
the stabilized system.

The policy was represented as a cubic spline trajectory in the right arm joint space with 7 open parameters
to be optimized by the algorithm. The parameters included 4 shoulder and elbow waypoint positions and
3 time parameters. The start and end configurations were fixed. Joint velocities at the waypoints were
computed using the tangent method (Craig, 2005). The initial policy was a hand-crafted smooth and short
duration motion to the goal configuration. Our ability to provide a good initial guess for the policy parameters
makes local search with RSSGD more attractive. However, with the bottle in hand, this policy succeeded
only a small fraction of the time, with most trials resulting in a failure to lift the bottle above the shoulder.
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(a) Low-risk policy, κ = 2.0

(b) High-risk policy, κ = −2.0

Figure 8: Time series (time between frames is 0.24 seconds) showing (a) a trial executing the low-risk policy
and (b) two trials executing the high-risk policy. Both policies were selected using confidence bound criteria
on the learned cost distribution. The low-risk policy produced an asymmetric dorsally-directed arm motion
with reliable recovery performance. The high-risk policy produced an upward laterally-directed arm motion
that failed approximately 50% of the time.

The cost function was defined as

J(θ) =

∫ T

0

(
x(t)>Qx(t) + cI(t)V (t)

)
dt, (22)

where x = [xwheel, ẋwheel, αbody, α̇body, herror]
>, I(t) and V (t) are total motor current and voltage for all

motors at time t, Q = diag([0.001, 0.001, 0.5, 0.5, 0.05]), and c = 0.01. The components of the state vector
are the wheel position and velocity, body angle and angular velocity, and vertical error between the desired
and actual bottle position, respectively. Intuitively, this cost function encourages fast and energy efficient
solutions that do not violently perturb the LQR. In each trial, the sampling rate was 100 Hz and T = 6 s. A
trial ended when either t > T or the robot reached the goal configuration with maintained low translational
velocity (≤ 5 cm/s). The algorithm parameter values in all experiments were η = 0.5, σ = 0.075, ε = 3.5σ, and
η/r̃θ ∈ [0.01, 0.5]. Each policy parameter range was scaled to be θi ∈ [0, 1], so the constant σ corresponded
to different (unscaled) perturbation sizes for each dimension depending on the total parameter range.

5.4.1 Risk-Neutral Learning

In the first experiment, we ran RSSGD with κ = 0 to perform a risk-neutral gradient descent. The VHGP
model was used to locally construct the critic and model selection was performed using SQP. A total of 30
trials (less than 2.5 minutes of total experience) were performed and a reliable, low-cost policy was learned.
The robot failed to recover balance in 3 of the 30 trials. In these cases, the emergency stop was activated
and the robot was manually reset. Figure 9 illustrates the reduction in cost via empirical measurements
taken at fixed intervals during learning.

Interestingly, the learned policy exploits the dynamics of the liquid in the bottle by timing the motion
such that the shifting bottle contents coordinate with the LQR controller to correct the angular displacement
of the body. This dynamic interaction would be very difficult to capture in a system model. Incidentally, this
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Figure 9: Data collected from 10 test trials executing the initial lifting policy and the policy after 15 and 30
episodes of learning.

serves as a good example of the value of policy search techniques: by virtue of ignoring the dynamics, they
are in some sense insensitive to the complexity of the dynamics (Roberts and Tedrake, 2009). Figure 10(a)
shows an example run of the learned policy.

5.4.2 Variable Risk Control

In the process of learning a low average-cost policy, a model of the local cost distribution was repeatedly
computed. The next experiments examined the effect of performing offline policy selection using the estimate
of the local cost distribution around the learned policy. In particular, we considered two hypothetical changes
in operating context: when the robot’s workspace is reduced, requiring that the policy have a small footprint
with high certainty, and when the battery charge is very low, requiring that the policy uses very little energy
with high certainty. Offline confidence bound policy selection and subsequent risk-averse gradient descent
were performed for each case and the resulting policies were empirically compared.

Context changes were represented by a reweighting of cost function terms. For example, to capture
the low battery charge context, the relative weight of the motor power term in (23) was increased: Qen =
diag([0.0005, 0.0005, 0.25, 0.25, 0.05]) and cen = 0.1. The cost of previous trajectories was then computed
using the transformed cost function,

Jen(θ) =

∫ T

0

(
x(t)>Qenx(t) + cenI(t)V (t)

)
dt. (23)

The VHGP model was used to approximate the transformed cost distribution, Ĵen(θ), around the previously
learned policy parameters using the data collected during the 30 learning trials. SQP was used to minimize
J̃en(θ) + κr̃en(θ) offline. Likewise, to represent the translation-averse case, the relative weight assigned to
wheel translation was increased, Qtr = diag([0.002, 0.001, 0.5, 0.5, 0.05]) and ctr = 0.001, and the resulting
transformed local model was used to minimize J̃tr(θ) + κr̃tr(θ) offline.

Both risk-neutral (κ = 0) and risk-averse (κ = 2) offline policy selections were performed for each case.
Additionally, 5 episodes of risk-averse (κ = 2) gradient descent was performed starting from the offline
selected risk-averse policy. Each policy was executed 5 times and the results were empirically compared.
Figure 11(a) shows the results from the translation aversion experiments. The risk-neutral offline policy had
significantly lower average (transformed) cost and lower variance than the original learned policy. The risk-
averse offline policy also has significantly lower average cost than the prior learned policy, but its average cost
was slightly (not statistically significantly) higher than the offline risk-neutral policy. However, the offline
risk-averse policy had significantly lower variance than the risk-neutral offline policy. An example run of the
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(a)

(b)

Figure 10: (a) The learned risk-neutral policy exploits the dynamics of the container to reliably perform
the lifting task. (b) With no additional learning trials, a risk-averse policy is selected offline that reliably
reduces translation. The total time duration of each of the above sequences is approximately 3 seconds.

offline risk-averse policy is shown in Figure 10(b). Finally, the policy learned after 5 episodes of risk-averse
gradient descent starting from the offline selected policy led to another significant reduction in expected cost
while maintaining similarly low variance.

For the energy-averse case, the offline risk-neutral policy had no statistically significant difference in
sample average or variance compared with the prior learned policy. The risk-averse policy had slightly (not
statistically significantly) higher average cost than both the original learned policy and the offline risk-neutral
policy, but it had significantly lower variance. The policy learned after 5 episodes of risk-averse gradient
descent had significantly lower average cost than the offline risk-averse while maintaining similar variance (see
Figure 11(b)). The statistical significance results given in Figure 11 are strongly in line with our qualitative
assessment of the data. However, we should take care to consider these in light of the small sample sizes
available, which constrain our ability to verify their underlying assumptions.

6 Related Work

Several successful applications of Bayesian optimization to robot control tasks exist in the literature. Lizotte
et al. (2007) applied Bayesian optimization to discover an Aibo gait that surpassed the state-of-the-art in
a comparatively small number of trials. Tesch et al. (2011) used Bayesian optimization to optimize snake
robot gaits in several environmental contexts. Martinez-Cantin et al. (2009) describe an application to
online sensing and path planning for mobile robots in uncertain environments. Recently, Kormushev and
Caldwell (2012) proposed a particle filter approach for performing direct policy search that is closely related
to Bayesian optimization techniques.

A variety of algorithms have been designed to find optimal policies with respect to risk-sensitive criteria.
Early work in risk-sensitive control was aimed at extending dynamic programming methods to optimize
exponential objective functions. This work included algorithms for solving discrete Markov decision processes
(MDPs) (Howard and Matheson, 1972) and linear-quadratic-Gaussian problems (Jacobson, 1973; Whittle,
1981). Borkar derived a variant of the Q-learning algorithm for finite MDPs with exponential utility (Borkar,
2002). Heger (1994) derived a worst-case Q-learning algorithm based on a minimax criterion. For continuous
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Figure 11: Data from test runs of the prior learned policy, the offline selected risk-neutral and risk-averse
policies, and the policy after 5 episodes of risk-averse gradient descent starting from the risk-averse offline
policy. A star at the top of a column signifies a statistically significant reduction in the mean compared
with the previous column (Behrens-Fisher, p < 0.01) and a triangle signifies a significant reduction in the
variance (F-test, p < 0.03).

problems, Van den Broek et al. (2010) generalized path integral methods from stochastic optimal control to
the risk-sensitive case.

Other work has approached the problem of risk-sensitive control with methods other than exponential
objective functions. For example, several authors have developed algorithms in discrete model-free RL setting
for learning conditional return distributions (Dearden et al., 1998; Morimura et al., 2010a,b), which can be
combined with policy selection criteria that take return variance into account. The algorithms discussed in
this paper are related to this line of work, but they are more directly applicable to systems with continuous
state and action spaces. The recent work of Tamar et al. (2012) describes likelihood-ratio policy gradient
algorithms appropriate for different types of risk-sensitive criteria. The simulation-based algorithm in their
work is closely related to the RSSGD update rule. However, rather than learning a nonparameteric cost
model, their algorithm uses a two-timescale approach to obtain incremental unbiased estimates of the cost
mean and variance. In some cases, this unbiasedness might be more important than the sample efficiency
that cost-model-based approaches can offer.

Policy gradient approaches that are designed to learn dynamic transition models, such as PILCO (Deisen-
roth and Rasmussen, 2011), can also be used to capture uncertainty in the cost distribution (Deisenroth,
2010). These approaches are capable of handling high-dimensional policy spaces, whereas the approaches
described in this work are only appropriate for low-dimensional policy spaces. However, to achieve this scala-
bility, certain smoothness assumptions must be made about the system dynamics. Furthermore, performing
offline optimizations to change risk-sensitivity would be significantly more computationally intensive than
the approach presented here.

Mihatsch and Neuneier (2002) developed risk-sensitive variants of TD(0) and Q-learning by allowing the
step size in the value function update to be a function of the sign of the temporal difference error. For
example, by making the step size for positive errors slightly larger than the step size for negative errors, the
value of a particular state and action will tend to be optimistic, yielding a risk-seeking system. Recently, this
algorithm was found to be consistent with behavioral and neurological measurements taken while humans
learned a decision task involving risky outcomes (Niv et al., 2012), suggesting that some form of risk-sensitive
TD may be present in the brain.

The connection between these types of methods and biological learning and control processes is an active
area of research in the biological sciences. For example, some neuroscience researchers have identified separate
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neural encodings for expected cost and cost variance that appear to be involved in risk-sensitive decision
making (Preuschoff et al., 2008; Tobler et al., 2007). Recent motor control experiments suggest that humans
select motor strategies in a risk-sensitive way (Wu et al., 2009; Nagengast et al., 2011, 2010). For example,
Nagengast et al. (2010) show that control gains selected by human subjects in a noisy control task are
consistent with risk-averse optimal control solutions. There is also an extensive literature on risk-sensitive
foraging behaviors in a wide variety of species (Kacelnik and Bateson, 1996; Bateson, 2002; Niv et al., 2002).

7 Discussion and Future Work

In many real-world control problems, it can be advantageous to adjust risk sensitivity based on runtime
context. For example, systems whose environments change in ways that make failures more or less costly
(such as operating around catastrophic obstacles or in a safety harness) or when the context demands that the
system seek low-probability high-performance events. Perhaps not surprisingly, this variable risk property
has been observed in a variety of animal species, from simple motor tasks in humans to foraging birds and
bees (Braun et al., 2011; Bateson, 2002).

However, most methods for learning policies by interaction focus on the risk-neutral minimization of
expected cost. Extending Bayesian optimization methods to capture policy-dependent cost variance creates
the opportunity to select policies with different risk sensitivity. Furthermore, the ability to efficiently vary
risk sensitivity offers an advantage over existing model-free risk-sensitive control techniques that require
separate optimizations and additional policy executions to produce policies with different risk.

The variable risk property was illustrated in experiments applying VBO to the problem of impact sta-
bilization. After a short period of learning, an empirical comparison of policies selected with different
confidence bound criteria confirmed the algorithmic predictions about the relative riskiness of each policy.
However, how to set the system’s risk sensitivity for a particular task remains an important open problem. In
particular, we saw that when variance is very large for some policies, risk-seeking optimizations must be done
carefully to avoid selecting policies with high variance and poor average performance. Other risk-sensitive
policy selection criteria may be less susceptible to such phenomena.

Several properties of VBO should be considered when determining its suitability for a particular problem.
First, although the computational complexity is the same as Bayesian optimization, O(N3), the greater
flexibility of the VHGP model means that VBO tends to require more initial policy evaluations than standard
Bayesian optimization. In addition, like many other episodic policy search algorithms, such as Bayesian
optimization and finite-difference methods (Kohl and Stone, 2004; Roberts and Tedrake, 2009), VBO is
sensitive to the number of policy parameters—high-dimensional policies can require many trials to optimize.
These algorithms are therefore most effective in problems where low-dimensional policy representations are
available, but accurate system models are not. However, there is evidence that policy spaces at least up to
15 dimensions can be efficiently explored with Bayesian optimization if estimates of the GP hyperparameters
can be obtained a priori (Lizotte et al., 2007).

Another important consideration is the choice of kernel functions in the GP priors. In this work, we
used the anisotropic squared exponential kernel to encode our prior assumptions regarding the smoothness
and regularity of the underlying cost function. However, for many problems the underlying cost function is
not smooth or regular; it contains flat regions and sharp discontinuities that can be difficult to represent.
An interesting direction for future work is the use kernel functions with local support. Kernels that are not
invariant to shifts in policy space will be necessary to capture cost surfaces that, e.g., contain both flat
regions and regions with large changes in cost. Methods for capturing multimodality of the cost distribution
are also important to consider, especially in domains where unobservable differences in initial conditions can
lead to qualitatively different outcomes.

One straightforward way to extend VBO would be to consider different policy selection criteria. In
particular, multi-step methods that select a sequence of n policy parameters could be valuable in systems
with fixed experimental budgets. Osborne et al. (Osborne et al., 2009; Garnett et al., 2010) have proposed
a multi-step criterion in the standard Bayesian optimization setting that has produced promising results.
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Other risk-sensitive global optimization algorithms could also be conceived by using other methods to build
the heteroscedastic cost model (Tibshirani and Hastie, 1987; Snelson and Ghahramani, 2006; Kersting et al.,
2010; Wilson and Ghahramani, 2011). It would be worthwhile to investigate whether these methods are
more appropriate for particular problem domains.

The VBO and RSSGD algorithms are connected by their use of a learned heteroscedastic cost model
to perform policy search. VBO uses this model to globally select policies, whereas RSSGD uses it as a
local critic to descend the gradient of a risk-sensitive objective. Both algorithms have the advantage of
being independent of the dynamics, dimensionality, and cost function structure, and the disadvantage of
their performance being dependent on the dimensionality of the policy parameter space. We considered the
possibility of interweaving gradient descent with local offline policy selection in dynamic lifting experiments
with the uBot-5. First, a policy was learned that exploited the system dynamics to produce an efficient and
reliable lifting strategy. Then, starting from this learned policy, new local cost models were fit and used to
select translation-averse and energy-averse policies. It is noteworthy that this kind of flexibility is possible
after so few trials, especially given the generality of the optimization procedure. However, a limitation of the
implementation described is that generalization to different objects or lifting scenarios would require separate
optimizations. The extent to which more sophisticated closed-loop or model-based policy representations
could support generalization is an interesting open question.

The use of the cost model in the RSSGD algorithm is somewhat restricted and there are several possibili-
ties for improvements. For example, some work has shown that adjusting the covariance of the perturbation
distribution while learning can produce better performance (Roberts and Tedrake, 2009). This idea is re-
lated to the covariance matrix adaptation that is done in some cost weighted averaging methods (Stulp and
Sigaud, 2012). An interesting direction for future work would be to use the learned local model to adjust
the sampling distribution by, e.g., scaling the perturbation covariance by the optimized length-scale hyper-
parameters of the VHGP model. In this way, parameters would be perturbed based on the inferred relative
sensitivity of the cost to changes in each parameter value. Methods for using gradient estimates from the
local critic to update the policy parameters or, conversely, using gradient observations to update the critic
could also be explored.

8 Conclusion

Varying risk sensitivity based on runtime context is a potentially powerful way to generate flexible control in
robot systems. We considered this problem in the context of model-free policy search, where risk-sensitive
parameterized policies can be selected based on a learned cost distribution. Our experimental results suggest
that VBO and RSSGD are efficient and plausible methods for achieving variable risk control.
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