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Abstract

Most model-free reinforcement learning methods
leverage state representations (embeddings) for
generalization, but either ignore structure in the
space of actions or assume the structure is pro-
vided a priori. We show how a policy can be
decomposed into a component that acts in a low-
dimensional space of action representations and a
component that transforms these representations
into actual actions. These representations improve
generalization over large, finite action sets by al-
lowing the agent to infer the outcomes of actions
similar to actions already taken. We provide an
algorithm to both learn and use action representa-
tions and provide conditions for its convergence.
The efficacy of the proposed method is demon-
strated on large-scale real-world problems.

1. Introduction

Reinforcement learning (RL) methods have been applied
successfully to many simple and game-based tasks. How-
ever, their applicability is still limited for problems involving
decision making in many real-world settings. One reason
is that many real-world problems with significant human
impact involve selecting a single decision from a multitude
of possible choices. For example, maximizing long-term
portfolio value in finance using various trading strategies
(Jiang et al., 2017), improving fault tolerance by regulat-
ing voltage level of all the units in a large power system
(Glavic et al., 2017), and personalized tutoring systems for
recommending sequences of videos from a large collection
of tutorials (Sidney et al., 2005). Therefore, it is important
that we develop RL algorithms that are effective for real
problems, where the number of possible choices is large.

In this paper we consider the problem of creating RL algo-
rithms that are effective for problems with large action sets.
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Figure 1. The structure of the proposed overall policy, m,, consist-
ing of f and 7;, that learns action representations to generalize
over large action sets.

Existing RL algorithms handle large state sets (e.g., images
consisting of pixels) by learning a representation or embed-
ding for states (e.g., using line detectors or convolutional
layers in neural networks), which allow the agent to reason
and learn using the state representation rather than the raw
state. We extend this idea to the set of actions: we propose
learning a representation for the actions, which allows the
agent to reason and learn by making decisions in the space
of action representations rather than the original large set of
possible actions. This setup is depicted in Figure 1, where
an internal policy, ;, acts in a space of action representa-
tions, and a function, f, transforms these representations
into actual actions. Together we refer to 7; and f as the
overall policy, ,.

Recent work has shown the benefits associated with us-
ing action-embeddings (Dulac-Arnold et al., 2015), partic-
ularly that they allow for generalization over actions. For
real-world problems where there are thousands of possi-
ble (discrete) actions, this generalization can significantly
speed learning. However, this prior work assumes that fixed
and predefined representations are provided. In this paper
we present a method to autonomously learn the underly-
ing structure of the action set by using the observed transi-
tions. This method can both learn action representation from
scratch and improve upon a provided action representation.

A key component of our proposed method is that it frames
the problem of learning an action representation (learning
f) as a supervised learning problem rather than an RL prob-
lem. This is desirable because supervised learning methods
tend to learn more quickly and reliably than RL algorithms
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since they have access to instructive feedback rather than
evaluative feedback (Sutton & Barto, 2018). The proposed
learning procedure exploits the structure in the action set
by aligning actions based on the similarity of their impact
on the state. Therefore, updates to a policy that acts in the
space of learned action representation generalizes the feed-
back received after taking an action to other actions that
have similar representations. Furthermore, we prove that our
combination of supervised learning (for f) and reinforce-
ment learning (for ;) within one larger RL agent preserves
the almost sure convergence guarantees provided by policy
gradient algorithms (Borkar & Konda, 1997).

To evaluate our proposed method empirically, we study
two real-world recommendation problems using data from
widely used commercial applications. In both applications,
there are thousands of possible recommendations that could
be given at each time step (e.g., which video to suggest
the user watch next, or which tool to suggest to the user
next in multi-media editing software). Our experimental
results show our proposed system’s ability to significantly
improve performance relative to existing methods for these
applications by quickly and reliably learning action repre-
sentations that allow for meaningful generalization over the
large discrete set of possible actions.

The rest of this paper is organized to provide in the following
order: a background on RL, related work, and the following
primary contributions:

e A new parameterization, called the overall policy, that
leverages action representations. We show that for all
optimal policies, 7*, there exist parameters for this new
policy class that are equivalent to 7*.

e A proof of equivalence of the policy gradient update
between the overall policy and the internal policy.

e A supervised learning algorithm for learning action
representations (f in Figure 1). This procedure can be
combined with any existing policy gradient method for
learning the overall policy.

e An almost sure asymptotic convergence proof for the al-
gorithm, which extends existing results for actor-critics
(Borkar & Konda, 1997).

e Experimental results on real-world domains with thou-
sands of actions using actual data collected from rec-
ommender systems.

2. Background

We consider problems modeled as discrete-time Markov
decision processes (MDPs) with discrete states and fi-
nite actions. An MDP is represented by a tuple, M =

(S, A, P,R,~,dp). S is the set of all possible states, called
the state space, and A is a finite set of actions, called
the action set. Though our notation assumes that the state
set is finite, our primary results extend to MDPs with
continuous states. In this work, we restrict our focus to
MDPs with finite action sets, and |.A| denotes the size of
the action set. The random variables, S; € S, A; € A,
and R; € R denote the state, action, and reward at time
t € {0,1,...}. We assume that R; € [—Ruax, Rmax] for
some finite R,. The first state, Sy, comes from an initial
distribution, d, and the reward function R is defined so that
R(s,a) = E[R|S; = s,A; = a]forall s € Sand a € A.
Hereafter, for brevity, we write P to denote both probabili-
ties and probability densities, and when writing probabilities
and expectations, write s, a, s’ or e to denote both elements
of various sets and the events S; = s, A; = a, Sy1q = &,
or E; = e (defined later). The desired meaning for s, a, s’
or e should be clear from context. The reward discounting
parameter is given by v € [0,1). P is the state transition
function, such that Vs, a, s', ¢, P(s,a,s’) = P(s'|s,a).

A policy 7 : A x S — [0, 1] is a conditional distribution
over actions for each state: 7w(a, s) = P(4; = a|S; = s)
for all s € S,a € A, and t. Although 7 is simply a
function, we write 7(als) rather than 7(a, s) to empha-
size that it is a conditional distribution. For a given M,
an agent’s goal is to find a policy that maximizes the
expected sum of discounted future rewards. For any pol-
icy 7, the corresponding state-action value function is
q"(s,a) = E[Y_peoV*Retk|S: = s, Ay = a, 7, where
conditioning on 7 denotes that A; y ~ 7(-|S¢4x) for all
Aty and Sy for k € [t + 1, 00). The state value function
is v™(s) = E[> po V" RSt = s,7]. It follows from
the Bellman equation that v™(s) = > 4 m(als)q”™ (s, a).
Anoptimal policy is any 7* € argmax . E[>",° 7 R[],
where II denotes the set of all possible policies, and v* is
shorthand for v™ .

3. Related Work

Here we summarize the most related work and discuss how
they relate to the proposed work.

Factorizing Action Space: To reduce the size of large ac-
tion spaces, Pazis & Parr (2011) considered representing
each action in binary format and learning a value function
associated with each bit. A similar binary based approach
was also used as an ensemble method to learning optimal
policies for MDPs with large action sets (Sallans & Hin-
ton, 2004). For planning problems, Cui & Khardon (2016;
2018) showed how a gradient based search on a symbolic
representation of the state-action value function can be used
to address scalability issues. More recently, it was shown
that better performances can be achieved on Atari 2600
games (Bellemare et al., 2013) when actions are factored
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into their primary categories (Sharma et al., 2017). All these
methods assumed that a handcrafted binary decomposition
of raw actions was provided. To deal with discrete actions
that might have an underlying continuous representation,
Van Hasselt & Wiering (2009) used policy gradients with
continuous actions and selected the nearest discrete action.
This work was extended by Dulac-Arnold et al. (2015) for
larger domains, where they performed action representation
look up, similar to our approach. However, they assumed
that the embeddings for the actions are given, a priori. Re-
cent work also showed how action representations can be
learned using data from expert demonstrations (Tennenholtz
& Mannor, 2019). We present a method that can learn action
representations with no prior knowledge or further opti-
mize available action representations. If no prior knowledge
is available, our method learns these representations from
scratch autonomously.

Auxiliary Tasks: Previous works showed empirically that
supervised learning with the objective to predict a compo-
nent of a transition tuple (s, a,r, s’) from the others, can
be useful as an auxiliary method to learn state representa-
tions (Jaderberg et al., 2016; Frangois-Lavet et al., 2018) or
to obtain intrinsic rewards (Shelhamer et al., 2016; Pathak
et al., 2017). We show how the overall policy itself can be
decomposed using an action representation module learned
using a similar loss function.

Motor Primitives: Research in neuroscience suggests that
animals decompose their plans into mid-level abstractions,
rather than the exact low-level motor controls needed for
each movement (Jing et al., 2004). Such abstractions of
behavior that form the building blocks for motor control
are often called motor primitives (Lemay & Grill, 2004;
Mussa-Ivaldi & Bizzi, 2000). In the field of robotics, dy-
namical system based models have been used to construct
dynamic movement primitives (DMPs) for continuous con-
trol (Ijspeert et al., 2003; Schaal, 2006). Imitation learning
can also be used to learn DMPs, which can be fine-tuned on-
line using RL (Kober & Peters, 2009b;a). However, these are
significantly different from our work as they are specifically
parameterized for robotics tasks and produce an encoding
for kinematic trajectory plans, not the actions.

Later, Thomas & Barto (2012) showed how a goal-
conditioned policy can be learned using multiple motor
primitives that control only useful sub-spaces of the un-
derlying control problem. To learn binary motor primi-
tives, Thomas & Barto (2011) showed how a policy can
be modeled as a composition of multiple “coagents”, each
of which learns using only the local policy gradient informa-
tion (Thomas, 2011). Our work follows a similar direction,
but we focus on automatically learning optimal continuous-
valued action representations for discrete actions. For action
representations, we present a method that uses supervised

learning and restricts the usage of high variance policy gra-
dients to train the internal policy only.

Other Domains: In supervised learning, representations of
the output categories have been used to extract additional
correlation information among the labels. Popular examples
include learning label embeddings for image classification
(Akata et al., 2016) and learning word embeddings for nat-
ural language problems (Mikolov et al., 2013). In contrast,
for an RL setup, the policy is a function whose outputs
correspond to the available actions. We show how learning
action representations can be beneficial as well.

4. Generalization over Actions

The benefits of capturing the structure in the underlying
state space of MDPs is a well understood and a widely used
concept in RL. State representations allow the policy to gen-
eralize across states. Similarly, there often exists additional
structure in the space of actions that can be leveraged. We
hypothesize that exploiting this structure can enable quick
generalization across actions, thereby making learning with
large action sets feasible. To bridge the gap, we introduce
an action representation space, & C R?, and consider a
factorized policy, m,, parameterized by an embedding-to-
action mapping function, f: £ — A, and an internal policy,
w2 8 x & — [0, 1], such that the distribution of A, given
S; is characterized by:
Et ~ Wi("St), At = f(Et)
Here, 7; is used to sample F; € £, and the function f deter-
ministically maps this representation to an action in the set
A. Both these components together form an overall policy,
7. Figure 2 illustrates the probability of each action under
such a parameterization. With a slight abuse of notation, we
use f~!(a) as a one-to-many function that denotes the set

of representations that are mapped to the action a by the
function f,i.e., f~(a) == {e € £: f(e) = a}.
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Figure 2. Tllustration of the probability induced for three actions by
the probability density of ; (e, s) on a 1-D embedding space. The
z-axis represents the embedding, e, and the y-axis represents the
probability. The colored regions represent the mapping a = f(e),
where each color is associated with a specific action.
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In the following sections we discuss the existence of an
optimal policy 7} and the learning procedure for 7,. To
elucidate the steps involved, we split it into four parts. First,
we show that there exists f and 7; such that 7, is an optimal
policy. Then we present the supervised learning process for
the function f when 7; is fixed. Next we give the policy
gradient learning process for 7; when f is fixed. Finally, we
combine these methods to learn f and 7; simultaneously.

4.1. Existence of 7; and f to Represent An Optimal
Policy

In this section, we aim to establish a condition under which
T, can represent an optimal policy. Consequently, we then
define the optimal set of 7, and 7; using the proposed pa-
rameterization. To establish the main results we begin with
the necessary assumptions.

The characteristics of the actions can be naturally associated
with how they influence state transitions. In order to learn
a representation for actions that captures this structure, we
consider a standard Markov property, often used for learn-
ing probabilistic graphical models (Ghahramani, 2001), and
make the following assumption that the transition informa-
tion can be sufficiently encoded to infer the action that was
executed.

Assumption Al. Given an embedding E,, A, is condition-
ally independent of Sy and Syy1:

P(A¢|St, St+1) :/P(At|Et = e)P(E: = e|St, St+1) de.
£

Assumption A2. Given the embedding E; the action, Ay is
deterministic and is represented by a function f : £ — A,
i.e., Ja such that P(A; = a|Ey =€) = 1.

We now establish a necessary condition under which our pro-
posed policy can represent an optimal policy. This condition
will also be useful later when deriving learning rules.

Lemma 1. Under Assumptions (A1)—(A2), which defines a
Sfunction f, for all 7, there exists a 7; such that

&= [ w0 e

acA

The proof is deferred to the Appendix A. Following Lemma
(1), we use m; and f to define the overall policy as

o (als) ::/ m;(e|s) de. (1)

f=(a)
Theorem 1. Under Assumptions (A1)—(A2), which defines
a function f, there exists an overall policy, 7,, such that

v = v*.

Proof. This follows directly from Lemma 1. Because the
state and action sets are finite, the rewards are bounded, and

v € [0, 1), there exists at least one optimal policy. For any
optimal policy 7*, the corresponding state-value and state-
action-value functions are the unique v* and ¢*, respectively.
By Lemma 1 there exist f and m; such that

;i (e]s)q* (s, a) de. 2)

Therefore, there exists m; and f, such that the resulting
7, has the state-value function v™ = ov*, and hence it
represents an optimal policy. O

Note that Theorem 1 establishes existence of an optimal
overall policy based on equivalence of the state-value func-
tion, but does not ensure that all optimal policies can be
represented by an overall policy. Using (2), we define
IT == {7, : v™ = v*}. Correspondingly, we define the
set of optimal internal policies as II} = {m; : In} €

I, 3f, 7% (als) = ff—l(a) m;(e|s) de}.

4.2. Supervised Learning of f For a Fixed 7;

Theorem 1 shows that there exist ; and a function f, which
helps in predicting the action responsible for the transition
from Sy to S;11, such that the corresponding overall policy
is optimal. However, such a function, f, may not be known
a priori. In this section, we present a method to estimate f
using data collected from interactions with the environment.

By Assumptions (A1)-(A2), P(A:|St, St4+1) can be writ-
ten in terms of f and P(E|S:, Si+1). We propose
searching for an estimator, f, of f and an estimator,
G(E¢|St, St41), of P(E¢|St, St41) such that a reconstruc-
tion of P(A¢|S, St+1) is accurate. Let this estimate of
P(A:|St, St+1) based on f and g be

P(AS,, Sepr) = / FAE =e)g(Ei=e|Si, Sey1)de (3)
E

One way to measure the difference between
P(A;|St, Sty1) and P(At|5’t, St11) is using the expected
(over states coming from the on-policy distribution)
Kullback-Leibler (KL) divergence

P(alS, Si11)
P(a|S, S, In| ——+——=~
(;4 (a\ t,Si+1) In <P(a|5t,5t+1)

P(Ay|St, Si41)
1 —_ . 4
“(P@nwu&+n>] @

=—E

=—E

Since the observed transition tuples, (S, A¢, St+1), contain
the action responsible for the given S to Sy transition, an
on-policy sample estimate of the KL-divergence can be com-
puted readily using (4). We adopt the following loss function
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Figure 3. (a) Given a state transition tuple, functions g and f are
used to estimate the action taken. The red arrow denotes the gra-
dients of the supervised loss (5) for learning the parameters of
these functions. (b) During execution, an internal policy, m;, can
be used to first select an action representation, e. The function f,
obtained from previous learning procedure, then transforms this
representation to an action. The blue arrow represents the internal
policy gradients (7) obtained using Lemma 2 to update ;.

based on the KL divergence between P (A¢|St, Si+1) and
P(At|St, St+1):

L(f.9) = E{ ( (At‘Stast+1))}a &)

where the denominator in (4) i is not included in (5) because it
does not depend on f org.If f and g are parameterized, their
parameters can be learned by minimizing the loss function,
L, using a supervised learning procedure.

A computational graph for this model is shown in Figure 3.
We refer the reader to the Appendix D for the parameteriza-
tions of f and g used in our experiments. Note that, while f
will be used for f in an overall policy, ¢ is only used to find
f , and will not serve an additional purpose.

As this supervised learning process only requires estimating
P(A|St, St+1), it does not require (or depend on) the re-
wards. This partially mitigates the problems due to sparse
and stochastic rewards, since an alternative informative su-
pervised signal is always available. This is advantageous for
making the action representation component of the overall
policy learn quickly and with low variance updates.

4.3. Learning 7; For a Fixed f

A common method for learning a policy parameterized with
weights 6 is to optimize the discounted start-state objec-
tive function, J(6) := > s do(s)v™ (s). For a policy with

weights 6, the expected performance of the policy can be
8J(0)

improved by ascending the policy gradient,

Let the state-value function associated with the internal pol-
icy, m;, be v™i(s) = E[>.,2 v Ry|s, m;, f], and the state-
action value function ¢™ (s, e) = E[}_;° 7' Re|s, e, m;, f].
We then define the performance function for 7; as:

)= do(s)v™(5). 6)
SES

Viewing the embeddings as the action for the agent with

policy m;, the policy gradient theorem (Sutton et al., 2000),
states that the unbiased (Thomas, 2014) gradient of (6) is,

ZE |: / St7 )aaeﬂ-i(e"st) de 5 (7)

where, the expectation is over states from d", as defined
by Sutton et al. (2000) (which is not a true distribution,
since it is not normalized). The parameters of the internal
policy can be learned by iteratively updating its parameters
in the direction of 9.J;(0)/06. Since there are no special
constraints on the policy 7;, any policy gradient algorithm
designed for continuous control, like DPG (Silver et al.,
2014), PPO (Schulman et al., 2017), NAC (Bhatnagar et al.,
2009) etc., can be used out-of-the-box.

However, note that the performance function associated
with the overall policy, 7, (consisting of function f and the
internal policy parameterized with weights 6), is:

0,f)= Zdo(s)vﬁo(s).

seS

The ultimate requirement is the improvement of this overall
performance function, .J, (6, f), and not just J;(6). So, how
useful is it to update the internal policy, 7;, by following the
gradient of its own performance function? The following
lemma answers this question.

Lemma 2. For all deterministic functions, f, which map
each point, e € R, in the representation space to an ac-

tion, a € A, the expected updates to 0 based on dée) are

equivalent to updates based on W. That is,

aJo(Gaf) o aJZ(e)
06 00

The proof is deferred to the Appendix B. The chosen param-
eterization for the policy has this special property, which
allows 7; to be learned using its internal policy gradient.
Since this gradient update does not require computing the
value of any ,(a|s) explicitly, the potentially intractable
computation of f~! in (1) required for 7, can be avoided.
Instead, 0.J;(6)/00 can be used directly to update the pa-
rameters of the internal policy while still optimizing the
overall policy’s performance, J, (9, f).

4.4. Learning 7; and f Simultaneously

Since the supervised learning procedure for f does not re-
quire rewards, a few initial trajectories can contain enough
information to begin learning a useful action representa-
tion. As more data becomes available it can be used for
fine-tuning and improving the action representations.
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Algorithm 1: Policy Gradient with Representations for
Action (PG-RA)

1 Initialize action representations
2 for episode = 0,1,2... do

3 fort=0,1,2...do

4 Sample action embedding, F, from m;(|.S})

5 A = f(Ey)

6 Execute A; and observe S11, Ry

7 Update m; using any policy gradient algorithm
8 Update critic (if any) to minimize TD error

9 | Update f and ¢ to minimize £ defined in (5)

4.4.1. ALGORITHM

We call our algorithm policy gradients with representations
for actions (PG-RA). PG-RA first initializes the parameters
in the action representation component by sampling a few
trajectories using a random policy and using the supervised
loss defined in (5). If additional information is known about
the actions, as assumed in prior work (Dulac-Arnold et al.,
2015), it can also be considered when initializing the action
representations. Optionally, once these action representa-
tions are initialized, they can be kept fixed.

In the Algorithm 1, Lines 2-9 illustrate the online update
procedure for all of the parameters involved. Each time
step in the episode is represented by ¢. For each step, an
action representation is sampled and is then mapped to an
action by f . Having executed this action in the environment,
the observed reward is then used to update the internal
policy, 7;, using any policy gradient algorithm. Depending
on the policy gradient algorithm, if a critic is used then semi-
gradients of the TD-error are used to update the parameters
of the critic. In other cases, like in REINFORCE (Williams,
1992) where there is no critic, this step can be ignored.
The observed transition is then used in Line 9 to update
the parameters of f and g so as to minimize the supervised
learning loss (5). In our experiments, Line 9 uses a stochastic
gradient update.

4.4.2. PG-RA CONVERGENCE

If the action representations are held fixed while learning
the internal policy, then as a consequence of Property 2,
convergence of our algorithm directly follows from previous
two-timescale results (Borkar & Konda, 1997; Bhatnagar
et al., 2009). Here we show that learning both 7; and f
simultaneously using our PG-RA algorithm can also be
shown to converge by using a three-timescale analysis.

Similar to prior work (Bhatnagar et al., 2009; Degris et al.,
2012; Konda & Tsitsiklis, 2000), for analysis of the updates
to the parameters, 6 € R of the internal policy, 7;, we

use a projection operator I' : R% — R% that projects any
r € R% to a compact set C C R%. We then define an
associated vector field operator, I, that projects any gradi-
ents leading outside the compact region, C, back to C. We
refer the reader to the Appendix C.3 for precise definitions
of these operators and the additional standard assumptions
(A3)—(AS). Practically, however, we do not project the iter-
ates to a constraint region as they are seen to remain bounded
(without projection).

Theorem 2. Under Assumptions (Al)-(AS), the in-
ternal policy parameters 0, converge to Z =

{x eci (8‘]575)35)) = O} as t — oo, with probability one.

Proof. (Outline) We consider three learning rate sequences,
such that the update recursion for the internal policy is on
the slowest timescale, the critic’s update recursion is on
the fastest, and the action representation module’s has an
intermediate rate. With this construction, we leverage the
three-timescale analysis technique (Borkar, 2009) and prove
convergence. The complete proof is in the Appendix C. [

S. Empirical Analysis

A core motivation of this work is to provide an algorithm
that can be used as a drop-in extension for improving the
action generalization capabilities of existing policy gradient
methods for problems with large action spaces. We consider
two standard policy gradient methods: actor-critic (AC) and
deterministic-policy-gradient (DPG) (Silver et al., 2014)
in our experiments. Just like previous algorithms, we also
ignore the ~* terms and perform the biased policy gradi-
ent update to be practically more sample efficient (Thomas,
2014). We believe that the reported results can be further
improved by using the proposed method with other policy
gradient methods; we leave this for future work. For detailed
discussion on parameterization of the function approxima-
tors and hyper-parameter search, see Appendix D.

5.1. Domains

Maze: As a proof-of-concept, we constructed a
continuous-state maze environment where the state
comprised of the coordinates of the agent’s current location.
The agent has n equally spaced actuators (each actuator
moves the agent in the direction the actuator is pointing
towards) around it, and it can choose whether each actuator
should be on or off. Therefore, the size of the action set is
exponential in the number of actuators, that is | 4| = 2".
The net outcome of an action is the vectorial summation of
the displacements associated with the selected actuators.
The agent is rewarded with a small penalty for each time
step, and a reward of 100 is given upon reaching the goal
position. To make the problem more challenging, random
noise was added to the action 10% of the time and the
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Figure 4. (a) The maze environment. The star denotes the goal state, the red dot corresponds to the agent and the arrows around it are the
12 actuators. Each action corresponds to a unique combination of these actuators. Therefore, in total 2'2 actions are possible. (b) 2-D
representations for the displacements in the Cartesian co-ordinates caused by each action, and (c) learned action embeddings. In both (b)
and (c), each action is colored based on the displacement (Ax, Ay) it produces. That is, with the color [R= Az, G=Ay, B=0.5], where
Az and Ay are normalized to [0, 1] before coloring. Cartesian actions are plotted on co-ordinates (Ax, Ay), and learned ones are on the
coordinates in the embedding space. Smoother color transition of the learned representation is better as it corresponds to preservation of
the relative underlying structure. The ‘squashing’ of the learned embeddings is an artifact of a non-linearity applied to bound its range.

maximum episode length was 150 steps.

This environment is a useful test bed as it requires solving
a long horizon task in an MDP with a large action set and
a single goal reward. Further, we know the Cartesian repre-
sentation for each of the actions, and can thereby use it to
visualize the learned representation, as shown in Figure 4.

Real-word recommender systems: We consider two
real-world applications of recommender systems that re-
quire decision making over multiple time steps.

First, a web-based video-tutorial platform, which has a rec-
ommendation engine that suggests a series of tutorial videos
on various software. The aim is to meaningfully engage
the users in learning how to use these software and convert
novice users into experts in their respective areas of interest.
The tutorial suggestion at each time step is made from a
large pool of available tutorial videos on several software.

The second application is a professional multi-media editing
software. Modern multimedia editing software often contain
many tools that can be used to manipulate the media, and
this wealth of options can be overwhelming for users. In
this domain, an agent suggests which of the available tools
the user may want to use next. The objective is to increase
user productivity and assist in achieving their end goal.

For both of these applications, an existing log of user’s
click stream data was used to create an n-gram based MDP
model for user behavior (Shani et al., 2005). In the tuto-
rial recommendation task, user activity for a three month
period was observed. Sequences of user interaction were
aggregated to obtain over 29 million clicks. Similarly, for a
month long duration, sequential usage patterns of the tools
in the multi-media editing software were collected to obtain
a total of over 1.75 billion user clicks. Tutorials and tools
that had less than 100 clicks in total were discarded. The
remaining 1498 tutorials and 1843 tools for the web-based

tutorial platform and the multi-media software, respectively,
were used to create the action set for the MDP model. The
MDP had continuous state-space, where each state consisted
of the feature descriptors associated with each item (tuto-
rial or tool) in the current n-gram. Rewards were chosen
based on a surrogate measure for difficulty level of tutorials
and popularity of final outcomes of user interactions in the
multi-media editing software, respectively. Since such data
is sparse, only 5% of the items had rewards associated with
them, and the maximum reward for any item was 100.

Often the problem of recommendation is formulated as a
contextual bandit or collaborative filtering problem, but as
shown by Theocharous et al. (2015) these approaches fail to
capture the long term value of the prediction. Solving this
problem for a longer time horizon with a large number of
actions (tutorials/tools) makes this real-life problem a useful
and a challenging domain for RL algorithms.

5.2. Results
VISUALIZING THE LEARNED ACTION REPRESENTATIONS

To understand the internal working of our proposed algo-
rithm, we present visualizations of the learned action repre-
sentations on the maze domain. A pictorial illustration of the
environment is provided in Figure 4. Here, the underlying
structure in the set of actions is related to the displacements
in the Cartesian coordinates. This provides an intuitive base
case against which we can compare our results.

In Figure 4, we provide a comparison between the action
representations learned using our algorithm and the under-
lying Cartesian representation of the actions. It can be seen
that the proposed method extracts useful structure in the
action space. Actions which correspond to settings where
the actuators on the opposite side of the agent are selected
result in relatively small displacements to the agent. These
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Figure 5. (Top) Results on the Maze domain with 2% 28 and 2'2 actions respectively. (Bottom) Results on a) Tutorial MDP b) Software
MDP. AC-RA and DPG-RA are the variants of PG-RA algorithm that uses actor-critic (AC) and DPG, respectively. The shaded regions
correspond to one standard deviation and were obtained using 10 trials.

are the ones in the center of plot. In contrast, maximum
displacement in any direction is caused by only selecting
actuators facing in that particular direction. Actions cor-
responding to those are at the edge of the representation
space. The smooth color transition indicates that not only
the information about magnitude of displacement but the
direction of displacement is also represented. Therefore,
the learned representations efficiently preserve the relative
transition information among all the actions. To make ex-
ploration step tractable in the internal policy, 7;, we bound
the representation space along each dimension to the range
[—1, 1] using Tanh non-linearity. This results in ‘squashing’
of these representations around the edge of this range.

PERFORMANCE IMPROVEMENT

The plots in Figure 5 for the Maze domain show how the per-
formance of standard actor-critic (AC) method deteriorates
as the number of actions increases, even though the goal
remains the same. However, with the addition of an action
representation module it is able to capture the underlying
structure in the action space and consistently perform well
across all settings. Similarly, for both the tutorial and the
software MDPs, standard AC methods fail to reason over
longer time horizons under such an overwhelming num-
ber of actions, choosing mostly one-step actions that have
high returns. In comparison, instances of our proposed al-
gorithm are not only able to achieve significantly higher
return, up to 2x and 3x in the respective tasks, but they
do so much quicker. These results reinforce our claim that

learning action representations allow implicit generaliza-
tion of feedback to other actions embedded in proximity to
executed action.

Further, under the PG-RA algorithm, only a fraction of total
parameters, the ones in the internal policy, are learned using
the high variance policy gradient updates. The other set
of parameters associated with action representations are
learned by a supervised learning procedure. This reduces
the variance of updates significantly, thereby making the PG-
RA algorithms learn a better policy faster. This is evident
from the plots in the Figure 5. These advantages allow the
internal policy, 7;, to quickly approximate an optimal policy
without succumbing to the curse of large actions sets.

6. Conclusion

In this paper, we built upon the core idea of leveraging the
structure in the space of actions and showed its importance
for enhancing generalization over large action sets in real-
world large-scale applications. Our approach has three key
advantages. (a) Simplicity: by simply using the observed
transitions, an additional supervised update rule can be used
to learn action representations. (b) Theory: we showed that
the proposed overall policy class can represent an optimal
policy and derived the associated learning procedures for
its parameters. (c) Extensibility: as the PG-RA algorithm
indicates, our approach can be easily extended using other
policy gradient methods to leverage additional advantages,
while preserving the convergence guarantees.
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