
Asynchronous Coagent Networks: Stochastic Networks for

Reinforcement Learning without Backpropagation or a Clock

James Kostas, Chris Nota, and Philip S. Thomas
College of Information and Computer Sciences

University of Massachusetts Amherst

{jekostas,cnota,pthomas}@cs.umass.edu

Abstract

In this paper we introduce a reinforcement learning (RL) approach for training policies,
including artificial neural network policies, that is both backpropagation-free and clock-free. It
is backpropagation-free in that it does not propagate any information backwards through the
network. It is clock-free in that no signal is given to each node in the network to specify when
it should compute its output and when it should update its weights. We contend that these
two properties increase the biological plausibility of our algorithms and facilitate distributed
implementations. Additionally, our approach eliminates the need for customized learning rules
for hierarchical RL algorithms like the option-critic.

1 Introduction

Reinforcement learning (RL) algorithms share qualitative similarities with the algorithms imple-
mented by animal brains. However, there remain clear differences between these two types of
algorithms. For example, while RL algorithms using artificial neural networks require information
to flow backwards through the network via the backpropagation algorithm, there is currently debate
about whether this is feasible in biological neural implementations (Werbos and Davis, 2016). Policy
gradient coagent networks (PGCNs) are a class of RL algorithms that were introduced to remove
this possibly biologically implausible property of RL algorithms—they use artificial neural networks
but do not use the backpropagation algorithm (Thomas, 2011).

Since their introduction, PGCN algorithms have proven to be not only a possible improvement
in biological plausibility, but a practical tool for improving RL agents. They were used to solve RL
problems with high-dimensional action spaces (Thomas and Barto, 2012), are the RL precursor to
the more general stochastic computation graphs (Schulman et al., 2015), and, as we will show in
this paper, generalize the recently proposed option-critic architecture (Bacon et al., 2017), while
drastically simplifying key derivations.

The paper introducing PGCNs claims that each node (neuron) in a network can perform all
of its updates given only local information—information that would be available to a neuron in
an animal brain. However, this is not the case since PGCNs still require an implicit signal that
was overlooked: a clock to determine when each node should produce its output and update its
weights. In this paper we show how PGCNs can be extended to operate without a clock signal (or
with a noisy clock signal), resulting in a new class of RL algorithms that 1) do not require the
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backpropagation of information through an artificial neural network, and 2) do not require a clock
signal to be broadcast to any nodes in the network. Furthermore, removing the need for a clock
has important ramifications beyond biological plausibility: It allows distributed implementations of
large neural networks to operate without requirements of synchronicity, and provides an alternate
view of temporal abstraction for RL algorithms. We clarify this second point later by discussing the
relationship between PGCN algorithms and the options framework (Sutton et al., 1999).

The contributions of this paper are: 1) a complete and formal proof of a key result related
to PGCN algorithms that this paper relies on, and which prior work provides an informal and
incomplete proof, 2) a generalization of the PGCN framework to handle asynchronous networks, 3)
a proof that asynchronous PGCNs generalize the option-critic framework, and 4) empirical support
of our theoretical claims regarding the gradients of asynchronous PGCN algorithms.

2 Related Work

Klopf (1982) theorized that traditional models of classical and operant conditioning could be
explained by modeling biological neurons as hedonistic, that is, seeking excitation and avoiding
inhibition. The ideas motivating coagent networks bear a deep resemblance to Klopf’s proposal.

Stochastic neural networks were first applied to RL at the dawn of machine learning itself,
with applications dating back at least to Marvin Minsky’s stochastic neural analog reinforcement
calculator (SNARC), built in 1951 Russell and Norvig (2016). Interest in their usage has continued
throughout the history of RL. The well-known REINFORCE algorithm was originally proposed with
the intent of training stochastic networks Williams (1992), though it has since been primarily applied
to conventional networks. Other rules like adaptive reward-penalty Barto (1985) were proposed
exclusively for training stochastic networks.

Multi-agent reinforcement learning (MARL) is the application of RL in multi-agent systems.
MARL differs from coagent RL in that agents typically have separate manifestations within the
environment; additionally, the goals of the agents may or may not be aligned. Despite these
differences, many results from the study of MARL are relevant to the study of coagent networks.
For instance, Liu et al. (2014) showed that multi-agent systems sometimes learn more quickly when
agents are given individualized rewards, rather than only receiving team-wide rewards. An overview
of MARL is given by Busoniu et al. (2010).

Deep reinforcement learning, the application of conventional neural networks to RL, has recently
become an active area of research, following its successful application to challenging domains such as
real-time games Mnih et al. (2015), board games Silver et al. (2017), and robotic control Andrychowicz
et al. (2018). While conventional deep networks have dominated recent RL research (and machine
learning research more broadly), stochastic networks have also recently been a moderately popular
research topic. The formalism of stochastic computation graphs was proposed to describe networks
with a mixture of stochastic and deterministic nodes, with applications to supervised learning,
unsupervised learning, and RL Schulman et al. (2015). Policy gradient coagent networks Thomas
(2011), the subject of this paper, were proposed for RL specifically, and have been used to discover
“motor primitives” in simulated robotic control tasks Thomas and Barto (2012).

Several recently proposed approaches fit into the formalism of stochastic networks, but the
relationship has frequently gone unnoticed. One notable example is the option-critic architecture
Bacon et al. (2017). The option-critic provides a framework for learning options Sutton et al. (1999),
a type of high-level and temporally extended action, and how to choose between options. The
motivations for the option-critic are largely similar to previous motivations for PGCNs: namely,
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achieving temporal abstraction and hierarchical control. We show that the option-critic architecture
can be described by a particular coagent network architecture. The theory presented in this paper
makes the resulting derivation of the option-critic policy gradients nearly trivial in contrast with the
original derivations, and places the option-critic within a more general theoretical framework.

3 Background

We consider an MDP, M = (S,A,R, P,R, d0, γ), where S is the finite set of possible states, A is the
finite set of possible actions, and R is the finite set of possible rewards. Let t ∈ {0, 1, 2, . . . } denote
the time step. St, At, and Rt are the state, action, and reward at time t, and are random variables
that take values in S, A, and R, respectively. P :S×A×S→[0, 1] is the transition function, given
by P (s, a, s′) := Pr(St+1=s′|St=s,At=a). R:S×A×S×R→[0, 1] is the reward distribution, given by
R(s, a, s′, r) := Pr(Rt=r|St=s,At=a, St+1=s′). The initial state distribution, d0:S → [0, 1], is given
by d0(s) := Pr(S0=s). The discount factor, γ ∈ [0, 1], is the reward discount parameter. An episode
is a sequence of states, actions, and rewards, starting from t=0 and continuing indefinitely. We
assume that the discounted sum of rewards over an episode is finite.

A policy, π : S × A → [0, 1], is a stochastic method of selecting actions, such that π(s, a) :=
Pr(At=a|St=s). A parameterized policy is a policy that takes a parameter vector θ ∈ Rn. Different
parameter vectors result in different policies. More formally, we redefine the symbol π to denote
a parameterized policy, π : S × A× Rn → [0, 1], such that for all θ ∈ Rn, π(·, ·, θ) is a policy. We
assume that ∂π(s, a, θ)/∂θ exists for all s ∈ S, a ∈ A, θ ∈ Rn. An agent’s goal is typically to choose
a policy that maximizes the objective function, which is defined as J(π) := E [

∑∞
t=0 γ

tRt|π] , where
conditioning on π denotes that, for all t, At ∼ π(St, ·). The state-value function, vπ : S → R,
is defined as vπ(s) := E

[∑∞
k=0 γ

kRt+k
∣∣St=s, π] . The discounted return, Gt, is defined as Gt :=∑∞

k=0 γ
kRt+k. We denote the objective function for a policy that has parameters θ as J(θ), and

condition probabilities on θ to denote that the parameterized policy uses parameter vector θ.
Consider a parameterized policy that consists of an acyclic network of nodes, called coagents,

which do not share parameters. Each coagent can have several inputs that may include the state at
time t, a noisy and incomplete observation of the state at time t, and/or the outputs of other coagents.
When considering the ith coagent, θ can be partitioned into two vectors, θi ∈ Rni (the parameters
used by the ith coagent) and θ̄i ∈ Rn−ni (the parameters used by all other coagents). From the point
of view of the ith coagent, At is produced from St in three stages: execution of the nodes prior to the
ith coagent (nodes whose outputs are required to compute the input to the ith coagent), execution
of the ith coagent, and execution of the remaining nodes in the network to produce the final action.
This process is depicted graphically in Figure 1 and described in detail below. First, we define
a parameterized distribution πpre

i (St, ·, θ̄i) to capture how the previous coagents in the network
produce their outputs given the current state. The output of the previous coagents is a random
variable, which we denote by Upre

t , and which takes continuous and/or discrete values in some set
Upre. Upre

t is sampled from the distribution πpre
i (St, ·, θ̄i). Next, the ith coagent takes St and Upre

t

as input and produces the output U it (below, when it is unambiguously referring to the output of
the ith coagent, we make the i implicit and denote it as Ut). We denote this input, (St, U

pre
t ), as Xt

(or Xi
t if it is not unambiguously referring to the ith coagent). The conditional distribution of U it is

given by the ith coagent’s policy, πi(Xt, ·, θi). Although we allow the ith coagent’s output to depend
directly on St, it may be parameterized to only depend on Upre

t . Finally, At is sampled according
to a distribution πpost

i (Xt, U
i
t , ·, θ̄i), which captures how the subsequent coagents in the network

produce At. Below, we sometimes make θ̄i and θi implicit and write the three policy functions as
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Figure 1: Example diagram of three step process for action generation, for a fully connected
feedforward network (we do not require the network to have this structure). The circle in the middle
denotes the ith coagent. In the first step, preceding nodes are executed to compute the inputs to
this coagent. In the second step the coagent uses these inputs to produce its output, Ut. In the
third step the remainder of the network is executed to produce an action.

πpre
i (St, ·), πi(Xt, ·), and πpost

i (Xt, U
i
t , ·). Also, following the work of Thomas and Barto (2011), we

model the ith coagent’s environment (consisting of the original environment as well as all other
coagents in the network) as an MDP called a conjugate Markov decision process (CoMDP).

4 The Coagent Policy Gradient Theorem

Consider what would happen if the ith coagent ignored all of the complexity in this problem setup
and simply implemented an unbiased policy gradient algorithm, like REINFORCE (Williams, 1992).
From the ith coagent’s point of view, the state would be St and Upre

t together (the coagent may
ignore components of this state, such as the S component), its actions would be Ut, and the rewards
would remain Rt. We refer to the expected update in this setting as the local policy gradient, ∆i,
for the ith coagent. Note that although we eventually prove that, for all θi, ∆i(θi) is equivalent to
the policy gradient of the ith CoMDP, we do not assume this equivalence. Formally, the local policy
gradient of the ith coagent is:

∆i(θi) := E

[ ∞∑
t=0

γtGt
∂ ln (πi (Xt, Ut, θi))

∂θi

∣∣∣∣θ].
What would happen if all coagents updated their parameters using a local and unbiased policy

gradient algorithm? The coagent policy gradient theorem (CPGT) answers this question: If θ is fixed

and all coagents update their parameters following unbiased estimates, ∆̂i(θi), of their local policy
gradients, then the entire network will follow an unbiased estimator of ∇J(θ), which we call the
global policy gradient. For example, if every coagent performs the following update simultaneously
at the end of each episode, then the entire network will be performing stochastic gradient ascent on
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J (without using backpropagation):

θi ← θi + α

∞∑
t=0

γtGt

(
∂ ln (πi (Xt, Ut, θi))

∂θi

)
.

In practice, one would use a more sophisticated policy gradient algorithm than this simple variant
of REINFORCE.

Although Thomas and Barto (2011) present the CPGT in their Theorem 3, the provided proof
is lacking in two ways. First, it is not general enough for our purposes because it only considers
networks with two coagents. Second, it is missing a crucial step. They define a new MDP, the
CoMDP, which models the environment faced by a coagent. They show that the policy gradient
for this new MDP is a component of ∇J(θ). However, they do not show that the chosen definition
of the CoMDP accurately describes the environment that the coagent faces. Without this step,
Thomas and Barto (2011) have shown that there is a new MDP for which the policy gradient is
a component of ∇J(θ), but not that this MDP has any relation to the coagent network. In this
section we provide formal and generalized proofs of the CPGT. Although this proof is an important
contribution of this work, due to space restrictions this section is an abbreviated outline of the proof
in Section A of the supplementary material.

4.1 Conjugate Markov Decision Process (CoMDP)

We model the ith coagent’s environment as an MDP, called the CoMDP, and begin by formally
defining the ith CoMDP. Given M , i, πpre

i , πpost
i , and θ̄i, we define a corresponding CoMDP, M i, as

M i := (X i,U i,Ri, P i, Ri, di0, γi), where:

• We write X̃i
t , Ũ

i
t , and R̃it to denote the state, action, and reward of M i at time t. Below,

we relate these random variables to the corresponding random variables in M . Note that all
random variables in the CoMDP are written with tildes to provide a visual distinction between
terms from the CoMDP and original MDP. Additionally, when it is clear that we are referring
to the ith CoMDP, we often make i implicit and denote these as X̃t, Ũt, and R̃t.

• X i := S × Upre
i . We often denote X i simply as X . This is the input (analogous to a state

set) to the ith coagent. Additionally, for x ∈ X , we denote the S component as x.s and the
Upre component as x.upre. We also sometimes denote an x ∈ X i as (x.s, x.upre). For example,

Pr(X̃i
t=(s, upre)) represents the probability that X̃t has S component s and Upre component

upre.

• U i (or simply U) is an arbitrary set that denotes the output of the ith coagent.

• Ri := R and γi := γ.

• ∀x ∈ X ∀x′ ∈ X ∀u ∈ U ∀θ̄i ∈ Rn−ni ,

P i(x, u, x′, θ̄i) := πpre
i (x′.s, x′.upre)

∑
a∈A

P (x.s, a, x′.s)πpost
i (x, u, a),

Below, we make θ̄i implicit and denote this as P i(x, u, x′). Recall from the definition
of an MDP and its relation to the transition function that this means: P i(x, u, x′) =
Pr(X̃t+1=x′|X̃t=x, Ũt=u).
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Figure 2: Bayesian network depicting the relationships of relevant random variables. Independence
properties can be established by d-separation. Note that these causal properties only apply to the
MDP M discussed above; any such properties of the CoMDPs will be explicitly proven.

• ∀x ∈ X ∀x′ ∈ X ∀u ∈ U ∀r ∈ Ri ∀θ̄i ∈ Rn−ni ,

Ri(x, u, x′, r, θ̄i) :=
∑
a∈A

R(x.s, a, x′.s, r)
P (x.s, a, x′.s)πpost

i (x, u, a)∑
â∈A P (x.s, â, x′.s)πpost

i (x, u, â)
.

Like the transition function, we make θ̄i implicit and write Ri(x, u, x′, r).

• ∀x ∈ X , di0(x) := d0(x.s)πpre
i (x.s, x.upre).

We write Ji(θi) to denote the objective function of M i. Notice that although θ̄i (the parameters
of the other coagents) is not an explicit parameter of the objective function, it is implicitly included
via the CoMDP’s transition function.

We assume that, given the same parameters θi, the ith coagent has the same policy in both the
original MDP and the ith CoMDP. That is,

Assumption 1.

∀s ∈ S, ∀upre ∈ Upre, ∀u ∈ U , ∀θi ∈ Ri, πi((s, upre), u, θi) = Pr(Ũt=u|X̃t=(s, upre), θi).

4.2 The CoMDP Models the Coagent’s Environment

Here we show that our definition of the CoMDP correctly models the coagent’s environment. We do
so by presenting a series of properties and lemmas that each establish different components of the
relationship between the CoMDP and the environment faced by a coagent. Figure 2 depicts the
setup that we have described and makes relevant independence properties clear. The proofs of these
properties and theorems are provided in the supplementary material.

In Properties 1 and 2, by manipulating the definitions of di0 and πpre
i , we show that di0 and the

distribution of X̃0.s capture the distribution of the inputs to the ith coagent.

Property 1. ∀x ∈ X , di0(x) = Pr(S0=x.s, Upre
0 =x.upre).

Property 2. For all s ∈ S, Pr(X̃0.s=s) = d0(s).

In Property 3, we show that P i captures the distributions of the inputs that the ith coagent will
see given the input at the previous step and the output that it selected.
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Property 3. For all x ∈ X , x′ ∈ X , and u ∈ U ,

P i(x, u, x′) = Pr(St+1=x′.s, Upre
t+1=x′.upre|St=x.s, Upre

t =x.upre, Ut=u).

In Property 4, we show that Ri captures the distribution of the rewards that the ith coagent
receives given the output that it selected and the inputs at the current and next steps.

Property 4. For all x ∈ X , x′ ∈ X , u ∈ U , and r ∈ R,

Ri(x, u, x′, r) = Pr(Rt=r|St=x.s, Upre
t =x.upre, Ut=u, St+1=x′.s, Upre

t+1=x′.upre).

In Properties 5 and 6, we show that the distributions of X̃ and X̃t.s capture the distribution of
inputs to the ith coagent.

Property 5. For all s∈S and upre∈Upre
i ,

Pr(X̃t=(s, upre)) = Pr(St=s, U
pre
t =upre).

Property 6. For all s ∈ S,

Pr(X̃t.s=s) = Pr(St=s).

In Property 7, we show that the distribution of X̃t.upre given X̃t.s captures the distribution πpre
i .

Property 7. For all s ∈ S and upre ∈ Upre
i ,

Pr(X̃t.upre=upre|X̃t.s=s) = πpre
i (s, upre).

In Property 8, we show that the distribution of X̃t+1.s given X̃t.s, X̃t.upre , and Ũt captures the
distribution of the S component of the input that the ith coagent will see given the input at the
previous step and the output that it selected.

Property 8. For all s ∈ S, s′ ∈ S, upre ∈ Upre
i , and u ∈ U ,

Pr(X̃t+1.s=s
′|X̃t.s=s, X̃t.upre=upre, Ũt=u)

= Pr(St+1=s′|St=s, Upre
t =upre, Ut=u).

In Property 9, we use Property 8 to show that: Given the S component of the input, the Upre
i

component of the input that the ith coagent will see is independent of the previous input and output.

Property 9. For all s ∈ S, s′ ∈ S, upre ∈ Upre
i , u′pre ∈ U

pre
i , and u ∈ U ,

Pr(X̃t+1.upre=u′pre|X̃t+1.s=s
′)

= Pr(X̃t+1.upre=u′pre|X̃t+1.s=s
′, X̃t=(s, upre), Ũt=u).

In Property 10, we use Assumption 1 and Properties 6, 7, 8, 9, and 10 to show that the
distribution of R̃it captures the distribution of the rewards that the ith coagent receives.
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Property 10. For all r ∈ R, Pr(Rt=r) = Pr(R̃it=r).

We then use Properties 3 and 4 and the definition of M i to show that:

Lemma 1. M i is a Markov decision process.

Finally, in Lemma 2, we use the properties above to show that the CoMDP M i (built from M , i,
πpre
i , πpost

i , and θ̄i) correctly models the local environment of the ith coagent.

Lemma 2. For all M, i, πpre
i , πpost

i , and θ̄i, and given a policy parameterized by θi, the corresponding
CoMDP M i satisfies Properties 1-6 and Property 10.

Lemma 2 is stated more formally in the supplementary material.

4.3 The Coagent Policy Gradient Theorem

We use Property 10 to show that, given the same θ, the objective functions produce the same output
in the original MDP and all CoMDPs. More formally:

Property 11. For all coagents i, for any θ, J(θ)=Ji(θi).

Next, using Lemmas 1 and 2, we show that the local policy gradient, ∆i (the expected value of
the naive REINFORCE update), is equivalent to the gradient ∂Ji

∂θi
of the ith CoMDP.

Lemma 3. For all coagents i, for all θi,
∂Ji(θi)
∂θi

= ∆i(θi).

We can now formally state and prove the CPGT. Using Property 11 and Lemma 3, we show
that the local policy gradients are the components of the global policy gradient:

Theorem 1 (Coagent Policy Gradient Theorem).
∇J(θ) = [∆1(θ1)ᵀ,∆2(θ2)ᵀ, . . . ,∆m(θm)ᵀ]

ᵀ
, where m is the number of coagents and ∆i is the local

policy gradient of the ith coagent.

Corollary 1. If αt is a deterministic positive stepsize,
∑∞
t=0 αt = ∞,

∑∞
t=0 α

2
t < ∞, additional

technical assumptions are met (Bertsekas and Tsitsiklis, 2000, Proposition 3), and each coagent

updates its parameters, θi, with an unbiased local policy gradient update θi ← θi + αt∆̂i(θi), then
J(θ) converges to a finite value and limt→∞∇J(θ)=0.

5 Asynchronous Recurrent Networks

Having formally established the CPGT, we now turn to extending the PGCN framework to
asynchronous and cyclic networks—networks where the coagents execute, that is, look at their local
state and choose actions, asynchronously and without any necessary order. This extension removes
the necessity for a biologically implausible perfect clock, allowing the network to function with an
imprecise clock, or with no clock at all. This also allows for distributed implementations, where
nodes may not execute synchronously.

We first consider how we may modify an MDP to allow coagents to execute at arbitrary points
in time, including at points in between our usual time steps. We make a simplifying assumption:
Time is discrete (as opposed to continuous). We break a time step of the MDP into an arbitrarily
large number of shorter steps, which we call atomic time steps. We assume that the environment
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performs its usual update regularly every n ∈ Z+ atomic time steps, and that each coagent executes
(chooses an output in its respective U i) at each atomic time step with some probability, given by an
arbitrary but fixed probability distribution. The duration of atomic time steps can be arbitrarily
small to allow for arbitrarily close approximations to continuous time or to model, for example, a
CPU cluster that performs billions of updates per second. The objective is still the expected value
of G0, the discounted sum of rewards from all atomic time steps: J(θ) = E[G0|θ] = E[

∑∞
t=0 γ

tRt|θ].
Next, we extend the coagent framework to allow cyclic connections. Previously, we considered a

coagent’s local state to be captured by Xi
t = (St, U

pre
t ), where Upre

t is some combination of outputs
from coagents that come before the ith coagent topologically. We now allow coagents to also consider
the output of all m coagents on the previous time step, Uall

t−1 = {U1
t−1, U

2
t−1, . . . U

m
t−1}. In the new

setting, the local state at time t is therefore given by Xi
t = (St, U

pre
t , Uall

t−1). The corresponding local
state set is given by X i = S × Upre × U1 × · · · × Um. In this construction, when t = 0, we must
consider some initial output of each coagent, Uall

−1. For the ith coagent, we define U i−1 to be drawn
from some independent initial distribution, hi0, such that for all u ∈ U i, hi0(u) = Pr(U i−1 = u).

We redefine how each coagent selects actions in the asynchronous setting. First, we define a
random variable, Eit , the value of which is 1 if the ith coagent executes on atomic time step t, and 0
otherwise. One useful factor for deciding whether a coagent should update or not is the number
of time steps since its last execution. To this end, we define a counter for each coagent given at
time t for the ith coagent by Cit ∈ N (define N to be the set of non-negative integers). The counter
increments by one at each atomic time step, and resets to zero when the coagent executes. We
define a function, fc, that captures this behavior, such that Ct+1 = fc(Ct, Et). Each coagent has
a fixed execution function, βi : X i × N → [0, 1], which defines the probability of the ith coagent
executing on time step t, given the coagent’s local state and its counter. That is, for all x ∈ X i and
c ∈ N, βi(x, c) := Pr(Eit = 1|Xi

t = x,Cit = c). Finally, the action, U it , that the ith coagent selects at
time t is sampled from πi(X

i
t , ·, θi) if Eit = 1, and is U it−1 otherwise. That is, if the agent does not

execute on atomic time step t, then it should repeat its action from time t− 1.
This asynchronous setting does not match the usual MDP description because the policy

represented by the network is non-Markovian—that is, we cannot determine the distribution over
the output of the network given only the current state, St. Therefore, we cannot apply the CPGT.
However, we show that the asynchronous setting can be reduced to the usual acyclic, synchronous
setting using formulaic changes to the state set, transition function, and network structure. This
allows us to derive an expression for the gradient with respect to the parameters of the original,
asynchronous network, and therefore to train such a network. We prove a result similar to the
CPGT that allows us to update the parameters of each coagent using only states and actions from
atomic time steps when the coagent executes.

5.1 The CPGT for Asynchronous Networks

We first extend the definition of the local policy gradient, ∆i, to the asynchronous setting. In the
synchronous setting, the local policy gradient captures the update that a coagent would perform if
it was following an unbiased policy gradient algorithm using its local inputs and outputs. In the
asynchronous setting, we capture the update that an agent would perform if it were to consider only
the local inputs and outputs it sees when it executes. Formally, we define the asynchronous local
policy gradient :

∆i(θi) := E

[ ∞∑
t=0

Eitγ
tGt

∂ ln
(
πi
(
(St, U

pre
t ), Ut, θi

))
∂θi

∣∣∣∣∣θ
]
.
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The only change from the synchronous version is the introduction of Eit . Note that when the
coagent does not execute (Eit = 0), the entire inner expression is 0. In other words, these states and
actions can be ignored. An algorithm estimating Gt would still need to consider the rewards from
every atomic time step, including time steps where the coagent does not execute. However, the
algorithm may still be designed such that the coagents only perform a computation when executing.
For example, during execution, coagents may be given the discounted sum of rewards since their last
execution. The important question is then: does something like the CPGT hold for the asynchronous
local policy gradient? If each coagent executes a policy gradient algorithm using unbiased estimates
of ∆i, does the network still perform gradient descent on the asynchronous setting objective, J?
The answer turns out to be yes.

Theorem 2 (Asynchronous Coagent Policy Gradient Theorem).

∇J(θ) = [∆1(θ1)ᵀ,∆2(θ2)ᵀ, . . . ,∆m(θm)ᵀ]
ᵀ
,

where m is the number of coagents and ∆i is the asynchronous local policy gradient of the ith coagent.

Proof. The general approach is to show that for any MDP M , with an asynchronous network
represented by π with parameters θ, there is an augmented MDP, M̀ , with objective J̀ and an acylic,
synchronous network, π̀, with the same parameters θ, such that J(θ) = J̀(θ). Thus, we reduce the
asynchronous problem to an equivalent synchronous problem. Applying the CPGT to this reduced
setting allows us to derive Theorem 2.

The original MDP, M , is given by the tuple (S,A, P,R, d0, γ). We define the augmented MDP,

M̀ , as the tuple, (S̀, À, P̀ , R̀, d̀0, γ̀). We would like M̀ to hold all of the information necessary for
each coagent to compute its next output, including the previous outputs and counters of all coagents.
This will allow us to construct an acyclic version of the network to which we may apply the CPGT.
We define Uall = {U1,U2, . . . ,Um} to be the combined output set of all m coagents in π, C = Nm
to be the set of possible counter values, and E = {0, 1}m to be the set of possible combinations
of coagent executions. We define the state set to be S̀ = S × Uall × C, and the action set to be
À = A × Uall × E . We write the random variables representing the state, action, and reward at
time t as S̀t, Àt, and R̀t respectively. Additionally, we refer to the components of values s̀ ∈ S̀ and
à ∈ À and the components of the random variables S̀t and Àt using the same notation as for the
components of Xt above (for example, s̀.s is the S component of s̀, Àt.u

all is the Uall component of
Àt, etc.). For vector components, we write the ith component of the vector using a subscript i (for
example, s̀.uall

i is the ith component of s̀.uall).

The transition function, P̀ , captures the original transition function, the fact that S̀t+1.u
all =

Àt.u
all, and the behavior of the counters. For all s̀, s̀′ ∈ S̀ and à ∈ À, P̀ (s̀, à, s̀′) is given by

P (s̀.s, à.a, s̀′.s) if s̀′.uall=à.uall and s̀′.c=fc(s̀.c, à.e), and 0 otherwise. For all s̀, s̀′ ∈ S̀, à ∈ À, and
r ∈ R, the reward distribution is simply given by R̀(s̀, à, s̀′, r)=R(s̀.s, à.a, s̀′.s, r). The initial state

distribution, d̀0, captures the original state distribution, the initialization of each coagent, and the
initialization of the counters to zero. For all s̀∈S̀, it is given by d̀0(s̀)=d0(s̀.s)

∏m
i=1 h0(s̀.ui) if s̀.c

is the zero vector, and 0 otherwise. The discount parameter is γ̀=γ. The objective is the usual:
J̀(θ)=E[G̀0|θ], where G̀0=E[

∑∞
t=0 γ̀

tR̀t|θ].
We next define the synchronous network, π̀, in terms of components of the original asynchronous

network, π—specifically, each πi, βi, and θi. We must modify the original network to accept inputs
in S̀ and produce outputs in À. Recall that in the asynchronous network, the local state at time t of
the ith coagent is given by Xi

t = (St, U
pre
t , Uall

t−1). In the augmented MDP, the information in Uall
t−1 is
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contained in S̀t, so the local state of the ith coagent in the synchronous network is X̀i
t = (S̀t, Ù

pre
t ),

with accompanying state set X̀ i = S̀ × Ùpre. To produce the Uall component of the action, Àt.u
all,

we append the output of each coagent to the action. In doing so, we have removed the need for
cyclic connections, but still must deal with the asynchronous execution.

The critical step is as follows: We represent each coagent in the asynchronous network by two
coagents in the the synchronous network, the first of which represents the execution function, βi,
and the second of which represents the original policy, πi. At time step t, the first coagent accepts
X̀i
t and outputs 1 with probability βi((S̀t.s, Ù

pre
t , S̀t.u), S̀t.ci), and 0 otherwise. We append the

output of every such coagent to the action in order to produce the E component of the action, Àt.e.
Because the coagent representing βi executes before the coagent representing πi, from the latter’s
perspective, the output of the former is present in Ùpre

t , that is, Ùpre
t .ei = Àt.ei. If Ùpre

t .ei = 1, the
coagent samples a new action from πi. Otherwise, it repeats its previous action, which can be read

from its local state (that is, X̀i
t .u

all
i = Ù it−1). Formally, for all (s̀, ùpre) ∈ X̀ i and θi, the probability

of the latter coagent producing action ù ∈ Ù i is given by:

π̀i((s̀, ùpre), ù, θi):=


πi((s̀.s, ùpre, s̀.u

all), ù, θi), if ùpre.ei=1

1, if ùpre.ei=0 and s̀.uall
i =ù

0, otherwise.

This completes the description of π̀. In the supplementary material, we prove that this network
exactly captures the behavior of the asynchronous network—that is, π̀((s, u, c), (a, u′, e), θ) = Pr(At =
a, Uall

t = u′, Et = e|St = s, Uall
t−1 = u,Ct = c, θ) for all possible values of a, u, c, a, u′, e, and θ in

their appropriate sets.
The proof that J(θ) = J̀(θ) is given in Section B of the supplementary material, but it follows

intuitively from the fact that 1) the “hidden” state of the network is now captured by the state
set, 2) π̀ accurately captures the dynamics of the hidden state, and 3) this hidden state does not
materially affect the transition function or the reward distribution with respect to the original states
and actions.

Having shown that the expected return in the asynchronous setting is equal to the expected
return in the synchronous setting, we turn to deriving the asynchronous local policy gradient, ∆i. It
follows from J(θ) = J̀(θ) that ∇J(θ) = ∇J̀(θ). Since π̀ is a synchronous, acylic network, and M̀ is
an MDP, we can apply the CPGT to find an expression for ∇J̀(θ). This gives us for the ith coagent
in the synchronous network:

∂J̀(θ)

∂θi
= E

[ ∞∑
t=0

γ̀tG̀t
∂ ln

(
π̀i

(
(S̀t, Ù

pre
t ), Ùt, θi

))
∂θi

∣∣∣∣∣θ
]
.

Consider ∂ ln
(
π̀i((S̀t, Ù

pre
t ), Ùt, θi)

)
/∂θi, which we abbreviate as ∂π̀i/∂θi. When Ùpre

t .ei = 0, we

know that the action is Ù it = S̀t.ui = Ù it−1 regardless of θ. Therefore, in these local states, ∂π̀i/∂θi
is zero. When Ùpre

t .ei = 1, we see from the definition of π̀ that ∂π̀i/∂θi=∂πi/∂θi. Therefore, we see
that the in all cases, ∂π̀i/∂θi=(Ùpre

t .ei)∂π/∂θi. Substituting this into the above expression yields:

E

[ ∞∑
t=0

(Ùpre
t .ei)γ̀

tG̀k
∂ ln

(
πi
(
(S̀t.s, Ù

pre
t , St.u

all), Ùt, θi
))

∂θi

∣∣∣∣θ].
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Figure 3: The option-critic framework Bacon et al. (2017) depicted as a coagent network. The
network receives the previous state, st, and option, ωt−1. The termination function, β, chooses
whether to continue the previous option, or to allow πΩ to select a new option. This choice is
depicted by the position of the switch in the center of the figure. πω chooses a new action, at, based
on the resulting state-option pair.

In the proof that J(θ) = J̀(θ) given in Section B of the supplementary material, we show that
the distribution over all over the analogous random variables is equivalent in both settings (for
example, for all s ∈ S, Pr(St = s) = Pr(S̀t.s = s)). Substituting each of the random variables of M
into the above expression yields precisely the asynchronous local policy gradient, ∆i.

6 Case Study: Option-Critic

The option-critic framework Bacon et al. (2017) aspires to many of the same goals as coagent
networks: namely, hierarchical learning and temporal abstraction. In this section, we show that the
architecture is equivalently described in terms of a simple, three-node coagent network, depicted in
Figure 3. We show that the policy gradients derived by Bacon et al. (2017) are equivalent to the
gradients suggested by the CPGT. While the original derivation required several steps, we show that
the derivation is nearly trivial using the CPGT, demonstrating its utility as a tool for analyzing a
variety of important RL algorithms.

In this section, we adhere mostly to the notation given by Bacon et al. (2017), with some minor
changes used to enhance conceptual clarity regarding the inputs and outputs of each policy. In
the option-critic framework, the agent is given a set of options, Ω. The agent selects an option,
ω∈Ω, by sampling from a policy πΩ : S × Ω → [0, 1]. An action, a∈A, is then selected from a
policy which considers both the state and the current option: πω : (S × Ω) × A → [0, 1]. A new
option is not selected at every time step; rather, an option is run until a termination function,
β : (S × Ω)× {0, 1} → [0, 1], selects the termination action, 0. If the action 1 is selected, then the
current option continues. πω is parameterized by weights θ, and β by weights ϑ. Bacon et al. (2017)
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gave the corresponding policy gradients, which we rewrite as:

∂J

∂θ
=

∑
x∈(S×Ω)

dπΩ(x)
∑
a∈A

∂πω(x, a)

∂θ
QU (x, a), (1)

∂J

∂ϑ
= −

∑
x∈(S×Ω)

dπΩ(x)
∂β(x, 0)

∂ϑ
AΩ(x.s, x.ω), (2)

where dπΩ(x) is a discounted weighting of state-option pairs, given by dπΩ(x) :=
∑∞
t=0 γ

t Pr(st =
x.s, ωt=x.ω), QU (x, a) is the expected return from choosing option x.ω and action a at state s
under the current policy, and AΩ(s, ω) is the advantage of choosing option ω, given by AΩ(s, ω) =
QΩ(s, ω)−VΩ(s), where QΩ(s, ω) is the expected return from choosing option ω in state s, and VΩ(s)
is the expected return from beginning in state s with no option selected. No policy gradient theorem
is provided for πΩ, but Bacon et al. (2017) suggest policy gradient methods at the SMDP level,
planning, or intra-option Q-learning Sutton et al. (1999). Another option is to use the asynchronous
local policy gradient presented in Section 5. This has the benefit of providing a unified approach to
training the network, rather than the piecemeal suggestions above.

6.1 PGCN Equivalence

Previously, the CPGT was written in terms of expected values. An equivalent expression of the
local gradient for policy πi is the sum over the local state set, Xi, and the local action set, Ui:
∂J(θ)/∂θi =

∑
x∈Xi

dπi (x)
∑
u∈Ui

∂πi(x,u)
∂θi

Qi(x, u), where Qi(x, u) = E[Gt|Xi
t=x, U

i
t=u]. Deriving

the policy gradient for a particular coagent simply requires identifying the inputs and outputs and
plugging them into this formula. A network implementing the option critic in the general case is
shown in Figure 3. We show that applying the PCGT to this network yields (1) and (2).

First consider the policy gradient for πω, that is, ∂J/∂θ: the input set is Xω = S × Ω, and the
action set is A. The local initial state distribution (the dπi term) is given exactly by dπΩ, and the
local state-action value function (the Qi term) is given exactly by QU . Directly substituting these
terms into the CPGT immediately yields (1). Note that this derivation is completely trivial using
the CPGT: only direct substitution is required. In contrast, the original derivation from Bacon et al.
(2017) required a degree of complexity and several steps.

Next consider ∂J/∂ϑ. The input set is again Xβ = S × Ω, but the action set is {0, 1}. The
local state distribution is again the distribution over state-option pairs, given by dπΩ. The PCGN
expression gives us

∂J

∂ϑ
=

∑
x∈(S×Ω)

dπΩ(x)
∑

u∈{0,1}

∂β(x, u)

∂ϑ
Qβ(x, u).

We will show that this is equivalent to (2). Note that we only have two actions, whose probabilities
must sum to one. Therefore, the gradients of the policy are equal in magnitude but opposite in sign.

That is, for all x ∈ (S × Ω): β(x, 0) + β(x, 1) = 1, so ∂β(x,0)
∂ϑ = −∂β(x,1)

∂ϑ . Additionally, we know
that Qβ(x, 1) is the expected value of continuing option x.ω in state x.s, given by QΩ(x.s, x.ω).
Qβ(x, 0) is the expected value of choosing a new action in state x.s, given by VΩ(x.s), and therefore,
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Qβ(x, 1)−Qβ(x, 0) = AΩ(x.s, x.ω). The full derivation is:

∂J

∂ϑ
=
∑

x∈(S×Ω)

dπΩ(x)

[
∂β(x, 0)

∂ϑ
Qβ(x, 0)+

∂β(x, 1)

∂ϑ
Qβ(x, 1)

]

=−
∑

x∈(S×Ω)

dπΩ(x)
∂β(x, 0)

∂ϑ
(Qβ(x, 1)−Qβ(x, 0))

=−
∑

x∈(S×Ω)

dπΩ(x)
∂β(x, 0)

∂ϑ
AΩ(x.s, x.ω).

We see that the result is exactly equivalent to (2). While this derivation required some minor symbol
manipulation, the CPGT greatly simplified the derivation to the point of near triviality relative
to the approach used by Bacon et al. (2017). In fact, it was not strictly necessary to reduce the
gradient to this form: It is reasonable to implement an algorithm using the raw result of the CPGT.
Using the option-critic framework as an example, we have shown that the CPGT is an enormously
useful tool for simplifying the derivation of the policy gradients for arbitrary stochastic networks.

7 Empirical Support for the CPGT

To empirically support the CPGT, we compare the gradient (∇J) estimates of the CPGT and
a brute force method. Finite difference methods are a well-established technique for computing
the gradient of a function from samples; they serve as a straightforward baseline to evaluate the
gradients produced by our algorithm. We expect these estimates to approach the same value as the
amount of data used approaches infinity. For the purposes of testing the CPGT, we use a simple toy
problem described in Section C of the supplementary material. The results are presented in Figure
4; this data provides empirical support for the CPGT. The coagents asynchronously execute; the
environment updates every step and each coagent has a 0.5 probability of executing each step. The
gradient estimates appear to converge, providing empirical support for the CPGT.

8 Conclusion

We provide a formal and general proof of the coagent policy gradient theorem (CPGT) for stochastic
policy networks, and extend it to the asynchronous and recurrent setting. This result demonstrates
that, if coagents apply standard policy gradient algorithms from the perspective of their inputs
and outputs, then the entire network will follow the policy gradient, even in asynchronous or
recurrent settings, or those without a clock. We empirically support the CPGT, and show that the
option-critic framework is a special case of the CPGT. Future work will focus on the potential for
massive parallelization of asynchronous coagent networks, and on the potential for many levels of
implicit temporal abstraction through varying coagent execution rates.
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Supplementary Material

A Complete CPGT Proofs

Assumption 1. ∀s ∈ S ∀upre ∈ Upre ∀u ∈ U ∀θi ∈ Ri, πi((s, upre), u, θi) = Pr(Ũt = u|X̃t = (s, upre), θi).

Property 1.
∀x ∈ X , di0(x) = Pr(S0 = x.s, Upre

0 = x.upre).

Proof.

di0(x) =d0(x.s)πpre
i (x.s, x.upre)

(a)
= Pr(S0 = x.s) Pr(Upre

0 = x.upre|S0 = x.s)

= Pr(S0 = x.s, Upre
0 = x.upre),

where (a) follows from the definitions of πpre
i and d0.

Property 2.
∀s ∈ S, Pr(X̃0.s = s) = d0(s).

Proof.

Pr(X̃0.s = s)
(a)
=

∑
upre∈Upre

Pr(X̃0.s = s, X̃0.upre = upre)

(b)
=

∑
upre∈Upre

di0((s, upre))

(c)
=

∑
upre∈Upre

d0(s)πpre
i (s, upre)

=d0(s)
∑

upre∈Upre

Pr(Upre
t = upre|St = s)

︸ ︷︷ ︸
=1

=d0(s),

where (a) follows from marginalization over upre, (b) follows from the definition of the initial state distribution for
an MDP, and (c) follows from the definition of di0 for the CoMDP (see Property 1).

Property 3.

∀x ∈ X ∀x′ ∈ X ∀u ∈ U , P i(x, u, x′) = Pr(St+1 = x′.s, Upre
t+1 = x′.upre|St = x.s, Upre

t = x.upre, Ut = u).

Proof.

P i(x, u, x′) =πpre
i (x′.s, x′.upre)

∑
a∈A

P (x.s, a, x′.s)πpost
i (x, u, a)

(a)
=
∑
a∈A

πpost
i (x, u, a) Pr(St+1 = x′.s|St = x.s, At = a) Pr(Upre

t+1 = x′.upre|St+1 = x′.s)

(b)
=
∑
a∈A

πpost
i (x, u, a) Pr(St+1 = x′.s|St = x.s, At = a)

× Pr(Upre
t+1 = x′.upre|St+1 = x′.s, St = x.s, At = a),

where (a) follows from the definitions of πpre
i and the transition function P and (b) follows from M ’s conditional

independence properties. The definition of conditional probability allows us to combine the last two terms:
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P i(x, u, x′) =
∑
a∈A

πpost
i (x, u, a) Pr(St+1 = x′.s, Upre

t+1 = x′.upre|St = x.s, At = a)

(a)
=
∑
a∈A

Pr(At = a|St = x.s, Upre
t = x.upre, Ut = u)

× Pr(St+1 = x′.s, Upre
t+1 = x′.upre|St = x.s, Upre

t = x.upre, Ut = u,At = a)

(b)
= Pr(St+1 = x′.s, Upre

t+1 = x′.upre|St = x.s, Upre
t = x.upre, Ut = u),

where (a) follows from the definition of πpost
i and the application of M ’s independence properties and (b) follows

from marginalization over a.

Property 4.

∀x ∈ X ∀x′ ∈ X ∀u ∈ U ∀r ∈ R, Ri(x, u, x′, r)
= Pr(Rt = r|St = x.s, Upre

t = x.upre, Ut = u, St+1 = x′.s, Upre
t+1 = x′.upre).

Proof.

Ri(x, u, x′, r) :=
∑
a∈A

R(x.s, a, x′.s, r)
P (x.s, a, x′.s)πpost

i (x, u, a)∑
â∈A P (x.s, â, x′.s)πpost

i (x, u, â)

(a)
=
∑
a∈A

R(x.s, a, x′.s, r)P (x.s, a, x′.s)πpost
i (x, u, a)

÷
[∑
â∈A

Pr(St+1 = x′.s|St = x.s, At = â, Upre
t = x.upre, Ut = u)

× Pr(At = â|St = x.s, Upre
t = x.upre, Ut = u)

]
(b)
=

∑
a∈AR(x.s, a, x′.s, r)P (x.s, a, x′.s)πpost

i (x, u, a)

Pr(St+1 = x′.s|St = x.s, Upre
t = x.upre, Ut = u)

,

where (a) follows from the definitions of terms in the denominator and M ’s conditional independence properties
(applied to the first term in the denominator) and (b) follows from marginalization over â. Expanding the definitions
of the remaining terms, we get:

Ri(x, u, x′, r) =

∑
a∈A Pr(Rt = r|St = x.s, At = a, St+1 = x′.s) Pr(St+1 = x′.s|St = x.s, At = a)

Pr(St+1 = x′.s|St = x.s, Upre
t = x.upre, Ut = u)

× Pr(At = a|St = x.s, Upre
t = x.upre, Ut = u)

(a)
=

1

Pr(St+1 = x′.s|St = x.s, Upre
t = x.upre, Ut = u)

×
∑
a∈A

Pr(Rt = r|St = x.s, At = a, St+1 = x′.s, Upre
t = x.upre, Ut = u)

× Pr(St+1 = x′.s|St = x.s, At = a, Upre
t = x.upre, Ut = u)

× Pr(At = a|St = x.s, Upre
t = x.upre, Ut = u),

where (a) follows from M ’s conditional independence properties (applied to the Pr(Rt = r|...) and Pr(St+1 = x′.s|...)
terms). Rearranging and taking advantage of marginalization over a (the Pr(Rt = r|St+1 = x′.s, ...) and Pr(St+1 =
x′.s|...) terms can be viewed as a union), we get:

Ri(x, u, x′, r) =
Pr(St+1 = x′.s|St = x.s, Upre

t = x.upre, Ut = u)

Pr(St+1 = x′.s|St = x.s, Upre
t = x.upre, Ut = u)

× Pr(Rt = r|St = x.s, St+1 = x′.s, Upre
t = x.upre, Ut = u)

= Pr(Rt = r|St = x.s, St+1 = x′.s, Upre
t = x.upre, Ut = u)

(a)
= Pr(Rt = r|St = x.s, Upre

t = x.upre, Ut = u, St+1 = x′.s, Upre
t+1 = x′.upre),
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where (a) follows from M ’s conditional independence properties.

Property 5.

∀s ∈ S ∀upre ∈ Upre
i , Pr(X̃t = (s, upre)) = Pr(St = s, Upre

t = upre).

Proof.
We present a proof by induction:
Base Case:

Pr(S0 = s, Upre
0 = upre) = Pr(S0 = s) Pr(Upre

0 = upre|S0 = s)

=d0(s)πpre
i (s, upre)

=di0((s, upre))

= Pr(X̃i
0 = (s, upre)).

Inductive Step:

Pr(St+1 = s′, Upre
t+1 = u′pre)

(a)
=

∑
(s,upre)∈X

Pr(St = s, Upre
t = upre) Pr(St+1 = s′, Upre

t+1 = u′pre|St = s, Upre
t = upre)

(b)
=

∑
(s,upre)∈X

Pr(St = s, Upre
t = upre)

∑
u∈U

Pr(Ut = u|St = s, Upre
t = upre)

× Pr(St+1 = s′, Upre
t+1 = u′pre|St = s, Upre

t = upre, Ut = u)

(c)
=

∑
(s,upre)∈X

Pr(X̃t = (s, upre))
∑
u∈U

Pr(Ũt = u|X̃t = (s, upre))

× Pr(St+1 = s′, Upre
t+1 = u′pre|St = s, Upre

t = upre, Ut = u),

where (a) follows from marginalization over (s, upre), (b) follows from marginalization over u, and (c) is through
application of the base case and Assumption 1. Notice that the last term is equivalent to P i by Property 3, which is
equivalent to the final term in the next step:

Pr(St+1 = s′, Upre
t+1 = u′pre) =

∑
(s,upre)∈X

Pr(X̃t = (s, upre))
∑
u∈U

Pr(Ũt = u|X̃t = (s, upre))

× Pr(X̃t+1 = (s′, u′pre)|X̃t = (s, upre), Ũt = u)

(a)
=

∑
(s,upre)∈X

Pr(X̃t = (s, upre)) Pr(X̃t+1 = (s′, u′pre)|X̃t = (s, upre))

(b)
= Pr(X̃t+1 = (s′, u′pre)),

where (a) and (b) follow from marginalization over u and (s, upre), respectively.

Property 6.

∀s ∈ S,Pr(St = s) = Pr(X̃t.s = s).

Proof.

Pr(St = s) =
∑

upre∈Upre
i

Pr(St = s, Upre
t = upre)

(a)
=

∑
upre∈Upre

i

Pr(X̃t = (s, upre))

(b)
= Pr(X̃t.s = s),

where (a) follows from Property 5 and (b) follows from marginalization over upre.
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Property 7. ∀s ∈ S ∀upre ∈ Upre
i , πpre

i (s, upre) = Pr(X̃t.upre = upre|X̃t.s = s).

Recall that πpre
i (s, upre) := Pr(Upre

t = upre|St = s).

Proof.

πpre
i (s, upre) = Pr(Upre

t = upre|St = s)

=
Pr(Upre

t = upre, St = s)

Pr(St = s)

(a)
=

Pr(X̃t.upre = upre, X̃t.s = s)

Pr(X̃t.s = s)

= Pr(X̃t.upre = upre|X̃t.s = s),

where (a) follows from properties 5 and 6.

Property 8.

∀s ∈ S ∀s′ ∈ S ∀upre ∈ Upre
i ∀u ∈ U ,

Pr(X̃t+1.s = s′|X̃t.s = s, X̃t.upre = upre, Ũt = u) = Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u).

Proof.

Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u)

(a)
=
∑
a∈A

πpost
i ((s, upre), u, a) Pr(St+1 = s′|St = s, Upre

t = upre, Ut = u,At = a)

(b)
=
∑
a∈A

πpost
i ((s, upre), u, a)

∑
u′
pre∈Upre

Pr(Upre
t+1 = u′pre|St = s, Upre

t = upre, Ut = u,At = a)

× Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u,At = a, Upre

t+1 = u′pre)

(c)
=
∑
a∈A

πpost
i ((s, upre), u, a)

∑
u′
pre∈Upre

Pr(Upre
t+1 = u′pre|St = s, Upre

t = upre, Ut = u,At = a, St+1 = s′)

× Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u,At = a)

(d)
=
∑
a∈A

πpost
i ((s, upre), u, a)

∑
u′
pre∈Upre

Pr(Upre
t+1 = u′pre|St+1 = s′) Pr(St+1 = s′|St = s,At = a),

where (a) follows from marginalization over a and the definition of πpost
i , (b) follows from marginalization over

u′pre, (c) follows from the fact that (abbreviating and leaving out the common givens) Pr(u′pre) Pr(s′|u′pre) =
Pr(u′pre|s′) Pr(s′), and (d) follows from M ’s conditional independence properties (applied to the second and third
terms). Notice that the second and third terms above are equivalent to P and πpre

i ; plugging those in and rearranging:

Pr(X̃t+1.s = s′|X̃t.s = s, X̃t.upre =
∑

u′
pre∈Upre

πpre
i (s′, u′pre)

∑
a∈A

P (s, a, s′)πpost
i ((s, upre), u, a)

(a)
=

∑
u′
pre∈Upre

P i((s, upre), u, (s′, u′pre))

(b)
=

∑
u′
pre∈Upre

Pr(X̃t+1.upre = u′pre|X̃t = (s, upre), Ũt = u)

× Pr(X̃t+1.s = s′|X̃t+1.upre = u′pre, X̃t = (s, upre), Ũt = u)

(c)
= Pr(X̃t+1.s = s′|X̃t.s = s, X̃t.upre = upre, Ũt = u),

where (a) follows from the definition of P i for the CoMDP, (b) follows from the definition of conditional probability,
and (c) follows from marginalization over u′pre.
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Property 9.

∀s ∈ S ∀s′ ∈ S ∀upre ∈ Upre
i ∀u′pre ∈ U

pre
i ∀u ∈ U ,

Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′) = Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′, X̃t = (s, upre), Ũt = u).

Proof.

Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′, X̃t = (s, upre), Ũt = u)

=
Pr(X̃t+1.upre = u′pre, X̃t+1.s = s′|X̃t = (s, upre), Ũt = u)

Pr(X̃t+1.s = s′|X̃t = (s, upre), Ũt = u)

(a)
=

P i((s, upre), u, (s′, u′pre))

Pr(St+1 = s′|St = s, Upre = upre, Ut = u)

=
πpre
i (s′, u′pre)

∑
a∈A P (s, a, s′)πpost

i ((s, upre), u, a)

Pr(St+1 = s′|St = s, Upre = upre, Ut = u)
,

where (a) follows from Property 8 applied to the denominator. Expanding the P term and applying M ’s conditional
independence properties:

Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′, X̃t = (s, upre), Ũt = u)

=
πpre
i (s′, u′pre)

∑
a∈A Pr(St+1 = s′|St = s, Upre

t = upre, Ut = u,At = a)πpost
i ((s, upre), u, a)

Pr(St+1 = s′|St = s, Upre = upre, Ut = u)

(a)
=
πpre
i (s′, u′pre) Pr(St+1 = s′|St = s, Upre

t = upre, Ut = u)

Pr(St+1 = s′|St = s, Upre = upre, Ut = u)

= Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′),

where (a) follows from marginalization over a.

Property 10.

∀r ∈ R, Pr(Rt = r) = Pr(R̃it = r).

Proof.

Pr(Rt = r) =
∑
s∈S

Pr(St = s)
∑

upre∈Upre

Pr(Upre
t = upre|St = s)

∑
u∈U

Pr(Ut = u|St = s, Upre
t = upre)

×
∑
s′∈S

Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u)

×
∑

u′
pre∈Upre

Pr(Upre
t+1 = u′pre|St = s, Upre

t = upre, Ut = u, St+1 = s′)

× Pr(Rt = r|St = s, Upre
t = upre, Ut = u, St+1 = s′, Upre

t+1 = u′pre),

by repeated marginalization. Applying M ’s conditional independence properties to the Pr(Upre
t+1...) term:

Pr(Rt = r) =
∑
s∈S

Pr(St = s)
∑

upre∈Upre

Pr(Upre
t = upre|St = s)

∑
u∈U

Pr(Ut = u|St = s, Upre
t = upre)

×
∑
s′∈S

Pr(St+1 = s′|St = s, Upre
t = upre, Ut = u)

∑
u′
pre∈Upre

Pr(Upre
t+1 = u′pre|St+1 = s′)

× Pr(Rt = r|St = s, Upre
t = upre, Ut = u, St+1 = s′, Upre

t+1 = u′pre)

(a)
=
∑
s∈S

Pr(X̃t.s = s)
∑

upre∈Upre

Pr(X̃t.upre = upre|X̃t.s = s)
∑
u∈U

Pr(Ũt = u|X̃t = (s, upre))

×
∑
s′∈S

Pr(X̃t+1.s = s′|X̃t = (s, upre), Ũt = u)
∑

u′
pre∈Upre

Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′)

× Pr(R̃it = r|X̃t = (s, upre), Ũt = u, X̃t+1 = (s′, u′pre)),
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where (a) follows from properties that show various equivalences between the two MDP’s. Specifically: Property 6
(first term), Property 7 (second and fifth terms), Assumption 1 (third term), Property 8 (fourth term), and Property
4 (last term). Next, we apply Property 9 to the fifth term:

Pr(Rt = r) =
∑
s∈S

Pr(X̃t.s = s)
∑

upre∈Upre

Pr(X̃t.upre = upre|X̃t.s = s)
∑
u∈U

Pr(Ũt = u|X̃t = (s, upre))

×
∑
s′∈S

Pr(X̃t+1.s = s′|X̃t = (s, upre), Ũt = u)

×
∑

u′
pre∈Upre

Pr(X̃t+1.upre = u′pre|X̃t+1.s = s′, X̃t = (s, upre), Ũt = u)

× Pr(R̃it = r|X̃t = (s, upre), Ũt = u, X̃t+1 = (s′, u′pre))

(a)
=(1)(1)(1)(1)(1) Pr(R̃it = r)

= Pr(R̃it = r),

where (a) follows from repeated marginalization.

Lemma 1. M i is a Markov decision process.

Proof. Having defined X i as the state set, U i as the action set, Ri as the reward set, P i as the transition function,
Ri as the reward function, di0 as the initial state distribution, and γi as the discount parameter, all that remains is to
ensure that P i, Ri, and di0 satisfy their necessary requirements. That is, we must show that these functions are always
non-negative and that ∀x ∈ X ,∀u ∈ U ,

∑
x′∈X P

i(x, u, x′) = 1, ∀x ∈ X ,∀u ∈ U ,∀x′ ∈ X ,
∑
r∈Ri Ri(x, u, x′, r) = 1,

and
∑
x∈X d

i
0(x) = 1.

The functions are always non-negative because each term in each definition is always non-negative. Next, we
show that the sum over the transition function is 1:

∀x ∈ X ,∀u ∈ U ,∑
x′∈X

P i(x, u, x′)
(a)
=
∑
x′∈X

Pr(St+1 = x′.s, Upre
t+1 = x′.upre|St = x.s, Upre

t = x.upre, Ut = u)

=
∑
x′.s∈S

∑
x′.upre∈Upre

Pr(St+1 = x′.s, Upre
t+1 = x′.upre|St = x.s, Upre

t = x.upre, Ut = u)

=1,

where (a) follows from Property 3. Next, we show that the sum over the reward function is 1:

∀x ∈ X , ∀u ∈ U , ∀x′ ∈ X ,∑
r∈Ri

Ri(x, u, x′, r)
(a)
=
∑
r∈R

Pr(Rt = r|St = x.s, Upre
t = x.upre, Ut = u, St+1 = x′.s, Upre

t+1 = x′.upre)

=1,

where (a) follows from the fact that Ri := R and from Property 4.
Finally, we show that the sum of the initial state distribution is 1:∑

x∈X
di0(x)

(a)
=
∑
x∈X

d0(x.s) πpre
i (x.s, x.upre)︸ ︷︷ ︸

=Pr(Upre
0 =x.upre|S0=x.s)

=
∑
x.s∈S

∑
x.upre∈Upre

Pr(S0 = x.s, Upre
0 = x.upre)

=1,

where (a) follows from the definition of di0 for the CoMDP.
Therefore, M i is a Markov decision process.

Lemma 2. For all M, i, πpre
i , πpost

i , and θ̄i, and given a policy parameterized by θi, the corresponding CoMDP M i

satisfies:
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• ∀x ∈ X ∀x′ ∈ X ∀u ∈ U ∀r ∈ R, P i(x, u, x′)
= Pr(St+1 = x′.s, Upre

t+1 = x′.upre|St = x.s, Upre
t = x.upre, Ut = u).

• ∀x ∈ X ∀x′ ∈ X ∀u ∈ U ∀r ∈ R,
Ri(x, u, x′, r) = Pr(Rt=r|St=x.s, Upre

t =x.upre, Ut=u, St+1=x′.s, Upre
t+1=x′.upre).

• ∀s ∈ S ∀upre ∈ Upre, Pr(St = s, Upre
t = upre) = Pr(X̃t = (s, upre)).

• ∀s ∈ S, Pr(St = s) = Pr(X̃t.s = s).

• ∀r ∈ R, Pr(Rt = r) = Pr(R̃it = r).

Proof. This follows immediately from properties 3, 4, 5, 6, and 10.

Property 11. For all coagents i, for all θi, given the same θ = (θi, θ̄i), J(θ) = Ji(θi).

Proof.

J(θ) =E

[ ∞∑
t=0

γtRt|θ

]

=E

[ ∞∑
t=0

γtiR
i
t|θi, θ̄i,

]
=Ji(θi),

where the second step follows directly from Property 10 and the definition of γi.

Lemma 3. For all coagents i, for all θi,
∂Ji(θi)
∂θi

= ∆i(θi).

Proof. In Lemma 1, we proved that the ith CoMDP is an MDP. In Lemma 2, we proved that the ith CoMDP
correctly models the ith coagent’s environment. Lemma 3 follows directly from these results and the fact that ∆i is
the policy gradient for M i (Sutton, 2000).

Theorem 1.
∇J(θ) = [∆1(θ1)ᵀ,∆2(θ2)ᵀ, . . . ,∆m(θm)ᵀ]

ᵀ
, where m is the number of coagents, and ∆i is the local policy gradient

of the ith coagent.

Proof.

∇J(θ) =

[
∂J(θ)

∂θ1

ᵀ

,
∂J(θ)

∂θ2

ᵀ

, . . . ,
∂J(θ)

∂θm

ᵀ]ᵀ
(a)
=

[
∂J1(θ1)

∂θ1

ᵀ

,
∂J2(θ2)

∂θ2

ᵀ

, . . . ,
∂Jm(θm)

∂θm

ᵀ]ᵀ
(b)
=

[
∆1(θ1)

∂θ1

ᵀ

,
∆2(θ2)

∂θ2

ᵀ

, . . . ,
∆m(θm)

∂θm

ᵀ]ᵀ
,

where (a) follows directly from Property 11 and where (b) follows directly from Lemma 3.

Corollary 2. If αt is a deterministic positive stepsize,
∑∞
t=0 αt =∞,

∑∞
t=0 α

2
t <∞, additional technical assumptions

are met (Bertsekas & Tsitsiklis, 2000, Proposition 3), and each coagent updates its parameters, θi, with an unbiased

local policy gradient update θi ← θi + αt∆̂i(θi), then J(θ) converges to a finite value and limt→∞∇J(θ) = 0.

Proof. Corollary 2 follows directly from the CPGT, Proposition 3 from Bertsekas & Tsitsiklis (2000), and the
assumption that the discounted sum of rewards over an episode is finite (this last assumption prevents J(θ) from
diverging to ∞).

23



B Asynchronous Coagent Networks: Supplementary Proofs

B.1 Synchronous Network Correctness

Our goal is to show that the synchronous, acyclic reduction of our original asynchronous, cyclic network behaves
identically to our original network. That is, for all s ∈ S, u ∈ Uall, c ∈ Nm, a ∈ A, e ∈ {0, 1}m, π̀((s, u, c), (a, u′, e)) =
Pr(At = a, Uall

t = u′, Et = e|St = s, Uall
t−1 = u,Ct = c). Because of the large number of variables, if we use one of

these lowercase symbols in an equation, assume that it holds for all values in its respective set.

Proof. We present a proof by induction. We assume a topological ordering of the coagents, such that for any j < i,
the jth coagent executes before the ith coagent. We perform induction over i, with the inductive assumption that
the outputs of all the previous coagents, as well as their decisions whether or not to execute, correspond to the
original network. The inductive hypothesis is that for all j < i:

Pr(Àt.u
all
j = u′j , Àt.ej = ej |S̀t = (s, u, c)) = Pr(Uall

t .j = uj , E
j
t = ej |St = s, Uall

t−1 = u,Ct = c). (1)

Consider the base case, i = 1. `Upre
1 and Upre

1 are both the empty set, because no coagents produce an output before
the first coagent in either network. As a result, the distribution over the execution probability is trivially the same in
both networks, that is, Pr(E1

t = 1|St = s, Uall
t−1 = u,Ct = c) = β1((s,∅, u), c1) = Pr(Àt.e1 = 1|S̀t = (s, u, c)). Next,

we consider the action. If the coagent executes, Pr(U it = u′i|E1
t = 1, St = s, Uall

t−1 = u,Ct = c) = π1((s,∅, u), u′i) =

Pr(Àt.u
all
i = u′i|At.ei = 1, S̀t = (s, u, c)). If the coagent does not execute, the action is trivially ui in both cases.

Therefore, Equation (1) holds for j = 1.
Next we consider the inductive step, where we show that Equation (1) holds for the ith coagent given that it

holds for j < i. First we consider the execution function, the output of which is represented in the synchronous
setting by Àt.ei, and in the asynchronous setting by Et. In the asynchronous setting, the probability of the ith

coagent executing at time step t is βi((St, U
pre
t , Uall

t−1), Cit). Since we are not given Upre
t , we must sum over possible

values:

Pr(Eit = 1|St = s, Uall
t = u,Ct = c) =

∑
upre∈Upre

i

βi((s, upre, u), ci) Pr(Upre
t = upre|St = s, Uall

t−1 = u,Ct = c)

In the reduced setting, we instead have a coagent, such that Pr(Àt.ei = 1|S̀t = (s, u, c)) = βi((s, Ù
pre
t , u), ci). Again,

we sum over possible values of Ùpre
t :

Pr(Àt.ei = 1|S̀t = (s, u, c)) =
∑

upre∈Upre
i

βi((s, upre, u), ci) Pr(Ùpre
t .u = upre|S̀t = (s, u, c)).

Recall the reduced setting was defined such that for all j < i, Àt.u
all
j = Ùpre

t .uj , and in the asynchronous setting,

Upre
t .uj = Uall

t .uj . We therefore can conclude from (1) and by substitution that for all j < i,Pr(Ùpre
t .uj = u|S̀t =

(s, u, c)) = Pr(Upre
t .uj = u|St = s, Uall

t−1 = u,Ct = c). Substituting this into the above equations:

Pr(Àt.ei = 1|S̀t = (s, u, c)) =
∑

upre∈Upre
i

βi((s, upre, u), ci) Pr(Upre
t = upre|St = s, Uall

t−1 = u,Ct = c)

= Pr(Eit = 1|St = s, Uall
t = u,Ct = c).

Note also that from the perspective of π̀i, Àt.ei = Ùpre
t .ei. Next we consider the output of the ith coagent, given in

the asynchronous setting as U it , and in the reduced setting by Àt.u
all
i . In the original setting, U it was given such that

for all ui ∈ U i:

Pr(U it = u′i|St = s, Uall
t−1 = u,Ct = c, Upre

t = upre, E
i
t = ei) =


πi((s, upre, u), u′i), if ei = 1

1, if ei = 0 and u′i = ui

0, otherwise.

In the synchronous setting, we are given:

Pr(Àt.u
all
i = u′i|S̀t = (s, u, c), Ùpre

t .u = upre, Ù
pre
t .ei = ei) = π̀i(((s, u, c), upre), u)

=


πi((s, upre, u), u′i), if ei = 1

1, if ei = 0 and u′i = ui

0, otherwise.
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Since we were given s, u, and c, assumed through the inductive hypothesis that Pr(Upre
t .u = upre|St = s, Uall

t−1 =
u,Ct = c) = Pr(Upre

t = upre|St = s, Uall
t−1 = u,Ct = c), and showed that Pr(Upre

t .ei = ei|Upre
t .u = upre, St =

s, Uall
t−1 = u,Ct = c) = Pr(Eit |U

pre
t = upre, St = s, Uall

t−1 = u,Ct = c), we know that the distributions over the
variables we conditioned on are equal. Since we also showed that the conditional distributions are equal, we conclude
that Pr(Àt.u

all
i = u′i|S̀t = (s, u, c)) = Pr(U it = u′i|St = s, Uall

t−1 = u,Ct = c).

This completes the inductive proof that Pr(Àt.u
all = u′, Àt.e = e|S̀t = (s, u, c)) = Pr(Uall

t = u′, Et = e|St =
s, Uall

t−1 = u,Ct = c). We still must consider Àt.a. This is given by the output of some predefined subset of coagents,
which is the same subset in both the synchronous and asynchronous network. We showed that the distribution over
outputs was the same for corresponding coagents in the two networks, and therefore can conclude immediately that
Pr(Àt.a = a|S̀t = (s, u, c)) = Pr(At = a|St = s, Uall

t−1 = u,Ct = c). Finally:

Pr(At = a, Uall
t = u′, Et = e|St = s, Uall

t−1 = u,Ct = c) = Pr(Àt.a = a, Àt.u
all = u′, Àt.e = e|S̀t = (s, u, c))

= Pr(Àt = (a, u′, e)|S̀t = (s, u, c))

= π̀((s, u, c), (a, u′, e)).

B.2 Equivalence of Objectives

In both settings, the network depends on the same parameter vector, θ. In this section, we show that for all settings
of this parameter vector the resulting sum of rewards is equivalent in both settings. That is, J(θ) = J̀(θ).

Proof. We begin by showing that the distribution over the “true” states and actions is equal in both settings, that
is, for all s ∈ S, a ∈ A, Pr(S̀t.s = s, Àt.a = a) = Pr(St = s,At = a). Once this is shown, we show that the reward
distributions are the same, that is, for all r, Pr(R̀t = r) = Pr(Rt = r). Finally, we show J(θ) = J̀(θ).

B.2.1 Equivalence of State Distributions

First, we show that Pr(S̀t = (s, u, c)) = Pr(St = s, Uall
t−1 = u,Ct = c), by induction over time steps. The base case is

the initial state, S̀0. We know from the definition of d̀0 that for all i, S̀0.ci = Ci0 = 0, so we will focus on S0 and
Uall
−1. We assumed in the problem setup for the asynchronous setting that for all i and j, the random variables S0,

U i−1, and U j−1 are independent. Where c is the zero vector, for all s and u:

Pr(S̀0 = (s, u, c)) = d̀0((s, u, c))

= d0(s)

m∏
i=1

hi0(ui)

= Pr(S0 = s)

m∏
i=1

Pr(U i−1 = ui)

= Pr(S0 = s, Uall
−1 = u)

= Pr(S0 = s, Uall
−1 = u,C0 = c).

Thus, we’ve proven the base case. Next we consider the inductive step:

Pr(S̀t+1 = (s′, u′, c′)|S̀t = (s, u, c))

=
∑

(a,u′′,e)∈À

Pr(S̀t+1 = (s′, u′, c′)|S̀t = (s, u, c), Àt = (a, u′′, e)) Pr(Àt = (a, u′′, e)|S̀t = (s, u, c))

=
∑

(a,u′′,e)∈À

P̀ ((s, u, c), (a, u′′, e), (s′, u′, c′))π̀((s, u, c), (a, u′′, e))

=
∑

a∈A,e∈E

{
P (s, a, s′)π̀((s, u, c), (a, u′, e)) if fc(c, e) = c′, u′ = u′′

0 otherwise,
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The case statement comes from the definition of P̀ . Given c and c′, there is a unique value, which we call e′, that
satisfies fc(c, e) = c′. If u′ 6= u′′ or e 6= e′, the inner expression is zero. Therefore:

Pr(S̀t+1 = (s′, u′, c′)|S̀t = (s, u, c)) =
∑
a∈A

P (s, a, s′)π̀((s, u, c), (a, u′, e′)).

Next, we can apply the equivalence shown in section B.1 and the definition of P :∑
a∈A

P (s, a, s′)π̀((s, u, c), (a, u′, e′))

=
∑
a∈A

Pr(St+1 = s′|At = a, St = s) Pr(At = a, Uall
t = u′, Et = e′|St = s, Uall

t−1 = u,Ct = c).

Remember that Ct+1 = fc(Ct, Et). Therefore, we can exchange Pr(Et = e′|Ct = c) for Pr(Ct+1 = c′|Ct = c):∑
a∈A

Pr(St+1 = s′|At = a, St = s, Et = e, Ct = c) Pr(At = a, Uall
t = u′, Ct+1 = c′|St = s, Uall

t−1 = u,Ct = c)

=
∑
a∈A

Pr(St+1 = s′, At = a, Uall
t = u′, Et = e|St = s, Uall

t−1 = u,Ct = c)

= Pr(St+1 = s′, Uall
t = u′, Ct+1 = c′|St = s, Uall

t−1 = u,Ct = c).

Inductively, we have shown that for all t, Pr(S̀t = (s, u, c)) = Pr(St = s, Uall
t−1 = u,Ct = c).

B.2.2 Equivalence of Reward Distributions

It follows immediately from the above equality and B.1 that Pr(Àt = (a, u, e)) = Pr(At = a, Uall
t = u,Et = e). We

turn our attention to the reward distribution:

Pr(R̀t = r)

=
∑

(s,u,c)∈S̀

∑
(a,u′,e)∈À

∑
(s′,u′′,c′)∈S̀

Pr(R̀t = r|S̀t = (s, u, c), Àt = (a, u′, e), S̀t+1 = (s′, u′′, c′))

× Pr(S̀t = (s, u, c), Àt = (a, u′, e), S̀t+1 = (s′, u′′, c′))

=
∑

(s,u,c)∈S̀

∑
(a,u′,e)∈À

∑
(s′,u′′,c′)∈S̀

R̀((s, u, c), (a, u′, e), (s′, u′′, c′)) Pr(S̀t = (s, u, c), Àt = (a, u′, e), S̀t+1 = (s′, u′′, c′))

=
∑

(s,u,c)∈S̀

∑
(a,u′,e)∈À

∑
(s′,u′′,c′)∈S̀

R(s, a, s′) Pr(S̀t = (s, u, c), Àt = (a, u′, e), S̀t+1 = (s′, u′′, c′))

=
∑

(s,u,c)∈S̀

∑
(a,u′,e)∈À

∑
(s′,u′′,c′)∈S̀

R(s, a, s′) Pr(St = s, Uall
t−1 = u,Ct = c, At = a, Uall

t = u′, Et = e, St+1 = s′, Ct+1 = c′)

=
∑
s∈S

∑
a∈A

∑
s′∈S

R(s, a, s′) Pr(St = s,At = a, St+1 = s′)

=
∑
s∈S

∑
a∈A

∑
s′∈S

Pr(Rt = r|St = s,At = a, St+1 = s′) Pr(St = s,At = a, St+1 = s′)

= Pr(Rt = r).

B.2.3 Equivalence of Objectives

Finally, we show the objectives are equal:

J̀(θ) = E[

T∑
t=0

γ̀tR̀t] = E[

T∑
t=0

γtRt] = J(θ),

by linearity of expectation.

26



C Experimental Details of Finite Difference Comparison

We use a simple 3× 3 Gridworld. The network structure used in this experiment consists of three coagents with
tabular state-action value functions and softmax policies: Two receive the tabular state as input, and each of those
two coagents have a single tabular binary output to the third coagent, which in turn outputs the action (up, down,
left, or right). This results in two coagents with 18 parameters each, and one coagent with 16 parameters, resulting in
a network with 52 parameters. The coagents asynchronously execute using a geometric distribution; the environment
updates every step and each coagent has a 0.5 probability of executing each step. The gradient estimates appear to
converge, providing empirical support of the CPGT. The data is drawn from 20 trials. 5× 108 episodes were used
for each finite difference estimate. For each trial, five training episodes were conducted before the parameters were
frozen and the two gradient estimation methods were run. The coagents were trained with Sutton & Barto’s (2018)
actor-critic with eligibility traces algorithm and shared a single critic. Note that the critic played no role in the
gradient estimation methods, only in the initial training episodes. Hyperparmaters used: critic step size = 0.024686,
γ = 1, input agent step size = 0.02842, output agent step size = 0.1598, and all agents’ λ = 0.8085.
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