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Tessellation structures that reproduce arbitrary patterns are special cases of tessellation
structures having local transformations that are linear operators. We introduce a novel
formulation of tessellation structures which emphasizes the connection between these
structures and concepts of functional analysis. Using this formulation a behavioral analysis
technique is developed which implies the earlier results on pattern reproduction and
generalizes them to tessellation structures whose state alphabets are arbitrary fields of
non-zero characteristic and whose tessellation arrays are arbitrary countable abelian
groups. It is also shown that a local transformation can be chosen to produce at a specified
time any desired set of “‘copies’ of an initial pattern each multiplied by a specified scalar.
We then indicate that connections exist between linear tessellation structures and linear
partial differential equations which describe wave propagation by giving an example of a
classical form of pattern reproduction.

1. INTRODUCTION

Amoroso and Cooper [2] have shown that for an arbitrary state alphabet 4, one and
two-dimensional tessellation structures can be constructed that have the ability to
reproduce any finite pattern contained in the tessellation space, and that if A has a
prime number of elements, the copies will appear in quiescent environments. Ostrand [14]
extended this result to tessellation structures of any finite dimension. Hamilton and
Mertens [9] showed that similar pattern reproduction is possible for tessellation structures
with arbitrary finite neighborhood indices. Anderson [3] showed how these results,
when restricted to the case of reproduction in quiescent environments, can be proved
form an elementary fact about polynomial multiplication for polynomials with coefficients
in the group of integers {0, 1,..., p — 1} with modulo p addition for p a prime.

Although the original study by Amoroso and Cooper [2] may have been motivated
by possible biological applications, the pattern reproducing tessellation structure they
presented was not constructed to model any specific biological process, nor was it argued
that the tessellation structure’s mechanism was biologically suggestive. If this mechanism
is therefore viewed as a purely mathematical construction, then it is pertinent to ask
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whether it is merely an interesting mathematical curiosity or whether it is connected
in some way with more general and better known mathematical structures. In this note
we show how pattern reproducing tessellation structures can be viewed as special
members of the class of tessellation structures having local transformations that are
linear operators. We then develop a behavioral analysis method for members of this
class that have local transformations that are linear over fields of non-zero characteristic.
(The characteristic of a field is the least positive integer p such that pa = 0 for every
element a of the field. If no such positive integer exists, the field is said to have charac-
teristic 0.) We then show that the results in Refs [2, 3, 9, 14], when restricted to pattern
reproduction in quiescent environments, follow very naturally using this method.

We also show that it is possible to specify a tessellation structure, for any state alphabet
that is a finite field, which can create all the scalar multiples of a given pattern. Thus,
a pattern’s “offspring” need not be identical copies of the original. These results are
shown to hold for tessellation structures having arbitrary countable abelian groups as
tessellation arrays. We feel that this generality is not worthwhile for its own sake but
rather for its explanatory value.

We begin by developing, for use throughout this article, a formulation of tessellation
structures that is equivalent to but slightly different from that used by Amoroso et al.
in that it is influenced by notational conventions used in functional analysis. It is not
our intention to merely augment the already substantial number of different notations
and terminologies associated with the concept of tessellation structures. However,
besides making our results easy to prove, the merit of our formulation is that it simplifies
notation and, more importantly, permits straightforward generalization in directions
which make contact with standard mathematical topics. This formulation, we feel,
can contribute substantially to the further study of tessellation structures.

2. NoTATION AND DEFINITIONS

Let Z* denote the set of all d-tuples of integers, and let 4 be a set with distinguished
element denoted by 0. The support of a function ¢: Z¢ — 4 is the set X C Z¢ such that
¢(£) # 0 if and only if ¢ € X. A function ¢: Z% — A has finite support if its support is a
finite set. Let Cy denote the set of all functions from Z¢ to 4 that have finite support.
For any subset X of Z% and any c€ Cy, let ¢ | X denote the restriction of ¢ to X, i.e.,
c| X: X— A is given by (¢ | X)(€) = ¢(£) for £ € X. For x,y € Z%, x + y will denote
the componentwise sum of x and y. Z¢ with this operation is an abelian group.

The major difference between the formulation to be given here and that given in [2]
is our use of the notion of a shift operator. For every £ € Z¢ define a shift operator L,
mapping Cy to Cy such that

(Lec)(x) = (€ + %)

for every ce Cr and x e Z% Note that since L,L, = L,,, , the set of shift operators
forms a group, with operator composition as the binary operation, which is isomorphic
to the group Z4.
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A tessellation structure is defined in [2] as a 4-tuple M = (4, Z4, X, 7) where 4 is an
arbitrary finite set called the state alphabet, Z4 is the tessellation array, X is a finite subset
of Z¢ called the neighborhood index, and = is the parallel transformation. Intuitively, at
any discrete time step, to each point in Z¢ there corresponds a symbol from the state
alphabet 4. This infinite array of symbols is an array configuration and is formalized
as a function ¢: Z¢ — A. Each point in Z¢ is taken to label a cell. At the next discrete
time step a new array configuration appears which is the result of the uniform application
of a local transformation at each cell which determines the next symbol for that cell from
the present symbols of its neighboring cells. The uniform and simultaneous application
of the local transformation at each cell results in a parallel transformation =, a mapping
whose range and domain is the set of possible array configurations. If one restricts array
configurations to those having finite support, = should map Cy to Cp.

We formally define such a tessellation structure M = (4, Z¢, X, 7) by first letting
o: Cp— A be any mapping with the following two properties: '

(i) if c e Cp is identically equal to 0, then o(c) = 0; and
(ii) if ¢;, c; € Cp are such that ¢, | X = ¢, | X, then o(c;) = o(c,).

The map o is the local transformation. Condition (i) will insure that 7 is a map from Cp
to Cp, i.e., that configurations with finite support will always be followed by configura-
tions also having finite support. Condition (ii) is another way of saying that o is a local
transformation: its action does not depend on a function’s value outside of the finite
set X. Then we define the parallel transformation 7: Cr — C} to be given for any c € Cp
by

!

.-r(c) =c
where (1)
c'(§) =oLc) forall (eZe

The next state of cell £ is the result of the local transformation o acting on the shift-by-¢

of the current configuration c. It can be verified that this construction is equivalent to
that given in [2].

3. LINEAR TESSELLATION STRUCTURES

We will call a tessellation structure a linear tessellation structure (L'TS) if the state
alphabet 4 is a field (with the distinguished zero element the zero element of the field)
and the local map o, in addition to having property (ii) above, is a linear map from Cp
to the field 4. This means that for any two configurations ¢, and ¢, in C and any “scalar”
ac A that o(c; + ¢;) = a¢; + ocy and o(ac;) = ao(c,). Addition of configurations is
taken to be pointwise function addition (i.e., (¢; + €3)(€) = ¢1(€) + ¢5(€)) so that Cp
can be regarded as a vector space over the field 4. A linear map from a vector space to
its underlying field is called a linear functional. Thus an LTS is a tessellation structure
whose state ‘alphabet is a field and whose local transformation is a linear functional
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which satisfies condition (ii) above. Condition (i) automatically holds because of the
zero preserving property of linear maps. Linear tessellation structures are special kinds
of what are called in [4] Lnear cellular automata which are defined for an arbitrary
countable group instead of Z¢ and for state alphabet 4 a finite dimensional vector space:
Similar structures are studied in [8, 11].

Since o satisfies condition (i) and (ii) above and is a linear map, it is easy to see that
it can be written as a particular weighted sum of the configuration values over the set X,
i.e., there is a function W: Z¢ — A with finite support X (so that W e C) which repre-
sents the linear functional o as follows:

olc) = Y, W)e(x) =y, W(x)c(x). @)
wel! xeX
Summing over just the set X is possible since the support of W is X. In other words,
o(c) is the inner product of the vectors W and ¢. The questions surrounding the repre-
sentation of linear functionals on general vector spaces as inner products is central to
much functional analysis. In the framework adopted here it is possible, given any func-
tional on Cy satisfying condition (ii), to find a vector W e Cy which represents that
functional as in Eq. (2). However, this kind of representation is not generally possible
in arbitrary infinite dimensional vector spaces.
By using Eq. (2) in Eq. (1), it follows that

(7()(E) = oLelc) = 3, W(x)Lec))

xeX

= Y W) ¢+ x) ©)

xzeX

forall ceCp and ¢eZ4.

You may recognize that 7 is a form of cross correlation between array configurations ¢
and the fixed function W e C which represents the local transformation . This occurs,
for example, in time series analysis where the field 4 is the real field and the tessellation
array is simply Z whose elements represent discrete points in time rather than space.
The cross correlation is used to study the relationship between two time series. See, for
example [12].
Letting — X = {—=x | x € X}, note that Eq. (3) can be written
(r(e€) = ;x W(—x) e(§ — =)
wem

If we define K e Cy by K(x) = W(—x) for all x € Z9, then this can be written as the
following convolution sum:

(€)= Y, K()e(¢ — ). @

xe-X

The function K can be thought of as the impulse response function of the tessellation
structure since if the initial array configuration is an “impulse” at the origin of Z¢ (i.e.,
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the cell at the origin is in state 1 and the other cells are quiescent), then the next con-
figuration will be K (i.e., K is the system’s response to the impulse). A transition in an
LTS is a convolution of the current configuration with the impulse response function.
Except for the higher dimensionality and spatial rather than temporal interpretation
of the array, this situation is identical to that for time-invariant linear systems. The
uniformity of the tessellation array implies spatial-invariance of the parallel transfor-
mation. See [4, 5, 8, 15]. Since polynomial multiplication can be viewed as a special
type of convolution, (see esp. [1]), our approach specializes to that given in [3].

Finally, we’ll find it convenient to write 7 as a linear combination of shift operators.
Since Z% is an abelian group, (L,c)(x) = (Lyc)(y) for all x, y € Z¢ and 7 can be written
as follows:

=3 WEL,. ©)
zEX

Each of the tessellation structures given in [2], [9], and [14] that reproduces patterns
so that the copies are in quiescent environments is a special kind of LTS. The state
alphabet 4 = {0, 1,..., p — 1}, for p a prime and with modulo p addition and multiplica-
tion, is a finite field (GF(p)). The one-dimensional structure constructed by Amoroso
and Cooper is an LTS with local map o represented by the function W given by:

w(0) = 1,
w(—1) =1, (6)
WE) =0 for £¢{0,—1}

This LTS is shown schematically in Fig. 1. Only the non-zero coeflicients (here each

o« o o -1 0 1 *« o o

F1c. 1. A schematic representation of a one-dimensional LTS that reproduces arbitrary
patterns.

equal to 1) are shown, and it is understood that this interconnection pattern is repeated
uniformly for every cell. In this case the values of W are either O or 1, but the result
proved in the next section holds for W with finite support and arbitrary values in A4.

More familiar examples of LTSs occur when the field 4 = R, the real numbers,
although technically they are not tessellation structures since 4 would not be finite.
Such structures are more commonly known as multi-dimensional linear difference
equations and are often used to approximate solutions to partial differential equations.
Other examples, again with 4 = R, model random walks where configurations are
interpreted as probability distributions (see [13]). In this case W must also be a probability
distribution.
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4, NEIGHBORHOOD DECOMPOSITION

- In this section we develop a method for analyzing the behavior of any tessellation
structure which is linear over any field of non-zero characteristic and then show how
this is related to pattern reproduction. Suppose M = (4, Z¢% X, 7) is an LTS where
the local transformation o is represented by a function W: Z¢ — A with finite support X.
Define for each x € X the function W,: Z¢ — A4 by

_ (W(x) for & =u,
Wi(&) = 0 otherwise.

Each W, has just one non-zero value. For each x € X, let M, be the LTS (4, Z¢, {x}, 7,,)
where 7, is determined by a local map o,, represented by W, , i.e., using Eq. (2)

o(c) = Y, Wilé) c(§) = W(x) c(x).

ée{z)

Each M, is an LTS in which each cell has a single neighbor. Thus, any LTS M with
neighborhood index X is associated with a family {M, | x € X} of LTSs each having
a one-element neighborhood index. Figure 2 shows M, and M_; associated with the

M_l... -1—@0 1 o« o o

Fic. 2. The LTSs M, and M , associated with the LTS shown in Fig. 1.

LTS of Fig. 1. Note that for each M, , x € X, the parallel transformation 7, can be
written in operator form according to Eq. (5) as

5 = W(x)L,. 7)

The linearity of the parallel transformation 7 of M implies that for a single transition
it is possible to compute 7(c) by computing 7,(c) for each ¥ € X and superimposing
(pointwise adding) the resulting configurations, i.e.,

7€) = Y, 7(c) forany ceCp

reX

obtained by substituting Eq. (7) in Eq. (5). However, this is not true for more than
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a single transition. It is not generally possible, even with linearity, to run the M,
separately for n time steps, each having initial configuration ¢, and then superimpose
the final configurations to arrive at what M would have computed in 7 time steps from
initial configuration ¢. Under certain conditions, however, it is possible:

THrOREM. Let M be an LTS (A, Z%, X, ) where A has characteristic p > 0. With
the LTSs M,,, x € X, defined as above, it is true that

" = Y 2™ for each non-negative integer m.
Y x
€

Proof. The binomial theorem implies for a, b € 4, where A is a field of characteristic
p > 0, that for m > 0

(a + b)P" = a?™ 4 b*" (8)

(see [16]). This is clearly also true for any finite sum. From Eq. (5) we have that

o= (% WL ©)

xeX

If the shift operators were not present then Eq. (8) would be immediately applicable.
As it stands, though, (9) is not a multiplication of sums in the field 4, but composition
of linear combinations of shift operators. But note that since Z¢ is an abelian group

(W(x) Lo)(W(y)Ly) = W(x) W(y)L,L,
and

L.L,=LJL, foral x,yeZd

Thus the coefficients W(x) will group together in the expansion of (9) in the same way
they would if the shift operators were not there. Therefore (8) implies that

™" = Y, [(W(x) L™

zEX

or

" = Z ‘ra‘c’m. Q.E.D.
xeX

The subscripts of the shift operators behave like the exponents in the polynomial
formulation in [3], that is, they follow the additive structure of Z4. From a more abstract
point of view, since 7 is a linear combination of shift operators which form a group
isomorphic to Z%, 7 is an element of the group algebra of Z¢ over 4 [6]. Moreover, one
should note that the only property of the tessellation array Z¢ which is used for the
theorem is that it is an abelian group. Thus this result can be extended to tessellation
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arrays which are abelian groups other than Z¢, including finite groups corresponding
to toroidal arrays of cells.

Whenever this theorem applies, it is easy to deduce the form of the configurations
77"(c) for any initial configuration ¢ € Cy and m = 0, 1, 2,... . One constructs the tessella-
tion structures M, , x € X, determines 72"(c), x € X, and then superimposes these final
configurations. The power of this result lies in the fact that since each cell in each M,
has only one neighbor, it is very easy to find 72"(c) for any c. In the structure representing
M, there will be no feedback loops so that configurations will unidirectionally propagate
with “amplitude” changing depending on the constant W(x), i.e.,

75 (€) = (W(®) L))" (c) = (W(X))"" Ly i(c) (10)

where p™ - x means x 4 x + - 4 x (p™ times) and ‘“4-"" is addition in Z4. If W(x) = 1,
then (W(x))?" =1 so that by Eq. 10 72" is the simple translation L,m., obtained by
performing the translation L, p™ times in succession. The theorem says that for time
steps p™, m =0, 1, 2,..., the configuration of M will be the superposition of these
translated versions of the initial configuration (cf. the concept of dilated neighborhood

in [3]).

5. PATTERN REPRODUCTION

The Amoroso—Cooper result for one-dimensional pattern reproduction in quiescent
environments can be seen to follow from the neighborhood decomposition method.
Since the field A4 consisting of the integers 0, 1,..., p — 1 with modulo p addition and
multiplication has characteristic p > 0, the LTSs M, and M_, shown in Fig. 2 can be
run separately each starting with a configuration ¢. For any m > 0, their configurations
after p™ time steps can be superimposed to produce what M of Fig. 1 produces in p™
time steps. M, does nothing to ¢ since 7, is the identity operator. M_; computes
(17")L_pm == L_ym , i.e., it shifts ¢ to the right p™ cells. Thus, m is chosen large enough
to insure that the translation L_,n shifts a pattern far enough to the right so that there is no
overlap of its support after the shift and its original support (i.e., sup ¢ N sup L_,mt = @
where ¢ is the configuration containing a pattern-and sup ¢ is the support of ¢). For
such an m, the superposition of the configurations after p™ time steps of M, and M_,
is a configuration containing two copies, each in a quiescent environment, of the pattern
in ¢. One copy is located at its original position (due to /M), the other is located p™
cells to the right (due to M_,).

The d-dimensional case in [14] can be analyzed analogously. The result of Hamilton
and Mertens [9] (restricted to the case of quiescent environments) can also be deduced
from the theorem. However, the arbitrary neighborhood index makes it more difficult
to specify how large m needs to be for there to be no overlap between the scattering
copies of the initial pattern. It’s not hard to see, though, that for m large enough, copies
shifted by a set of shift operators Lym.,, ¥ € X, will “scatter” sufficiently for mutual
overlap to be removed.

Note that all of these L'T'Ss have local transformations specified by functions W whose
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non-zero values are all 1. For other values, Eq. (10) implies that at times p™ each of the
scattering “‘copies” of the initial pattern will be the original pattern uniformly multiplied
by some scalar which may be different for each copy. Thus it is not only possible to
construct a tessellation structure which can reproduce arbitrary patterns, but also one
that can produce “copies” each of which is a preselected scalar multiple of the original
pattern.

To be specific we’ll describe one way of synthesizing such a tessellation structure.
Suppose M = (4, Z% X, 7) is a LTS whose local transformation o is represented by
a function W: Z¢ — A with finite support X. Let 4 be a finite field of characteristic p
and let {M, | x € X} be the associated family of LTSs having one-element neighborhood
indices. It is a fact about finite fields (see, for example, [16]) that every finite field 4
of characteristic p has p" elements for some non-negative integer #, and that a?" = q
for all ae A. Then a*™" = a#™#"*'?" (p» appearing m times) = a. Thus Eq. 10 implies
for each x € X that

™ = (W)™ L ., = W(x)L

pmn.g P

m =0, 1,2,.... This means that after p™" time steps the configuration of each LTS
M, is the shift Lyma., of the initial configuration multiplied by the scalar W(x). The
theorem says that for m = 0, 1, 2,... these resultant configurations can be superimposed
to produce what the LTS M would have produced. Choosing the values W(x), x € X,
to be the desired scalars, the LTS M therefore produces “‘copies” of any initial pattern
each multiplied by a scalar used to specify M’s local transformation. One must wait
p™" time steps where m is large enough to eliminate pattern overlap.

For example, the LTS (4, Z, X, ) shown in Fig. 3 with 4 = GF(3) will produce

e e o -1 0 1 e o e

Fic. 3. An LTS over GF(3) which produces scalar multiples of arbitrary patterns.

a configuration containing any original pattern and a pattern whose cell states are 2 times
(modulo 3 multiplication) the corresponding states in the original pattern. In this case,
the second pattern is a modulo 3 “negative” of the original since 2a + a = 0 (modulo 3).
One must wait p™* time steps for m large enough to eliminate overlap.

Finally, we note that these results extend to tessellation arrays which are abelian
groups other than Z¢ since only the abelian group properties of Z¢ have thus far been
used. However, in the case of tessellation arrays specified by finite groups an obvious

caveat is needed: a pattern may be too large for it to be possible to remove overlap
between its copies.
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6. CoNCLUDING REMARKS

Yamada and Amoroso [18] remark that if Z¢ were replaced by R?, where R denotes
the reals, then a tessellation structure might be viewed as a model of a continuous
physical system with the local transformation represented in terms of integration rather
than summation. The notation used in this note is readily extendible to the continuous
case since if the tessellation array Z¢ is replaced by the Euclidean space R?, where R
denotes the set of real numbers, the notions of function restriction and shift operator
work equally well. The definition of ¢ and 7 (Eq. (1)) remain unchanged with the excep-
tion that the neighborhood index X might be permitted to be any closed and bounded
subset of R%. This is more fully described by the author in [4].

We mention the extension to the continuous case since the class of linear tessellation
structures as defined in this note are mathematically analogous to continuous structures
specified by certain kinds of linear partial differential equations which describe wave
propagation. This is not surprising since it seems certain that von Neumann’s original
formulation of the tessellation structure (or cellular automaton) concept was motivated
by a knowledge of partial differential equations (see [17]). What seems interesting with
regard to pattern reproduction is that a system described by the classical one-dimensional
wave equation also reproduces arbitrary initial patterns. If ¢(x, #) denotes, for example,
the displacement at time ¢ and position x along an infinitely long vibrating string, then
the wave equation takes the form

e
o2 ox?

where k depends on the tension and density of the string. For initial configuration
¢(x, 0) = f(x) (having no initial velocity) the solution is (see, for example [7]):

o, 1) = 12[f(x + kt) + fx — k)]

The term f(x -+ kt) represents the initial configuration shifted k¢ units to the left; the
other term represents this configuration shifted k¢ units to the right. Thus, any initial
configuration splits into two parts, each maintaining the shape of the original, which
propagate in opposite directions. If the initial configuration has bounded support, after
an appropriately long time there will be two “copies” of the initial pattern each having
one-half the height of the original.

Wave propagation thus involves a form of pattern reproduction although it is not
customary to think in these terms. Similarly, it is appropriate to view the behavior of
the linear tessellation structures described above as discrete forms of wave propagation
which exhibit complex interference properties due to the non-zero characteristic of the
underlying field.
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