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The growing influence of digital computing in systems modelling and simulation is leading to an increase in the use of
discrete mathematical structures for describing models. While it is generally recognized that discrete methods and classical
continuous methods both provide valuable tools for modelling, strong biases exist which depend on the modelling
techniques that are traditional within specific disciplines. The choice of a modelling approach sometimes reflects the
background of the model builder more strongly than it reflects the character of the problem to be solved. Since continuous
methods have played the dominant role in scientific education, there are aspects of discrete modelling techniques and their
relationship to continuous methods that are not widely recognized. The purpose of this article is to discuss some of these
issues in order to dispel common criticisms of discrete techniques which are the result of unfamiliarity with discrete styles of
mathematical thinking and a tendency to underestimate the degree of abstraction used in continuous approaches.

INDEX TERMS Modelling, simulation, modelling traditions, discrete models, numerical analysis.

INTRODUCTION

M. E. Van Valkenburg writes in the foreword to
Steiglitz’s Introduction to Discrete Systems', that
“Given the widespread availability of computers,
there seems little doubt that the teaching of
electrical engineering should undergo an evolution
... In the emerging pedagogical approach, equa-
tions should be written in discrete form as difference
equations, instead of in continuous form as differen-
tial equations. Indeed, equations should seldom be
used, since principles should be stated directly in
algorithmic form.” Approaches having this charac-
ter are increasingly being proposed not only in
electrical engineering but in other fields where
continuous mathematical methods have been tradi-
tional, and not only are pedagogical changes being
suggested. Digital computing and discrete models
are influencing our conception of real world systems
and the role classical mathematical methods are to
play in modelling them.

Discussions of this emerging approach occur
frequently and continue to reveal strong biases
which correspond to the technical backgrounds of
the participants. Those whose experience is in the
classical physical sciences or in traditional engineer-
ing disciplines where differential equations have
been so remarkably successful, understandably
have strongly developed intuitions in which con-
tinua and rates of change are powerful conceptual
primitives. Those whose intuition has developed
more directly under the influence of digital comput-
ing, on the other hand, find it very natural to think in
terms of such concepts as algorithms, data struc-
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tures, and automata. In many applications of these
discrete concepts the availability of theoretical
results is replaced by the computational power of
digital computers.

Due to the relative isolation of these methodologi-
cal traditions, both historically and in the educa-
tional process, there are aspects of continuous and
discrete modelling techniques, and aspects of the
relationship between these techniques, that are not
generally recognized. Although the subject of
numerical analysis focuses on the relationship
between continuous and discrete methods, the
perspective it provides lies thoroughly within the
continuous tradition. While intimately concerned
with digital computation, numerical analysis con-
centrates on going from a continuous model, e.g. a
differential equation, to some discrete means of
deducing that model’s behavior. The issues that are
important in numerical analysis are substantially
different from those which arise from attempts to
model directly in discrete form, bypassing con-
tinuous formulations entirely. In this direct ap-
proach the emphasis is on the relationship between
some perceived real system and a discrete model,

rather than between a continuous model and a

discrete approximation of it. This approach has
been convincingly put forward by Donald Green-
span and his associates in a series of articles?>*'° in
which discrete models are proposed for the
mechanical systems which physicists have classi-
cally modelled using differential equations. Not
only are the discrete models easily simulated by
computer, but they also preserve some of the
theoretical attractiveness of the classical models.
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Although Greenspan’s efforts have primarily been
toward formulating (and simulating) discrete
models of systems which are usually modelled by
continuous methods, he points out, as do Zeigler
and Barto®, that computational methods permit the
exploration of entirely new classes of models.

The purpose of this article is to examine some of
these issues from the point of view provided by
system theory. One of the goals of the system
sciences, as stated by Sutherland’, is to permit the
properties of a particular problem rather than «
priori methodological biases, to determine the
analytical approach to be used, and going a step
further, to prevent such biases from determining
which problems are considered for analysis. These
goals seem especially appropriate to the use of
discrete and continuous models. Which approach is
taken is usually determined by the background of a
researcher or by the tradition prevalent within a
discipline, rather than by which set of conceptual
tools can provide the most expressive means of
formalizing a model. Although the modelling
formalism which most often comes to mind is the
dilferential equation, system theory provides a
framework for rigorously defining a much more
general class of dynamical models. Since continuous
methods have traditionally played the more visible
role in mathematics, some of the material to follow,
being well known in some quarters, is tutorial in
nature. We hope our discussion dispels some of the
apparent misapprehensions about the potential of
discrete modelling techniques so that future dis-
cussions can focus on substantive criticisms of
discrete modelling as it is now practiced.

The terms discrete and continuous apply to a
wide range of structures and techniques, but for the
purposes of this article they will refer to discrete
and continuous representations of time as used in
models of processes whose behavior unfolds over
time. Models of temporal processes take the form of
discrete-time or continuous-time dynamical sys-
tems. By the term discrete model, then, we shall
mean a model formulated as a dynamical system
having a countable time base (usually the integers).
This kind of model might be formalized as a set of
difference equations or as an automaton. The term
continuous model will refer to a system whose time
base is the uncountably infinite set of real numbers.
Continuous models are usually, although not
exclusively, formalized as differential equations.
According to this terminology a discrete model can
still involve uncountable sets, such as the real or
complex numbers, as ranges of some or all of its

descriptive variables. In other words, a discrete
model (as we shall use the term) might be a discrete-
time but continuous-state model. Distinctions be-
tween countable or finite sets and uncountable sets
are clearly important when referring to other parts
of a model besides the time base, especially since
actual digital computers can manipulate only finite
sets. However, the countable-uncountable distinc-
tion drawn between time bases classifies models in
a way that most closely parallels the classification
arising in practice which distinguishes those who
use differential equations from those who do not.
We shall therefore focus on the use of different time
bases, but much of what will be said is also
applicable to the differences between discrete and
continuous methods in general.

MODELLING TRADITIONS

On the surface, the distinction between countable
and uncountable representations of time does not
appear to present problems that are not already
adequately treated by existing mathematical theory.
Modern functional analysis subsumes both the
discrete and continuous cases and makes explicit the
algebraic and topological differences between
spaces of countable and uncountable dimension-
ality. Whatever the usefulness of these results for
modelling, the problems to which this article is
addressed are not those of discrete and continuous
mathematics, and we shall not touch on the logical
status of the continuum nor, as we point out in the
next section, on the direct empirical justification, or
lack of it, for the use of continuous methods. Rather
we address problems which have their roots in the
isolation between discrete and continuous tradi-
tions of model building. The evolution of these
traditions is attributable to the success of particular
modelling formalisms for expressing hypotheses
about observed regularities and to the successful
development of techniques for deducing the con-
sequences of these hypotheses. Discrete-time sys-
tems concepts evolved primarily as design tools for
the digital technology emerging in the 1950s and as
abstract models of computation. It became possible
to develop methodologies for digital computing,
both at hardware and software levels, that required
no knowledge of the classical continuous models
used so successfully in the physical sciences. The
subsequent isolation is currently reflected in the
very different characters of discrete-time and
continuous-time theories, and in the fact that there

are relatively few people who are comfortable with
both.
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The theory of discrete-time systems is very
diverse, but it is generally characterized by an
emphasis on the synthesis of a precisely specified
process from a given set of primitives. For example,
in switching theory one wants to construct a circuit
having a specific behavior; in digital signal process-
ing, one wants to design a filter with a certain
frequency response; or, in computability theory, one
wants a program using only certain instructions
which computes a given function. At the risk of
making too broad a generalization, the theoretical
results thus involve the existence of systems with
specific properties and synthesis procedures for
completely describing these systems.

The emphasis in the continuous theory, on the
other hand, has been on the behavioral analysis of
general classes of systems having very high levels of
mathematical structure. For example, systems de-
fined by linear differential equations have much
more formal structure than finite automata. Thus
results exist which are both general and detailed and
which relate the structure of these systems to their
behavior and to the behaviors of structurally similar
systems. With the exception the discrete counter-
parts of these linear results (about which we shall
say more later), behavioral analysis methods for
discrete-time systems apply to individual systems
and not to general classes of discrete-time systems.
One hopes, of course, that special classes of highly
structured discrete-time systems will be identified,
and that theories will be developed which do not as
yet have continuous counterparts, but efforts in this
direction are just beginning.

Even though discrete-time theory emphasizes
synthesis and continuous-time theory emphasizes
analysis, there are no mathematical or logical
reasons for the separation of these theoretical
orientations into two isolated traditions. In fact,
there are numerous instances in which nearly
identical mathematical structures are studied in
virtual isolation from one another within different
traditions. For example, automata (without the
finiteness restriction) or sequential machines are,
technically, essentially the same as what mathema-
ticians call difference equations. The notations differ
and usually difference equations involve more
algebraic structure than the automata typically
studied, but there is a one-one correspondence
between these classes of structures. There is a similar
correspondence between multidimensional differ-
ence equations of the kind used to approximate
partial differential equations and the objects called
cellular or tessellation automata.t Another example

is provided by the structures which are called
recursive digital filters in the field of digital signal
processing.® These objects are the same as linear
sequential machines'® which are the same as linear
difference equations.

Despite their near formal identity, automata and
difference equations are part of different traditions.
Difference equations, although discrete, are more
closely associated with continuous methods since
they are usually studied as approximations to
differential equations. Consequently the study of
automata differs quite drastically from the study of
difference equations. There are major differences in
the relevant intuition, the theoretical results that are
deemed important, and the subclasses that are
delineated in each area. However there are no
logical obstacles to an integration of the intuition,
theory, and applications of these areas. Similarly,
there are no logical obstacles to the integration of
discrete and continuous-time modelling formalisms
and techniques. Although the system theory litera-
ture provides a framework for such integration as in
Padulo and Arbib'! and Zeigler,'? it is not well-
known among applications oriented model-builders
and its consequences for modelling are just begin-
ning to be explored.

The differences between discrete modelling and
numerical analysis can be clearly seen in terms of the
difference between modelling traditions. When a
discrete model is derived to approximate the
solution of a differential equation, the model is
viewed within the tradition that surrounds the
continuous modelling approach. The questions that
are asked about discrete structures depend on their
being viewed as approximations to continuous
systems. For example, one is usually interested in
error bounds and whether or not (and how) the
behavior of the discrete model approaches the
differential equation’s solution as the step size, or
mesh, converges to zero. These are questions about
relationships between a continuous model and a

tCellular automata are networks of identical automata which
are interconnected in a regular way with the automata having
neighboring positions in the network. Usually each component
automaton, or cell, is required to have a finite state set so that the
corresponding difference equation would have to be one
involving functions into finite sets. This finiteness condition is the
only major definitional difference even though the image of a
network of automata is likely to be vastly different from an
impression conveyed by a difference equation. More extensive
discussions of cellular automata compared to other modelling
traditions can be found in Zeigler and Barto® and Barto.?
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discrete one, and the subject is usually subdivided
on the basis of how discrete approximations are
constructed given a differential equation rather than
according to the behavioral properties of the
discrete systems.

On the other hand, when a discrete model is
formulated initially, it is not intended to be an
approximation to a continuous model. In fact, it is
often the intent of the model builder to represent
aspects of a phenomenon that are considered as
actually being discrete. The question of the de-
sirability of a finer mesh or finer resolution level may
not ever arise, and there may be no loss of
information due to “undersampling” (a point we
shall return to later). Indeed, the model builder need
not have any experience with continuous techniques
and numerical analysis. Perhaps the most familiar
instance of this is in automata theoretic models of
digital computing devices. Since logic gates and
digital memory devices stabilize at a time scale faster
than that of the driving clock pulse, it is in most
cases possible to completely ignore their behavior
between clock pulses. Only the stabilized com-
ponent states at the end of each time interval are
relevant to the future behavior of the system. Going
to a time “mesh” finer than the clock frequency
introduces an entirely new order of complexity to
the model that is simply not required for many
design and analysis purposes. Indeed, the use of a
continuous modelling formalism, even if solvable,
would undoubtedly obscure the behavioral simpli-
cities that are captured by the discrete-time model.

Thus, even though the direct formulation of a
discrete-time model might result in a structure
similar to one that could have been derived to
approximate the solution of a differential equation,
the fact that it was not so derived makes a major
portion of numerical analysis irrelevant. Properties
of discrete systems, e.g. stability, that are critical in
numerical analysis may still be important, but the
complex problem of determining whether or not
they reflect properties of a differential equation’s
actual solution need not be faced. The crucial

questions in the direct approach concern the,

validity of of the model in accounting for observed
data.

DISCRETE-TIME MODELS

OF NATURAL SYSTEMS

The example of discrete-time models of digital
circuits raises several questions when it is suggested

that similar methods may be generally applicable
for modelling systems which aren’t products of
conscious human design. Some of these questions
quickly lead to fundamental philosophical prob-
lems which, while being relevant in a wide sense to
the entire enterprise of modelling, really need not be
faced in discussing discrete and continuous model-
ling traditions. Some of the misapprehensions about
discrete and continuous modelling can be attri-
buted, we feel, to varying assessments of what a
model’s validity implies about “reality”. When
disagreement hinges on an issue of this kind, one
becomes entangled in epistemological problems
that have very long histories.'> Model builders
probably would not explicitly claim that time does
or does not really flow continuously, but the degree
of realism implied by such a claim does tacitly
contribute to misunderstanding by being implicit in
strong biases toward particular modelling tradi-
tions.

It can be argued, for example, that just because
nothing relevant happens in a digital circuit between
discrete time steps does not imply that nothing at all
happens. In fact, talking about digital components
stabilizing between time steps presupposes a tem-
poral continuum or, at least, a finer time scale at
which the system’s behavior can be described. This
is indeed true for a digital circuit, and a similar
argument might well be put forward whenever a
system other than a purposefully synthesized digital
system is modelled by a discrete-time system. If I am
not mistaken, however, this argument is sometimes
strengthened by modellers of the continuous
tradition to the claim that approximations and/or
omissions are necessarily present whenever the
temporal dimension is represented by a structure
other than the real numbers. Claiming that a
continuous representation of time is in any sense
necessary for the ultimate expression of natural
regularities is tantamount to holding that nature
itself is continuous, and we know much less about
nature itself than whether it is discrete or con-
tinuous.

We're not saying that this realistic position is
consciously held by modellers but only that it is
reflected in remarks, often casually made, about
discrete models. For example, after the description
of a discrete-time model, it is not uncommon for an
author to state that the discrete-time model repre-
sents an approximation to the differential equations
which describe the actual dynamics of the system. It
may well be true that such a differential equation
model exists. but it would simply be another model
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useful for answering a possibly different set of
questions. The term “dynamic” was originally
associated only with continuous-time models since
the differential equation was the only formalism
available for modelling processes which unfold in
time. We know now that the idea of dynamics is
more general than the differential equation.

One possible reason for the belief that continuous
representations are necessary for valid modelling
was clearly expressed by A. N. Whitehead'* in his
description of a form of overstatement which he
termed the “fallacy of misplaced concreteness.” We
have a natural tendency to overestimate the success
of generalizations because we lose sight of the degree
of abstraction involved. In other words, we tend to
confuse models of experience with experience itself.
Zeigler'? makes a similar point when he cautions
against confusing the “real system”, by which he
means the set of potentially acquirable data, and a
“base model” of the real system. Any notion of
structure or state of a system refers to some base
model of the real system and not to the real system
itself. Thus, what one means, forexample, by the state
of the real system is actually the state of a valid base
model.

The disposition to reify abstractions is parti-
cularly strong when the abstractions have been very
successful in accounting for observations, i.e. when
models based on such abstractions have successfully
undergone extensive validation testing and have
displayed great predictive power. This is the case
with differential equations. Models formulated as
differential equations have been so successful that it
is easy to overlook the considerable abstraction
they entail. For example, it requires nontrivial
assumptions to justify a differential equation model
of a diffusion process which, modelled at a greater
level of detail, is believed to arise from the
interaction of discrete particles. Indeed, the classical
diffusion equation would imply, if it were a valid
model, that points in space which are arbitrarily far
apart can instantaneously influence one another, an
implication which contradicts other well established
theory. The utility of the continuous formulation is
obvious, but its range of validity should not be over-
estimated.

These remarks not only apply to dynamical
models but also (and perhaps especially) to the set of
real numbers. The very considerable abstraction
involved in the construction of real numbers has
unfortunately been obscured by treating real num-
bers as primitive concepts in introduction to
calculus. Models formulated using real numbers and
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differential equations have had enormous success,
but one unnecessarily limits conceptual range by
concluding that models, to be valid, must be
expressed within this tradition.

Another argument suggested by the digital circuit
example is that since digital circuits manifest a
simplicity when viewed at discrete instants of time
by design, there is little reason to suppose that
systems which are not so designed possess the
properties necessary for valid discrete-time model-
ling. In other words, whether or not there is an
underlying continuum, discrete-time models of
naturally occurring systems are not likely to be valid
even as far as providing descriptions of behavior at
discrete times. This argument does not entail the
same kind of overstatement as the first one. It is
recognized that discrete methods could be applic-
able, but that by the nature of the phenomena to be
modelled, discrete methods don’t have the approp-
riate kind of expressive power. The evidence for this
is not persuasive when one realizes that the kind of
data with which continuous methods have found so
much success is not the only kind of data we are
capable of collecting. The inclination to reify models
which are sufficiently valid has the additional
consequence of limiting the kind of observations
that are considered important, or worthy of
investigation, or, in the extreme, worthy of perceiv-
ing. Not only is there a tendency to filter out data
that is inconsistent with a popular model, but entire
classes of observations which are neither incon-
sistent nor consistent with a model are excluded
from consideration. Consequently, the apparent
lack of properties which make discrete methods
useful may be the result of observing only those
aspects of a system which can be suitably modelled
using differential equations. In Whitehead’s words,
“The concrete world has slipped through the meshes
of the scientific net.”!®

In summary, our view is representative of the
conception of modelling and model validity that is
emerging from system theory. This view holds that a
model's validity can only be discussed with respect
toaparticular set of attributes that are of interest to
the modeller, that is, with respect to a specific “reso-
lution level™!® or a specific “experimental {frame”!?2
which characterizes the experimental access to a
svstem. Thus. a model may be valid for some
experimental frames and not for others, and there
may be many valid models of whatever real system
gave rise to a set of data. The validity of a discrete-
time model does not, therefore, imply that time is
discrete but only that the model faithfully sum-
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marizes a given set of data. Similarly, the validity of
a continuous-time model does not imply that time is
continuous. In fact, an analogy can be made
between the development of this view and the
change that has occurred in the way axioms and
postulates are regarded. Wilder!” discusses the
gradual change, influenced by the invention of non-
euclidean geometries, from the conception of
axioms and postulates as logical necessities toward
their being viewed as formal statements whose
status as valid physical assertions is not a concern of
mathematics. Similarly, it is possible to separate
questions about the validity of dynamical models
from questions about the ultimate nature of reality.

DISCRETE FUNCTIONS

Introductions to discrete-time systems usually
begin with a definition of a discrete function, or.
using the terminology of signal processing, a digital
signal. We shall briefly discuss discrete functions
and their use in modelling in order to focus sharply
on some of the central issues in discrete and
continuous modelling. Let I be any finite set of
contiguous integers such as, for example, {0,1,2,3}.
A rule f'that assigns to each xel a value y=f(x) (for
our purposes y will be a real number) is a discrete
function. We'll write f: I — R, where R denotes the set
of real numbers, to describe such a function. Thus, a
discrete function is simply a real-valued function
whose domain is a finite set of integers rather than
the more familiar interval of real numbers. We've
been somewhat arbitrary in choosing this definition
since it would be useful to include discrete functions
which take on values that are not real numbers or
which have domains of higher dimension. It might
also be useful to consider functions whose domains
are abstract sets that are not connected in any way
with the properties of the integers (e.g. order
property). However our definition is sufficient for
our purposes of comparing discrete functions with
more familiar concepts.

The use of the notation y=f(x) for representing
values of a discrete function seems to be a very
natural appropriation of the usual notation for
functions of the reals. Actually, however, this
notation represents an interesting and subtle alte-
ration of the usual view taken of these structures. In
more traditional approaches, the similarity between
discrete functions and functions of the reals tends to
be obscured by the practice of calling discrete
functions sequences or sometimes simply vectors.
For example, a vector f=(f,, f}, f2, f3) is the same
as the discrete function f:/—R where I ={0, 1, 2, 3}

and f(x)=f.. It’s just more common in the discrete
case to write arguments as subscripts and the
function values as “coordinates”. This very minor
notational change is significant because it reflects a
mingling of discrete and continuous mathematical
traditions.t In the study of finite-dimensional
vectors, the index [ is usually important only with
respect to its size, which gives the dimension of the
linear space, and as a set of labels for the coordinates
(thus any other set of the same size would do). Any
other structure that the set I may have. such as linear
order or group structure, is important only in
relatively advanced topics. Given the widespread
knowledge of functions having intervals of the real
numbers as domains, the functional notation, as
opposed to the coordinate notation, makes it more
natural to consider index sets (i.e. domains) that are
more than just sets. In finite dimensional linear
algebra, one does not discuss, for example, a
“monotonically increasing vector” or a “linear
vector” since these concepts depend on the index set
I having various kinds of algebraic structure. A
monotonic or a linear discrete function, on the other
hand, can be directly understood by analogy with
the corresponding concepts for functions of the
reals.

This direct correspondence between the concept
of a discrete function and the concept of a function of
the reals should not be confused with any sort of
correspondence between particular discrete func-
tions and particular functions of the reals. In many
applications it is very natural to regard a discrete
function as having been derived by sampling from a
function of the reals. For example, in digital signal
processing, a digital signal (i.e. a discrete function) s
often viewed as having been obtained from some
underlying analog signal by a sampling process. In
fact, the values of digital signals are usually called
samples. But, as Steiglitz' points out, digital signals
need not have been derived from any analog signal.
He gives the example of a digital signal each value of
which represents the total yardage of a football
team in a particular game. There is one value per
game and no analog signal is involved. Not only in

+In modern functional analysis, real valued functions of the
reals are viewed as vectors, an approach which represents the
other side of this blending of traditions. A function f: R—R is
viewed as a vector in an uncountably infinite dimensional linear
space. Its values, f(x), xeR, are its coordinates in this space. The
modern vector view of functions of the reals permits concepts
which originated in a discrete or finite dimensional setting to be
extended to uncountably infinite dimensional function spaces. A
similar enrichment of discrete methods may occur by thinking of
finite dimensional vectors as discrete functions.
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practice are some discrete functions independent of
any natural relationship with a function of the reals,
but on the theoretical side, a discrete function can be
viewed as an entirely independent, well-defined, and
precisely manipulatable object. A discrete function
is not, for example. a discontinuous and hence
theoretically troublesome function of the reals. The
domain of a discrete function. as defined above. is a
set of integers. The function is not defined for real
numbers between the integers.

The above remarks can shed some light on
the relevance to discrete and continuous modelling
of what is known as the “sampling theorem.”
This result says, roughly, that if a real (or
complex) valued function of the reals is smooth
enough (i.e. lacks spectral components above a
certain frequency), then sample values can be taken
at small enough intervals so that no information is
lostin the process, i.e. the exact original function can
be recovered. Sampling at larger intervals loses
information. The smoother the function is, the
larger the sampling interval can be. This is an
important result in many applications, but its
significance as a universal principle should not be
overestimated. It is tempting to conclude, by
invoking the sampling theorem, that discrete sys-
tems are only capable of faithfully representing
behavior that is sufficiently smooth. However, this
conclusion cannot be justified. In its usual form, the
sampling theorem refers to the process of sampling a
function of the reals to produce a discrete function.
For discrete functions that did not arise from such a
sampling process, the issue of information pre-
servation is not illuminated by the sampling
theorem. Further, the relationship between smooth-
ness and discreteness expressed by the sampling
theorem is only one particular example of a range of
other possible relationships between functions of
the reals and discrete functions.

To understand this last remark it’s necessary to
characterize the kind of result the sampling theorem
expresses. The process of sampling a function of the
reals is clearly a many-to-one operation from the set
of all functions of the reals to an appropriate set of
discrete functions. In fact, an uncountably infinite
number of functions of the reals are mapped to every
discrete function by the sampling operation. The
sampling theorem says that if the original function
happens to be a member of the subset of sufficiently
smooth functions, then it can be recovered from the
resultant discrete function by a suitable operation.
In other words, the sampling operation restricted to
the set of “smooth functions™ is invertible and its

inverse is known. Clearly. then. any function fof the
reals can be recovered from its sampled version
(whatever the sampling rate) provided that we have,
in addition to the resultant discrete function,
enough other information about f, namely that we
know 1) that f belongs to a subset of functions on
which the sampling operation is invertible and 2) we
know how to compute the inverse operation for that
subset. The set of “smooth” or “band-limited”
functions is one such subset and is important in
applications because membership in it is often a
natural consequence of assumptions about the
inertia of measuring instruments. Another such
subset consists of functions that are non-zero only at
the points to be sampled. Recovery in this case
consists of simply converting the discrete function to
the corresponding function of the reals whose value
is zero between the sample points. No information is
lost if we know that the original function f was a
member of that subset. This is true even though such
a function is never band-limited.

The assumption that a function has non-zero
values only on a countable subset of the reals might
also be a natural consequence of a modelling
technique or measuring method. Discrete event
systems, such as those discretely simulated using a
simulation language like GPSS, can be thought of as
continuous-time systems whose variables can
change values only in discontinuous jumps. It’s not
generally a serious restriction to assume that the
changes can occur at a known countable subset of
the real numbers. Arrivals of customers at a bank
might be represented by such a function.!?

We emphasize, however, that it is important to
distinguish between discrete-functions and func-
tions of the reals which are non-zero at only discrete
points. In fact, there is a discrete form of the
sampling theorem based on the Discrete Fourier
Transform'® which sharply illustrates the magni-
tude of this distinction. A function of the reals which
is non-zero only at discrete points is, as a function of
the reals, extremely non-smooth. It has discon-
tinuous jumps. However, it is possible to define
what is meant by a sufficiently “smooth” discrete
function in terms of its discrete Fourier components
and apply the discrete sampling theorem. This result
says that such a smooth discrete function can be
sampled, say at every kth point, to produce a
discrete function defined on a smaller domain from
which the original function can be recovered by a
suitable “smoothing” process. Thus, although a
function of the reals having non-zero values at
discrete points is very non-smooth. the correspond-
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ing discrete function obtained by sampling at these
discrete points might be smooth in a discrete sense:
its values at successive points not differing greatly.
Of course our remarks about the possibility of other
reconstruction techniques apply in the discrete case
as well.

One of the most appealing aspects to the use of
real valued functions of the reals is the ease with
which their general properties can be grasped from
graphical representations. Although graphs of dis-
crete functions can be similarly displayed, they are
not so well suited to the back-of-the-envelope
figuring that plays an important part in using
mathematical methods. The graph of a discrete
function consists of all the ordered pairs (xf(x)),
xel. and might be displayed as in Figure 1. For

o "1 T I3,

FIGURE 1 The graph of a discrete function.

small domains it’s probably more natural to use the
vector n-tuple notation. Thus, (3,—4, 4.5) could be
considered a kind of graph of the function f': I >R
where [ ={0.1.2}. One does not normally represent
f°s eraph as in Figure 2. But this representation is

|
+—
2

FIGURE 2 The vector (3,—4, 4.5) could be graphed as a
discrete function /:1-»R where I =10, 1, 2]..

clearly possible and is certainly more suggestive for
vectors which are being viewed as discrete functions.
Of course, digital computers can generate displays
of discrete functions with no difficulty, and one can
always pretend, in casual figuring, that a smooth
curve represents the graph of a discrete function. It’s
noteworthy to relate a remark made by Greenspan?
thatif I ={k(10)"¢|k=0,1,...,10°}, the graph of f: I
—R given by f(x)=x?, when drawn on a normal
book page, isindistinguishable to the naked eye from
the graph of f(x) = x? for x in the real interval [0, 1].

This remark also illustrates the fact that it is

perfectly feasible to use symbolic expressions to
define discrete functions. For the formula f(x)=x2,
xel, to make sense it is only necessary that
multiplication of elements of I is a meaningful
operation and always results in an element of /s
range. It is also possible to define operators on
discrete functions in terms of symbolic manipula-
tion of these formulae. Thus, by turning to discrete
functions one does not give up the possibility of
concise symbolic expression. One gains, however,
the advantage that using symbolic expressions is not
the onl\ means of completelv specifving functions as
10s m the continuous case. Diserete lunctions can be
completely defined by listing their values, e.g.
storing the values in a computer so that “addresses”
correspond to function arguments and “contents”
correspond to function values, or by providing an
algorithm whose input is a function argument and
whose output is the corresponding value. The latter
possibility is referred to, as in the opening quotation
of this article, as replacing equations by algorithms.
In a sense, of course, the description of an algorithm,
or even the tabulation of a function’s values, is a
symbolic means of defining a function which, in
principle, could be written as an equation. However,
in its usual usage, the term equation refers to
formulae consisting of constants, variables, the
symbols for basic arithmetical operations, and a
variety of other symbols to indicate differentiation,
integration, etc. The primitive operations used in
specifying algorithms (e.g. looping and conditional
branching) permit the concise definition of func-
tions which are impossible or very awkward to
express by conventional algebraic means.

SYMBOLIC AND COMPUTATIONAL
SIMULATION

Differential equations and difference equations are
both ways of specifying the constraints that are
assumed to act locally in a system to produce its
global behavior. Forsystems that describe temporal
processes, these constraints act locally in time. A
differential equation is used to formalize these local
constraints as relations which must hold between
the values of a system’s attributes at any time and
how these values are changing at that same time.
For difference equations, the constraints are ex-
pressed as relations between present attribute
values (and perhaps past values) and their values at
the next discrete time step. In both the continuous
and discrete cases, the objective is to determine what
global behavior is implied by an initial condition
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and the uniform application of these local con-
straints at each point in time. The global behavior is
the solution of the equation. The behavior is a
function of the real numbers for a differential
equation and a discrete [unction for a difference
equation.

The term simulation usually refers to the process
by which one determines a model’s behavior from its
structure, or, in the terminology used above, the
method used to find a model’s global behavior
based on knowledge of an initial condition and the
locally acting constraints. Since an equation’s
solution can be viewed as the behavior of a model
specified by the equation, it is possible to think of
solving an equation as a form of simulation.
Although this term is usually applied only to
discrete systems or to certain kinds of discrete
approximations of continuous systems in which
solutions are explicitly generated step-by-step, it is
not misleading to think of symbolically solving an
equation in closed form as a form of simulation. We
can call this symbolic simulation. If, on the other
hand, a computer is used to generate a model’s
behavior, we call the process computational simu-
lation. It is more conventional to refer to computer
simulation of models as computational solution, but
the idea of simulation is more general than the
concept of solution since the latter refers to
equations, i.e. certain symbolic expressions, which
are not the only means of specifying models. In many
cases equations are not explicitly used since an
algorithmic formulation may be more feasible or
more intuitively appealing.

One of the major justifications for formulating
models in terms of functions of the reals and
derivatives is that there are many symbolic methods
which can be useful for manipulating functions of
the reals. Perhaps the most basic symbolic methods
rest on the use of rules for differentiating or
integrating functions by merely manipulating their
formulae. The ability to symbolically determine and
use derivatives and integrals helps make the notion
of rate-of-change so powerful a conceptual primi-
tive. In formulating a model as a set of differential
equations, one hopes that symbolic methods will be
useful in finding its behavior.

Although symbolic simulation techniques exist
for certain kinds of discrete models, they are neither
as well-known nor as well-developed as they are for
continuous models. Simulation by computer is
usually the method used to gain insight into a
discrete model’s behavior. This is especially true for
automata theoretic models which are often ex-

H

pressed using set-theoretic language in which
symbols for arithmetic operations have no meaning.
The local constraints comprise a transition function
which may be given by a table rather than by a
formula. Simulation becomes, in effect, a series of
table look-ups which can be performed exactly and
quickly by digital computer. For discrete models
having more algebraic structure, the transition
function may be expressed by arithmetical formula
which can be computed at each time step by means of
arithmetic, or, as Greenspan® emphasizes, high-
speed arithmetic. Other kinds of discrete models
such as discrete-event models of queuing systems
are also conveniently simulated computationally
whether symbolic simulation techniques exist or
not.

Computational simulation of discrete-time
models is trivial compared to computationally
approximating the behavior of a continuous model
(although efficient computational simulation of
large discrete models can involve many com-
plexities). Hence, the fact that symbolic techniques
are helpful for only the simplest, i.e. linear,
differential equations is used to justify the direct
formulation of discrete-time models and the com-
plete by-passing of continuous models. Further, it is
pointed out by Greenspan? that the experimental
results which are to be modelled are originally
discrete sets of data. “Theoreticians then analyze
these data and, in the classical spirit, infer con-
tinuous models. Should the equations of these
models be nonlinear, these would be solved today
on computers by numerical methods, which results
again in discrete data. Philosophically, the middle
step of the activity sequence. . . is consistent with the
other two steps. Indeed, it would be simpler and
more consistent to replace the continuous model
inference by a discrete model inference...”2. Sim-
ulation is then performed arithmetically by a high
speed computer. Many of the subtleties of numerical
approximations of continuous models simply do
not arise.

However persuasive this argument is, there is
another aspect to the use of differential equations
and symbolic methods which should be considered.
A formula giving the solution of a differential
equation does more than give a single behavioral
trajectory of the model. By containing parameters
used in the model description, a solution’s formula
can express the form of the behavior for a large class
of initial conditions, forcing functions, and perhaps
for a large class of related models. A computational
simulation, on the other hand, produces a single
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trajectory for a single initial condition and forcing
function. Symbolic methods give coherence to
classes of models and help increase our understand-
ing of systems by showing. concisely, what struc-
tural factors contribute to what behavioral charac-
teristics. Indeed, in some cases it is possible to
deduce certain properties of a system’s general
behavior without ever determining a single actual
behavioral trajectory. A single computational sim-
ulation of a discrete model does not produce this
kind of understanding unless it is one of a pattern of
simulation runs designed to establish structural-
behavioral  correspondences  through  com-
putational experimentation. This difference be-
tween computational and symbolic simulation is the
same as the difference between arithmetic and
algebra. Algebraic methods allow generalized
arithmetic problems to be solved by separating the
logical form of a problem from its specific arithmeti-
cal computations.

We do not mean to imply that symbolic tech-
niques are applicable only to continuous-time
models, and we shall discuss their use for certain
types of discrete-time models later. Our point here is
that the computational power so immediately
available for discrete simulation makes it all too
easy to obtain specific results without their contri-
buting to an understanding of a system’s dynamics.
A specific discrete model’s behavior is very easily
generated, but it is a much more difficult task to
develop a feeling of “why” the model behaved in a
particular way. True, computational simulation can
be applied where known symbolic methods are
completely inadequate, but it is too pessimistic to
argue that the only models which can be concisely
understood are those specified by equations which
have already been thoroughly treated by classical
methods, i.e., by “simple” equations. It may in fact
be tautological to say that symbolic solutions are
possible only for simple (i.e. linear) equations since
the simplicity of a process is directly related to
concise expression of its regularities. To someone
not knowing the linear theory, linear systems
undoubtedly would appear to be quite complex.

High speed computational methods have the
potential for helping us understand a much larger
class of models by producing large numbers of
specific results which can act as guides to theorizing.
Thisis what von Neumann meant by the heuristic use
of computers. He felt that by generating computer
solutions to many specific equations, one might be
able to discover general properties and develop a
corresponding theory.'® Although specific results

rather than general theories are ultimately the aim of
model building, the specific results which are most
useful, judging from classical continuous modelling,
are often those which follow from a general
perspective about a class of related models.

Discrete-time models are very suitable for this
approach to the use of computers, but it is also true
that symbolic methods are applicable to those
discrete models which are algebraically analogous
to the continuous models which can be symbolically
analyzed. In particular, linear difference equations
can be understood as thoroughly as linear differen-
tial equations by the application of finite dimen-
sional linear algebra (which is substantially simpler
than the uncountably infinite dimensional linear
algebra of functional analysis). It’s true that the dis-
crete linear theory lacks some of the subtlety of the
continuous theory, but one wonders how much of
this complexity is useful in modelling and how much
has been generated by the theory itself. For
example, the convergence of infinite sequences of
functions of the reals is a central problem of
functional analysis. Yet if experimental data is
always a discrete set and only a finite number of
experiments are ever performed, when does the
convergence problem arise apart from in the
analysis of an inferred continuous model ? For many
applications, the discrete linear theory suffices, but
since the continuous theory is so readily available, it
is automatically adopted whether its additional
complexities are needed or not.

One example of this tendency to uncritically
adopt continuous methods involves the use of
methods based on Fourier analysis. These methods
are often learned in a specific context so that an
understanding of the principles used is tied to a
specific formulation. Among the misconceptions
arising in this way is the belief that functions need to
be real or complex valued functions of one or several
real variables in order for Fourier analysis tech-
niques to be applicable. Less standard applications
tend to be viewed as approximations to the
continuous case or as necessarily derived from the
continuous case. As a result, it is often felt that no
real working knowledge can be achieved unless one
feels comfortable with integrals, continuity, con-
vergence properties, distributions and other con-
cepts necessary for a thorough understanding of
functions of real variables. However, as the discrete
form of the Fourier Transform becomes more
widely known it is becoming clear that a prior
knowledge of the continuous theory is unnecessary.

The increased interest in discrete Fourier analysis
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is due to the widespread use of the Fast Fourier
Transform (FFT) algorithm for computing the
Discrete Fourier Transform (DFT)+. The DFT can
be understood completely within an algebraic
framework that involves none ol the complexities
(e.g. convergence and distributions) of the con-
tinuous Fourier Transform. Any real or complex
valued discrete function of N points can be
expressed exactly as a unique linear combination of
the discrete functions ¢, (x) =™~ ¥ where m and x
are integers between O and N — | (inclusive). Il one is
careful to remember that the convolution theorem
for the discrete case refers to cyclic or circular
convolution, then the DFT can be applied to
discrete-time linear systems in the same way that the
continuous  Fourier Translorm applies to
continuous-time linear systems. Moreover, it is not
necessary to know the continuous theory or even to
know that the continuous theory exists.

When obvious advantages do not result from the
formulation of a model within the continuous
tradition, the continuous framework represents
what might be called mathematical overkill. The
conceptual subtlety of continuous models brings
with it the possibility of applying powerful analysis
techniques. But when these techniques are not used,
the formulation entails unnecessary complexities—
the choice of a continuous model being determined
by the researcher’s background, the tradition
prevalent within a discipline, or because the
modeller is unaware of or unfamiliar with other
modelling techniques. On the other hand, there are
instances in which discrete models and com-
putational simulation are used when there exist
applicable classical methods. For example, instead
of exhaustively listing a function in tabular form, it
may have been possible to express it concisely by a
formula; or, instead of resorting to computational
simulation, it may have been possible to formulate a
model as a symbolically tractable system of differ-
ence or differential equations. This represents what

tAlthough the theory ol discrete Fourier analysis is less
complex than the continuous case. it developed much later than
the continuous theory as a special case of the abstract theory of
harmonic analysis of functions whose domains are topological
groups.?%2! The discrete case is the simplest special case of this
theory since all the topological complexities disappear when
attention is restricted to finite groups with the discrete topology
(every function of such a group is technically a continuous
function!). A relatively minor computational innovation (the
FFT) has made what was formerly a trivial special case of a very
abstract general theory into a subject that is now studied and
applied without reference to the rest of the theory.

might be called mathematical underkill since exist-
ing and pertinent methods are not used. Both
mathematical overkill and underkill result from the
relative isolation in which the discrete and con-
linuous traditions have developed and can be
minimized by an integration of methodologies
which keeps the issues of model validity and
predictive power in the forefront.

BEHAVIORAL REPERTOIRE

We have emphasized that a discrete-time system
need not be based, intuitively or formally, on an
underlying continuous-time model. The answer to
the question “what happens between time steps?”
may be simply “nothing” or “nothing relevant.” Yet
if discrete modelling ever displaces classical con-
tinuous methods to a substantial degree, it will be
pertinent to ask whether or not there are significant
differences between the classes of system behavior
that can be accounted for by discrete models, on the
one hand, and differential equation models on the
other. To fully answer this question would require,
at least, a careful specification of what is meant by
“accounted for” which we shall not attempt to do
here. Rather, we shall point out some facts which
bear on this question.

First, for the less problematic side of the issue,
there are examples of behaviors which can be
generated by very simple discrete-time models
which, if similar behavior even could be produced
by a differential equation, would probably require a
much more complex specification. May?? indicates
that simple nonlinear differential equations describ-
ing population growth (e.g. the logistics equation)
describe systems with very simple behavior, where-
as the corresponding simple nonlinear difference
equations have very complex behaviors, some of
which are aptly described as “chaotic”. Instead of
regarding the behavioral regimes of these discrete-
time models as artifacts of discrete approximations
to continuous processes, one could view them, as
May indicates, as possibly valid representations of
actually observable phenomena. Thus, while not
conclusively demonstrated, it is plausible that the
repertoire of discrete-time models includes be-
haviors which cannot be produced by differential
equations of similar complexity.

But what about the other side of the question?
Are there classes of behavior exhibited by differen-
tial equation models which cannot be accounted for
by discrete models? Clearly, since the behavior
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produced by a discrete-time model consists of
discrete functions, a discrete-time model, by de-
finition, cannot possess the temporal resolution
level (assuming that high resolution is desirable
which it often is not) of a continuous-time model.
Thus, at the outset, we could conclude that no
continuous behavior can be accounted for by a
discrete model. However, in applications this lack of
resolution is not the real problem since the time step
can be made as small as necessary to represent the
behavior with enough fine temporal detail as
required. Since measuring instruments result in
discrete data, the detail required is always less than
that provided by a function defined on the entire
continuum.

The major problem arises because of the no-
torious difficulty in providing a discretely specified
model (e.g. a difference equation) whose behavior
exactly agrees with the behavior of the continuous
model at designated time samples. In the terms of
numerical analysis, the simulation of such a discrete
model would produce a numerical approximation
that is “infinitely accurate at the mesh points,” that
is, the behavior of the discrete model would be equal
to the sampled behavior of the continuous model.
The discrete models constructed in numerical
analysis behave only approximately like the con-
tinuous system and only do so in a restricted time
period even if an ideal computer producing no
round-off error is imagined. That infinitely accurate
numerical approximations exist only in rare in-
stances leads one to suspect that the behavioral
repertoire of the class of continuous-time models
may be richer than that of the class of discrete-time
models, even putting aside the issue of temporal
resolution. That is, given a continuous-time model
there may not exist a discrete-time model whose
structure generates, in a local manner, behavior
which is equal to the sampled continuous behavior.

However, with a very general definition of well-
specified discrete and continuous-time systems it
can be shown that this is not true. For every
continuous-time system there does exist a discrete-
time system whose behavior agrees exactly with that
of the continuous system at time samples which are
integer multiples of an arbitrarily chosen positive
number. This result, due to Zeigler,' % says that such
a discrete-time system exists, but it does not imply
that it is easy to construct that system given only the
continuous model’s structure, e.g. given only a
differential equation. The actual construction of the
discrete system requires a knowledge of the con-
tinuous system’s behavior, e.g. the solution of the

differential equation, so that this result is not helpful
for initially finding the solution. The rare cases
where infinitely accurate numerical methods exist
are those instances in which the discrete-time system
can be constructed without this behavioral know-
ledge.

Nevertheless, the existence of such exact discrete
models is important in the discrete modelling
tradition where continuous models are not used at
all. By restricting oneself to the use of discrete
models one does not, ab initio, exclude the
possibility of generating, from local rules and up to
any discrete resolution, the full range of behaviors
produced by continuous models. The problem of
the construction of continuous-discrete model pairs
does not arise since discrete models are formulated
directly.

Itis beyond the scope of this article to develop the
theoretical framework in which this result can be
rigorously proven, but we can indicate the character
of the result by discussing a simple example. The
initial value problem given by

4 g q0)= (1)
dt_aq’q ={qo
has the solution
q(t)=qoe",t20. (2)

The corresponding discrete-time system is specified
by the difference equation

q(t+h)=e"q(t),q(0)=q, 3)

The solution of (3) is the discrete function ge* for
te{kh|k=0, 1, ...}. This can be seen by induction
where the crucial step follows from the fact that by
eq. (3) q(t +h)=e"(goe™) =goe"* ™. Note that the
coefficient e in eq. (3) is obtained from the solution
of the differential equation and not from the
equation itself.

The correspondence in this example depends on
the specific property of exponential functions that
a*-a*=a**?. However this fact can be viewed as a
specific form of a property possessed by other well-
defined dynamical systems. This property is known
as the semigroup property of state determined
systems?? or, in a more general form which includes
input, as the composition property'?. Very briefly, a
system with this property can be characterized at
any time ¢ by a state g, such that its state at any time
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{+his afunction of g, and h but not of t.+ Suppose a
continuous-time system starts in the initial state g,
attime t=0and at any time ¢ = h is in state g,. If the
system satisfies the composition property, then g, is
a function of g, and h. We can write

qn=90(qo. h).
If g and g, are indeed states of the system. then

42, =0(0lqo. h), h)
and, in general

Gk + 1)h =0(qup, h)

Thus. the function ¢ can be used to iteratively
generate a discrete function which agrees with the
behavior of the continuous system at times which are
integer multiples of h. For the system specified by the
differential equation (1), &(qy, h)=q.e*. Similar
constructions are possible whether the system is
linear or nonlinear.j

Numerical analysts have not focused on discrete
systems derived in this way from continuous
systems since, as we have said, the behavior of the
continuous system needs to be known for the
derivation. If this behavior were known, a discreti-
zation would be unnecessary. Zeigler'? remarks,
however, that the behavior need only be known for
the time interval [0, h] which might be determined
by a standard numerical method. Using this result
for specifying a discrete-time system and then
iteratively generating the behavior of the discrete
system for longer periods may result in a decrease of
error propagation. In addition, given a model
consisting of interconnected components that in
isolation from other components are described by
differential equations whose solutions are known, it
is possible to simulate the model using the discrete-
time version of the components.*

A result having the character of that reported here
is also useful in applications where synthesis rather
than analysis is necessary, for example. if a discrete-

tFor the case of systems without input this implies time-
invariance, but if input is considered it's possible for a system to
have the composition property without being time invariant. See
Zeigler '?

iFor the case with input, a continuous input segment defined
fromtimet=0tot=hisregarded as a single input symbol. This is
quite natural for piecewise constant input functions (as in
sampled-data systems) but can be extended to other kinds of input
segments.'?

time system is to be constructed whose behavior
should approximate the known behavior of a
continuous-time system. The theory of digital signal
processing is partially concerned with this task, and
the kind of construction described here is closely
related to the technique called impulse invariant
filtering.® A digital filter can be designed and
implemented on a digital computer whose impulse
response is equal (except for quantization error) to
the sampled impulse response of an arbitrary
continuous-time linear filter.

The reason for reporting this result here is that it
shows that in a very strong sense the behavioral
repertoire of discrete-time models is at least as rich
as that of continuous-time models. The con-
structional difficulties occur only in going from a
continuous model to the corresponding discrete
model. If a discrete model were constructed to
account for empirically observed behavior, rather
than to match the behavior of a continuous model,
these difficulties do not arise. Of course there
remains the possibility that in a particular appli-
cation a valid continuous model may be easier to
construct than a valid discrete model, but restricting
attention to discrete models does not further limit
the kind of behavior that can be generated.

We can take this result further. Most standard
numerical methods are based on approximations to
the derivative, i.e. on discrete versions of the rate-of-
change concept. The form of the “infinitely ac-
curate” discrete systems described here indicates
that simply change rather than rate-of-change is the
appropriate conceptual primitive for discrete
modelling. The difference equation (3) was for-
mulated on the basis of asking “what change does
the continuous system undergo from t=0to t=h?”
A similar question might be asked about a system
under observation in the natural world possibly
resulting in the direct formulation of a valid
discrete-time model. It might be argued here that
examining mere change rather than rate-of-change
is what postponed the understanding of motion
provided by Newton. The quantities that remained
invariant in simple mechanical systems were vel-
ocities or accelerations. However, since Newton’s
time we have learned a great deal about modelling
dynamical processes and, in particular, about what
Is meant by the state of a system. The invariant
property of a system is, more generally, a function
that tells how states change to other states. The
concept of instantaneous velocity is appropriate for
modelling certain kinds of systems, but it is only one
way of specifying such a function.
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CONCLUSIONS

We have tried to articulate a point of view and to
present some facts which would dispel common
criticisms of discrete modelling as an alternative to
modelling with differential equations. Most of these
criticisms seem to be the result of unfamiliarity with
discrete styles of mathematical thinking and a
tendency to reify the abstractions used in models
which have such long histories of success. There
remains, however, a set of issues that cannot be so
resolved. Rather than being criticisms of the
principle or potential of discrete modelling, these
issues pertain to current discrete modelling prac-
tices and to the fact that classical models of
dynamical systems happen not to be expressed in
discrete form.

Digital computers permit simulation of models
whose complexity far transcends the current possi-
bilities of symbolic techniques. In many cases, the
purpose of such simulations is to experiment with
alternative configurations of an existing or pro-
posed physical construction without having to
actually alter or construct it until numerous
possibilities have been tried with the model. For
example, models of industrial processes, traffic flow,
and computer operating systems are often sim-
ulated for this purpose. Such models are not
designed with an explicit goal of helping to
“understand” the system. The system, in fact, may be
one whose entire mechanism is regarded (perhaps
mistakenly) as exposed and already understand-
able. This is why in much of the literature on this
kind of modelling the term “simulation” rather than
“modelling” is emphasized. The appropriate model
is regarded as almost obvious while the emphasis is
placed on the generation and analysis of its
behavior. Theory, aside from statistical theory,
plays very little role in this process.

The adoption of this style of modelling and
simulation for purposes of unraveling observational
patterns in order to “explain” or “understand” them
immediately leads to difficulties. The terms expla-
nation and understanding are admittedly prob-
lematic, but at the very least their meaning involves
the ability to embed a particular model into a larger
existing conceptual framework. In many scientific
areas, the existing conceptual frameworks rely so
heavily on continuous mathematics that discrete
models, even if valid, tend to appear as merely
descriptive models without adequate explanatory
significance. Indeed, explanatory significance may
in fact be lacking as long as contact with classical

theory is not established or as long as sufficiently
encompassing discrete theories are not constructed.
The methodological biases produced by a prevail-
ing modelling formalism are, in a sense, justified by
their own prior existence. The often asked “What if
digital computers were available to Newton?” is,
after all, an academic question.

One can’t, of course, conclude that continuous
methods (including numerical analysis) must there-
fore remain the major tools in scientific modelling.
On the contrary, the ease with which discrete
modelling and simulation techniques can be applied
in situations where classical methods are completely
inadequate is precisely what is needed for further
theoretical development. Computational experi-
mentation can suggest the form of structural-
behavioral correspondence in classes of systems that
are not yet understood, but computational power
alone is not a substitute for the careful simplification
and theoretical generalization that have helped
make classical methods so fruitful.
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